JP3948436B2 - Brick masonry manufacturing method - Google Patents

Brick masonry manufacturing method Download PDF

Info

Publication number
JP3948436B2
JP3948436B2 JP2003171984A JP2003171984A JP3948436B2 JP 3948436 B2 JP3948436 B2 JP 3948436B2 JP 2003171984 A JP2003171984 A JP 2003171984A JP 2003171984 A JP2003171984 A JP 2003171984A JP 3948436 B2 JP3948436 B2 JP 3948436B2
Authority
JP
Japan
Prior art keywords
brick
bricks
brickwork
pallet
pallets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003171984A
Other languages
Japanese (ja)
Other versions
JP2005009707A (en
Inventor
▲吉▼一 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2003171984A priority Critical patent/JP3948436B2/en
Publication of JP2005009707A publication Critical patent/JP2005009707A/en
Application granted granted Critical
Publication of JP3948436B2 publication Critical patent/JP3948436B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B9/00Stoves for heating the blast in blast furnaces
    • C21B9/02Brick hot-blast stoves
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B9/00Stoves for heating the blast in blast furnaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B9/00Stoves for heating the blast in blast furnaces
    • C21B9/10Other details, e.g. blast mains

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Blast Furnaces (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は煉瓦積み体の製造方法に関し、具体的には、鉄鋼製造用の転炉や高炉等をはじめとする溶融金属炉や各種の高温反応炉等の、比較的大型の容器の内側に煉瓦の壁を構築する煉瓦積み体の製造方法に関する。
【0002】
【従来の技術】
鉄鋼製造用の転炉をはじめとする溶融金属炉や各種の高温反応炉等の炉体の内側には、耐火物である煉瓦が積み重ねられた構造体により内壁が構成される。例えば転炉では、煉瓦の重量は通常500 トン前後であり (炉容積により200 〜800 トン) 、煉瓦の枚数は1万枚を越える多数である。積み上げられる煉瓦は、扱い易いように、同一形状及び同一材質の20〜30枚を1組にして1基のパレット上に約1m四方に並べて運搬及び搬入される。500 トンの煉瓦の場合は、一般的に約500 基のパレットに分割して納入される。
【0003】
転炉の煉瓦積みは、通常、転炉の中に4〜5名の作業員が入り、パレットから煉瓦を1枚1枚取り出して、転炉の下部 (炉底部) から上部の直胴部及び絞り部に向かって順番に複数段積み上げて行く。この際、同一段の中でも複数の材質の煉瓦を用い、かつ転炉の形状に合わせて円周状に築炉するために、テーパの異なる複数形状の煉瓦を、予め定めた所定の順番通りに配置しなければならない。
【0004】
図3は、テーパの異なる2の煉瓦A、Bを組み合わせて円周状に築造する状況を示す説明図である。通常、ある段の煉瓦を築造していく場合には、同じ材質であってテーパが異なる2種の形状の煉瓦A、Bを組合わせる。なお、転炉の稼働率を高めて鉄鋼製造の生産性を高めるためには、煉瓦積みの作業時間は短いほど好ましいことはいうまでもない。
【0005】
そこで、特許文献1には、この煉瓦積み作業を効率的かつ短時間で行うために、供給された煉瓦を所定の位置へ詰め寄せるための移動を円滑かつ迅速化することができる煉瓦積み装置に係る発明が開示されている。しかし、この発明は、煉瓦積み装置への煉瓦の供給を迅速化するものではない。
【0006】
転炉の煉瓦積みには、人力により煉瓦積みを行う方法と上述したような煉瓦積み装置を用いて煉瓦積みを行う方法との2通りがあるが、いずれの方法による場合であっても、複数の材質及び形状の煉瓦を、予め定めた所定の順番通りに配置しなければならない。従来は、複数の材質及び形状の煉瓦を同一種毎に搭載するパレットをれんが積み作業箇所の近くに配置しておき、例えば人力で行う場合は転炉の炉上のフロアーに仮置きしている多数のパレットの中でれんが積み中に必要とされるれんが形状、材質の入った2基のパレットを炉内にクレーンまたは、エレベーターで搬入する。その後2基のパレットから作業者が必要なれんがを1枚毎にいずれかのパレットから取り出して、れんが積み作業箇所の近くで作業する煉瓦積み作業者に渡し、これらの煉瓦積み作業者が煉瓦積み作業を行っていた。
【0007】
自動れんが搬入機を使用する場合は、転炉の炉上のフロアーに仮置きしている多数のパレットの中でれんが積み中に必要とされるれんが形状、材質の入った2基のパレットを炉内に固定された自動れんが搬入機の近くの炉上部に置き、その後2基のパレットから作業者が必要なれんがを1枚毎にいずれかのパレットから取り出して、れんが積み搬入機の近くで作業する作業者に渡し、作業者が自動れんが搬入機にれんがを搬入していた。炉内では、れんが搬入機より運び出されたれんが1本毎を、れんが積み作業者が煉瓦積み作業を行っていた。
【0008】
図4(a) は、例えば、テーパーが異なる2種の煉瓦A、Bを搭載する2基のパレットP1 、P2 から、パレットからの搬出作業者が1枚毎に必要な煉瓦A又はBを順次取り出す状況を示す説明図である。この図4(a) に示すように、ある段の煉瓦を例えばA、A、B、A、A、Bの順番に積む場合、パレットからの搬出作業者はパレットP1 から2本の煉瓦Aを取り出した後にパレットP2 から1本の煉瓦Bを取り出してA、A、Bの順に煉瓦積み作業者に渡し、煉瓦積み作業者がA、A、Bの順に煉瓦を積み上げるという作業を繰り返していた。
【0009】
【特許文献1】
特開平8−5262号公報
【特許文献2】
特開平8−60034 号公報
【0010】
【発明が解決しようとする課題】
この煉瓦積み作業を行う際には、パレットからの搬出作業者は、予め定めた所定の煉瓦積みの順番が記載された築炉図面を参照しながら複数のパレット (図4(a) では2基のパレットP1 、P2 ) から所定の煉瓦A、Bを順次取り出す作業を行っていた。このため、パレットP1 、P2 からの煉瓦A、Bの取り出し作業が遅れた場合には、煉瓦積み作業者に手待ち時間が発生することがあった。
【0011】
また、この煉瓦積み作業を行う場合、パレットからの搬出作業者と煉瓦積み作業者とは、少なくとも10〜20m程度も離れた場所で作業するため、連絡を取り合いながら煉瓦積み作業を行ってはいるものの、搬出作業者が煉瓦積み作業者に手渡す煉瓦A、Bの誤りに起因した煉瓦A、Bの煉瓦積み順序の間違いを解消できなかった。
【0012】
また、煉瓦A、Bはパレットに別々に梱包された状態で納入され、煉瓦積み時にそれぞれから取り出されていたため、取り出し場所が複数必要なことに加えてそこからの取り出し作業にも少なからず時間を要する。このため、煉瓦積みは、結局1箇所から実施せざるを得なかった。なお、自動煉瓦積み機を用いても、煉瓦の搬入及び煉瓦積みに同程度の時間を要すること自体には変わりなく、全体として作業能率を高めることができなかった。
【0013】
さらに、一般的に、転炉にはマグネシアカーボン煉瓦を用いるが、この煉瓦は熱膨張が大きいために操業時にせり割れを起こす場合がある。その対策として、煉瓦積み時に隣接する煉瓦間の目地部にボール紙やセラミックシート等を介在させて膨張代を確保する手法が知られている。しかし、目地部にボール紙やセラミックシート等を介在させる作業は、煉瓦積み時に人手で行わざるを得ないため、煉瓦積みの手間及び時間の増加に拍車をかけてしまう。
【0014】
図5には、転炉の煉瓦の一般的な形状例を示す。同図に示すように、一般的に長さ810mm 、高さ150mm 、炉内側幅120mm 、鉄皮側幅150mm のバチ形煉瓦2を使用している。煉瓦2の膨張代は各部寸法の0.1 〜0.5 %を必要とするため、厚さが1mmのボール紙を煉瓦2と煉瓦2との間の目地部に挟み込んでいた。
【0015】
例えば、高さ方向では150mm ×0.3/100 =0.45mm/ 枚の膨張吸収代が必要となるため、1mmのボール紙を煉瓦の高さ方向2〜3段に1枚の割合で目地部へ挟み込んでいた。また、円周方向では{(120+150)/2 }×0.3/100 ≒0.4mm/枚で同様に円周方向にも煉瓦2〜3枚毎にボール紙を挟み込んでいた。
【0016】
このようなボール紙の施工を行うには、炉内にボール紙を煉瓦の形状に合わせたものを準備しておき、煉瓦積み作業者が作業時に煉瓦を積む場合には、煉瓦と煉瓦との間に、ボール紙を挟み込んでいくことになる。このため、煉瓦2〜3枚毎に目地部にボール紙を挟むこの作業にも起因して、作業時間の増加は避けられなかった。
【0017】
本発明は、鉄鋼製造用の転炉や高炉等をはじめとする溶融金属炉や各種の高温反応炉等の、比較的大型の容器の内側に煉瓦の壁を構築するための作業を、確実かつ短時間で行うことができる煉瓦積み体の製造方法を提供することである。
【0018】
【課題を解決するための手段】
本発明は、互いに形状が異なる2種以上の複数の煉瓦を予め定めた所定の順番に配置することにより煉瓦積み体を構築する際に、複数の煉瓦をパレットの上に所定の順番配列して搭載した状態で煉瓦積み体の施工現場へ搬送し、この施工現場においてパレットから所定の順番で複数の煉瓦を取り出して所定の順番に配置することを特徴とする煉瓦積み体の製造方法である。
【0019】
この本発明に係る煉瓦積み体の製造方法では、パレットからの複数の煉瓦の取り出しが、パレットを2箇所以上の異なる場所に配置して、同時期に行われることが例示される。
【0020】
この本発明に係る煉瓦積み体の製造方法では、煉瓦積み体が、転炉又は高炉の内壁をなす構造体であることが例示される。
また、本発明に係る煉瓦積み体の製造方法では、煉瓦が、膨張吸収代が煉瓦長さの0.1 〜0.5 %のマグネシアカーボン煉瓦であることが望ましい。このような煉瓦は、例えば特許文献2に記載されているように、煉瓦の表面に合成樹脂の粉末と炭酸カルシウムのような金属炭酸塩等とを混合した被覆材を塗布して得ることができる。
【0021】
【発明の実施の形態】
(第1の実施の形態)
以下、本発明に係る煉瓦積み体の製造方法の実施の形態を、添付図面を参照しながら詳細に説明する。なお、以降の実施の形態の説明では、テーパが異なる2種の煉瓦A、Bを用いて煉瓦積みを行う場合を例にとる。また、煉瓦積み体が転炉である場合を例にとるが、高炉等の他の溶融金属炉や各種の高温反応炉等といった、比較的大型の容器であれば同様に適用可能である。
【0022】
図1は、本実施の形態の煉瓦積み体の製造方法を模式的に示す説明図である。また、図4(b) は、本実施の形態におけるパレット1への煉瓦A、Bの積み方を模式的に示す説明図である。
【0023】
本実施の形態では、上述した図3に示すように互いにテーパが異なる2種の煉瓦A、Bを予め定めた所定の順番A、A、B、A、A、Bで略円周状に複数段配置することで煉瓦積みを行って、煉瓦積み体である、転炉の内壁をなす構造体を構築する。この際、本実施の形態では、2種の煉瓦A、Bを、所定の順番A、A、B、A、A、Bで取り出すことができるように、図4(b) に示すようにパレット1に配列して搭載しておき、このパレット1からこれら2種の煉瓦A、Bを順次取り出して、配置するものである。
【0024】
すなわち、本実施の形態では、図4(b) に示すように、予めれんが積みの順番A、A、B、A、A、Bとなるように煉瓦A、Bをパレット1上に並べて配置しておき、その状態のままで梱包する。そして、煉瓦積みの際には必要な煉瓦A、Bを1つのパレット1から順番に取り出していくだけで済む。なお、この仮並べ順は、煉瓦の材質や形状を勘案して決定される。
【0025】
パレット1ヘの煉瓦A、Bの積み方は、煉瓦の配置順A、A、B、A、A、Bにパレットの端面から並べて搭載する。煉瓦A、Bは、パレット1上に1〜4段積むのが一般的であるが、2〜4段の段積みを行う場合には、上述した配置順に上段から下段へ煉瓦並べを行う。したがって、1例としては、煉瓦A、Bを、上段にA、A、Bの配列で並べ、その下段にA、A、Bの配列で並べる。その次のパレット1は、前のパレット1の下段の煉瓦並べに引き続いて上段から下段に同様に煉瓦並べを行う。
【0026】
このように、本実施の形態では、今まで、少なくとも2つのパレットより交互に煉瓦A、Bを取り出していたが、1つのパレットから順番に煉瓦A、Bを取り出すことができるようになる。
【0027】
また、本実施の形態では、煉瓦積み時に目地部にボール紙やセラミックシート等を介在させて膨張代を確保する手間及び時間を低減するため、膨張吸収代が煉瓦長さの0.1 〜0.5 %に相当するマグネシアカーボン煉瓦を用いた。
【0028】
低膨張煉瓦とは、煉瓦の表面に予め膨張吸収代となる材料を表面コーティングした煉瓦であり、煉瓦自体の気孔率が大きく、圧縮された時に煉瓦自体が縮むことができる煉瓦である。
【0029】
マグネシアカーボン煉瓦は耐食性に優れる利点はあるものの、熱膨張が大きい。例えば、マグネシアカーボン煉瓦の1650℃での熱膨張率は2.0 〜2.2 %である。本発明者は、マグネシアカーボン煉瓦の好適な膨張吸収代を多数の実験結果を参照しながら検討した。その結果、膨張吸収代と実際の転炉における煉瓦の使用結果との関係から、膨張吸収代が煉瓦長さの0.1 %未満であると煉瓦のせり割れが発生し、膨張吸収代が煉瓦長さの0.5 %を超えると煉瓦の抜け落ちが発生した。これに対し、膨張吸収代が煉瓦長さの0.1 %以上0.5 %以下であるとせり割れや抜け落ちが生じず、良好であった。
【0030】
ここで、マグネシアカーボン煉瓦の1650℃での煉瓦の熱膨張率は2.08%であるため、煉瓦の長さをLとした場合に、煉瓦の熱膨張は2.08/100×L となる。このため、煉瓦が膨張した場合に全ての膨張が吸収できなかった場合には応力σ=E×(2.08/100 ×L)/Lが発生する。この場合は、煉瓦がせり割れを起こす。
【0031】
すなわち、煉瓦の膨張吸収量とは、煉瓦がせり割れを起こさないための応力吸収代である。膨張吸収代が 0.5%である場合の煉瓦の発生応力は、σ=E×(2.08/100 ×L)−(0.5/100×L)/Lとなり、煉瓦の発生応力を低減でき、最適に保つことができる。一方、煉瓦同士がある程度の応力を発生させていないと、転炉を傾動させた場合に煉瓦が抜け落ちる可能性が高くなる。
【0032】
このように、転炉の場合、膨張吸収代が少ないとせり割れを起こす心配があるが、反面、大き過ぎると煉瓦の抜け落ちにつながる可能性もある。
このような観点から、本実施の形態では、転炉の築炉に使用するマグネシア・カーボン煉瓦について、実機テストやれんがの物性値 (熱膨張率、弾性率、圧縮硬度) により、低膨張煉瓦であり煉瓦の膨張吸収代を煉瓦長さ (高さ方向、幅方向) の0.1 〜0.5 %と、最適に設定した。
【0033】
このような煉瓦を用いると、転炉の煉瓦積み作業時に目地施工を同時に行う必要がなくなるため、高耐用性のマグネシアカーボン煉瓦を適正に用いながら、手間及び時間を増やさずに煉瓦積みを済ませることができる。
【0034】
このように、本実施の形態では、スタート煉瓦Aを配置し、そこを起点にして同一方向にれんが積みをA、B、A、A、Bの順に実施し、最後はスタート煉瓦Aまで戻り、セメ煉瓦Cでその段の煉瓦をせめる。
【0035】
なお、セメ煉瓦とは、鉄皮円周に沿ってれんがを積む場合、最後のれんが形状 (テーパー、れんが幅厚) は一定しないので隙間寸法を測定し、その寸法に沿ったれんが形状のれんがを加工して作製した、隙間を埋めると共に円周方向でれんががゆるまないように打ち込む煉瓦である。
【0036】
この本実施の形態によれば、施工現場において、煉瓦積みの順番に形状及び材質別の積み順番を考慮する必要がほぼ解消され、作業を円滑に行い得るとともに、煉瓦の取り違えトラブルもほぼ解消できる。このため、本実施の形態の煉瓦積み方法により、鉄鋼製造用の転炉を始めとする溶融金属炉や各種の高温反応炉など、比較的大型の容器の内側に煉瓦A、Bの壁を構築するための作業を、確実かつ短時間に行うことができる。
【0037】
具体的には、本実施の形態により、転炉のれんが積み作業に係る築炉時間を、従来の方法に比較して約30%も短縮することができ、かつ煉瓦積み作業者の作業負荷も軽減することができた。このため、鉄鋼製造用の転炉や高炉等をはじめとする溶融金属炉や各種の高温反応炉等の、比較的大型の容器の内側に煉瓦の壁を構築するための作業を、確実かつ短時間で行って煉瓦積み体を製造することができる。
【0038】
(第2の実施の形態)
次に、第2の実施の形態を説明する。なお、以降の説明では、上述した第1の実施の形態と相違する部分を説明し、共通する部分は同一の図中符号を付すことにより重複する説明を省略する。
【0039】
図2は、本実施の形態の煉瓦積み方法を模式的に示す説明図である。
同図に示すように、本実施の形態においても上述した第1の実施の形態と同様に、形状が異なる2種の煉瓦A、Bを予め定めた所定の順番A、A、B、A、A、Bで略円周状に複数段配置することで煉瓦積みを行う。
【0040】
この場合、本実施の形態では、2基のパレットは、炉上部の自動れんが搬入機のれんが取り込み付近に設置する。れんがは、各パレットより交互に1pずつ搬入機に取り込む。
【0041】
炉内のれんが取り出し位置から1pずつれんがが出てくる。
本自動れんが搬入機は、れんが取り出し位置を対角2方向よりれんがが出るように設定されており、れんが搬出位置はC、D交互になり各位置で、2箇所同じタイミングで積むことが可能になる。
【0042】
従ってCから積み始めるパレットとDから積み始めるパレットの2基に分けられる。
一段れんが積みが終われば、次の2基のパレットを自動れんが搬入機の近くに新たに持ってくる。
【0043】
すなわち、2基のパレットのいずれからも2種の煉瓦A、Bが所定の順番で取り出されるように、2種の煉瓦A、Bを2基のパレットにそれぞれ配列して搭載しておき、これら2基のパレットそれぞれから2種の煉瓦A、Bを順次取り出して、配置する。
【0044】
これにより、パレットを2基置いてA、A、Bの順番に煉瓦A、Bを取り出して積んでいけば、図2に示すように、同時に2箇所の位置C、Dより煉瓦積みを開始することができる。これにより、煉瓦積みに要する時間を短縮することができる。また、パレットを3基配置すれば、同時に3箇所から煉瓦積みを開始することもでき、これにより、煉瓦積みに要する時間をさらに短縮することができる。
【0045】
作業者は、1つのパレットから煉瓦A、Bを順次取り出していくことになるため、手間が省け、煉瓦A、Bの取り出し時間が短縮できる。
さらに、従来のように煉瓦A、Bをそれぞれ搭載した2基のパレットを使い分ける必要がなくなるためにパレット置き場に余裕ができる。この余裕スペースに別のパレットを置き、そのパレットからも煉瓦A、Bを順次取り出すことができるため、煉瓦A、Bの供給ルートを増やすことができ、そのルートによる煉瓦積み作業を行うことができる。
【0046】
さらに、転炉の場合には、充分な作業スペースを確保できないために、従来の煉瓦積み方法では作業部位付近で人や物の移動が錯綜し、危険であった。しかし、本実施の形態によれば、人や物の移動が錯綜しないように整理でき、煉瓦積み作業の安全性や効率が飛躍的に向上する。
【0047】
このように、本実施の形態では、スタート煉瓦Aを2箇所位置決めし、それぞれの位置より煉瓦Aを同時に積み始める。セメ煉瓦も2箇所配置する必要が生じるが、2箇所より同時にれんが積みを行うことができるため、作業時間を大幅に短縮することができる。
【0048】
このようにして、煉瓦積みの同一段で同時に複数箇所より煉瓦積み作業を始めることができ、無理なく築炉の作業時間を短縮することができる。
【0049】
【実施例】
公称能力230 トン/チャージの転炉の側壁部分 (湯溜り部、直胴部、絞り部、炉口部) の内側において、煉瓦の壁を構築するための煉瓦積み作業に本発明を適用して、従来方法との比較を行った。
【0050】
従来例では、図4(a) に示すように、形状と材質が同一の煉瓦を纏めたパレットを用い、図1に示すように1650℃での熱膨張率が2.0 〜2.2 %のマグネシアカーボン煉瓦を迫割れ防止用のボール紙を適宜挟みつつ施工した (図1) 。
【0051】
本発明例1では、請求項1に記載したように、複数種類の煉瓦を所定の順番で取り出せるように配列して搭載されたパレットを用い (図4(b))、従来と同じ煉瓦をボール紙を挟みつつ施工した (図1) 。
【0052】
本発明例2では、請求項2に記載したように、本発明例1で用いた配列搭載パレットを用い (図4(b))、それに伴う整頓によりできたスペースを利用してパレットからの煉瓦取り出しを2箇所とし、同一段での煉瓦積み作業の開始位置を2箇所に増やしたが (図2) 、煉瓦自体は従来と同じものを用い、ボール紙を挟みつつ施工した。
【0053】
本発明例3では、請求項4に記載したように、本発明例2に加えて (図4(b) 、図2) 、膨張吸収代が煉瓦長さの0.3 〜0.4 %になるように表面被覆材を塗布したマグネシアカーボン煉瓦を用い、ボール紙の併用をやめて施工した。
【0054】
本発明例1では、パレットからの煉瓦取り出しがスムーズになった結果、炉内での築炉作業者の供給煉瓦待ちが減少した上に炉内への供給煉瓦の間違いも無くなって、築炉時間を900 分近く短縮することができた。
【0055】
本発明例2では、同一段の作業開始位置を2箇所に増やし、同時期に2箇所で煉瓦積みを行えるようにした結果、各段毎に発生する最終積み煉瓦の厚み調整が2枚に増えてしまったが、その調整増加時間を上回って、築炉作業時間の短縮を得ることができた。
【0056】
本発明例3では、本発明例2に対し、ボール紙施工時間を全面的に省略できた効果により、さらに築炉作業時間を減少することができた。従来例での3050分間に比較すると、短縮時間は約1600分 (約27時間) に上り、転炉の休止時間の減少に大きく貢献することができた。
【0057】
【表1】

Figure 0003948436
【0058】
【発明の効果】
以上詳細に説明したように、本発明により、鉄鋼製造用の転炉を始めとする溶融金属炉や各種の高温反応炉など、比較的大型の容器の内側に煉瓦の壁を構築するための作業を、確実かつ短時間で行って、煉瓦積み体を製造することができた。
【図面の簡単な説明】
【図1】第1の実施の形態の煉瓦積み体の製造方法を模式的に示す説明図である。
【図2】第2の実施の形態の煉瓦積み体の製造方法を模式的に示す説明図である。
【図3】テーパの異なる2の煉瓦を組み合わせて円周状に築造する状況を示す説明図である。
【図4】図4(a) は、テーパーの異なる2種の煉瓦を搭載する2基のパレットを配置し、1枚毎に必要な煉瓦A又はBを取り出して積み上げる場合を示す説明図であり、図4(b) は、本実施の形態におけるパレットへの煉瓦の積み方を示す説明図である。
【図5】転炉の煉瓦の一般的な形状を示す説明図である。
【符号の説明】
1 パレット
2 煉瓦[0001]
BACKGROUND OF THE INVENTION
TECHNICAL FIELD The present invention relates to a method for manufacturing a brick masonry, and specifically, bricks are placed inside relatively large containers such as converters and blast furnaces for steel manufacture, including molten metal furnaces and various high-temperature reactors. The present invention relates to a method for manufacturing a brick masonry for building a wall.
[0002]
[Prior art]
Inside the furnace body of a molten metal furnace such as a converter for manufacturing steel and various high-temperature reactors, an inner wall is constituted by a structure in which bricks as refractories are stacked. For example, in a converter, the weight of bricks is usually around 500 tons (200 to 800 tons depending on the furnace volume), and the number of bricks exceeds 10,000. For easy handling, the stacked bricks are transported and carried in a set of 20 to 30 sheets of the same shape and the same material, arranged in a square of about 1 m on one pallet. In the case of a 500-ton brick, it is generally delivered divided into about 500 pallets.
[0003]
Brickwork in a converter usually involves 4 to 5 workers in the converter, take out each brick from the pallet, and from the bottom (furnace bottom) of the converter, Stack several stages in order toward the aperture. At this time, in order to use bricks of a plurality of materials in the same stage and to construct a furnace in a circumferential shape according to the shape of the converter, bricks having a plurality of shapes with different tapers are arranged in a predetermined order. Must be placed.
[0004]
FIG. 3 is an explanatory view showing a situation in which two bricks A and B having different tapers are combined and built in a circumferential shape. Usually, when building a certain level of brick, two types of bricks A and B made of the same material and different in taper are combined. In addition, in order to raise the operation rate of a converter and raise the productivity of steel manufacture, it cannot be overemphasized that the work time of brickwork is so preferable that it is short.
[0005]
Therefore, in Patent Document 1, in order to perform this brick building work efficiently and in a short time, a brick building apparatus capable of smoothly and quickly moving the supplied bricks to a predetermined position. Such an invention is disclosed. However, this invention does not expedite the supply of bricks to the brick building apparatus.
[0006]
There are two types of brickwork for converters: a method of performing brickwork by human power and a method of performing brickwork using the above-described brickworking apparatus. The bricks of the material and shape must be arranged in a predetermined order. Conventionally, a pallet on which bricks of a plurality of materials and shapes are mounted for the same type is arranged near the brick stacking work place, and for example, when performing manually, it is temporarily placed on the floor on the furnace of the converter. Of the many pallets, two pallets containing the brick shape and material required for loading are loaded into the furnace with a crane or elevator. Then, the bricks required by the operator are taken out from one of the pallets one by one from the two pallets and handed over to the brickworker working near the brickworking site, and these brickworkers I was working.
[0007]
When using an automatic brick carry-in machine, among the many pallets temporarily placed on the floor of the converter furnace, two pallets containing the brick shape and material required for brick loading are used. An automatic brick fixed inside is placed in the upper part of the furnace near the loading machine, and then an operator takes the necessary bricks from one of the two pallets and works near the brick loading machine. The worker was carrying the brick into the automatic brick carry-in machine. In the furnace, bricks were carried out from the loading machine by each brick, and a brick stacker was carrying out brickwork.
[0008]
FIG. 4 (a) shows, for example, bricks A or B that are required to be transported from the pallet by two pallets P 1 and P 2 on which two types of bricks A and B having different tapers are mounted. It is explanatory drawing which shows the condition which takes out sequentially. As shown in FIG. 4 (a), the bricks of a certain stage example A, A, B, A, A, if the gain in the order of B, unloading workers from the pallet from the pallet P 1 two bricks A After taking out the brick, one brick B is taken out from the pallet P 2 and handed over to the brickworker in the order of A, A, B, and the brickworker repeats the work of stacking the bricks in the order of A, A, B. It was.
[0009]
[Patent Document 1]
Japanese Patent Laid-Open No. 8-5262 [Patent Document 2]
Japanese Patent Laid-Open No. 8-60034
[Problems to be solved by the invention]
When carrying out this brickworking work, the worker carrying out from the pallet, referring to the building construction drawings in which the predetermined order of brickworking is described, two or more pallets (in Fig. 4 (a) two The predetermined bricks A and B were sequentially taken out from the pallets P 1 and P 2 ). For this reason, when the work of taking out the bricks A and B from the pallets P 1 and P 2 is delayed, a waiting time may occur for the brickworker.
[0011]
In addition, when carrying out this brickwork, the workers carrying out from the pallet and the brickworker work at a location at least 10-20m away, so they are doing the brickwork while keeping in touch. However, it was not possible to eliminate the mistakes in the brick stacking order of the bricks A and B caused by the mistake of the bricks A and B handed to the brickworker by the carry-out worker.
[0012]
In addition, since bricks A and B were delivered separately in pallets, and were taken out from each of them during brickwork, in addition to the need for multiple places to take out, it took a little time to take out from there. Cost. For this reason, brickwork had to be carried out from one place after all. Even if an automatic brick laying machine was used, the same time was required for carrying in bricks and building bricks, and the work efficiency as a whole could not be improved.
[0013]
Further, magnesia carbon brick is generally used for the converter, but this brick may cause cracking during operation because of its large thermal expansion. As a countermeasure, there is known a method for securing an expansion allowance by interposing a cardboard, a ceramic sheet or the like at a joint between adjacent bricks during brickwork. However, the work of interposing a cardboard or a ceramic sheet or the like in the joints must be performed manually during brickwork, which spurs the labor and time of brickwork.
[0014]
In FIG. 5, the example of a general shape of the brick of a converter is shown. As shown in the figure, a bead-shaped brick 2 having a length of 810 mm, a height of 150 mm, a furnace inner width of 120 mm, and an iron skin side width of 150 mm is generally used. Since the expansion allowance of the brick 2 requires 0.1 to 0.5% of the size of each part, a cardboard having a thickness of 1 mm was sandwiched between the joints between the brick 2 and the brick 2.
[0015]
For example, 150 mm × 0.3 / 100 = 0.45 mm / sheet of expansion and absorption allowance is required in the height direction, so 1 mm cardboard is inserted into the joint at a ratio of one to two steps in the height direction of the brick. It was out. Further, in the circumferential direction, {(120 + 150) / 2} × 0.3 / 100≈0.4 mm / sheet, and similarly, two to three bricks were sandwiched in the circumferential direction.
[0016]
To carry out such cardboard construction, prepare a piece of cardboard that matches the shape of the brick in the furnace, and when the brickworker loads the brick at the time of work, The cardboard is sandwiched between them. For this reason, an increase in working time is unavoidable due to this work of sandwiching cardboard at the joints every two to three bricks.
[0017]
The present invention provides a work for constructing a brick wall inside a relatively large container, such as a molten metal furnace including various converters and blast furnaces for steel production, various high temperature reactors, etc. It is providing the manufacturing method of a brick masonry which can be performed in a short time.
[0018]
[Means for Solving the Problems]
The present invention, in constructing the brickwork body by arranging in a predetermined order determined in advance two or more of a plurality of bricks having different shapes from each other, arranged in a predetermined order a plurality of bricks on a pallet In the method of manufacturing a brickwork, the plurality of bricks are taken out from the pallet in a predetermined order and arranged in a predetermined order at the construction site. is there.
[0019]
In the manufacturing method of the brickwork body according to the present invention, the extraction of a plurality of bricks from pallets, place the pallet in the different places two or more positions, be performed at the same time is illustrated.
[0020]
In the method for manufacturing a brickwork according to the present invention, the brickwork is exemplified as a structure that forms an inner wall of a converter or a blast furnace.
Moreover, in the manufacturing method of the brick building body which concerns on this invention, it is desirable that a brick is a magnesia carbon brick whose expansion absorption margin is 0.1 to 0.5% of brick length. Such a brick can be obtained, for example, by applying a coating material in which a synthetic resin powder and a metal carbonate such as calcium carbonate are mixed on the surface of the brick, as described in Patent Document 2. .
[0021]
DETAILED DESCRIPTION OF THE INVENTION
(First embodiment)
Hereinafter, an embodiment of a method for manufacturing a brickwork according to the present invention will be described in detail with reference to the accompanying drawings. In the following description of the embodiment, a case where bricks are stacked using two types of bricks A and B having different tapers is taken as an example. Moreover, although the case where a brick masonry body is a converter is taken for an example, it is applicable similarly if it is a comparatively large container, such as other molten metal furnaces, such as a blast furnace, various high temperature reactors, etc.
[0022]
Drawing 1 is an explanatory view showing typically the manufacturing method of the brickwork of this embodiment. Moreover, FIG.4 (b) is explanatory drawing which shows typically how to pile the bricks A and B on the pallet 1 in this Embodiment.
[0023]
In the present embodiment, as shown in FIG. 3 described above, a plurality of bricks A and B having different tapers are arranged in a predetermined circumferential order in a predetermined order A, A, B, A, A, B. Brickwork is performed by arranging the steps, and a structure that forms the inner wall of the converter, which is a brickwork, is constructed. At this time, in the present embodiment, as shown in FIG. 4 (b), the two types of bricks A and B can be taken out in a predetermined order A, A, B, A, A, and B. These two types of bricks A and B are sequentially taken out from the pallet 1 and arranged.
[0024]
That is, in this embodiment, as shown in FIG. 4 (b), bricks A and B are arranged on the pallet 1 so that the bricks are stacked in order A, A, B, A, A, and B in advance. Pack it in that state. When bricks are stacked, the necessary bricks A and B need only be taken out from one pallet 1 in order. This temporary arrangement order is determined in consideration of the material and shape of the brick.
[0025]
The method of stacking the bricks A and B on the pallet 1 is mounted in the brick arrangement order A, A, B, A, A, B side by side from the end face of the pallet. The bricks A and B are generally stacked on the pallet 1 by 1 to 4 stages, but when performing the stacking of 2 to 4 stages, the bricks are arranged from the upper stage to the lower stage in the arrangement order described above. Therefore, as an example, the bricks A and B are arranged in an array of A, A, and B in the upper stage and arranged in an array of A, A, and B in the lower stage. The next pallet 1 performs brick arrangement in the same manner from the upper stage to the lower stage following the arrangement of the lower brick in the previous pallet 1.
[0026]
As described above, in the present embodiment, the bricks A and B are alternately taken out from at least two pallets so far, but the bricks A and B can be taken out sequentially from one pallet.
[0027]
Further, in this embodiment, in order to reduce the labor and time for securing the expansion allowance by interposing a cardboard or ceramic sheet or the like in the joint portion during brick building, the expansion absorption allowance is reduced to 0.1 to 0.5% of the brick length. Corresponding magnesia carbon brick was used.
[0028]
The low expansion brick is a brick whose surface is previously coated with a material for an expansion absorption margin on the surface of the brick. The brick itself has a large porosity, and the brick itself can be shrunk when compressed.
[0029]
Although magnesia carbon brick has an advantage of excellent corrosion resistance, it has a large thermal expansion. For example, the thermal expansion coefficient at 1650 ° C. of magnesia carbon brick is 2.0 to 2.2%. The present inventor examined a suitable expansion absorption margin of magnesia carbon brick with reference to many experimental results. As a result, from the relationship between the expansion absorption allowance and the actual use of bricks in the converter, if the expansion absorption allowance is less than 0.1% of the brick length, brick cracking occurs and the expansion absorption allowance is the brick length. More than 0.5% of the bricks dropped out. On the other hand, when the expansion absorption margin was 0.1% or more and 0.5% or less of the brick length, no cracking or falling off occurred, which was good.
[0030]
Here, since the thermal expansion coefficient of the brick at 1650 ° C. of the magnesia carbon brick is 2.08%, when the length of the brick is L, the thermal expansion of the brick is 2.08 / 100 × L. For this reason, when the expansion of the brick fails to absorb all of the expansion, a stress σ = E × (2.08 / 100 × L) / L is generated. In this case, the brick causes a crack.
[0031]
That is, the expansion absorption amount of the brick is a stress absorption allowance for preventing the brick from causing a crack. When the expansion absorption margin is 0.5%, the generated stress of brick is σ = E × (2.08 / 100 × L) − (0.5 / 100 × L) / L, and the generated stress of brick can be reduced and kept optimal. be able to. On the other hand, if the bricks do not generate a certain amount of stress, there is a high possibility that the bricks fall out when the converter is tilted.
[0032]
In this way, in the case of a converter, there is a concern that a crack will occur if the expansion absorption allowance is small, but on the other hand, if it is too large, there is a possibility that bricks will fall off.
From this point of view, in this embodiment, for magnesia carbon bricks used in the construction of converters, low-expansion bricks are used by actual machine tests and brick physical properties (thermal expansion coefficient, elastic modulus, compression hardness). The expansion and absorption allowance of bricks was optimally set to 0.1 to 0.5% of the brick length (height direction and width direction).
[0033]
When such bricks are used, it is not necessary to carry out joint construction at the time of brickwork of the converter. Can do.
[0034]
Thus, in the present embodiment, the start brick A is arranged, the bricks are stacked in the same direction from the start brick A in the order of A, B, A, A, B, and finally the start brick A is returned, Cement brick C is used to lay the brick at that level.
[0035]
Note that cement brick is the last brick shape (taper, brick width) when bricks are piled up along the circumference of the iron skin, so the gap size is measured, and bricks with the shape of the brick are taken along the dimensions. It is a brick that is made by processing and is driven in to fill the gap and prevent the brick from loosening in the circumferential direction.
[0036]
According to this embodiment, in the construction site, the necessity of considering the stacking order by shape and material in the order of brick stacking is almost eliminated, work can be performed smoothly, and brick mismixing troubles can be almost solved. . For this reason, the brick walls A and B are built inside relatively large containers such as molten metal furnaces such as converters for steel production and various high-temperature reactors by the brick-laying method of this embodiment. The work to do can be performed reliably and in a short time.
[0037]
Specifically, according to the present embodiment, it is possible to reduce the furnace building time related to converter brickwork by about 30% compared to the conventional method, and the work load of the brickworker is also reduced. I was able to reduce it. For this reason, work for building brick walls inside relatively large vessels, such as molten metal furnaces such as converters and blast furnaces for steel production, and various high-temperature reactors, is reliably and shortly performed. Going in time can produce brickwork.
[0038]
(Second Embodiment)
Next, a second embodiment will be described. In the following description, parts different from those of the first embodiment described above will be described, and common parts will be denoted by the same reference numerals in the drawings, and redundant description will be omitted.
[0039]
FIG. 2 is an explanatory view schematically showing the brick-laying method of the present embodiment.
As shown in the figure, also in the present embodiment, similar to the first embodiment described above, two types of bricks A and B having different shapes are predetermined in a predetermined order A, A, B, A, Brick stacking is performed by arranging a plurality of stages in a substantially circular shape at A and B.
[0040]
In this case, in this embodiment, the two pallets are installed in the vicinity of the intake of the automatic brick at the upper part of the furnace. Brick is taken into the loading machine by 1p alternately from each pallet.
[0041]
Brick comes out by 1p from the position where the brick in the furnace is taken out.
This automatic brick carry-in machine is set so that the brick is taken out from two diagonal directions, and the brick carry-out position is alternated between C and D, and can be stacked at the same timing at two locations. Become.
[0042]
Therefore, it is divided into two pallets starting from C and starting from D.
When one-tiered brick is finished, the next two pallets are brought to the vicinity of the automatic brick carry-in machine.
[0043]
That is, the two types of bricks A and B are arranged and mounted on the two pallets so that the two types of bricks A and B are taken out from each of the two pallets in a predetermined order. Two kinds of bricks A and B are sequentially taken out from each of the two pallets and arranged.
[0044]
Thus, if two pallets are placed and the bricks A and B are taken out and stacked in the order of A, A and B, the brick building is started simultaneously from two positions C and D as shown in FIG. be able to. Thereby, the time required for brickwork can be shortened. If three pallets are arranged, brickwork can be started from three places at the same time, thereby further reducing the time required for brickwork.
[0045]
Since the operator sequentially takes out the bricks A and B from one pallet, the labor can be saved and the time for taking out the bricks A and B can be shortened.
Furthermore, since there is no need to use two pallets each carrying bricks A and B as in the prior art, there is room in the pallet storage area. Since another pallet can be placed in this extra space and bricks A and B can be taken out sequentially from the pallet, the supply route for bricks A and B can be increased, and brickwork can be carried out using that route. .
[0046]
Furthermore, in the case of a converter, since a sufficient work space cannot be secured, movement of people and objects in the vicinity of the work site is complicated by the conventional brick-laying method, which is dangerous. However, according to the present embodiment, it is possible to organize the movement of people and objects so as not to be complicated, and the safety and efficiency of the brickworking work is dramatically improved.
[0047]
Thus, in the present embodiment, two positions of the start brick A are positioned, and the brick A is started to be stacked simultaneously from the respective positions. Although it is necessary to arrange two cement bricks, bricks can be stacked at the same time from two places, so that the working time can be greatly reduced.
[0048]
In this way, brickwork can be started from a plurality of locations at the same time in the same stage of brickwork, and the construction work time can be shortened without difficulty.
[0049]
【Example】
Applying the present invention to a brickwork for building a brick wall inside the side wall of a converter with a nominal capacity of 230 tons / charge (bath, straight body, throttle, and furnace port) Comparison was made with the conventional method.
[0050]
In the conventional example, as shown in FIG. 4 (a), a pallet containing bricks having the same shape and material is used, and as shown in FIG. 1, a magnesia carbon brick having a thermal expansion coefficient of 2.0 to 2.2% at 1650 ° C. Was constructed with appropriate cardboard for preventing cracking (Fig. 1).
[0051]
In Example 1 of the present invention, as described in claim 1, a pallet in which a plurality of types of bricks are arranged and mounted so as to be taken out in a predetermined order is used (FIG. 4 (b)). Construction was done with paper in between (Figure 1).
[0052]
In Example 2 of the present invention, as described in claim 2, the arrangement mounting pallet used in Example 1 of the present invention is used (FIG. 4 (b)), and bricks from the pallet are utilized by utilizing the space formed by the arrangement. The number of pick-ups was changed to two, and the start position of brickwork on the same stage was increased to two (Fig. 2), but the brick itself was the same as before and was constructed with cardboard in between.
[0053]
In Example 3 of the present invention, as described in claim 4, in addition to Example 2 of the present invention (FIG. 4 (b), FIG. 2), the surface of the surface is adjusted so that the expansion absorption margin is 0.3 to 0.4% of the brick length. Using magnesia carbon bricks coated with a covering material, construction was done without using cardboard.
[0054]
In the present invention example 1, as a result of smooth removal of bricks from the pallet, the waiting time for bricks to be supplied by the building operator in the furnace is reduced, and there is no mistake in the bricks supplied to the furnace. Was reduced by nearly 900 minutes.
[0055]
In Example 2 of the present invention, the work start position on the same stage is increased to two places, and bricks can be stacked at two places at the same time. As a result, the thickness adjustment of the final brick generated at each stage is increased to two. However, it exceeded the adjustment increase time, and shortened the construction work time.
[0056]
In Invention Example 3, compared to Invention Example 2, the time required for the construction of the furnace could be further reduced due to the effect of completely omitting the cardboard construction time. Compared to 3050 minutes in the conventional example, the shortening time was about 1600 minutes (about 27 hours), which greatly contributed to the reduction of converter downtime.
[0057]
[Table 1]
Figure 0003948436
[0058]
【The invention's effect】
As described above in detail, according to the present invention, work for building a brick wall inside a relatively large vessel such as a molten metal furnace including a converter for steel production and various high-temperature reactors. It was possible to manufacture a brick masonry by carrying out the process reliably and in a short time.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is an explanatory view schematically showing a method for manufacturing a brickwork according to a first embodiment.
FIG. 2 is an explanatory view schematically showing a method for manufacturing a brickwork according to a second embodiment.
FIG. 3 is an explanatory diagram showing a situation in which two bricks having different tapers are combined and built in a circumferential shape.
FIG. 4 (a) is an explanatory diagram showing a case where two pallets on which two types of bricks having different tapers are mounted are arranged, and necessary bricks A or B are taken out and stacked one by one. FIG.4 (b) is explanatory drawing which shows how to pile the brick on the pallet in this Embodiment.
FIG. 5 is an explanatory view showing a general shape of a brick of a converter.
[Explanation of symbols]
1 Pallet 2 Brick

Claims (4)

互いに形状が異なる2種以上の複数の煉瓦を予め定めた所定の順番に配置することにより煉瓦積み体を構築する際に、前記複数の煉瓦をパレットの上に前記所定の順番配列して搭載した状態で前記煉瓦積み体の施工現場へ搬送し、該施工現場において前記パレットから前記所定の順番で前記複数の煉瓦を取り出して前記所定の順番に配置することを特徴とする煉瓦積み体の製造方法。When building a brickwork body by arranging in a predetermined order determined in advance two or more of a plurality of bricks together different shapes, mounted and arranged in the predetermined order a plurality of bricks on a pallet Transported to the construction site of the brick masonry in a state where the plurality of bricks are taken out from the pallet in the predetermined order and arranged in the predetermined order at the construction site. Production method. 前記パレットからの前記複数の煉瓦の取り出しは、該パレットを2箇所以上の異なる場所に配置して、同時期に行われる請求項1に記載された煉瓦積み体の製造方法。 The method for producing a brickwork according to claim 1, wherein the plurality of bricks are removed from the pallet at the same time by arranging the pallets at two or more different locations. 前記煉瓦積み体は、転炉又は高炉の内壁をなす構造体である請求項1又は請求項2に記載された煉瓦積み体の製造方法。  The method for manufacturing a brickwork according to claim 1 or 2, wherein the brickwork is a structure that forms an inner wall of a converter or a blast furnace. 前記煉瓦は、膨張吸収代が煉瓦長さの0.1〜0.5%のマグネシアカーボン煉瓦である請求項1から請求項3までのいずれか1項に記載された煉瓦積み体の製造方法。  The method for manufacturing a brick structure according to any one of claims 1 to 3, wherein the brick is a magnesia carbon brick having an expansion absorption margin of 0.1 to 0.5% of a brick length.
JP2003171984A 2003-06-17 2003-06-17 Brick masonry manufacturing method Expired - Fee Related JP3948436B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003171984A JP3948436B2 (en) 2003-06-17 2003-06-17 Brick masonry manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003171984A JP3948436B2 (en) 2003-06-17 2003-06-17 Brick masonry manufacturing method

Publications (2)

Publication Number Publication Date
JP2005009707A JP2005009707A (en) 2005-01-13
JP3948436B2 true JP3948436B2 (en) 2007-07-25

Family

ID=34096283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003171984A Expired - Fee Related JP3948436B2 (en) 2003-06-17 2003-06-17 Brick masonry manufacturing method

Country Status (1)

Country Link
JP (1) JP3948436B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1990429A1 (en) * 2007-05-07 2008-11-12 Paul Wurth Refractory & Engineering GmbH Method for constructing a support ring in a curved wall
JP5037725B2 (en) 2009-05-19 2012-10-03 新日本製鐵株式会社 Kiln furnace and refractory construction method
JP6310610B1 (en) 2017-12-06 2018-04-11 黒崎播磨株式会社 Brick lining method

Also Published As

Publication number Publication date
JP2005009707A (en) 2005-01-13

Similar Documents

Publication Publication Date Title
JP6008071B1 (en) Coke oven construction method
JP6645601B2 (en) Fixed refractory loading system, fixed refractory loading method, and coke oven construction method
JP3948436B2 (en) Brick masonry manufacturing method
CN108706208A (en) Stand for piling up for concrete prefabricated board class component
JP5037725B2 (en) Kiln furnace and refractory construction method
JP5589797B2 (en) Kiln furnace, refractory construction method and refractory block
JP7006521B2 (en) How to build a coke oven
JP6566722B2 (en) Pre-lining block
JP6614960B2 (en) Pre-lining block transport method
JP6515815B2 (en) Method for building a fixed refractory and coke oven construction method
JP6665905B2 (en) Coke oven fixed refractory loading method and fixed refractory supply device
JP2016041782A (en) Method for constructing coke oven
JP2009108363A (en) Reverse-inclination lining structure of furnace
CN106006050B (en) A kind of brick field automatic setting machine
WO2006077786A1 (en) Reverse slant lining structure of furnace with reduced part structure
JPH1046216A (en) Method for laying furnace bottom brick in blast furnace
JP2019119523A (en) Method of packing bricks
JP7194061B2 (en) Brick stack for coke oven
CN111033162B (en) Method for lining bricks
JP7136148B2 (en) Coke oven construction method, module block manufacturing method, and module block template manufacturing method
JP6683227B2 (en) Coke oven standard refractory loading method
JP2022070765A (en) Module block production method, furnace construction method, and measurement system
JPS6341809B2 (en)
JP2872609B2 (en) How to pack and put out
CN106144618A (en) A kind of grappling fixture mechanism

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070327

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070409

R150 Certificate of patent or registration of utility model

Ref document number: 3948436

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110427

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120427

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120427

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130427

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130427

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130427

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140427

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees