JP3948365B2 - Protective film manufacturing method and organic EL device - Google Patents

Protective film manufacturing method and organic EL device Download PDF

Info

Publication number
JP3948365B2
JP3948365B2 JP2002220932A JP2002220932A JP3948365B2 JP 3948365 B2 JP3948365 B2 JP 3948365B2 JP 2002220932 A JP2002220932 A JP 2002220932A JP 2002220932 A JP2002220932 A JP 2002220932A JP 3948365 B2 JP3948365 B2 JP 3948365B2
Authority
JP
Japan
Prior art keywords
film
organic
protective film
silicon nitride
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002220932A
Other languages
Japanese (ja)
Other versions
JP2004063304A (en
Inventor
哲也 猿渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2002220932A priority Critical patent/JP3948365B2/en
Publication of JP2004063304A publication Critical patent/JP2004063304A/en
Application granted granted Critical
Publication of JP3948365B2 publication Critical patent/JP3948365B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • H10K50/8445Encapsulations multilayered coatings having a repetitive structure, e.g. having multiple organic-inorganic bilayers

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、シリコン窒化膜を積層して保護膜を形成する保護膜製造方法およびその保護膜を有する有機EL素子に関する。
【0002】
【従来の技術】
近年、有機化合物を用いて電界発光により表示させる自発光型の表示素子、いわゆる有機エレクトロルミネセンス(以後有機ELと呼ぶ)を利用した表示素子が活発に検討されている。有機EL表示素子は、従来の液晶表示素子と比べるといくつかの利点を有している。有機EL表示素子は自発光型素子であるため、液晶表示素子のようにバックライトを用いなくても表示が可能である。また、極めて構造が簡単なため薄く、小型・軽量の表示装置が可能である。さらに、表示に要する消費電力が小さく、携帯電話などの小型情報機器の表示装置に適している。
【0003】
有機EL素子の概略構成は、ITO(Indium-Tin-Oxide)による透明電極が形成された透明ガラス基板上に有機EL層を形成し、さらに、有機EL層の上に金属電極層を形成したものである。有機EL層には有機化合物であるトリフェニルジアミンなどが用いられるが、これらの有機化合物は水分や酸素と非常に反応しやすく、その反応によって表示不良が発生して有機EL素子の寿命を短縮させるという問題があった。
【0004】
そのため、有機EL層を防湿性高分子フィルムで被覆したり、有機EL層上にシリコンの酸化膜(SiOx)や窒化膜(SiNx)を形成したりして有機EL層を封止する構成がとられていた。水分や酸素に対する保護膜としてはシリコン窒化膜が適しており、特に、シリコン窒化膜中のSiの割合が高いほど膜が緻密になり保護膜として優れている。このシリコン窒化膜の成膜にはプラズマCVD法やECR−CVD法が用いられている。
【0005】
【発明が解決しようとする課題】
ところで、プラズマCVD法によりSiの割合が高い高密度で緻密なシリコン窒化膜を形成しようとすると、300℃以上の温度で成膜する必要がある。しかしながら、有機EL層への熱的ダメージを考慮すると成膜を低温(約80℃以下)で行わなければならず、このような低温では上述した緻密なシリコン窒化膜を形成することができない。
【0006】
一方、高密度プラズマCVD(High density plasma CVD)法の一つであるECR−CVD法の場合には、高密度で緻密なシリコン窒化膜を低い成膜温度で形成することができる。ところが、高密度SiNx膜は内部応力が高いという欠点を有している。上述したように有機EL層上には金属電極層が形成されているが、有機EL層が機械的に強固な膜ではないため、イメージ的には有機EL層上に金属電極層が浮いているような不安定な構造となっている。そのため、内部応力の高いシリコン窒化膜を形成すると、内部応力のために金属電極層が浮いた状態になったり、SiNx膜自体が内部応力により剥離したりするという問題があった。
【0007】
本発明の目的は、残留応力が小さく、防湿性能に優れた保護膜を形成することができ、被成膜対象に熱的ダメージを与えない保護膜製造方法、および、その保護膜を有する有機EL素子を提供することにある。
【0008】
【課題を解決するための手段】
発明の実施の形態を示す図1,2に対応付けて説明する。
(1)請求項1の発明は、シリコン窒化膜の多層膜から成る保護膜5を高密度プラズマCVD法により形成する保護膜製造方法であって、成膜材料ガスに含まれる窒素ガス濃度を変えることにより、圧縮応力を有するシリコン窒化膜52と引っ張り応力を有するシリコン窒化膜51,53とを交互に積層した保護膜5を形成することにより上述の目的を達成する。
(2)請求項2の発明は、シリコン窒化膜の多層膜から成り有機EL層3を覆う保護膜5を高密度プラズマCVD法により形成する有機EL素子の保護膜製造方法であって、成膜材料ガスに含まれる窒素ガス濃度を変えることにより、圧縮応力を有するシリコン窒化膜52と引っ張り応力を有するシリコン窒化膜51,53とを交互に積層した保護膜5を形成し、かつ、前記交互層の中の有機EL層3と接触する層を引っ張り応力を有するシリコン窒化膜51としたことにより上述の目的を達成する。
(3)請求項3の発明は、シリコン窒化膜の多層膜から成り有機EL層を覆う保護膜5を高密度プラズマCVD法により形成する有機EL素子の保護膜製造方法であって、成膜材料ガスに含まれる窒素ガス濃度を変えることにより、密度の異なるシリコン窒化膜51〜53を交互に積層した保護膜5を形成することにより上述の目的を達成する。
(4)請求項4の発明による有機EL素子は、請求項1〜3のいずれかの保護膜製造方法により形成した保護膜5で有機EL層3を覆ったことにより上述の目的を達成する。
【0009】
なお、上記課題を解決するための手段の項では、本発明を分かり易くするために発明の実施の形態の図を用いたが、これにより本発明が発明の実施の形態に限定されるものではない。
【0010】
【発明の実施の形態】
以下、図を参照して本発明の実施の形態を説明する。図1は本願発明による有機EL素子の一実施の形態を示す図であり、有機EL素子の概略構成を示す断面図である。透明ガラス基板1には正孔の供給源としての陽極を構成する透明電極2が、所定のパターンで形成されている。通常、透明電極2には、ITO(Indium-Tin-Oxide)と呼ばれるインジウムとスズの酸化物が用いられる。
【0011】
透明電極2上には有機EL層3が設けら、その有機EL層3上には陰極を構成する金属電極4が形成されている。金属電極4上には、金属電極4および有機EL層3を覆うように保護膜5が形成される。なお、金属電極4の引き出し部4aは保護膜5から露出している。金属電極4はマグネシウムと銀などとの合金やアルミニウムなどにより形成され、陰極として電子の供給源となる。
【0012】
電極2,4間に電圧を印加すると、透明電極2から有機EL層3へと正孔(ホール)が注入され、また、金属電極4からは電子が注入される。注入された正孔と電子とは有機EL層3内で再結合し、再結合時に有機材料を励起する。そして、有機材料が励起状態から基底状態に戻るときに蛍光が発生される。発生した光は透明ガラス基板1側から出射される。一般的には、上記反応が生じやすいように、有機EL層3は正孔注入輸送層、発光層、電子注入輸送層から構成されている。なお、現在は、発生した光をガラス基板側から取り出しているが、将来的には破線のように反対側に取り出すことも検討されている。
【0013】
図2は保護膜5の断面の一部を拡大して示したものである。本実施の形態の保護膜5はシリコン窒化膜の3層構造を有しており、有機EL層側から順に第1シリコン窒化膜51、第2シリコン窒化膜52、第3シリコン窒化膜53が形成されている。シリコン窒化膜51〜53は、いずれもECR−CVD法により成膜されたシリコン窒化膜(SiNx)である。
【0014】
ECR−CVD法でSiNx膜を成膜する場合には、成膜ガスとして基本的にはシラン(SiH)、窒素(N)、水素(H)を用いるが、成膜ガス中の窒素ガスの濃度を変えることによってSiNx膜の密度を制御することができる。具体的には、成膜材料ガス中の窒素ガス濃度を高くすると高密度SiNx膜が形成され、逆に、窒素ガス濃度を低くすると低密度SiNx膜が形成される。
【0015】
ところで、SiNx膜の内部応力は高密度のときは圧縮応力で、低密度のときは引っ張り応力となる。本実施の形態では、保護膜5を、高密度SiNx膜で形成された第2シリコン窒化膜52を低密度SiNx膜から成る第1、第3シリコン窒化膜51,53で挟んだ3層構造とすることにより、保護膜5全体の残留応力を低下させるようにした。
【0016】
図3はECR−CVD装置の概略構成図である。ECR−CVD装置はプラズマ生成室15と成膜室16とを有し、プラズマ生成室15にはマイクロ波導入窓13を介してマイクロ波導波管11が接続されている。プラズマ生成室15と成膜室16との間には、プラズマ引き出し開口15aが形成されている。マイクロ波導波管11の他端にはマイクロ波源12が接続されている。プラズマ生成室15の外側には励磁コイル14が配設されている。成膜室16の内部には成膜対象17を保持する基板ホルダ18が設けられており、被成膜対象17はプラズマ引き出し開口15aに対向するように配置される。
【0017】
成膜室16には、成膜ガス導入系6により窒素ガス(N)、シランガス(SiH)、水素ガス(H)が導入される。7A,7B,7Cはそれぞれ窒素ガス,シランガス,水素ガスを供給するガス供給源であり、各ガスの供給量はマスフローコントローラ8A〜8Cおよびバルブ9A〜9Cによって制御される。成膜室16内は真空ポンプ10により排気される。
【0018】
成膜時には、マイクロ波源12で発生した2.45GHzのマイクロ波をプラズマ生成室15に導入するとともに、ECR条件を満たす磁束密度87.5mTの磁場をコイル14により形成し、ECR放電により活性なECRプラズマをプラズマ生成室15内に発生させる。ECR−CVD装置では、電子サイクロトロン共鳴現象によりマイクロ波のエネルギーがプラズマ中の電子に高効率で吸収されるため、通常のプラズマCVD法に比べ高密度のプラズマが得られ、より低い温度(約80℃以下)で成膜を行うことができる。
【0019】
プラズマ生成室15内のECRプラズマPは、励磁コイル14により形成される発散磁界によりプラズマ引き出し開口15aを介してプラズマ生成室15から成膜室16へと引き出される。成膜室16内の成膜ガス(N、SiH、H)は成膜室内に引き出された活性なプラズマによって分解・イオン化され、被成膜対象17の表面にシリコン窒化膜(SiNx膜)が形成される。本実施の場合には、被成膜対象17は電極2,4および有機EL層3が形成された透明ガラス基板1である。
【0020】
図2に示す保護膜5を成膜する場合には、成膜室16に導入される窒素ガスの流量をマスフローコントローラ8Cで制御して、圧縮応力を有する高密度SiNx膜(第2シリコン窒化膜52)と引っ張り応力を有する低密度SiNx膜(第1,第3シリコン窒化膜51,53)とをそれぞれ形成する。図4は、成膜時の窒素ガス流量と成膜されたSiNx膜の内部応力との関係を示す図である。図4の縦軸は内部応力であり、単位は(dyn/cm)である。内部応力はプラス符号の場合には引っ張り応力を、マイナス符号の場合には圧縮応力を表している。横軸は窒素ガス流量を表しており、単位は(sccm)である。
【0021】
図4ではSiNx膜の膜厚は1(μm)であり、窒素ガス流量以外の成膜条件は、シランガス流量=14sccm、水素ガス流量=1sccm、成膜時の圧力=0.01torr、マイクロ波パワー=600Wである。図4からも分かるように、窒素ガス流量を50sccmから減少させると圧縮応力も減少し、窒素ガス流量が20sccmよりも小さくなると圧縮応力から引っ張り応力へと変化している。
【0022】
例えば、同一成膜室16内でシリコン窒化膜51〜53を成膜する場合には、まずマスフローコントローラ8Cにより窒素ガス流量を20sccmより小さく設定し、第1シリコン窒化膜51を成膜する。次に、窒素ガス流量を20sccmより大きな値に設定し、安定状態になったならば第2シリコン窒化膜52を成膜する。最後に、窒素ガス流量を20sccmより小さく設定し、安定状態になったならば第3シリコン窒化膜53を成膜する。なお、基板前方にシャッタ(不図示)を設け、安定状態になったならばシャッタを開いて成膜を行うようにする。このようにして、引っ張り応力を有する低密度SiNx膜51,53と圧縮応力を有する高密度SiNx膜52とが交互に積層された保護膜5が形成される。
【0023】
なお、上述した説明では、同位置の成膜室16内で窒素ガス流量を変えることによって第1〜第3シリコン窒化膜51〜53を順に成膜するようにしたが、例えば、窒素ガス流量が異なる低密度SiNx成膜用ECR−CVD装置と高密度SiNx成膜用ECR−CVD装置とを用いて保護膜5を形成しても良い。すなわち、第1,第3シリコン窒化膜51,53を成膜する場合には、窒素ガス流量を20sccmより小さく設定されたECR−CVD装置に基板1を搬入し、低密度SiNxを成膜する。一方、第2シリコン窒化膜52を成膜する場合には、窒素ガス流量を20sccmより大きく設定された別のECR−CVD装置に基板1を搬入し、高密度SiNxを成膜する。
【0024】
(保護膜5の具体例)
・成膜条件
第1,第3シリコン窒化膜51,53の場合には、シランガス流量=14sccm、窒素ガス流量=19sccm、水素ガス流量=1sccm、成膜時圧力=0.01torr、マイクロ波パワー=600Wである。
第2シリコン窒化膜52場合には、シランガス流量=14sccm、窒素ガス流量=50sccm、水素ガス流量=1sccm、成膜時圧力=0.01torr、マイクロ波パワー=600Wである。
・膜厚
全膜厚=2μm
・保護膜5全体での内部応力(残留応力)
−2.46×10(dyn/cm)〜+2.02×10(dyn/cm
【0025】
一方、高密度SiNx膜だけで膜厚2μmの保護膜を形成すると、内部応力は10(dyn/cm)台の圧縮応力となる。すなわち、引っ張り応力を有する51,53と圧縮応力を有する膜53とを交互に形成した保護膜5の内部応力は、同じ厚さの高密度SiNx単層膜の内部応力よりも大きさが1/100〜1/1000にまで小さくなる。
【0026】
上述した実施の形態では3層の交互層を例に説明したが、保護膜5は圧縮応力を有する高密度SiNx層と引っ張り応力を有する低密度SiNx層とを交互に積層した多層構造であれば良い。保護膜5の特徴をまとめると以下のようになる。
【0027】
(a)引っ張り応力を有する層51、53と圧縮応力を有する層52との交互層としたので、保護膜全体の残留応力を大きく低下させることができる。その結果、保護膜5や金属電極4の剥離を防止することができる。
(b)高密度SiNxから成る層52を有しているので、防湿性能に優れている。
(c)高密度プラズマCVD法(ECR−CVD法)において、窒素ガス濃度を変えることにより引っ張り応力を有する層51、53と圧縮応力を有する層52と形成しているので、成膜温度を低く保った状態で保護膜5を形成することができる。その結果、被成膜対象(3)への熱的ダメージを抑えることができる。
【0028】
なお、防湿性に関して、低密度SiNx層は構造的に粗いアモルファス構造となっているので、水分の透過性については高密度SiNx層よりも劣るが、水分をトラップするという機能を有している。そのため、高密度SiNx層にピンホール等が生じた場合でも、ピンホールを通過したわずかな水分は低密度SiNx層にトラップされ、有機EL層3への影響を防止できる。
【0029】
3層構造以外の構造として、例えば、図2の第3シリコン窒化膜53を省略して、保護膜5を第1シリコン窒化膜51と第2シリコン窒化膜52とで構成しても良い。この場合、保護膜全体の残留応力は図2に示したものよりも劣るが、同一膜厚の高密度SiNx単層膜に比べれば大きさが小さくなる。また、高密度SiNxの層(第2シリコン窒化膜52)を備えているので、十分な防湿性能を有している。
【0030】
なお、保護膜5を2層や3層の多層構造とする場合、有機EL層3との密着性能との関係から、有機EL層3側は応力の大きさが小さい低密度SiNx層とするのが好ましい。また、シリコン窒化膜51,53を引っ張り応力を有する低密度SiNx層としシリコン窒化膜53を圧縮応力を有する高密度SiNx層としたが、圧縮応力の範囲において高密度と低密度の組み合わせとしても良い。この場合も、高密度SiNxの単層膜よりは残留応力を下げることができ、かつ、十分な防湿性能を得ることができる。
【0031】
上述した実施の形態では、被成膜対象として有機EL素子を例に説明したが、他の電子回路素子の保護膜としても適用することができ、同様の効果、すなわち剥離しにくく、防湿性に優れ、保護膜成膜時の回路素子に対する熱的ダメージを抑えることができるという効果を奏することができる。なお、ECR−CVD法を例に説明したが、ECR−CVD法以外の高密度プラズマCVD法によりシリコン窒化膜51〜53を成膜しても良い。
【0032】
【発明の効果】
以上説明したように、本発明によれば、内部応力が圧縮のものと引っ張りのものとを、または、密度の異なるもの同士を交互に積層して保護膜を形成したので、残留応力の小さな保護膜とすることができる。また、交互層に緻密なシリコン窒化膜を含んでいるので、防湿性に優れている。さらに、交互層を構成するシリコン窒化膜を高密度プラズマCVD法により形成するようにしたので、成膜温度の低温化が図れ、被成膜対象への熱的ダメージを低減することができる。
【図面の簡単な説明】
【図1】本願発明による有機EL素子の一実施の形態を示す図であり、有機EL素子の概略構成を示す断面図である。
【図2】保護膜5の断面の拡大図である。
【図3】ECR−CVD装置の概略構成図である。
【図4】成膜時の窒素ガス流量と成膜されたSiNx膜の内部応力との関係を示す図である。
【符号の説明】
1 透明ガラス基板
2 透明電極
3 有機EL層
4 金属電極
5 保護膜
6 成膜ガス導入系
7A〜7B ガス供給源
8A〜8C マスフローコントローラ
11 マイクロ波導波管
12 マイクロ波源
14 励磁コイル
15 プラズマ生成室
16 成膜室
17 被成膜対象
18 基板ホルダ
51 第1シリコン窒化膜
52 第2シリコン窒化膜
53 第3シリコン窒化膜
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a protective film manufacturing method in which a silicon nitride film is stacked to form a protective film, and an organic EL element having the protective film.
[0002]
[Prior art]
In recent years, a self-luminous display element that displays an organic compound by electroluminescence, a display element using so-called organic electroluminescence (hereinafter referred to as organic EL) has been actively studied. Organic EL display elements have several advantages over conventional liquid crystal display elements. Since the organic EL display element is a self-luminous element, display is possible without using a backlight unlike a liquid crystal display element. In addition, since the structure is extremely simple, a thin, small, and lightweight display device is possible. Furthermore, the power consumption required for display is small, and it is suitable for a display device of a small information device such as a mobile phone.
[0003]
The schematic structure of the organic EL element is an organic EL layer formed on a transparent glass substrate on which a transparent electrode made of ITO (Indium-Tin-Oxide) is formed, and further a metal electrode layer is formed on the organic EL layer It is. Triphenyldiamine, which is an organic compound, is used for the organic EL layer. However, these organic compounds are very easy to react with moisture and oxygen, and the reaction causes a display defect to shorten the life of the organic EL element. There was a problem.
[0004]
Therefore, the organic EL layer is covered with a moisture-proof polymer film, or a silicon oxide film (SiOx) or a nitride film (SiNx) is formed on the organic EL layer to seal the organic EL layer. It was done. A silicon nitride film is suitable as a protective film against moisture and oxygen. In particular, the higher the ratio of Si 3 N 4 in the silicon nitride film, the denser the film and the better the protective film. A plasma CVD method or an ECR-CVD method is used for forming the silicon nitride film.
[0005]
[Problems to be solved by the invention]
By the way, in order to form a high-density and dense silicon nitride film having a high Si 3 N 4 ratio by plasma CVD, it is necessary to form the film at a temperature of 300 ° C. or higher. However, in consideration of thermal damage to the organic EL layer, film formation must be performed at a low temperature (about 80 ° C. or less), and the above-described dense silicon nitride film cannot be formed at such a low temperature.
[0006]
On the other hand, in the case of the ECR-CVD method which is one of the high density plasma CVD methods, a high density and dense silicon nitride film can be formed at a low film formation temperature. However, the high-density SiNx film has a drawback of high internal stress. As described above, the metal electrode layer is formed on the organic EL layer. However, since the organic EL layer is not a mechanically strong film, the metal electrode layer floats on the organic EL layer in terms of image. Such an unstable structure. Therefore, when a silicon nitride film having a high internal stress is formed, the metal electrode layer is brought into a floating state due to the internal stress, and the SiNx film itself is peeled off by the internal stress.
[0007]
An object of the present invention is to provide a protective film manufacturing method that can form a protective film with small residual stress and excellent moisture proof performance, and that does not cause thermal damage to the film formation target, and an organic EL having the protective film It is to provide an element.
[0008]
[Means for Solving the Problems]
A description will be given in association with FIGS. 1 and 2 showing an embodiment of the invention.
(1) The invention of claim 1 is a protective film manufacturing method for forming a protective film 5 comprising a multilayer film of silicon nitride films by a high density plasma CVD method, wherein the concentration of nitrogen gas contained in the film forming material gas is changed. Thus, the above-described object is achieved by forming the protective film 5 in which the silicon nitride film 52 having compressive stress and the silicon nitride films 51 and 53 having tensile stress are alternately laminated.
(2) The invention of claim 2 is a method for producing a protective film for an organic EL element, wherein a protective film 5 comprising a multilayer film of silicon nitride film and covering the organic EL layer 3 is formed by a high density plasma CVD method. By changing the concentration of nitrogen gas contained in the material gas, the protective film 5 in which the silicon nitride film 52 having compressive stress and the silicon nitride films 51 and 53 having tensile stress are alternately stacked is formed, and the alternating layers are formed. The above-mentioned object is achieved by using the silicon nitride film 51 having tensile stress as the layer in contact with the organic EL layer 3 in the substrate.
(3) The invention of claim 3 is a method for producing a protective film for an organic EL element, wherein a protective film 5 comprising a multilayer film of silicon nitride film and covering the organic EL layer is formed by a high density plasma CVD method. By changing the concentration of nitrogen gas contained in the gas, the above-described object is achieved by forming the protective film 5 in which the silicon nitride films 51 to 53 having different densities are alternately stacked.
(4) The organic EL device according to the invention of claim 4 achieves the above object by covering the organic EL layer 3 with the protective film 5 formed by the protective film manufacturing method of any one of claims 1 to 3.
[0009]
In the section of means for solving the above problems, the drawings of the embodiments of the invention are used for easy understanding of the present invention. However, the present invention is not limited to the embodiments of the invention. Absent.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing an embodiment of an organic EL element according to the present invention, and is a cross-sectional view showing a schematic configuration of the organic EL element. A transparent electrode 2 constituting an anode as a hole supply source is formed on the transparent glass substrate 1 in a predetermined pattern. Usually, an oxide of indium and tin called ITO (Indium-Tin-Oxide) is used for the transparent electrode 2.
[0011]
An organic EL layer 3 is provided on the transparent electrode 2, and a metal electrode 4 constituting a cathode is formed on the organic EL layer 3. A protective film 5 is formed on the metal electrode 4 so as to cover the metal electrode 4 and the organic EL layer 3. Note that the lead portion 4 a of the metal electrode 4 is exposed from the protective film 5. The metal electrode 4 is formed of an alloy of magnesium and silver, aluminum, or the like, and serves as an electron supply source as a cathode.
[0012]
When a voltage is applied between the electrodes 2 and 4, holes are injected from the transparent electrode 2 to the organic EL layer 3, and electrons are injected from the metal electrode 4. The injected holes and electrons are recombined in the organic EL layer 3, and the organic material is excited at the time of recombination. Then, fluorescence is generated when the organic material returns from the excited state to the ground state. The generated light is emitted from the transparent glass substrate 1 side. In general, the organic EL layer 3 is composed of a hole injecting and transporting layer, a light emitting layer, and an electron injecting and transporting layer so that the above reaction is likely to occur. Currently, the generated light is extracted from the glass substrate side, but in the future, it is also considered to extract it to the opposite side as indicated by a broken line.
[0013]
FIG. 2 is an enlarged view of a part of the cross section of the protective film 5. The protective film 5 of the present embodiment has a three-layer structure of a silicon nitride film, and a first silicon nitride film 51, a second silicon nitride film 52, and a third silicon nitride film 53 are formed in order from the organic EL layer side. Has been. The silicon nitride films 51 to 53 are all silicon nitride films (SiNx) formed by the ECR-CVD method.
[0014]
In the case of forming a SiNx film by the ECR-CVD method, silane (SiH 4 ), nitrogen (N 2 ), and hydrogen (H 2 ) are basically used as a film forming gas. The density of the SiNx film can be controlled by changing the gas concentration. Specifically, when the nitrogen gas concentration in the film forming material gas is increased, a high-density SiNx film is formed. Conversely, when the nitrogen gas concentration is decreased, a low-density SiNx film is formed.
[0015]
By the way, the internal stress of the SiNx film is a compressive stress when the density is high, and a tensile stress when the density is low. In the present embodiment, the protective film 5 has a three-layer structure in which a second silicon nitride film 52 formed of a high-density SiNx film is sandwiched between first and third silicon nitride films 51 and 53 formed of a low-density SiNx film. By doing so, the residual stress of the entire protective film 5 is reduced.
[0016]
FIG. 3 is a schematic configuration diagram of an ECR-CVD apparatus. The ECR-CVD apparatus has a plasma generation chamber 15 and a film formation chamber 16, and a microwave waveguide 11 is connected to the plasma generation chamber 15 through a microwave introduction window 13. A plasma extraction opening 15 a is formed between the plasma generation chamber 15 and the film formation chamber 16. A microwave source 12 is connected to the other end of the microwave waveguide 11. An excitation coil 14 is disposed outside the plasma generation chamber 15. A substrate holder 18 that holds a film formation target 17 is provided inside the film formation chamber 16, and the film formation target 17 is arranged to face the plasma extraction opening 15 a.
[0017]
Nitrogen gas (N 2 ), silane gas (SiH 4 ), and hydrogen gas (H 2 ) are introduced into the film forming chamber 16 by the film forming gas introduction system 6. 7A, 7B, and 7C are gas supply sources that supply nitrogen gas, silane gas, and hydrogen gas, respectively. The supply amounts of the respective gases are controlled by mass flow controllers 8A to 8C and valves 9A to 9C. The film forming chamber 16 is evacuated by the vacuum pump 10.
[0018]
At the time of film formation, a 2.45 GHz microwave generated by the microwave source 12 is introduced into the plasma generation chamber 15, and a magnetic field having a magnetic flux density of 87.5 mT that satisfies the ECR condition is formed by the coil 14, and active ECR is generated by ECR discharge. Plasma is generated in the plasma generation chamber 15. In the ECR-CVD apparatus, microwave energy is absorbed by electrons in the plasma with high efficiency due to the electron cyclotron resonance phenomenon, so that a high-density plasma can be obtained as compared with a normal plasma CVD method, and a lower temperature (about 80 ° C.). The film can be formed at a temperature of ℃ or less.
[0019]
The ECR plasma P in the plasma generation chamber 15 is extracted from the plasma generation chamber 15 to the film formation chamber 16 through the plasma extraction opening 15a by the divergent magnetic field formed by the excitation coil 14. The deposition gas (N 2 , SiH 4 , H 2 ) in the deposition chamber 16 is decomposed and ionized by active plasma drawn into the deposition chamber, and a silicon nitride film (SiNx film) is formed on the surface of the deposition target 17. ) Is formed. In this embodiment, the film formation target 17 is the transparent glass substrate 1 on which the electrodes 2 and 4 and the organic EL layer 3 are formed.
[0020]
When the protective film 5 shown in FIG. 2 is formed, the flow rate of the nitrogen gas introduced into the film forming chamber 16 is controlled by the mass flow controller 8C, and a high-density SiNx film (second silicon nitride film having compressive stress) is controlled. 52) and low-density SiNx films (first and third silicon nitride films 51 and 53) having tensile stress, respectively. FIG. 4 is a diagram showing the relationship between the nitrogen gas flow rate during film formation and the internal stress of the formed SiNx film. The vertical axis | shaft of FIG. 4 is an internal stress and a unit is (dyn / cm < 2 >). The internal stress indicates a tensile stress in the case of a plus sign and a compressive stress in the case of a minus sign. The horizontal axis represents the nitrogen gas flow rate, and the unit is (sccm).
[0021]
In FIG. 4, the film thickness of the SiNx film is 1 (μm), and the film formation conditions other than the nitrogen gas flow rate are silane gas flow rate = 14 sccm, hydrogen gas flow rate = 1 sccm, film forming pressure = 0.01 torr, microwave power. = 600W. As can be seen from FIG. 4, when the nitrogen gas flow rate is reduced from 50 sccm, the compressive stress is also reduced, and when the nitrogen gas flow rate is less than 20 sccm, the compressive stress is changed to the tensile stress.
[0022]
For example, in the case where the silicon nitride films 51 to 53 are formed in the same film forming chamber 16, first, the nitrogen gas flow rate is set to be smaller than 20 sccm by the mass flow controller 8C, and the first silicon nitride film 51 is formed. Next, the nitrogen gas flow rate is set to a value larger than 20 sccm, and when the stable state is reached, a second silicon nitride film 52 is formed. Finally, the nitrogen gas flow rate is set to be smaller than 20 sccm, and when the stable state is reached, a third silicon nitride film 53 is formed. Note that a shutter (not shown) is provided in front of the substrate, and when the state becomes stable, the shutter is opened to perform film formation. In this way, the protective film 5 is formed in which the low density SiNx films 51 and 53 having tensile stress and the high density SiNx film 52 having compressive stress are alternately laminated.
[0023]
In the above description, the first to third silicon nitride films 51 to 53 are sequentially formed by changing the nitrogen gas flow rate in the film forming chamber 16 at the same position. The protective film 5 may be formed using a different ECR-CVD apparatus for forming a low density SiNx film and an ECR-CVD apparatus for forming a high density SiNx film. That is, when forming the first and third silicon nitride films 51 and 53, the substrate 1 is carried into an ECR-CVD apparatus in which the nitrogen gas flow rate is set to be smaller than 20 sccm, and low density SiNx is formed. On the other hand, when forming the second silicon nitride film 52, the substrate 1 is carried into another ECR-CVD apparatus in which the nitrogen gas flow rate is set to be larger than 20 sccm, and high-density SiNx is formed.
[0024]
(Specific example of protective film 5)
In the case of the first and third silicon nitride films 51 and 53, the silane gas flow rate = 14 sccm, the nitrogen gas flow rate = 19 sccm, the hydrogen gas flow rate = 1 sccm, the deposition pressure = 0.01 torr, and the microwave power = 600W.
In the case of the second silicon nitride film 52, the silane gas flow rate = 14 sccm, the nitrogen gas flow rate = 50 sccm, the hydrogen gas flow rate = 1 sccm, the deposition pressure = 0.01 torr, and the microwave power = 600 W.
・ Total film thickness = 2μm
-Internal stress (residual stress) in the entire protective film 5
-2.46 × 10 6 (dyn / cm 2 ) to + 2.02 × 10 7 (dyn / cm 2 )
[0025]
On the other hand, when a protective film having a film thickness of 2 μm is formed using only a high-density SiNx film, the internal stress becomes a compressive stress on the order of 10 9 (dyn / cm 2 ). In other words, the internal stress of the protective film 5 in which the tensile stresses 51 and 53 and the compressive stress film 53 are alternately formed is smaller than the internal stress of the high-density SiNx single layer film having the same thickness. It is reduced to 100 to 1/1000.
[0026]
In the above-described embodiment, three alternate layers have been described as an example. However, the protective film 5 has a multilayer structure in which high-density SiNx layers having compressive stress and low-density SiNx layers having tensile stress are alternately stacked. good. The characteristics of the protective film 5 are summarized as follows.
[0027]
(A) Since the layers 51 and 53 having tensile stress and the layers 52 having compressive stress are alternately formed, the residual stress of the entire protective film can be greatly reduced. As a result, peeling of the protective film 5 and the metal electrode 4 can be prevented.
(B) Since the layer 52 made of high-density SiNx is included, the moisture-proof performance is excellent.
(C) In the high-density plasma CVD method (ECR-CVD method), the layers 51 and 53 having tensile stress and the layer 52 having compressive stress are formed by changing the nitrogen gas concentration. The protective film 5 can be formed in a maintained state. As a result, thermal damage to the deposition target (3) can be suppressed.
[0028]
In terms of moisture resistance, the low-density SiNx layer has a structurally rough amorphous structure. Therefore, the moisture permeability is inferior to that of the high-density SiNx layer, but has a function of trapping moisture. Therefore, even when a pinhole or the like is generated in the high-density SiNx layer, a slight amount of moisture that has passed through the pinhole is trapped in the low-density SiNx layer, and the influence on the organic EL layer 3 can be prevented.
[0029]
As a structure other than the three-layer structure, for example, the third silicon nitride film 53 in FIG. 2 may be omitted, and the protective film 5 may be composed of the first silicon nitride film 51 and the second silicon nitride film 52. In this case, the residual stress of the entire protective film is inferior to that shown in FIG. 2, but the size is smaller than that of a high-density SiNx single layer film having the same film thickness. Further, since it has a high-density SiNx layer (second silicon nitride film 52), it has sufficient moisture-proof performance.
[0030]
In addition, when the protective film 5 has a multilayer structure of two layers or three layers, the organic EL layer 3 side is a low-density SiNx layer with a small amount of stress from the relationship with the adhesion performance with the organic EL layer 3. Is preferred. Further, although the silicon nitride films 51 and 53 are low density SiNx layers having tensile stress and the silicon nitride film 53 is high density SiNx layers having compressive stress, a combination of high density and low density may be used within the range of compressive stress. . In this case as well, the residual stress can be reduced and sufficient moisture-proof performance can be obtained as compared with the single-layer film of high-density SiNx.
[0031]
In the above-described embodiment, the organic EL element is described as an example of the film formation target, but it can also be applied as a protective film for other electronic circuit elements, and has the same effect, that is, it is difficult to peel off and is moisture-proof. It is excellent, and an effect that thermal damage to the circuit element at the time of forming the protective film can be suppressed can be achieved. Although the ECR-CVD method has been described as an example, the silicon nitride films 51 to 53 may be formed by a high-density plasma CVD method other than the ECR-CVD method.
[0032]
【The invention's effect】
As described above, according to the present invention, the protective film is formed by alternately laminating the compressive and tensile internal stresses or alternately stacking those having different densities. It can be a membrane. Further, since the dense silicon nitride films are included in the alternating layers, the moisture resistance is excellent. Further, since the silicon nitride films constituting the alternating layers are formed by the high density plasma CVD method, the film formation temperature can be lowered, and the thermal damage to the film formation target can be reduced.
[Brief description of the drawings]
FIG. 1 is a diagram showing an embodiment of an organic EL element according to the present invention, and is a cross-sectional view showing a schematic configuration of the organic EL element.
FIG. 2 is an enlarged view of a cross section of the protective film 5;
FIG. 3 is a schematic configuration diagram of an ECR-CVD apparatus.
FIG. 4 is a diagram showing the relationship between the nitrogen gas flow rate during film formation and the internal stress of the formed SiNx film.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Transparent glass substrate 2 Transparent electrode 3 Organic EL layer 4 Metal electrode 5 Protective film 6 Deposition gas introduction system 7A-7B Gas supply source 8A-8C Mass flow controller 11 Microwave waveguide 12 Microwave source 14 Excitation coil 15 Plasma generation chamber 16 Deposition chamber 17 Deposition target 18 Substrate holder 51 First silicon nitride film 52 Second silicon nitride film 53 Third silicon nitride film

Claims (4)

シリコン窒化膜の多層膜から成る保護膜を高密度プラズマCVD法により形成する保護膜製造方法であって、
成膜材料ガスに含まれる窒素ガス濃度を変えることにより、圧縮応力を有するシリコン窒化膜と引っ張り応力を有するシリコン窒化膜とを交互に積層した保護膜を形成することを特徴とする保護膜製造方法。
A protective film manufacturing method for forming a protective film comprising a multilayer film of silicon nitride films by a high-density plasma CVD method,
A protective film manufacturing method comprising: forming a protective film in which a silicon nitride film having compressive stress and a silicon nitride film having tensile stress are alternately stacked by changing a concentration of nitrogen gas contained in a film forming material gas .
シリコン窒化膜の多層膜から成り有機EL層を覆う保護膜を高密度プラズマCVD法により形成する有機EL素子の保護膜製造方法であって、
成膜材料ガスに含まれる窒素ガス濃度を変えることにより、圧縮応力を有するシリコン窒化膜と引っ張り応力を有するシリコン窒化膜とを交互に積層した保護膜を形成し、かつ、前記交互層の中の有機EL層と接触する層を引っ張り応力を有するシリコン窒化膜としたことを特徴とする有機EL素子の保護膜製造方法。
A method for producing a protective film for an organic EL element, comprising forming a protective film comprising a multilayer film of a silicon nitride film and covering an organic EL layer by a high-density plasma CVD method,
By changing the concentration of nitrogen gas contained in the film forming material gas, a protective film is formed by alternately laminating a silicon nitride film having a compressive stress and a silicon nitride film having a tensile stress, and in the alternating layers A method of manufacturing a protective film for an organic EL element, wherein a layer in contact with the organic EL layer is a silicon nitride film having tensile stress.
シリコン窒化膜の多層膜から成り有機EL層を覆う保護膜を高密度プラズマCVD法により形成する有機EL素子の保護膜製造方法であって、
成膜材料ガスに含まれる窒素ガス濃度を変えることにより、密度の異なるシリコン窒化膜を交互に積層した保護膜を形成すること特徴とする有機EL素子の保護膜製造方法。
A method for producing a protective film for an organic EL element, comprising forming a protective film comprising a multilayer film of a silicon nitride film and covering an organic EL layer by a high-density plasma CVD method,
A method for producing a protective film for an organic EL element, comprising forming a protective film in which silicon nitride films having different densities are alternately stacked by changing a concentration of nitrogen gas contained in a film forming material gas.
請求項1〜3のいずれかの保護膜製造方法により形成した保護膜で有機EL層を覆ったことを特徴とする有機EL素子。An organic EL element, wherein the organic EL layer is covered with a protective film formed by the protective film manufacturing method according to claim 1.
JP2002220932A 2002-07-30 2002-07-30 Protective film manufacturing method and organic EL device Expired - Fee Related JP3948365B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002220932A JP3948365B2 (en) 2002-07-30 2002-07-30 Protective film manufacturing method and organic EL device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002220932A JP3948365B2 (en) 2002-07-30 2002-07-30 Protective film manufacturing method and organic EL device

Publications (2)

Publication Number Publication Date
JP2004063304A JP2004063304A (en) 2004-02-26
JP3948365B2 true JP3948365B2 (en) 2007-07-25

Family

ID=31941393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002220932A Expired - Fee Related JP3948365B2 (en) 2002-07-30 2002-07-30 Protective film manufacturing method and organic EL device

Country Status (1)

Country Link
JP (1) JP3948365B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106450035A (en) * 2016-11-17 2017-02-22 上海天马有机发光显示技术有限公司 A display panel and a manufacturing method thereof
US9887387B2 (en) 2016-03-31 2018-02-06 Joled Inc. Organic EL display panel

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100885843B1 (en) * 2002-08-31 2009-02-27 엘지디스플레이 주식회사 Organic electro luminescent display device and fabrication method thereof
KR100699988B1 (en) 2004-03-19 2007-03-26 삼성에스디아이 주식회사 Flat panel display device
JP2006338947A (en) * 2005-05-31 2006-12-14 Sanyo Electric Co Ltd Protective film forming method, and the protective film
KR100958480B1 (en) * 2005-09-29 2010-05-17 파나소닉 주식회사 Organic el display and method for manufacturing same
JP2007184251A (en) * 2005-12-07 2007-07-19 Sony Corp Display device
US7696683B2 (en) * 2006-01-19 2010-04-13 Toppan Printing Co., Ltd. Organic electroluminescent element and the manufacturing method
JP2007220646A (en) * 2006-01-19 2007-08-30 Toppan Printing Co Ltd Organic electroluminescent element
JP4400636B2 (en) 2007-03-01 2010-01-20 株式会社豊田中央研究所 Barrier film and method for producing barrier film
JP2008226472A (en) * 2007-03-08 2008-09-25 Tokyo Electron Ltd Electronic device, its manufacturing method, structural body of sealing film, manufacturing device for manufacturing electronic device, and plasma processing device
CN102090142B (en) 2009-09-29 2013-08-28 夏普株式会社 Organic EL device
KR101832361B1 (en) * 2011-01-19 2018-04-16 삼성디스플레이 주식회사 Thin film transistor array panel
JP5781393B2 (en) * 2011-08-05 2015-09-24 株式会社アルバック Deposition method
JP2014060378A (en) * 2012-08-23 2014-04-03 Tokyo Electron Ltd Silicon nitride film deposition method, organic electronic device manufacturing method and silicon nitride film deposition device
JP6110420B2 (en) * 2014-02-28 2017-04-05 ウォニク アイピーエス カンパニー リミテッド Method of manufacturing nitride film and method of controlling compressive stress of nitride film
KR102202089B1 (en) * 2015-01-08 2021-01-12 주식회사 원익아이피에스 Method of fabricating nitride film
US9889633B2 (en) 2014-04-10 2018-02-13 Honda Motor Co., Ltd. Attachment method for laminate structures
US10181580B2 (en) * 2014-12-05 2019-01-15 Sharp Kabushiki Kaisha Organic EL display device
US10159120B2 (en) 2015-06-12 2018-12-18 Sharp Kabushiki Kaisha EL display device and method for manufacturing EL display device
JP2018089874A (en) * 2016-12-05 2018-06-14 大日本印刷株式会社 Combination of thermal transfer sheet and body to be transferred
JP6815901B2 (en) * 2017-03-06 2021-01-20 株式会社日本製鋼所 Display device and its manufacturing method
JP6805099B2 (en) * 2017-09-08 2020-12-23 株式会社Joled Organic EL display panel, organic EL display device, and its manufacturing method
JP6879568B2 (en) * 2018-11-08 2021-06-02 株式会社Joled Organic electroluminescent device and its manufacturing method
KR20240145456A (en) * 2022-02-24 2024-10-07 가부시키가이샤 코쿠사이 엘렉트릭 Film forming method, semiconductor device manufacturing method, film forming device and program

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9887387B2 (en) 2016-03-31 2018-02-06 Joled Inc. Organic EL display panel
CN106450035A (en) * 2016-11-17 2017-02-22 上海天马有机发光显示技术有限公司 A display panel and a manufacturing method thereof

Also Published As

Publication number Publication date
JP2004063304A (en) 2004-02-26

Similar Documents

Publication Publication Date Title
JP3948365B2 (en) Protective film manufacturing method and organic EL device
JP4179041B2 (en) Deposition device for organic EL protective film, manufacturing method, and organic EL element
JP5927311B2 (en) Light emitting device
JP4994513B2 (en) Method for manufacturing semiconductor device
KR101319947B1 (en) Organic electronic device, organic electronic device manufacturing method, organic electronic device manufacturing apparatus, substrate processing system, protection film structure and storage medium with control program stored therein
WO2004054010A2 (en) Low temperature process for passivation applications
TWI355675B (en) A silicon nitride film, a semiconductor device, a
JP2013253317A (en) Substrate for semiconductor device, semiconductor device, dimming-type lighting device, self light-emitting display device, solar cell and reflective liquid crystal display device
JP4993938B2 (en) Method for manufacturing semiconductor device
JP2008282818A (en) Flat display device
JP2007533860A (en) Method and apparatus for depositing a low temperature inorganic film on a plastic substrate
JP5740179B2 (en) Transparent gas barrier film, method for producing transparent gas barrier film, organic electroluminescence element, solar cell and thin film battery
EP2464199A1 (en) Anode structure to be used in organic el element, manufacturing method thereof, and organic el element
JP2005222778A (en) Organic electroluminescent element and its manufacturing method
JP2005166400A (en) Surface protection film
JP4337567B2 (en) Method for manufacturing organic electroluminescence element
JP2006002243A (en) Mask, method for producing mask, film deposition method, electronic device and electronic equipment
JP4754387B2 (en) EL device
JP4543691B2 (en) Organic electroluminescence device and method for producing the same
JP2004014287A (en) Ito film, its manufacturing method and organic el element
JP4640978B2 (en) Organic EL display
KR20050029790A (en) Organic electro luminescence panel having layer for preventing humidity from percolation and method of manufacturing the same
JP2013022820A (en) Transparent gas barrier film, method for manufacturing the same, organic electroluminescent element, solar cell, and membrane battery
JP2004335126A (en) Film forming device of protecting film for organic electroluminescent element, its manufacturing method and organic el element
CN115036332A (en) Array substrate, preparation method thereof and display panel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070327

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070409

R150 Certificate of patent or registration of utility model

Ref document number: 3948365

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100427

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110427

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110427

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120427

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120427

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130427

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130427

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140427

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees