JP3981601B2 - Titanium metal refining method and refining apparatus - Google Patents

Titanium metal refining method and refining apparatus Download PDF

Info

Publication number
JP3981601B2
JP3981601B2 JP2002210537A JP2002210537A JP3981601B2 JP 3981601 B2 JP3981601 B2 JP 3981601B2 JP 2002210537 A JP2002210537 A JP 2002210537A JP 2002210537 A JP2002210537 A JP 2002210537A JP 3981601 B2 JP3981601 B2 JP 3981601B2
Authority
JP
Japan
Prior art keywords
titanium
zone
calcium
metal
reduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002210537A
Other languages
Japanese (ja)
Other versions
JP2004052037A (en
Inventor
勝敏 小野
亮輔 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP2002210537A priority Critical patent/JP3981601B2/en
Publication of JP2004052037A publication Critical patent/JP2004052037A/en
Application granted granted Critical
Publication of JP3981601B2 publication Critical patent/JP3981601B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Electrolytic Production Of Metals (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、酸化チタン(TiO2)を熱還元して金属チタン(Ti)を製造する工業的に量産可能な金属チタンの精錬方法及びその精錬装置に関する。
【0002】
【従来の技術】
金属チタンは、次々とその優れた性質が明らかにされ、航空・宇宙の分野だけでなく、近年では、カメラ、めがね、時計、ゴルフクラブ等の民生品の分野にも利用されるようになり、更には、建材や自動車の分野でもその需要が期待されている。
【0003】
そして、この金属チタンの製造方法については、現在、工業的に行われている方法は、半導体用高純度チタンを製造するために極めて小規模にチタン精錬を行う電解法を除き、いわゆるクロール法のみとなっている。
【0004】
このクロール法による金属チタンの精錬は、図5に示すように、次のようにして行われている。
先ず、原料の酸化チタン(TiO2)を炭素(C)の存在下に塩素ガス(Cl2)と1000℃で反応させ、低沸点(沸点136℃)の四塩化チタン(TiCl2)を製造し、次いで得られた四塩化チタンを蒸留により精製して高純度の四塩化チタンを製造する。このときの四塩化チタンの生成反応は次の通りである。
TiO2 + C + 2 Cl2 = TiCl4 + CO2
TiO2 + 2 C + 2 Cl2 = TiCl4 + 2 CO
【0005】
次に、このようにして得られた四塩化チタンを金属マグネシウムの存在下に還元し、金属チタンを製造する。この四塩化チタンの還元は、鉄製密閉容器に金属マグネシウムを仕込み、975℃に加熱して金属マグネシウムを溶融させ、この溶融金属マグネシウム中に四塩化チタンを滴下して行われ、次の反応式に従って金属チタンが生成する。
TiCl4 + 2 Mg = Ti + 2 MgCl2
【0006】
この四塩化チタンの還元で得られた金属チタンは、通常、還元反応装置の内部形状を反映した一つの大きな円柱形状の塊として得られ、多孔質固体状であっていわゆるスポンジ状金属チタンと称されており、その内部には副生した塩化マグネシウムや未反応の金属マグネシウムが含まれており、また、一般に、その中心部では固溶酸素濃度が400〜600ppm程度と低くて靭性に富み、反対に、外皮部では固溶酸素濃度が800〜1000ppm程度で硬度に優れている。
【0007】
そこで、このスポンジ状金属チタンについては、先ず1000℃以上、10-1〜10-4Torrの条件で減圧下に加熱し、スポンジ状金属チタンに含まれている副生塩化マグネシウムや未反応金属マグネシウムを除去する真空分離が行われる。なお、この真空分離で回収された塩化マグネシウムは、電気分解により金属マグネシウムと塩素ガスに分解され、得られた金属マグネシウムについては真空分離で回収された未反応金属マグネシウムと共に上記四塩化チタンの還元反応に利用され、また、得られた塩素ガスについては上記酸化チタンの塩素化反応に利用される。
【0008】
次に、このスポンジ状金属チタンから消耗電極式真空アーク溶解法により製品のチタンインゴットを製造する際には、一次電極ブリケットの製造のために、大きな一塊となって生成したスポンジ状金属チタンを一旦破砕し粉砕する(破砕・粉砕処理)が、場合によってはこの際に、製造されるチタンインゴットの用途やスポンジ状金属チタンの部位(中心部と外皮部)による固溶酸素濃度の違いを考慮し、例えば靭性金属チタンを必要とする場合には主として中心部から得られる粉砕スポンジ状金属チタンを集めたり、あるいは、高硬度金属チタンを必要とする場合には主として外皮部から得られる粉砕スポンジ状金属チタン集める等の分別が行われる。
【0009】
そして、このようにして調製された粉砕スポンジ状金属チタンは、次に、圧縮成形工程でブリケットにしたのち、それらを多段に重ねてTIG溶接により円筒状の電極とされ、更に、真空アーク溶解や高周波溶解等の溶解工程で溶解され、表面の酸化皮膜を切削除去して目的の製品チタンインゴットが製造される。
【0010】
しかしながら、このようなクロール法による金属チタンの精錬においては、酸化チタンを製造原料とするものの、この酸化チタンを一旦低沸点の四塩化チタンに変えてから還元するために、その製造工程が長くなり、また、スポンジ状金属チタンの製造過程で高温減圧下の真空分離が不可欠であり、更に、製造されるスポンジ状金属チタンが大きな一つの塊として得られるので製品チタンインゴットを製造する際にはこのスポンジ状金属チタンの破砕・粉砕処理が不可欠になり、しかも、スポンジ状金属チタンはその中心部と外皮部とで固溶酸素濃度が大きく異なるために、製品チタンインゴットの用途によってはその破砕・粉砕処理で中心部からのものと外皮部からのものとを分別しなければならず、このようなことが結果として金属チタンの製造コストを極めて高くする大きな要因になっている。
【0011】
この金属チタンの精錬方法については、上記クロール法以外にも幾つかの方法が提案されている。
例えば、竹内 栄及び渡辺 治、日本金属学会第28巻(1964)第9号第549〜554頁には、図6に示すように、黒鉛製ルツボaを陽極とし、その中央部にモリブデン製電極bを陰極として配置し、ルツボa内には塩化カルシウム(CaCl2)、酸化カルシウム(CaO)及び酸化チタン(TiO2)からなる900〜1100℃の混合溶融塩cを仕込み、図示外の不活性ガスのアルゴン(Ar)の雰囲気下に混合溶融塩c中で酸化チタンを電解し、生成したチタンイオン(Ti4+)をモリブデン製電極bの表面に析出させて金属チタンdを製造する方法が記載されている。
【0012】
また、WO 99/64638には、図7に示すように、反応容器内に塩化カルシウム(CaCl2)の溶融塩cを仕込み、この溶融塩c中に陽極として黒鉛製電極aを、また、陰極として酸化チタン製電極bをそれぞれ配設し、これら黒鉛製電極aと酸化チタン製電極bとの間に電圧を印加して陰極の酸化チタン製電極bから酸素イオン(O2-)を引き抜き、この引き抜かれた酸素イオンを陽極の黒鉛製電極aで炭酸ガス(CO2)及び/又は酸素ガス(O2)にして放出することにより、酸化チタン製電極bそれ自体を還元して金属チタンdに変換する方法が記載されている。
【0013】
しかしながら、前者の竹内・渡辺の論文に記載の方法においては、析出した金属チタンdが混合溶融塩c中で高濃度の酸化カルシウムと絶えず接触しているため、製造される金属チタンd中の固溶酸素濃度を制御したり、あるいは、低下させて靭性に優れた金属チタンdを製造することが難しく、しかも、モリブデン製電極bの表面に微細な樹枝状に析出してくるために大量生産が困難であり、工業的製造方法としては不向きであるという問題があり、また、後者のWO 99/64638記載の方法においては、陰極で生成した金属チタンd中の微量酸素の固体内拡散が律速するために、脱酸素に長時間を要するという問題がある。
【0014】
【発明が解決しようとする課題】
そこで、本発明者らは、これまでのクロール法とは異なり、高温減圧下の真空分離やスポンジ状金属チタンの破砕・粉砕処理が必要なくて容易に金属チタンを製造することができ、しかも、得られる金属チタン中の固溶酸素濃度も容易に制御することができる金属チタンの精錬方法及びその精錬装置について鋭意検討した結果、塩化カルシウム(CaCl2)と酸化カルシウム(CaO)及び/又はカルシウム(Ca)からなる混合溶融塩で反応領域を構成し、この反応領域を酸化カルシウム及び/又は塩化カルシウムの電解帯域と酸化チタンの還元帯域とに区画し、電解帯域では酸化カルシウム及び/又は塩化カルシウムを電気分解して還元剤となるカルシウム(Ca)及び1価カルシウムイオン(Ca+)を生成せしめ、また、還元帯域では電解帯域で生成したカルシウム及び1価カルシウムイオンを還元剤として酸化チタンを熱還元すると共に生成したスポンジ状金属チタン(Ti)の脱酸素を行うことにより、単一反応槽で酸化チタンから直接かつ連続的にチタン精錬が可能であって、金属チタンを工業的に有利に製造できるだけでなく、この金属チタン中の固溶酸素濃度を制御できることを見出し、本発明を完成した。
【0015】
従って、本発明の目的は、金属チタンを工業的に有利に製造することができる金属チタンの精錬方法を提供することにある。また、本発明の他の目的は、固溶酸素濃度が制御された金属チタンを工業的に有利に製造することができる金属チタンの精錬方法を提供することにある。
更に、本発明の他の目的は、金属チタンを工業的に有利に製造することができる金属チタンの精錬装置を提供することにある。更にまた、本発明の他の目的は、固溶酸素濃度が制御された金属チタンを工業的に有利に製造することができる金属チタンの精錬装置を提供することにある。
【0016】
【課題を解決するための手段】
すなわち、本発明は、酸化チタン(TiO2)を熱還元して金属チタン(Ti)を製造する金属チタンの精錬方法であり、反応槽内には、塩化カルシウム(CaCl2)と酸化カルシウム(CaO)及び/又はカルシウム(Ca)からなり、カルシウム濃度(Ca濃度)が1.5重量 % 以下であって酸化カルシウム濃度(CaO濃度)が11.0重量 % 以下である混合溶融塩で反応領域を構成し、この反応領域を混合溶融塩中の酸化カルシウム及び/又は塩化カルシウムを電気分解する電解帯域と酸化チタンを還元する還元帯域とに区画し、上記電解帯域では、混合溶融塩中の酸化カルシウム及び/又は塩化カルシウムを電気分解してカルシウム(Ca)及び1価カルシウムイオン(Ca+)を生成せしめ、この電解帯域で生成したカルシウム及び1価カルシウムイオンを還元帯域に供給し、上記還元帯域では、還元帯域に導入された酸化チタンを還元すると共に、この酸化チタンの還元で得られたスポンジ状金属チタン(Ti)の脱酸素を行い、かつ、還元帯域で生成したスポンジ状金属チタンをこの還元帯域の混合溶融塩中に保持する保持時間を調節することにより、生成したスポンジ状金属チタン中の固溶酸素濃度を調節し、また、この還元帯域で生成した酸化カルシウムを上記電解帯域に戻し、上記反応領域から回収されたスポンジ状金属チタンを、チタンインゴットとして製品化される前に、水及び/又は希塩酸で洗浄して付着塩を除去することを特徴とする金属チタンの精錬方法である。
【0017】
また、本発明は、酸化チタン(TiO2)を熱還元して金属チタン(Ti)を製造するための金属チタンの精錬装置であり、塩化カルシウム(CaCl2)と酸化カルシウム(CaO)及び/又はカルシウム(Ca)からなり、カルシウム濃度(Ca濃度)が1.5重量 % 以下であって酸化カルシウム濃度(CaO濃度)が11.0重量 % 以下である混合溶融塩が収容された反応領域を形成する反応槽と、この反応槽内に配設されて上記反応領域を電解帯域と還元帯域とに区画し、電解帯域で酸化カルシウム及び/又は塩化カルシウムの電気分解により生成したカルシウム(Ca)及び1価カルシウムイオン(Ca+)が還元帯域に移動するのを許容すると共に還元帯域で生成した酸化カルシウムが電解帯域に移動するのを許容する仕切り壁とを備えており、上記電解帯域では、生成したカルシウム及び1価カルシウムイオンを還元帯域に供給し、また、この還元帯域では、この還元帯域に導入された酸化チタンを還元すると共にこの酸化チタンの還元で得られたスポンジ状金属チタン(Ti)の脱酸素を行い、かつ、還元帯域で生成したスポンジ状金属チタンをこの還元帯域の混合溶融塩中に保持する保持時間を調節することにより、生成したスポンジ状金属チタン中の固溶酸素濃度を調節し、更に、上記還元帯域で生成した酸化カルシウムを上記電解帯域に戻すように構成されていることを特徴とする金属チタンの精錬装置である。
【0018】
本発明において、原料として用いる酸化チタンについては、それがどのような方法で得られたものであってもよいが、純度については、この酸化チタン中の不純物が製造される金属チタン中に残留するので、製造される製品チタンインゴットに許容される不純物濃度範囲内であるのがよく、また、性状については、白色顔料の原料等の場合と異なり、結晶型、粒子径、形状、表面状態等において特に制約されない。
【0019】
また、本発明においては、酸化チタンを還元する際にその反応領域を構成する反応媒体として、塩化カルシウム(CaCl2)、カルシウム(Ca)及び酸化カルシウム(CaO)からなる通常800〜1000℃の混合溶融塩が用いられる。この反応領域を構成する溶融塩は、電解帯域で電気分解を開始する際には塩化カルシウム(CaCl2)単独でもよく、この場合には塩化カルシウムの電気分解によりカルシウム(Ca)及び1価カルシウムイオン(Ca+)が生成し、電気分解開始後直ちに混合溶融塩となる。この混合溶融塩中のカルシウムと酸化カルシウムの存在範囲は、通常、カルシウムが1.5重量%以下であって酸化カルシウムが11.0重量%以下であり、例えば混合溶融塩の温度が900℃の場合、カルシウムが0.5〜1.5重量%の範囲であって、酸化カルシウムが0.1〜5.0重量%の範囲である。
【0020】
更に、本発明においては、上記電解帯域で酸化カルシウム(CaO)を電気分解して生成したカルシウム(Ca)及び1価カルシウムイオン(Ca+)が還元帯域で酸化チタンの還元剤や脱酸素剤として用いられるが、この際の混合溶融塩の組成については、製造される金属チタンの固溶酸素濃度を考慮して調整される。混合溶融塩中のCa/CaO濃度比が大きいと、還元や脱酸素に対する能力は大きくなるが、逆に酸化カルシウムの電気分解に対する能力が低下する。このCa濃度及びCaO濃度の調整は、例えば、電気分解の電流の大きさと原料の酸化チタンの供給速度により行うことができる。
【0021】
そして、本発明においては、上記混合溶融塩からなる反応領域を、酸化カルシウム及び/又は塩化カルシウムの電気分解を行う電解帯域と酸化チタンの還元を行う還元帯域とに区画し、電解帯域では酸化カルシウム及び/又は塩化カルシウムを電気分解して酸化チタンの還元反応の際に還元剤として用いられるカルシウム(Ca)及び1価カルシウムイオン(Ca+)を生成せしめ、また、還元帯域ではこの電解帯域で生成したカルシウム(Ca)及び1価カルシウムイオン(Ca+)を用いて酸化チタンを還元してスポンジ状金属チタンにすると共に、このスポンジ状金属チタンに含まれる固溶酸素を除去する脱酸素を行う。
【0022】
ここで、上記反応領域を電解帯域と還元帯域とに区画する手段については、電解帯域で生成したカルシウム(Ca)及び1価カルシウムイオン(Ca+)が還元帯域に移動するのを許容すると共に還元帯域で生成した酸化カルシウムが電解帯域に移動するのを許容するものであり、好ましくは還元帯域に供給された原料の酸化チタンやこの還元帯域で生成したスポンジ状金属チタンが電解帯域に移動しないような構成を有するものであれば、特に制限されるものではなく、例えば、仕切り壁等を別に設けて区画してもよいほか、電解帯域の陽極に相対する陰極を構成する陰極材を利用して区画してもよく、更には、反応領域の中央部に還元帯域を区画すると共に、この還元帯域を挟んでその両側に、若しくは、この還元帯域を囲んでその周囲に電解帯域を形成する陰極材を配設して構成にしてもよい。
【0023】
また、本発明において、上記電解帯域における陽極については、炭素陽極材を用い、混合溶融塩中の酸化カルシウムを電気分解した際に生成する酸素をこの炭素陽極材で補足し、炭酸ガスとして反応領域から系外に除去するのがよい。そして、この際に用いられる炭素陽極材については、より好ましくは、少なくとも混合溶融塩中に浸漬する部分にオーバーハング状に形成された傾斜面を形成するのがよく、これによって、この炭素陽極材の表面で生成した炭酸ガスは上記オーバーハング状の傾斜面に沿って上昇し、混合溶融塩中を不必要に拡散することなく系外に除去される。
【0024】
更に、本発明においては、上記還元帯域に、上部には酸化チタンを供給するための原料供給口と電解帯域で生成したカルシウム及び1価カルシウムイオンが流入する流入口とを有し、また、下部には生成したスポンジ状金属チタンを収容して保持すると共に生成した酸化カルシウムが外部に流出する多数の流出孔が設けられた収容部を有する還元反応容器を配設し、上記原料供給口より供給された酸化チタンをこの還元反応容器内で還元すると共に、生成したスポンジ状金属チタンをその収容部内に収容して脱酸素せしめ、この脱酸素終了後には還元反応容器を還元帯域から引き上げてスポンジ状金属チタンを回収するのが望ましい。このような還元反応容器を用いて酸化チタンの還元を行うことにより、反応槽の連続運転中の必要な時間帯にスポンジ状金属チタンを回収できるという利点が生じる。
【0025】
本発明において、酸化チタンが還元帯域の混合溶融塩中に供給されると、この酸化チタンは混合溶融塩中のカルシウム及び1価カルシウムイオンで瞬間的に還元され、生成した金属チタン粒子は凝集し焼結しながらこの混合溶融塩中を降下し、その間に、不定形であって緩やかに結合し、数mmから数10mmの大きさを有する目の粗い多孔質状塊に成長し、還元帯域の底部(還元反応容器を用いた場合にはその底部)に堆積する。
【0026】
次に、還元帯域から回収されたスポンジ状金属チタンは、次に、水及び/又は希塩酸によって洗浄され、表面に付着した塩化カルシウムや酸化カルシウムの付着塩が除去される。この際のスポンジ状金属チタン水洗及び/又は酸洗は、例えば、洗浄槽へ高圧水を導入して付着塩を溶解する工程と湿式サイクロン等によるスポンジ状金属チタンの回収工程との組合せ等として行われる。
【0027】
また、このようにして製造されたスポンジ状金属チタンは、従来のクロール法と同様に、次に、圧縮成形工程で電極とされ、更に、真空アーク溶解や高周波溶解等の溶解工程で溶解され、溶解インゴットの肌を調整して目的の製品チタンインゴットが製造される。
【0028】
【発明の実施の形態】
以下に、本発明の原理を示す模式図及びフローチャートを参照して、本発明の好適な実施の形態を説明する。
【0029】
図1及び図2に、本発明の原理を示す模式図及びフローチャートが示されている。
図1において、金属チタンの精錬装置を構成する反応槽1内には塩化カルシウム(CaCl2)と酸化カルシウム(CaO)からなる800〜1000℃の混合溶融塩が収容され、酸化チタン(TiO2)を熱還元して金属チタン(Ti)を製造するための反応領域RAが形成されている。
【0030】
この反応槽1には、黒鉛等の炭素材製の炭素陽極材2と多数の透孔3aを有する金属チタン板製の陰極材3とが互いに所定の間隔をおいて配設されており、これら炭素陽極材2と陰極材3との間には直流電圧を印加するための直流電源4が設けられている。また、この反応槽1内に形成された反応領域RAは、上記陰極材3により、炭素陽極材2側の電解帯域EFとこの炭素陽極材2とは反対側の還元帯域RFとに区画されている。
【0031】
上記電解帯域EFにおいて酸化カルシウムの電気分解により生成したカルシウム(Ca)〔及び1価カルシウムイオン(Ca+)〕は、その比重が小さいことから混合溶融塩中を上昇し、陰極材3の上部にある比較的大きな透孔3a及び比較的小さい透孔3aを介して還元帯域RF内に拡散する。
【0032】
また、上記還元帯域RFには、その上方に原料の酸化チタンを供給するための原料投入管5が配設されていると共に、その下部には酸化チタンが還元されて生成したスポンジ状金属チタンを収容する収容部6が形成されており、更に、この収容部6の下端にはスポンジ状金属チタンを回収するための回収口6aが設けられている。
【0033】
このような反応槽1を用いて酸化チタンから直接かつ連続的にチタン精錬を行うには、先ず、反応槽1に塩化カルシウム(CaCl2)と酸化カルシウム(CaO)からなる800〜1000℃の混合溶融塩を装入して反応領域RAを形成する。ここで、化学量論的な溶融塩化カルシウムのCaイオンは2価であるが、混合溶融塩中には1価のCaイオン(Ca2 2+)も存在する。そして、1価のCaイオンが存在する混合溶融塩は、CaCl2-CaO-Caの3元系状態で均一液相となり、1価のCaイオン濃度が増加するにつれて凝縮し、溶解限を超すとカルシウム(Ca)となって析出してくる。このカルシウム飽和濃度近傍の溶融塩化カルシウム相は、活量1の純粋カルシウムの還元能力に近づき、本発明において望ましい強還元性混合溶融塩となる。
【0034】
ここで、原料投入管5から酸化チタン(TiO2)が反応領域RAの還元帯域RFに導入されると、この酸化チタンはカルシウム(Ca)及び1価カルシウムイオン(Ca+)により還元され、生成した固体のチタン(Ti)が異相として析出すると共に、反応生成物の酸化カルシウム(CaO)はそのまま混合溶融塩中に溶解し、活量が低下して反応の駆動力が増加する。
TiO2 + 2Ca+ + 2e = Ti + 2Ca2+ + 2O2- ……(1)
[O]Ti + Ca+ + e = Ca2+ + O2- ……………… (2)
なお、Ca+、e、Ca2+、及びO2-はそれぞれ溶融塩化カルシウム中に存在するイオン及び電子を示し、[O]Tiは生成した金属チタン中の固溶酸素を示す。式(1)は酸化チタンの還元反応を示し、式(2)は式(1)で金属チタンが生成した後に継続して進行する金属チタン中の固溶酸素が脱酸素される脱酸反応を示す。
【0035】
この還元帯域RFで生成した酸化カルシウム(CaO)は、反応槽内の還流により電解帯域EF側に移動する。この電解帯域EFにおいては、炭素陽極材2と陰極材3との間に、例えば3.0Vの電解電圧が印加され、陰極材3において酸化カルシウムの2価のカルシウムを1価に還元し、1価のCaイオンを生成せしめる。また、この際に生成した酸素イオン(O2 -)は、炭素陽極材2側に移動し、この炭素陽極材2と反応してCO2−COガスとして系外に排出される。
陽極:C + O2- = CO + 2e ……………………… (3)
C + 2O2- = CO2 + 4e …………………… (4)
陰極:Ca2+ + e = Ca+ ………………………………… (5)
【0036】
また、溶融塩化カルシウム中で1価のCaイオンが飽和すると、カルシウムが析出する。
陰極:Ca2+ + 2e = Ca ………………………………… (6)
Ca+ + e = Ca …………………………………… (7)
すなわち、この反応は、溶融塩化カルシウム中に溶解している酸化カルシウムの電気分解とみなすことができる。また、電気分解の電極に印加するポテンシャルを任意に増加することによって、塩化カルシウム自体の電気分解を生ぜしめつつ、上記式(5)〜(7)と同じ反応を起こすことも可能である。この場合、酸化カルシウムの理論分解電圧は塩化カルシウムの理論分解電圧より低いため、塩化カルシウムと酸化カルシウムの同時電気分解とみなすことができる。
【0037】
このような方法で到達し得る金属チタン中の固溶酸素濃度、すなわち脱酸素限界は、平衡論的には式(2)と等価な次式
[O]Ti + Ca = CaO ……………………………… (8)
に質量作用の法則を適用して得られる溶質の活量比
γ = αCaO/αCa ………………………………… (9)
が小さくなればなるほど平衡酸素濃度が低下し、式(3)、(4)及び(5)の電解により脱酸生成物であるCaOを分解し、溶融塩化カルシウム中のCaOを定常的に低濃度に保持すると、金属チタン中の固溶酸素濃度は経時的に著しく低下し、例えば0.2時間で3000ppm、1時間で1000ppm、24時間で約400ppmに達し、100時間では50ppm以下まで可能である。
【0038】
本発明において、塩化カルシウム(CaCl2)と酸化カルシウム(CaO)及び/又はカルシウム(Ca)からなる混合溶融塩により反応領域RAを構成する重要な特徴は、溶融塩化カルシウム中に溶解している酸化カルシウム及び/又は塩化カルシウムを電解すると、陰極でカルシウムが生成するが、このカルシウムは1価のCaイオンとして溶解し、広く速やかに拡散し、反応領域RAのいかなる個所(帯域)においても還元・脱酸素の反応が進行し、また、この還元・脱酸素の反応により生成する酸化カルシウムは直ちに混合溶融塩中に溶解して反応系に導入された酸化チタンの更なる還元反応及び生成した金属チタンの更なる脱酸反応の進行の妨げにならないということである。
【0039】
更に、本発明において重要な特徴は、還元帯域RFで生成した金属チタン粒子は、その表面で脱酸反応を受けながらこの還元帯域RF中を降下し、その間に互いに凝集し、焼結して数mmから数10mmの大きさを有する不定形であって緩やかに結合した目の粗い多孔質状塊に成長するので、加圧して容易に崩壊可能な多孔質状のスポンジ状金属チタンとして系外に取り出すことができるということである。
【0040】
このため、本発明においては、反応槽1の還元帯域RFで酸化チタンを還元して得られたスポンジ状金属チタンは、図2に示すように、この反応槽1の回収口6aからいわゆるスポンジ状金属チタンとして槽外に取り出した後、水洗・希塩酸洗浄に付され、表面に付着した塩化カルシウム等の付着塩が除去され、次いで圧縮成形工程でブリケットを経て電極とされ、更に、真空アーク溶解や高周波溶解等の溶解工程で溶解され、鋳肌を調整して目的の製品チタンインゴットが製造される。
【0041】
【実施例】
以下、添付図面の図3及び図4に示す実施例に基いて、本発明の金属チタンの精錬装置をより具体的に説明する。
【0042】
図3及び図4に、本発明の実施例に係る精錬装置の概略の構造を説明するための模式的な断面図が示されている。
この実施例において、この精錬装置は、鋼製の箱型容器1aに厚さ200mmのグラファイト内張り1bとステンレス鋼内張り8を施して形成された内容積が長さ1m×幅0.7m×高さ1mの反応槽1と、鉄製で筒状に形成され、上部には不活性ガスのアルゴンガス(Ar)の導入孔3bと排出孔3cとが形成されていると共に、上端開口を閉塞する絶縁性の蓋体3dを有し、また、下部の周壁部にはこの周壁の一部を下方から上方に切り起こして形成され、斜め下方外側に向けて開口する図示外の多数の透孔を有する金属チタン製の陰極材3と、この陰極材3の周壁から極間距離55cmをおいてその周辺に炭素陽極材2が配設され、これら炭素陽極材2と陰極材3との間には直流電圧を印加する直流電源4が設けられている。
【0043】
また、上記筒状に形成された陰極材3の下部の内部には、その周壁部から5cmの隙間を維持して上端開口の筒状に形成され、上部には上記陰極材3の蓋体3dを貫通して配設された原料投入管5から供給される酸化チタンを受け入れる原料供給口7aとこの上部周壁に形成された比較的大きな透孔からなる流入口7cとを有し、また、下部及び底壁部には比較的小さな透孔からなる多数の流出孔7dが設けられた収容部7bを有する金属チタン製の還元反応容器7が図示外の昇降手段で引上げ可能に配設されている。
【0044】
なお、この実施例において上記炭素陽極材2には、陰極材3に相対面すると共に混合溶融塩中に浸漬する側面に、垂線に対して約5〜45度程度の角度でオーバーハング状に傾斜した傾斜面2aが設けられており、この炭素陽極材2の傾斜面2aで生成した炭酸ガス(CO2)がこのオーバーハング状の傾斜面2aに沿って案内されながら上昇するようになっている。なお、この実施例においては、上記炭素陽極材2と陰極材3とが混合溶融塩中に浸漬する部分において、互いに対向面積を幅50cm×高さ60cmの大きさの電解帯域が形成されるように設計されている。
【0045】
この実施例においては、上記反応槽1内に、5.5重量%の割合で酸化カルシウム(CaO)を含み、予め1000℃に加熱して溶融させた溶融塩化カルシウム350kgが装入されると、この混合溶融塩からなる反応領域RAが形成され、また、上記陰極材3が仕切り壁として機能し、この反応領域RAを炭素陽極材2と陰極材3との間の電解帯域EFと筒状に形成された陰極材3内部、特に還元反応容器7内部の還元帯域RFとに区画するようになっている。
【0046】
ここで、上記電解帯域EFを形成する炭素陽極材2と陰極材3との間に3.2Vを超えない範囲で直流電圧を印加すると、炭素陽極材2の傾斜面2aで生成した炭酸ガスがこの傾斜面2aを伝って上昇し、反応領域RAから外部に排出されると共に、陰極材3の表面で生成した1価のCaイオンは陰極材3の図示外の透孔にトラップされて筒状の陰極材3内部の還元帯域RF内に流入し、生成したカルシウム及び1価のCaイオンは更に還元反応容器7の上部周壁に形成された流入口7cからこの還元反応容器7内上部にまで流入する。
【0047】
この状態で上記原料投入管5からアルゴンガスと共に平均粒径0.5μmの粉末状の酸化チタンが還元反応容器7の原料供給口7a内の還元帯域RF上に供給されると、この酸化チタンはカルシウム及び1価のCaイオンにより発熱反応して瞬間的に還元され、析出した金属チタン粒子が還元帯域RFの混合溶融塩中を下降し、その過程で焼結を繰り返し、還元反応容器7の下部の収容部7b内にスポンジ状金属チタン9として堆積する。
【0048】
ここで、反応槽1内で反応領域RAを構成する混合溶融塩は、電解帯域EFでの炭酸ガスやカルシウム及び1価のCaイオンの上昇により緩やかな上昇流が発生し、また、還元帯域RF、特に還元反応容器7内では生成したスポンジ状金属チタン9の下降により緩やかな下降流が発生し、図4に拡大して示す電解帯域EFと還元帯域RF、特に還元反応容器7内との間にはゆっくりとした時計方向の移動が生じる。このため、還元反応容器7の収容部7b内を通過した混合溶融塩の流れは、この還元反応容器7内の還元帯域RFでの酸化チタンの還元反応やスポンジ状金属チタン9の脱酸反応で生成した酸化カルシウムを溶解し、この酸化カルシウムを収容部7bの多数の流出孔7dから電解帯域EFへと移動させる。
【0049】
所定量の酸化チタンが供給され、生成したスポンジ状金属チタン9が混合溶融塩中に所定時間滞留して所定の脱酸反応が終了した後、還元反応容器7はその図示外の昇降手段によりゆっくりと引き上げられ、生成したスポンジ状金属チタン9はこの還元反応容器7から外部に取り出されて回収される。
【0050】
この反応槽1の操業において、3.2Vを超えない電解電圧及び0.6A/cm2の陽極定電流密度で熱的定常状態が実現され、通電開始後13時間経過した時点でアルゴン雰囲気の還元反応容器7を混合溶融塩中に浸漬した。
【0051】
更に、原料投入管5からアルゴンガスと共に還元反応容器7内に投入された酸化チタンは、その純度が99.8重量%であり、アルゴンガスと共に11g/分の供給速度で還元反応容器7内の混合溶融塩の表面全面に吹き付けられた。電解操作と酸化チタンの供給を12時間連続して行ったのち、酸化チタンの供給を停止して3時間経過後、還元反応容器7を6cm/分の速度で引き上げ、300℃まで冷却したのち、外部へ取り出して大気温度まで放冷した。
【0052】
また、上記電解操作の際には、混合溶融塩の表面の炭素陽極材2と陰極材3との間に、炭素陽極材2から遊離した炭素が浮遊して集まってくるが、この浮遊炭素濃縮層10についてはその厚さが10mm以上にならないように間歇的に取り除き、その際にこの浮遊炭素に伴って外部に取り出される溶融塩化カルシウムに見合う量の溶融塩化カルシウムを炭素陽極材2の背面側から補給するようにした。
【0053】
上述のようにして外部に引き上げられ、大気温度まで放冷された還元反応容器7は、次にそのまま5℃の水に10分間浸漬され、これによって還元反応容器7の内面からスポンジ状金属チタン9が分離され、次いで5mol%の塩酸水溶液中に浸漬されて内部のスポンジ状金属チタン9が十分に攪拌され、これによってスポンジ状金属チタン9の表面に付着した塩化カルシウム等の付着塩が充分に除去され、その後この還元反応容器7内から取り出されたスポンジ状金属チタン9は充分に乾燥された。
【0054】
この実施例で上記還元反応容器7内に供給された酸化チタンは合計で8.2kgであり、また、得られたスポンジ状金属チタンは4.8kgであり、収率は96重量%であった。
また、得られたスポンジ状金属チタンの粒経は、0.2〜30mmまで広く分布し、比較的緩く焼結したものであって加圧することにより容易に崩壊した。
更に、不純物の酸素、炭素、窒素、鉄及び塩素を定量した結果、酸素0.07wt%、炭素0.05wt%、窒素0.01wt%、鉄0.18wt%及び塩素0.16wt%であった。
【0055】
次に、このようにして得られたスポンジ状金属チタン0.13kgを用い、圧縮プレス装置(ゴンノ社製)を用いて100kg/cm2の圧力で圧縮成形し、直径30mm×高さ40mmのペレットを成形した。
得られたペレットをタングステン電極不活性ガス溶接(TIG溶接)により相互に繋いで直径30mm×長さ150mmの電極棒を形成し、次いで真空アーク溶解(VAR)を行い、鋳肌の酸化皮膜を切削除去してチタン丸棒を得た。
【0056】
一方、上で得られたペレットを電子ビーム溶解装置(ALD社製)のコールドハース内に充填し、このコールドハース内のペレットに直接電子ビームを照射して電子ビーム溶解(EBM)により溶解してチタンスラブを得た。
【0057】
上記真空アーク溶解(VAR)及び電子ビーム溶解(EBM)でそれぞれ得られた溶解チタンについて、微量ガス分析及び発光分光分析により含有不純物の定量分析を行った。
結果を表1に示す。
【0058】
【表1】

Figure 0003981601
【0059】
【発明の効果】
本発明によれば、金属チタンを工業的に有利に製造することができるだけでなく、固溶酸素濃度が制御された金属チタンを工業的に有利に製造することができる。
【図面の簡単な説明】
【図1】 図1は、本発明の金属チタンの精錬方法及びその精錬装置の原理を示す模式的に示す説明図である。
【図2】 図2は、本発明の金属チタンの精錬方法の原理を示すフローチャートである。
【図3】 図3は、本発明の実施例に係る金属チタンの精錬装置を模式的に示す断面説明図である。
【図4】 図4は、図3の要部を拡大して示す部分断面説明図である。
【図5】 図5は、従来のクロール法による金属チタンの精錬方法を示す図3と同様のフローチャートである。
【図6】 図6は、従来の金属チタンの精錬方法を模式的に示す断面説明図である。
【図7】 図7は、従来の他の金属チタンの精錬方法を模式的に示す断面説明図である。
【符号の説明】
1…反応槽、1a…箱型容器、1b…グラファイト内張り、RA…反応領域、EF…電解帯域、RF…還元帯域、2…炭素陽極材、2a…傾斜面、3…陰極材、3a…透孔、3b…導入孔、3c…排出孔、3d…蓋体、4…直流電源、5…原料投入管、6…収容部、6a…回収口、7…還元反応容器、7a…原料供給口、7b…収容部、7c…流入口、7d…流出孔、8…ステンレス鋼内張り、9…スポンジ状金属チタン、10…浮遊炭素濃縮層。[0001]
BACKGROUND OF THE INVENTION
This invention relates to titanium oxide (TiO2The present invention relates to a refining method of metal titanium that can be mass-produced industrially and a refining apparatus thereof.
[0002]
[Prior art]
Titanium metal has been revealed for its excellent properties one after another, and in recent years it has been used not only in the field of aerospace, but also in the field of consumer products such as cameras, glasses, watches and golf clubs. Furthermore, the demand is expected also in the field of building materials and automobiles.
[0003]
And about the manufacturing method of this metal titanium, the method currently industrially used is only what is called a crawl method except the electrolytic method which refines titanium on a very small scale in order to manufacture high purity titanium for semiconductors. It has become.
[0004]
The refining of titanium metal by this crawl method is performed as follows, as shown in FIG.
First, raw material titanium oxide (TiO2) In the presence of carbon (C) chlorine gas (Cl2) At 1000 ° C. and low boiling point (boiling point 136 ° C.) titanium tetrachloride (TiCl2And then the resulting titanium tetrachloride is purified by distillation to produce high purity titanium tetrachloride. The production reaction of titanium tetrachloride at this time is as follows.
TiO2 + C + 2 Cl2 = TiClFour+ CO2
TiO2 + 2 C + 2 Cl2= TiClFour + 2 CO
[0005]
Next, titanium tetrachloride thus obtained is reduced in the presence of metallic magnesium to produce metallic titanium. This reduction of titanium tetrachloride is carried out by charging metal magnesium into an iron sealed container, heating to 975 ° C. to melt the metal magnesium, dropping titanium tetrachloride into the molten metal magnesium, and according to the following reaction formula: Metallic titanium is produced.
TiClFour + 2 Mg = Ti + 2 MgCl2
[0006]
The titanium metal obtained by the reduction of this titanium tetrachloride is usually obtained as one large cylindrical lump reflecting the internal shape of the reduction reaction apparatus, and is a porous solid, so-called sponge metal titanium. The inside contains magnesium chloride by-produced and unreacted metallic magnesium, and in general, the central portion has a low solid solution oxygen concentration of about 400 to 600 ppm and is rich in toughness. In addition, the outer skin portion has a solid solution oxygen concentration of about 800 to 1000 ppm and excellent hardness.
[0007]
Therefore, the sponge metal titanium is first 1000 ° C. or higher, 10-1-10-FourHeating is performed under reduced pressure under the Torr condition, and vacuum separation is performed to remove by-product magnesium chloride and unreacted metal magnesium contained in the sponge metal titanium. The magnesium chloride recovered by the vacuum separation is decomposed into metal magnesium and chlorine gas by electrolysis, and the obtained metal magnesium is reduced together with the unreacted metal magnesium recovered by the vacuum separation. In addition, the obtained chlorine gas is used for the chlorination reaction of titanium oxide.
[0008]
Next, when a titanium ingot of a product is manufactured from this sponge-like metal titanium by a consumable electrode type vacuum arc melting method, the sponge-like metal titanium produced as a large lump is once prepared for the production of the primary electrode briquette. Crushing and crushing (crushing and crushing treatment), but in some cases, considering the use of the titanium ingot produced and the difference in the concentration of dissolved oxygen depending on the part of the spongy metal titanium (center and outer skin) For example, when a tough metal titanium is required, the pulverized sponge metal obtained mainly from the central part is collected, or when a high hardness metal titanium is required, the pulverized sponge metal obtained mainly from the outer skin part. Sorting such as collecting titanium is performed.
[0009]
The pulverized sponge-like metal titanium thus prepared is then briquetted in a compression molding process, and then stacked in multiple stages to form a cylindrical electrode by TIG welding. The target product titanium ingot is manufactured by dissolving in a melting step such as high frequency melting and cutting and removing the oxide film on the surface.
[0010]
However, in the refining of titanium metal by such a crawl method, although titanium oxide is used as a raw material for production, since the titanium oxide is reduced to titanium tetrachloride having a low boiling point, the production process becomes long. In addition, vacuum separation under high temperature and reduced pressure is indispensable in the production process of sponge metal titanium. Furthermore, since the produced sponge metal titanium is obtained as one large lump, this is necessary when manufacturing a product titanium ingot. Crushing and crushing of sponge metal titanium is indispensable, and since sponge metal titanium has a large difference in the dissolved oxygen concentration between its central part and outer skin part, crushing and crushing depending on the use of the product titanium ingot The treatment must separate those from the center and those from the outer skin, and this can result in metal tita. It has become a major factor for extremely high cost of production.
[0011]
In addition to the crawl method, several methods have been proposed for refining the metal titanium.
For example, Sakae Takeuchi and Osamu Watanabe, The Japan Institute of Metals Vol. 28 (1964) No. 9, pp. 549 to 554, as shown in FIG. 6, a graphite crucible a is used as an anode and a molybdenum electrode is provided at the center. b is arranged as a cathode, and calcium chloride (CaCl) is placed in the crucible a.2), Calcium oxide (CaO) and titanium oxide (TiO2The mixed molten salt c of 900 to 1100 ° C. is prepared, and titanium oxide is electrolyzed in the mixed molten salt c in an atmosphere of argon (Ar) as an inert gas (not shown).4+) Is deposited on the surface of the molybdenum electrode b to produce metal titanium d.
[0012]
WO 99/64638 also includes calcium chloride (CaCl) in the reaction vessel as shown in FIG.2) And a graphite electrode a as an anode and a titanium oxide electrode b as a cathode are disposed in the molten salt c, and the graphite electrode a and the titanium oxide electrode b A voltage is applied between them to generate oxygen ions (O2-), And the extracted oxygen ions are converted into carbon dioxide (CO2) And / or oxygen gas (O2) And reducing the titanium oxide electrode b itself to convert it into metallic titanium d.
[0013]
However, in the method described in the former paper by Takeuchi and Watanabe, the precipitated metal titanium d is constantly in contact with high concentration of calcium oxide in the mixed molten salt c. It is difficult to produce metal titanium d having excellent toughness by controlling or reducing the dissolved oxygen concentration, and it is deposited in the form of fine dendrites on the surface of the molybdenum electrode b. There is a problem that it is difficult and unsuitable as an industrial production method, and in the latter method described in WO 99/64638, diffusion of trace amounts of oxygen in the metal titanium d produced at the cathode is rate-determined. Therefore, there is a problem that deoxygenation takes a long time.
[0014]
[Problems to be solved by the invention]
Therefore, unlike the conventional crawl method, the present inventors can easily produce titanium metal without the need for vacuum separation under high temperature and reduced pressure or crushing / pulverizing treatment of sponge-like metal titanium, As a result of intensive investigations on a refining method and refining device of titanium metal that can easily control the solid solution oxygen concentration in the obtained titanium metal, calcium chloride (CaCl2) And calcium oxide (CaO) and / or mixed molten salt consisting of calcium (Ca), and the reaction area is divided into an electrolytic zone of calcium oxide and / or calcium chloride and a reduction zone of titanium oxide. In the electrolysis zone, calcium oxide (Ca) and monovalent calcium ions (Ca+In the reduction zone, the titanium oxide is thermally reduced using calcium and monovalent calcium ions generated in the electrolysis zone as a reducing agent and the generated sponge-like metal titanium (Ti) is deoxygenated. It has been found that titanium refining can be performed directly and continuously from titanium oxide in one reaction tank, and not only can titanium metal be produced industrially advantageously, but also the concentration of dissolved oxygen in the metal titanium can be controlled. Was completed.
[0015]
Accordingly, an object of the present invention is to provide a method for refining metallic titanium, which can produce metallic titanium advantageously industrially. Another object of the present invention is to provide a method for refining metallic titanium that can industrially advantageously produce metallic titanium in which the concentration of dissolved oxygen is controlled.
Furthermore, another object of the present invention is to provide a titanium metal refining apparatus capable of producing metal titanium advantageously industrially. Furthermore, another object of the present invention is to provide a titanium metal refining apparatus capable of industrially advantageously producing metal titanium having a controlled solid solution oxygen concentration.
[0016]
[Means for Solving the Problems]
  That is, the present invention relates to titanium oxide (TiO2) Is thermally reduced to produce metallic titanium (Ti).In the reaction tank,Calcium chloride (CaCl2) And calcium oxide (CaO) and / or calcium (Ca)Calcium concentration (Ca concentration) is 1.5 weight % Less than 11.0 weight of calcium oxide concentration (CaO concentration) % IsThe reaction zone is composed of a mixed molten salt, and the reaction zone is divided into an electrolytic zone for electrolyzing calcium oxide and / or calcium chloride in the mixed molten salt and a reduction zone for reducing titanium oxide,ThenThe calcium oxide and / or calcium chloride in the mixed molten salt is electrolyzed to produce calcium (Ca) and monovalent calcium ions (Ca+) And the calcium and monovalent calcium ions generated in this electrolysis zone into the reduction zoneIn the above reduction zone,The titanium oxide introduced into the reduction zone is reduced, and the sponge metal titanium (Ti) obtained by the reduction of the titanium oxide is deoxygenated.And, by adjusting the holding time for holding the sponge-like metal titanium produced in the reduction zone in the mixed molten salt in this reduction zone, the concentration of dissolved oxygen in the produced sponge-like metal titanium is adjusted,Return calcium oxide produced in the reduction zone to the electrolysis zone.The sponge-like metal titanium recovered from the reaction region is washed with water and / or dilute hydrochloric acid to remove the adhering salt before being commercialized as a titanium ingot.This is a method for refining titanium metal.
[0017]
  The present invention also provides titanium oxide (TiO2Is a refining device for titanium metal to produce titanium metal (Ti) by thermal reduction of calcium chloride (CaCl).2) And calcium oxide (CaO) and / or calcium (Ca)Calcium concentration (Ca concentration) is 1.5 weight % Less than 11.0 weight of calcium oxide concentration (CaO concentration) % IsA reaction vessel forming a reaction zone containing mixed molten salt, and the reaction zone arranged in the reaction vessel is divided into an electrolysis zone and a reduction zone, and in the electrolysis zone, calcium oxide and / or calcium chloride Calcium (Ca) and monovalent calcium ions (Ca+) And a partition wall that allows calcium oxide generated in the reduction zone to move to the electrolysis zone.ThenSupplying the generated calcium and monovalent calcium ions to the reduction zone;In this reduction zone,The titanium oxide introduced into the reduction zone is reduced and the sponge metal titanium (Ti) obtained by the reduction of the titanium oxide is deoxygenated.And, by adjusting the retention time for holding the sponge-like metal titanium produced in the reduction zone in the mixed molten salt of this reduction zone, the concentration of dissolved oxygen in the produced sponge-like metal titanium is adjusted, andThe apparatus for refining titanium metal is characterized in that the calcium oxide produced in the reduction zone is returned to the electrolysis zone.
[0018]
In the present invention, the titanium oxide used as a raw material may be obtained by any method, but the purity remains in the metal titanium in which impurities in the titanium oxide are produced. Therefore, it should be within the impurity concentration range allowed for the manufactured titanium ingot, and the properties are different from those of white pigment raw materials, etc., in terms of crystal type, particle size, shape, surface condition, etc. There are no particular restrictions.
[0019]
Further, in the present invention, calcium chloride (CaCl) is used as a reaction medium constituting the reaction region when reducing titanium oxide.2), Calcium (Ca) and calcium oxide (CaO), usually 800 to 1000 ° C. mixed molten salt is used. The molten salt that constitutes this reaction zone is calcium chloride (CaCl) when electrolysis starts in the electrolysis zone.2) May be used alone. In this case, calcium (Ca) and monovalent calcium ions (Ca+) And becomes a mixed molten salt immediately after the start of electrolysis. The existence range of calcium and calcium oxide in the mixed molten salt is usually 1.5% by weight or less of calcium and 11.0% by weight or less of calcium oxide. For example, the temperature of the mixed molten salt is 900 ° C. In this case, calcium is in the range of 0.5 to 1.5% by weight and calcium oxide is in the range of 0.1 to 5.0% by weight.
[0020]
Furthermore, in the present invention, calcium (Ca) and monovalent calcium ions (Ca) generated by electrolyzing calcium oxide (CaO) in the electrolysis zone are used.+) Is used as a reducing agent or deoxidizing agent for titanium oxide in the reduction zone, and the composition of the mixed molten salt at this time is adjusted in consideration of the solid solution oxygen concentration of the metal titanium to be produced. When the Ca / CaO concentration ratio in the mixed molten salt is large, the ability for reduction and deoxygenation increases, but conversely, the ability for electrolysis of calcium oxide decreases. The adjustment of the Ca concentration and the CaO concentration can be performed by, for example, the magnitude of the electrolysis current and the supply rate of the raw material titanium oxide.
[0021]
In the present invention, the reaction region composed of the mixed molten salt is divided into an electrolytic zone for electrolyzing calcium oxide and / or calcium chloride and a reducing zone for reducing titanium oxide. And / or calcium (Ca) and monovalent calcium ions (Ca) used as a reducing agent in the reduction reaction of titanium oxide by electrolysis of calcium chloride+In the reduction zone, calcium (Ca) and monovalent calcium ions (Ca+) Is used to reduce the titanium oxide to sponge metal titanium, and at the same time, deoxygenation is performed to remove the dissolved oxygen contained in the sponge metal titanium.
[0022]
Here, regarding the means for partitioning the reaction region into an electrolysis zone and a reduction zone, calcium (Ca) and monovalent calcium ions (Ca) produced in the electrolysis zone are used.+) Is allowed to move to the reduction zone and the calcium oxide generated in the reduction zone is allowed to move to the electrolysis zone. Preferably, the raw material titanium oxide supplied to the reduction zone and the reduction zone There is no particular limitation as long as the generated sponge-like titanium metal has a configuration that does not move to the electrolysis zone, and for example, a partition wall or the like may be separately provided, and the anode of the electrolysis zone may be provided. It may be partitioned by using a cathode material that constitutes a cathode opposite to the cathode. Further, a reduction zone is defined at the center of the reaction region, and on both sides of the reduction zone, or the reduction zone. A cathode material that surrounds and forms an electrolysis zone may be provided.
[0023]
Further, in the present invention, for the anode in the electrolysis zone, a carbon anode material is used, and oxygen generated when the calcium oxide in the mixed molten salt is electrolyzed is supplemented by the carbon anode material, and the reaction region is obtained as carbon dioxide gas. Should be removed from the system. And about the carbon anode material used in this case, More preferably, it is good to form the inclined surface formed in the overhang shape at least in the part immersed in mixed molten salt, and, thereby, this carbon anode material The carbon dioxide gas generated on the surface rises along the overhanging inclined surface and is removed outside the system without unnecessarily diffusing in the mixed molten salt.
[0024]
Furthermore, in the present invention, the reduction zone has a raw material supply port for supplying titanium oxide at the top, an inflow port for calcium and monovalent calcium ions generated in the electrolysis zone, and a lower part. Is provided with a reduction reaction vessel having an accommodating portion provided with a large number of outflow holes for accommodating and holding the generated spongy metallic titanium and for allowing the generated calcium oxide to flow to the outside, and is supplied from the raw material supply port. The reduced titanium oxide is reduced in the reduction reaction vessel, and the generated sponge-like titanium metal is accommodated in the accommodating portion for deoxygenation. After the deoxygenation, the reduction reaction vessel is lifted from the reduction zone to form a sponge shape. It is desirable to recover metallic titanium. By performing reduction of titanium oxide using such a reduction reaction vessel, there is an advantage that sponge metal titanium can be recovered in a necessary time zone during continuous operation of the reaction vessel.
[0025]
In the present invention, when titanium oxide is supplied into the mixed molten salt in the reduction zone, the titanium oxide is instantaneously reduced by the calcium and monovalent calcium ions in the mixed molten salt, and the generated titanium metal particles aggregate. The sintered molten salt is lowered while being sintered, and in the meantime, it is irregularly shaped and loosely bonded, and grows into a porous porous mass having a size of several to several tens of millimeters. It deposits on the bottom (the bottom when a reduction reaction vessel is used).
[0026]
Next, the spongy metallic titanium recovered from the reduction zone is then washed with water and / or dilute hydrochloric acid to remove calcium chloride and calcium oxide adhering salts adhering to the surface. The sponge-like metal titanium water washing and / or pickling at this time is performed, for example, as a combination of a step of introducing high-pressure water into the washing tank to dissolve the adhered salt and a step of recovering the sponge-like metal titanium using a wet cyclone or the like. Is called.
[0027]
In addition, the sponge-like titanium metal produced in this way is then used as an electrode in the compression molding process, as in the conventional crawl method, and further dissolved in a melting process such as vacuum arc melting or high-frequency melting, The target product titanium ingot is manufactured by adjusting the skin of the dissolved ingot.
[0028]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described with reference to a schematic diagram and a flowchart showing the principle of the present invention.
[0029]
1 and 2 are a schematic diagram and a flowchart showing the principle of the present invention.
In FIG. 1, calcium chloride (CaCl) is contained in a reaction tank 1 constituting a metal titanium refining apparatus.2) And calcium oxide (CaO), 800 to 1000 ° C. mixed molten salt is contained, and titanium oxide (TiO 2)2) Is thermally reduced to form metal titanium (Ti) to form a reaction region RA.
[0030]
In this reaction tank 1, a carbon anode material 2 made of carbon such as graphite and a cathode material 3 made of a metal titanium plate having a large number of through holes 3a are arranged at predetermined intervals. A DC power source 4 for applying a DC voltage is provided between the carbon anode material 2 and the cathode material 3. The reaction region RA formed in the reaction vessel 1 is partitioned by the cathode material 3 into an electrolysis zone EF on the carbon anode material 2 side and a reduction zone RF on the opposite side of the carbon anode material 2. Yes.
[0031]
Calcium (Ca) [and monovalent calcium ion (Ca) produced by electrolysis of calcium oxide in the electrolysis zone EF+)] Rises in the mixed molten salt because of its low specific gravity, and diffuses into the reduction zone RF through the relatively large through holes 3a and the relatively small through holes 3a in the upper part of the cathode material 3.
[0032]
The reduction zone RF is provided with a raw material charging pipe 5 for supplying titanium oxide as a raw material above the reduction zone RF, and below it is formed with sponge-like metallic titanium produced by reducing titanium oxide. An accommodating portion 6 for accommodating is formed, and a recovery port 6 a for recovering sponge-like metal titanium is provided at the lower end of the accommodating portion 6.
[0033]
In order to perform titanium refining directly and continuously from titanium oxide using such a reaction tank 1, first, calcium chloride (CaCl) is added to the reaction tank 1.2) And calcium oxide (CaO) at 800 to 1000 ° C. to form a reaction zone RA. Here, the stoichiometric molten calcium chloride has a divalent Ca ion, but the mixed molten salt contains a monovalent Ca ion (Ca2 2+) Is also present. And the mixed molten salt containing monovalent Ca ions is CaCl2It becomes a homogeneous liquid phase in the ternary state of -CaO-Ca, condenses as the monovalent Ca ion concentration increases, and precipitates as calcium (Ca) when the solubility limit is exceeded. The molten calcium chloride phase in the vicinity of the calcium saturation concentration approaches the reducing ability of pure calcium having an activity of 1, and becomes a strongly reducing mixed molten salt desirable in the present invention.
[0034]
Here, titanium oxide (TiO2) Is introduced into the reduction zone RF of the reaction region RA, this titanium oxide is calcium (Ca) and monovalent calcium ions (Ca+), And the resulting solid titanium (Ti) precipitates as a heterogeneous phase, and the reaction product calcium oxide (CaO) dissolves in the molten salt as it is, and the activity decreases and the driving force of the reaction is reduced. To increase.
TiO2 + 2Ca+ + 2e = Ti + 2Ca2+ + 2O2- ...... (1)
[O]Ti + Ca+ + E = Ca2+ + O2- ……………… (2)
Ca+, E, Ca2+, And O2-Represents ions and electrons present in molten calcium chloride, respectively, [O]TiIndicates solid solution oxygen in the produced titanium metal. Formula (1) shows a reduction reaction of titanium oxide, and Formula (2) shows a deoxidation reaction in which solid solution oxygen in the metal titanium that proceeds continuously after the formation of metal titanium in Formula (1) is deoxygenated. Show.
[0035]
  Calcium oxide (CaO) generated in the reduction zone RF moves to the electrolysis zone EF side by reflux in the reaction vessel. thisElectrolytic zone EF, An electrolytic voltage of, for example, 3.0 V is applied between the carbon anode material 2 and the cathode material 3, and divalent calcium of calcium oxide is reduced to monovalent in the cathode material 3 to produce monovalent Ca ions. Is generated. In addition, oxygen ions (O2 -) Moves to the carbon anode material 2 side and reacts with the carbon anode material 2 to produce CO.2-It is discharged out of the system as CO gas.
Anode: C + O2-  = CO + 2e ……………………… (3)
      C + 2O2-  = CO2  + 4e …………………… (4)
Cathode: Ca2+  + E = Ca+  ………………………………… (5)
[0036]
Further, when monovalent Ca ions are saturated in molten calcium chloride, calcium is precipitated.
Cathode: Ca2+ + 2e = Ca ………………………………… (6)
Ca+ + E = Ca …………………………………… (7)
That is, this reaction can be regarded as electrolysis of calcium oxide dissolved in molten calcium chloride. In addition, by arbitrarily increasing the potential applied to the electrode for electrolysis, it is possible to cause the same reaction as in the above formulas (5) to (7) while causing electrolysis of calcium chloride itself. In this case, since the theoretical decomposition voltage of calcium oxide is lower than the theoretical decomposition voltage of calcium chloride, it can be regarded as simultaneous electrolysis of calcium chloride and calcium oxide.
[0037]
The concentration of dissolved oxygen in titanium metal that can be reached by such a method, that is, the deoxidation limit, is equivalent to the following equation (2) in terms of equilibrium:
[O]Ti + Ca = CaO ……………………………… (8)
Of solute activity obtained by applying the law of mass action to
γ = αCaO/ ΑCa ………………………………… (9)
The smaller the is, the lower the equilibrium oxygen concentration, the decomposition of CaO, the deoxidation product, by the electrolysis of formulas (3), (4) and (5), and constantly reducing the concentration of CaO in molten calcium chloride. When the temperature is maintained, the dissolved oxygen concentration in the titanium metal decreases remarkably over time, for example, it reaches 3000 ppm in 0.2 hours, 1000 ppm in 1 hour, reaches about 400 ppm in 24 hours, and can reach 50 ppm or less in 100 hours. .
[0038]
In the present invention, calcium chloride (CaCl2) And calcium oxide (CaO) and / or mixed molten salt composed of calcium (Ca) is an important feature that constitutes the reaction region RA is the electrolysis of calcium oxide and / or calcium chloride dissolved in molten calcium chloride Calcium is generated at the cathode, but this calcium dissolves as monovalent Ca ions and diffuses widely and rapidly, and the reduction / deoxygenation reaction proceeds at any location (zone) in the reaction area RA. Calcium oxide generated by this reduction / deoxygenation reaction immediately dissolves in the mixed molten salt and prevents further reduction reaction of titanium oxide introduced into the reaction system and further deoxidation reaction of the formed titanium metal. It is not to become.
[0039]
Furthermore, an important feature of the present invention is that the titanium metal particles produced in the reduction zone RF descend in the reduction zone RF while undergoing a deoxidation reaction on the surface, and agglomerate and sinter each other during that time. Since it grows into an irregular and loosely bonded porous mass having a size of from mm to several tens of mm, it is out of the system as a porous sponge-like titanium metal that can be easily disintegrated under pressure. It can be taken out.
[0040]
For this reason, in the present invention, the sponge-like metal titanium obtained by reducing titanium oxide in the reduction zone RF of the reaction tank 1 is so-called sponge-like from the recovery port 6a of the reaction tank 1 as shown in FIG. After taking it out of the tank as metallic titanium, it is subjected to washing with water and dilute hydrochloric acid to remove adhered salts such as calcium chloride attached to the surface, and then to briquettes in the compression molding process to become electrodes, and further, vacuum arc melting and It is melted in a melting process such as high-frequency melting, and the target product titanium ingot is manufactured by adjusting the casting surface.
[0041]
【Example】
Hereinafter, based on the Example shown to FIG. 3 and FIG. 4 of an accompanying drawing, the refining apparatus of the titanium metal of this invention is demonstrated more concretely.
[0042]
3 and 4 are schematic cross-sectional views for explaining the schematic structure of the refining apparatus according to the embodiment of the present invention.
In this embodiment, this refining apparatus has a length of 1 m × width 0.7 m × height formed by applying a steel liner 1b and a stainless steel liner 8 to a steel box 1a. 1m reaction tank 1, made of steel and formed in a cylindrical shape, with an inert gas argon gas (Ar) introduction hole 3b and discharge hole 3c formed at the top, and an insulating property that closes the top opening A metal body having a large number of through-holes (not shown) that are formed by cutting and raising a part of the peripheral wall from below to open obliquely downward. A cathode material 3 made of titanium and a carbon anode material 2 are disposed around the cathode wall 3 at a distance of 55 cm from the peripheral wall of the cathode material 3, and a DC voltage is provided between the carbon anode material 2 and the cathode material 3. Is provided.
[0043]
In addition, inside the lower part of the cylindrical cathode material 3 is formed in a cylindrical shape having an upper end opening while maintaining a clearance of 5 cm from the peripheral wall portion, and the lid 3d of the cathode material 3 is formed in the upper part. A raw material supply port 7a for receiving titanium oxide supplied from a raw material input pipe 5 disposed therethrough, and an inflow port 7c formed of a relatively large through hole formed in the upper peripheral wall. In addition, a reduction reaction vessel 7 made of titanium metal having a receiving portion 7b provided with a large number of outflow holes 7d made of relatively small through holes is disposed in the bottom wall portion so that it can be pulled up by lifting means not shown. .
[0044]
In this embodiment, the carbon anode material 2 is inclined in an overhang shape on the side surface facing the cathode material 3 and immersed in the mixed molten salt at an angle of about 5 to 45 degrees with respect to the perpendicular. The inclined surface 2a is provided, and carbon dioxide gas (CO2) generated on the inclined surface 2a of the carbon anode material 2 is provided.2) Rises while being guided along the overhanging inclined surface 2a. In this embodiment, in the portion where the carbon anode material 2 and the cathode material 3 are immersed in the mixed molten salt, an electrolysis zone having a width of 50 cm and a height of 60 cm is formed. Designed to.
[0045]
In this embodiment, when 350 kg of molten calcium chloride containing calcium oxide (CaO) in a proportion of 5.5% by weight and previously heated to 1000 ° C. and melted is charged in the reactor 1. A reaction region RA made of the mixed molten salt is formed, and the cathode material 3 functions as a partition wall. The reaction region RA is formed into a cylindrical shape with an electrolysis zone EF between the carbon anode material 2 and the cathode material 3. The inside of the formed cathode material 3 is divided into the reduction zone RF inside the reduction reaction vessel 7 in particular.
[0046]
Here, when a DC voltage is applied between the carbon anode material 2 and the cathode material 3 forming the electrolysis zone EF within a range not exceeding 3.2 V, the carbon dioxide gas generated on the inclined surface 2a of the carbon anode material 2 is generated. It rises along this inclined surface 2a and is discharged to the outside from the reaction region RA, and monovalent Ca ions generated on the surface of the cathode material 3 are trapped in a through-hole not shown in the cathode material 3 to form a cylindrical shape. The calcium and monovalent Ca ions that flow into the reduction zone RF inside the cathode material 3 of the cathode 3 further flow from the inlet 7c formed in the upper peripheral wall of the reduction reaction vessel 7 into the upper portion of the reduction reaction vessel 7. To do.
[0047]
In this state, when titanium oxide in powder form with an average particle diameter of 0.5 μm is supplied from the raw material charging pipe 5 together with argon gas onto the reduction zone RF in the raw material supply port 7a of the reduction reaction vessel 7, this titanium oxide is An exothermic reaction with calcium and monovalent Ca ions is instantaneously reduced, and the precipitated titanium metal particles descend in the mixed molten salt in the reduction zone RF and repeat sintering in the process. This is deposited as sponge-like metal titanium 9 in the container 7b.
[0048]
Here, the mixed molten salt constituting the reaction zone RA in the reaction tank 1 generates a gentle upward flow due to the rise of carbon dioxide, calcium, and monovalent Ca ions in the electrolysis zone EF, and the reduction zone RF In particular, in the reduction reaction vessel 7, a gentle downward flow is generated due to the descending of the spongy titanium metal 9 generated, and it is enlarged between the electrolysis zone EF and the reduction zone RF, particularly the reduction reaction vessel 7 shown in FIG. There is a slow clockwise movement. Therefore, the flow of the mixed molten salt that has passed through the accommodating portion 7b of the reduction reaction vessel 7 is caused by the reduction reaction of titanium oxide or the deoxidation reaction of the sponge-like metal titanium 9 in the reduction zone RF in the reduction reaction vessel 7. The generated calcium oxide is dissolved, and this calcium oxide is moved from the large number of outflow holes 7d of the accommodating portion 7b to the electrolysis zone EF.
[0049]
After a predetermined amount of titanium oxide is supplied and the generated spongy metal titanium 9 stays in the mixed molten salt for a predetermined time and the predetermined deoxidation reaction is completed, the reduction reaction vessel 7 is slowly moved by the lifting means not shown. The spongy titanium metal 9 produced is taken out from the reduction reaction vessel 7 and collected.
[0050]
In the operation of the reactor 1, an electrolysis voltage not exceeding 3.2 V and 0.6 A / cm2A steady state of heat was realized at an anode constant current density of 1, and when 13 hours had elapsed after the start of energization, the reduction reaction vessel 7 in an argon atmosphere was immersed in the mixed molten salt.
[0051]
Further, the titanium oxide charged into the reduction reaction vessel 7 together with the argon gas from the raw material introduction pipe 5 has a purity of 99.8% by weight, and the purity inside the reduction reaction vessel 7 together with the argon gas is 11 g / min. The entire surface of the mixed molten salt was sprayed. After performing electrolytic operation and supplying titanium oxide continuously for 12 hours, after stopping supplying titanium oxide for 3 hours, the reduction reaction vessel 7 was pulled up at a rate of 6 cm / min and cooled to 300 ° C. It was taken out and allowed to cool to ambient temperature.
[0052]
In the electrolysis operation, carbon released from the carbon anode material 2 floats and collects between the carbon anode material 2 and the cathode material 3 on the surface of the mixed molten salt. The layer 10 is intermittently removed so that its thickness does not exceed 10 mm. At this time, an amount of molten calcium chloride corresponding to the molten calcium chloride taken out with the floating carbon is supplied to the back side of the carbon anode material 2. It was made to replenish from.
[0053]
The reduction reaction vessel 7 pulled up to the outside as described above and allowed to cool to the atmospheric temperature is then immersed in water at 5 ° C. for 10 minutes as it is, whereby sponge metal titanium 9 is formed from the inner surface of the reduction reaction vessel 7. Is then immersed in a 5 mol% hydrochloric acid aqueous solution and the internal sponge metal titanium 9 is sufficiently stirred, thereby sufficiently removing adhered salts such as calcium chloride adhering to the surface of the sponge metal titanium 9. Thereafter, the sponge-like titanium metal 9 taken out from the reduction reaction vessel 7 was sufficiently dried.
[0054]
In this example, the total amount of titanium oxide supplied into the reduction reaction vessel 7 was 8.2 kg, and the obtained sponge metal titanium was 4.8 kg, and the yield was 96% by weight. .
Moreover, the particle diameter of the obtained sponge-like metal titanium was widely distributed from 0.2 to 30 mm, was relatively loosely sintered, and easily collapsed by pressurization.
Furthermore, as a result of quantifying oxygen, carbon, nitrogen, iron, and chlorine as impurities, it was 0.07 wt% oxygen, 0.05 wt% carbon, 0.01 wt% nitrogen, 0.18 wt% iron, and 0.16 wt% chlorine. .
[0055]
Next, 0.13 kg of the spongy titanium metal obtained in this way was used and 100 kg / cm using a compression press apparatus (manufactured by GONNO).2Was compressed to form pellets having a diameter of 30 mm and a height of 40 mm.
The resulting pellets are connected to each other by tungsten electrode inert gas welding (TIG welding) to form electrode rods with a diameter of 30 mm x length of 150 mm, followed by vacuum arc melting (VAR) to cut the oxide film on the casting surface. Removal of titanium round bars was obtained.
[0056]
On the other hand, the pellet obtained above is filled in the cold hearth of an electron beam melting apparatus (manufactured by ALD), and the pellet in the cold hearth is directly irradiated with an electron beam and melted by electron beam melting (EBM). A titanium slab was obtained.
[0057]
The dissolved titanium obtained by the vacuum arc melting (VAR) and electron beam melting (EBM) was subjected to quantitative analysis of impurities by a trace gas analysis and an emission spectroscopic analysis.
The results are shown in Table 1.
[0058]
[Table 1]
Figure 0003981601
[0059]
【The invention's effect】
According to the present invention, not only can titanium metal be industrially advantageously produced, but metal titanium having a controlled solid solution oxygen concentration can be advantageously produced industrially.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram schematically showing the principle of a titanium metal refining method and a refining apparatus according to the present invention.
FIG. 2 is a flowchart showing the principle of the method for refining titanium metal according to the present invention.
FIG. 3 is an explanatory cross-sectional view schematically showing a titanium metal refining apparatus according to an embodiment of the present invention.
4 is an explanatory partial cross-sectional view showing an enlarged main part of FIG. 3;
FIG. 5 is a flow chart similar to FIG. 3 showing a method for refining titanium metal by a conventional crawl method.
FIG. 6 is an explanatory sectional view schematically showing a conventional method for refining titanium metal.
FIG. 7 is an explanatory cross-sectional view schematically showing another conventional method for refining titanium metal.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Reaction tank, 1a ... Box type container, 1b ... Graphite lining, RA ... Reaction zone, EF ... Electrolytic zone, RF ... Reduction zone, 2 ... Carbon anode material, 2a ... Inclined surface, 3 ... Cathode material, 3a ... Transparent Hole, 3b ... introduction hole, 3c ... discharge hole, 3d ... lid body, 4 ... DC power supply, 5 ... raw material input pipe, 6 ... accommodating section, 6a ... recovery port, 7 ... reduction reaction vessel, 7a ... raw material supply port, 7b: accommodating portion, 7c: inflow port, 7d: outflow hole, 8 ... stainless steel lining, 9 ... sponge metal titanium, 10 ... floating carbon enriched layer.

Claims (10)

酸化チタン(TiO2)を熱還元して金属チタン(Ti)を製造する金属チタンの精錬方法であり、
反応槽内には、塩化カルシウム(CaCl2)と酸化カルシウム(CaO)及び/又はカルシウム(Ca)からなり、カルシウム濃度(Ca濃度)が1.5重量 % 以下であって酸化カルシウム濃度(CaO濃度)が11.0重量 % 以下である混合溶融塩で反応領域を構成し、
この反応領域を、混合溶融塩中の酸化カルシウム及び/又は塩化カルシウムを電気分解する電解帯域と酸化チタンを還元する還元帯域とに区画し、
上記電解帯域では、混合溶融塩中の酸化カルシウム及び/又は塩化カルシウムを電気分解してカルシウム(Ca)及び1価カルシウムイオン(Ca+)を生成せしめ、この電解帯域で生成したカルシウム及び1価カルシウムイオンを還元帯域に供給し、
上記還元帯域では、還元帯域に導入された酸化チタンを還元すると共に、この酸化チタンの還元で得られたスポンジ状金属チタン(Ti)の脱酸素を行い、かつ、還元帯域で生成したスポンジ状金属チタンをこの還元帯域の混合溶融塩中に保持する保持時間を調節することにより、生成したスポンジ状金属チタン中の固溶酸素濃度を調節し、また、この還元帯域で生成した酸化カルシウムを上記電解帯域に戻し、
上記反応領域から回収されたスポンジ状金属チタンを、チタンインゴットとして製品化される前に、水及び/又は希塩酸で洗浄して付着塩を除去する
ことを特徴とする金属チタンの精錬方法。
A method for refining metal titanium, in which titanium oxide (TiO 2 ) is thermally reduced to produce metal titanium (Ti),
The reaction vessel, Ri calcium chloride (CaCl 2) and calcium oxide (CaO) and / or calcium (Ca) Tona, calcium concentration (Ca concentration) calcium oxide concentration was 1.5 wt% or less (CaO concentration) constitutes a reaction zone at 11.0 wt% or less der Ru mixed molten salt,
The reaction region is partitioned into an electrolytic zone for electrolyzing calcium oxide and / or calcium chloride in the mixed molten salt and a reduction zone for reducing titanium oxide,
In the electrolysis zone , calcium oxide and / or calcium chloride in the mixed molten salt is electrolyzed to produce calcium (Ca) and monovalent calcium ions (Ca + ), and the calcium and monovalent calcium produced in this electrolysis zone. Supplying ions to the reduction zone ,
In the reduction zone, titanium oxide introduced into the reduction zone is reduced, sponge metal titanium (Ti) obtained by reduction of the titanium oxide is deoxygenated, and the sponge metal produced in the reduction zone By adjusting the holding time for holding titanium in the mixed molten salt in this reduction zone, the concentration of solid solution oxygen in the resulting sponge-like titanium metal is adjusted, and the calcium oxide produced in this reduction zone is also electrolyzed. to return to the band,
Refining of titanium metal, wherein the spongy metal titanium recovered from the reaction region is washed with water and / or dilute hydrochloric acid to remove the adhering salt before being commercialized as a titanium ingot. Method.
電解帯域と還元帯域との間が、電解帯域の陽極に相対する陰極を構成し、かつ、電解帯域で生成したカルシウム及び1価カルシウムイオンが還元帯域に移動するのを許容すると共に還元帯域で生成した酸化カルシウムが電解帯域に移動するのを許容する陰極材で区画されている請求項1に記載の金属チタンの精錬方法。Between the electrolysis zone and the reduction zone constitutes a cathode opposite to the anode of the electrolysis zone, and allows the calcium and monovalent calcium ions generated in the electrolysis zone to move to the reduction zone and is produced in the reduction zone The method for refining titanium metal according to claim 1 , wherein the refined calcium oxide is partitioned with a cathode material that allows the calcium oxide to move to the electrolysis zone. 電解帯域では、陽極として炭素陽極材を用いて混合溶融塩中の酸化カルシウムを電気分解し、この酸化カルシウム中の酸素を炭酸ガスとして反応領域から系外に除去する請求項1又は2に記載の金属チタンの精錬方法。The electrolysis zone, and electrolysis of calcium oxide in the mixed molten salt using carbon anode material as an anode, according to claim 1 or 2 to remove oxygen in the calcium oxide to the outside from the reaction zone as carbon dioxide A method for refining titanium metal. 還元帯域には、上部には酸化チタンを供給するための原料供給口と電解帯域で生成したカルシウム及び1価カルシウムイオンが流入する流入口とを有し、また、下部には生成したスポンジ状金属チタンを収容して保持すると共に生成した酸化カルシウムが外部に流出する多数の流出孔が設けられた収容部を有する還元反応容器が配設されており、原料供給口より供給された酸化チタンをこの還元反応容器内上部で還元すると共に、生成したスポンジ状金属チタンをその下部の収容部内に収容して脱酸素せしめ、脱酸素終了後には還元反応容器を還元帯域から引き上げてスポンジ状金属チタンを回収する請求項1〜3のいずれかに記載の金属チタンの精錬方法。The reduction zone has a raw material supply port for supplying titanium oxide at the upper portion and an inlet port for the calcium and monovalent calcium ions generated in the electrolysis zone, and the spongy metal produced at the lower portion. A reduction reaction vessel having an accommodating portion provided with a large number of outflow holes for accommodating and holding titanium and flowing out the generated calcium oxide to the outside is disposed, and the titanium oxide supplied from the raw material supply port is In addition to reducing at the upper part of the reduction reaction vessel, the generated sponge-like metal titanium is housed in the lower housing part to deoxidize it. The method for refining titanium metal according to any one of claims 1 to 3 . 酸化チタン(TiO2)を熱還元して金属チタン(Ti)を製造するための金属チタンの精錬装置であり、
塩化カルシウム(CaCl2)と酸化カルシウム(CaO)及び/又はカルシウム(Ca)からなり、カルシウム濃度(Ca濃度)が1.5重量 % 以下であって酸化カルシウム濃度(CaO濃度)が11.0重量 % 以下である混合溶融塩が収容された反応領域を形成する反応槽と、この反応槽内に配設されて上記反応領域を電解帯域と還元帯域とに区画し、電解帯域で酸化カルシウム及び/又は塩化カルシウムの電気分解により生成したカルシウム(Ca)及び1価カルシウムイオン(Ca+)が還元帯域に移動するのを許容すると共に還元帯域で生成した酸化カルシウムが電解帯域に移動するのを許容する仕切り壁とを備えており、
上記電解帯域では、生成したカルシウム及び1価カルシウムイオンを還元帯域に供給し、また、この還元帯域では、この還元帯域に導入された酸化チタンを還元すると共にこの酸化チタンの還元で得られたスポンジ状金属チタン(Ti)の脱酸素を行い、かつ、還元帯域で生成したスポンジ状金属チタンをこの還元帯域の混合溶融塩中に保持する保持時間を調節することにより、生成したスポンジ状金属チタン中の固溶酸素濃度を調節し、更に、上記還元帯域で生成した酸化カルシウムを上記電解帯域に戻すように構成されていることを特徴とする金属チタンの精錬装置。
A titanium metal refining device for producing metal titanium (Ti) by thermally reducing titanium oxide (TiO 2 ),
Calcium chloride (CaCl 2) and calcium oxide (CaO) and / or calcium (Ca) Tona is, calcium concentration (Ca concentration) calcium oxide concentration was 1.5 wt% or less (CaO concentration) 11.0 a reaction vessel to form a reaction region which is wt% der Ru mixed molten salt is contained below is disposed in the reaction vessel by partitioning the reaction region to the electrolytic band as a reducing zone, calcium oxide in the electrolyte zone And / or allow calcium (Ca) and monovalent calcium ions (Ca + ) generated by electrolysis of calcium chloride to move to the reduction zone and allow calcium oxide generated in the reduction zone to move to the electrolysis zone. With an acceptable partition wall,
In the electrolysis zone , the generated calcium and monovalent calcium ions are supplied to the reduction zone. In this reduction zone, the titanium oxide introduced into the reduction zone is reduced and the sponge obtained by the reduction of the titanium oxide is obtained. In the produced sponge-like metal titanium , deoxygenation of the metal-like titanium (Ti) and adjusting the holding time for holding the sponge-like metal titanium produced in the reduction zone in the mixed molten salt in this reduction zone The apparatus for refining titanium metal is characterized in that the solid solution oxygen concentration is adjusted and the calcium oxide produced in the reduction zone is returned to the electrolysis zone.
反応槽内の反応領域を電解帯域と還元帯域とに区画する仕切り壁が、電解帯域の陽極に相対する陰極を構成する陰極材で構成されている請求項5に記載の金属チタンの精錬装置。The metal titanium refining apparatus according to claim 5 , wherein the partition wall that divides the reaction region in the reaction tank into an electrolysis zone and a reduction zone is composed of a cathode material that constitutes a cathode facing the anode of the electrolysis zone. 反応槽内には、その反応領域の中央部に還元帯域を区画すると共に、この還元帯域を挟んでその両側に、若しくは、この還元帯域を囲んでその周囲に電解帯域を形成する陰極材が配設されている請求項6に記載の金属チタンの精錬装置。In the reaction tank, a reduction zone is defined at the center of the reaction zone, and a cathode material is formed on both sides of the reduction zone or surrounding the reduction zone to form an electrolysis zone around the reduction zone. The apparatus for refining titanium metal according to claim 6 provided. 陰極材が、金属チタン製である請求項6又は7に記載の金属チタンの精錬装置。The apparatus for refining titanium metal according to claim 6 or 7 , wherein the cathode material is made of metal titanium. 還元帯域には、上部には酸化チタンを供給するための原料供給口と電解帯域で生成したカルシウム及び1価カルシウムイオンが流入する流入口とを有し、また、下部には生成したスポンジ状金属チタンを収容して保持すると共に生成した酸化カルシウムが外部に流出する多数の流出孔が設けられた収容部を有する還元反応容器が還元帯域から引上げ可能に配設されている請求項6〜8のいずれかに記載の金属チタンの精錬装置。The reduction zone has a raw material supply port for supplying titanium oxide at the upper portion and an inlet port for the calcium and monovalent calcium ions generated in the electrolysis zone, and the spongy metal produced at the lower portion. numerous outlet hole reduction reaction container having a receiving portion provided with the claims 6-8, which is arranged to be pulled from the reducing zone calcium oxide generated with receiving and holding titanium flowing out The titanium metal refining apparatus according to any one of the above. 還元反応容器が、金属チタン製である請求項9に記載の金属チタンの精錬装置。The apparatus for refining metallic titanium according to claim 9 , wherein the reduction reaction vessel is made of metallic titanium.
JP2002210537A 2002-07-19 2002-07-19 Titanium metal refining method and refining apparatus Expired - Fee Related JP3981601B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002210537A JP3981601B2 (en) 2002-07-19 2002-07-19 Titanium metal refining method and refining apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002210537A JP3981601B2 (en) 2002-07-19 2002-07-19 Titanium metal refining method and refining apparatus

Publications (2)

Publication Number Publication Date
JP2004052037A JP2004052037A (en) 2004-02-19
JP3981601B2 true JP3981601B2 (en) 2007-09-26

Family

ID=31934008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002210537A Expired - Fee Related JP3981601B2 (en) 2002-07-19 2002-07-19 Titanium metal refining method and refining apparatus

Country Status (1)

Country Link
JP (1) JP3981601B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105890362A (en) * 2016-04-28 2016-08-24 天津闪速炼铁技术有限公司 Metallurgical reaction device with coexisting oxidizing atmosphere and reducing atmosphere

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003903150A0 (en) 2003-06-20 2003-07-03 Bhp Billiton Innovation Pty Ltd Electrochemical reduction of metal oxides
CN103499206B (en) * 2013-09-03 2016-08-17 盐城市华普轻纺机械有限公司 A kind of anticorrosion calcining furnace
CN107532236B (en) * 2015-02-09 2019-09-17 国立大学法人北海道大学 The manufacturing method of vanadium metal
JP6495142B2 (en) * 2015-08-28 2019-04-03 株式会社神戸製鋼所 Method for producing titanium metal
CN115961151B (en) * 2023-01-13 2024-01-23 山东建筑大学 Process for simultaneously preparing magnesium metal and titanium by one-step method with zero carbon emission

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105890362A (en) * 2016-04-28 2016-08-24 天津闪速炼铁技术有限公司 Metallurgical reaction device with coexisting oxidizing atmosphere and reducing atmosphere
CN105890362B (en) * 2016-04-28 2018-11-09 天津闪速炼铁技术有限公司 A kind of metallurgical reaction device that oxidation coexists with reducing atmosphere

Also Published As

Publication number Publication date
JP2004052037A (en) 2004-02-19

Similar Documents

Publication Publication Date Title
US7264765B2 (en) Method and apparatus for smelting titanium metal
CA2334237C (en) Removal of oxygen from metal oxides and solid solutions by electrolysis in a fused salt
Ono et al. A new concept for producing Ti sponge: calciothermic reduction
JP5226700B2 (en) Metallic thermal reduction of in situ generated titanium chloride
EP2322693B1 (en) Electrochemical process for titanium production
US8157885B2 (en) Continuous production of metallic titanium and titanium-based alloys
WO2005080642A1 (en) PROCESS FOR PRODUCING Ti OR Ti ALLOY BY REDUCTION OF Ca
Abdelkader et al. Preparation of zirconium metal by the electrochemical reduction of zirconium oxide
JP3981601B2 (en) Titanium metal refining method and refining apparatus
JP4277080B2 (en) Titanium metal production equipment
WO2005035805A1 (en) METHOD FOR PRODUCING Ti OR Ti ALLOY TROUGH REDUCTION BY Ca
WO2005083135A1 (en) PROCESS FOR PRODUCING Ti OR Ti ALLOY THROUGH Ca REDUCTION
JP2004052003A (en) Method and apparatus for producing niobium powder or tantalum powder
JP4198434B2 (en) Method for smelting titanium metal
JP2689520B2 (en) Method for producing metallic titanium
JP2006124813A (en) METHOD AND APPARATUS FOR PRODUCING Ti BY Ca REDUCTION
RU2401874C2 (en) Procedure by volkov for production of chemically active metals and device for implementation of this procedure
JP2006274340A (en) METHOD FOR PRODUCING Ti OR Ti ALLOY
JP4309675B2 (en) Method for producing titanium alloy
JP4513297B2 (en) Metal oxide reduction method and metal oxide reduction apparatus
JPH0681051A (en) Production of metal by reduction reaction of metal halide
JP3809514B2 (en) Method for producing titanium metal by reducing lower chloride of titanium
US20090101517A1 (en) Method for Producing Ti or Ti Alloy, and Pulling Electrolysis Method Applicable Thereto
JP4249685B2 (en) Method for producing Ti by Ca reduction
JP3829218B2 (en) Titanium production method and reduction raw material production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061017

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061218

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070123

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070322

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070626

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070702

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees