JP3948347B2 - Coke oven gas combustion control method and apparatus - Google Patents

Coke oven gas combustion control method and apparatus Download PDF

Info

Publication number
JP3948347B2
JP3948347B2 JP2002149928A JP2002149928A JP3948347B2 JP 3948347 B2 JP3948347 B2 JP 3948347B2 JP 2002149928 A JP2002149928 A JP 2002149928A JP 2002149928 A JP2002149928 A JP 2002149928A JP 3948347 B2 JP3948347 B2 JP 3948347B2
Authority
JP
Japan
Prior art keywords
gas
combustion
coke oven
chamber
combustion chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002149928A
Other languages
Japanese (ja)
Other versions
JP2003342581A (en
Inventor
達也 小澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2002149928A priority Critical patent/JP3948347B2/en
Publication of JP2003342581A publication Critical patent/JP2003342581A/en
Application granted granted Critical
Publication of JP3948347B2 publication Critical patent/JP3948347B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明はコークス炉のガス燃焼方法に関し、特に燃焼排ガス(以下、廃気ともよぶ。)の微細なダスト(煤塵)発生を防止する技術に関する。
【0002】
【従来の技術】
コークス炉は、燃焼室と炭化室が1枚のレンガで仕切られているが、コークス炉の老朽化に伴い、レンガの目地が切れて、この目地切れ部を通って、炭化室から燃焼室へ発生ガスが漏洩することがある。そして、漏洩したガスにより燃焼室の空燃比が乱れ、不完全燃焼を起こして煤が生じる場合がある。
【0003】
この煤がそのまま煙突から外部に排出されると煙突黒煙となる。なお、このような煙突黒煙は、炭化室内圧力が特に上昇する石炭装入の直後に発生しやすい。
この煙突黒煙に対し、従来、煙突の入側に煙道集塵機を設ける等の対策がとられてきた。しかしながら、この対策では、煙突黒煙の発生はゼロになるものの、投資額が膨大であるという問題がある。
【0004】
これに対し、特開平06-063334 号公報では、コークス炉の廃気弁の下流側で、廃気を新設の集塵系と既設の煙道系に分岐させ、煤塵の多い、あるいは、黒煙の多い廃気のみを集塵機に導くようにしている。こうすることで、新設の集塵ダクトを小径化でき集塵機そのものも小型化できるので、コスト的に安価となる。
しかし、廃気弁の下流側にスペースがない場合は、集塵系と煙道系を切替える切替ダンパや集塵ダクトを設置することができない。また、多くの門数から構成される炉団では、切替ダンパの個数も多くなるため、総体的に考えると必ずしも安価になるとは限らない。
【0005】
他の従来技術としては、特開平06-256764 号公報等に開示のように、石炭装入時に装入窯に隣接する燃焼室への燃料ガス流量をコントロールすることで、漏洩ガスを完全に燃焼させる技術がある。しかしながら、こうすると、漏洩ガスは燃焼するものの、部分的には燃焼室が空気過剰になり、レンガの目地に入っているカーボンも燃焼させてしまって目地切れを助長させてしまう問題がある。
【0006】
また、上記方法は、効果的ではあるが、燃焼室内全体を、漏洩ガスを燃焼させるだけの空気比とする必要があり、燃料ガス流量のコントロールは非常に困難である。
更に、他の従来技術である特開平10-168459 号公報に開示の方法は、炉上の燃焼室覗き穴(ピーピングホール)から空気を吹き込み、漏洩ガスを燃焼させる方法であるが、これも同様に吹き込み空気の流量コントロールが非常に難しい。
【0007】
従来技術としては他にも、高圧安水スプレーの噴射工程やドライメーンと縁を切るダンパを開口する工程等の制御によって炭化室内の圧力を制御して、石炭装入時に炭化室側から燃焼室側へ発生ガスが漏洩しないようにする方法があるが、炭化室内の圧力制御が及ぶのは、石炭が装入されていない炭化室の上部空間がほとんどであり、石炭が装入されている部位の炉壁、とりわけ、炭化室の底部に近いところの炉壁の目地切れ部からの燃焼室側への発生ガスの漏洩は避けることができない。
【0008】
【発明が解決しようとする課題】
本発明は、燃焼室の目地に付着したカーボンを焼失させることなく、簡単な操作によって上記従来技術の問題点を解決し、燃焼ガス中の微細な炭素を効果的に除去することのできるコークス炉のガス燃焼制御方法および装置を提供するものである。
【0009】
【課題を解決するための手段】
本発明は、以下の各項記載のコークス炉のガス燃焼制御方法および装置によって上記課題を解決した。
(1) コークス炉の燃焼室におけるガス燃焼制御方法であって、石炭を装入する炭化室の内部圧力を測定し、前記炭化室に隣接する燃焼室に、廃気側の富ガス供給路から前記内部圧力に応じて不燃性ガスを供給することを特徴とするコークス炉のガス燃焼制御方法。
(2) 前記不燃性ガスを、コークス炉の燃焼排ガスとすることを特徴とする上記(1) 記載のコークス炉のガス燃焼制御方法。
(3) コークス炉の燃焼室におけるガス燃焼制御装置であって、石炭を装入する炭化室に隣接する燃焼室の廃気側の富ガス供給路から不燃性ガスを供給する経路と、該経路に、不燃性ガスを昇圧して送給する昇圧ブロワと、該経路中に設けられ、不燃性ガスの供給を調節する不燃性ガス流量調節弁と、前記炭化室の内部圧力を測定する圧力計と、該圧力計の測定値に基づき前記不燃性ガス流量調節弁を制御し、前記の燃焼室の内部圧力を制御する制御装置と、を有することを特徴とするコークス炉のガス燃焼制御装置。
(4) 前記不燃性ガスを、コークス炉の燃焼排ガスとすることを特徴とする上記(3) に記載のコークス炉のガス燃焼制御装置。
【0010】
【発明の実施の形態】
以下、図1、図2を参照し、(カールスチル式)コークス炉10を例にとって、本発明の実施の形態を説明する。
図1において、2分割式のカールスチル式コークス炉10は、蓄熱室31及び燃焼室21のほぼ中央で、押出機側(マシンサイド側、すなわち、図1の右側であり、押出機は図示せず。) と消火車側(コークサイド、すなわち、図1の左側であり、消火車は図示せず。) に2分割されている。
【0011】
そして、燃焼ガスの導入を定期的に切り替え、一定時間(20〜30分)毎に、押出機側と消火車側とで燃焼を交互に繰り返している。なお、室炉式コークス炉としては、この他にも、炉の均一加熱や熱効率向上のために各々工夫された燃焼室や蓄熱室の有する構造の相違から、コッパース式、オットー式等、様々な炉が知られている。
【0012】
コークス炉10は、押出機側と消火車側それぞれの燃料供給部11、および、燃焼室21、炭化室24、蓄熱室31、廃気経路41等を備えており、その廃気は、最終的に煙突44から排煙される。
燃料供給部11は、コークス炉10の両端部から交互に燃料を供給することができるように、それぞれにCガス配管12、Mガス配管13が設けられている。
【0013】
炭化室24と燃焼室21とは、多数列が交互に隣接して配列されて炉団を形成しており、その上面にはそれぞれ石炭装入口22と覗き穴23が設けられている。
また、図1に示すように、コークス炉10の燃焼室21には、燃料ガスと空気を流通させる複雑な経路が形成されており、燃焼排熱を利用するため、燃焼室21の下側に蓄熱室31が設けられている。
【0014】
燃焼排ガスは、燃焼排ガス流32で示すように蓄熱室31内を経由して、蓄熱室31を形成するレンガに熱を伝え、その後、小煙道42、大煙道43などの排気経路41を経て煙突44から外気に排出される。
そして、貧ガス(混合ガス:Mガス)燃焼時には、Mガス配管13に燃料ガスを送り、同時に、空気流14として示すように空気を送る。これらの燃料ガスと空気は、別々に蓄熱室31を経由して高温のレンガと熱交換して昇温され、燃焼室21内で合流して燃焼する。このようにすることで、燃焼ガスの顕熱を有効に利用できる。
【0015】
一方、富ガス(コークス炉ガス:Cガス)燃焼時には、燃料ガスと空気を、蓄熱室31を経由せずに直接燃焼室21内のバーナに供給する。富ガス(Cガス)は、炭化水素ガスを多く含んでおり、高温に保持すると分解して煤を生じる恐れがあるため、通常、予熱せずに燃焼させる。
図1に示す本発明を適用するコークス炉10においては、燃焼排ガス流32を、例えば、大煙道43で分岐して昇圧ブロワ20で昇圧し、廃気側(煙突44側) に配置されたCガス支管である富ガス供給路12b に供給する経路に接続する。
【0016】
そして、石炭を装入する炭化室24の両隣にある燃焼室21の下部にある廃気側の富ガス供給路12b から燃焼排ガスを供給する。このとき、図2に示すように、石炭を装入する炭化室24b 圧力を、その両隣の燃焼室21の圧力と併せて、圧力計17で測定し、それらの圧力測定値に応じて、供給する燃焼排ガスの流量を調整する。すなわち、石炭装入開始後しばらくの間は、炭化室24b 内部の圧力が燃焼室21内部の圧力よりも高いので、炭化室内部の圧力測定値に対して燃焼室内部の圧力測定値がほぼ同等となるように、供給する燃焼排ガスの流量を調整するのである。
【0017】
こうすることにより、石炭装入時に生じる炭化室内の圧力上昇に応じて、その両隣の燃焼室に燃焼排ガス流32を供給して燃焼室の圧力を上昇させることができるので、炭化室側から燃焼室側への発生ガス漏洩を防止することができ、煙突からの黒煙発生を解消できる。
しかも、本発明では、廃気側の燃焼室21の下部に燃焼排ガス流32を供給するので、燃焼室21の目地に存在するカーボンを燃焼させることがなく、レンガの目地切れを助長させる心配はない。また、炭化室24b と燃焼室21の圧力に応じて、燃焼排ガス流32の供給量を調整するので、燃焼室内部を過剰に昇圧することがなく、燃焼室21への燃料ガスや空気の流入を妨げることがないので、燃焼室内部での燃料ガスの燃焼を阻害する心配もない。
【0018】
なお、以上の説明では、石炭を装入する炭化室24の両隣にある燃焼室21に燃焼排ガス流32を供給するとして説明したが、これは、燃焼排ガスが最も手近に得られる不燃性ガスであるからであり、燃焼室21に窒素ガス等の不燃性ガスを導入するようにしても良いことは言うまでもない。
【0019】
【実施例】
102門の炭化室を有するカールスチル式コークス炉の操業に本発明のコークス炉のガス燃焼方法を適用し操業を実施した。これを本発明例とする。
本発明例では、コークス炉の石炭を装入した炭化室の両隣にある燃焼室に、当該炭化室の内部圧力に応じて、燃焼排ガスを供給した。なお、供給は、燃焼室の下部にある廃気側の富ガス供給支管から行い、石炭装入開始から10分間行った。
【0020】
一方、従来例として、Mガスを用いた貧ガス燃焼のみを適用した操業を実施した。なお、従来例の操業における燃焼室内の圧力は4〜5mmAqであった。
以上の結果、石炭装入後の煤塵濃度の推移は、図3のようになり、本発明例においては、石炭装入後の煤塵濃度が大幅に低下していることがわかる。ここで、煤塵濃度指標とは、従来例における石炭装入後の燃焼排ガス中煤塵濃度の最大値を1として煤塵濃度の推移を相対値で示したものである。煤塵濃度は燃焼室の廃気弁部分にサンプリング管を挿入し等速吸引法で各1分間サンプリングした燃焼排ガス中の煤塵量を燃焼排ガス量当たりの量として求めた。
【0021】
すなわち、本発明例では、燃焼室内の圧力は6〜7mmAqとなり、炭化室の圧力とほぼ同等としたので、90%以上の煤塵濃度低減を達成することができた。
【0022】
【発明の効果】
本発明の適用により、炭化室側から燃焼室側への発生ガスの漏洩が少なくなり、コークス炉の燃焼排ガスに混入する微細なカーボンを大幅に低減し、煙道集塵機を設置せずとも、煙突からの放出煤塵量を極めて低いレベルに維持することが可能となった。
【0023】
しかも、燃焼室下部に不燃性ガスである燃焼排ガスを供給するようにしたので、燃焼室の目地に存在するカーボンを燃焼させることがなくなり、レンガの目地切れを助長させることもなくなった。
【図面の簡単な説明】
【図1】本発明を適用したコークス炉の模式図である。
【図2】本発明を適用したコークス炉のガス燃焼フローを示す模式図である。
【図3】本発明例と従来例の煤塵濃度の経時変化を示すグラフである。
【符号の説明】
10 (カールスチル式)コークス炉
11 燃料供給部
12 Cガス配管
12b 富ガス供給路(Cガス支管)
13 貧ガス供給路(Mガス配管)
14 空気流
16 廃気弁
17 圧力計
18 制御装置
19 燃焼排ガス(不燃性ガス)流量調節弁
20 昇圧ブロワ
21 燃焼室
22 石炭装入口
23 覗き穴
24 炭化室
24b (石炭を装入する)炭化室
31 蓄熱室
32 燃焼排ガス流
41 廃気経路
42 小煙道
43 大煙道
44 煙突
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a gas combustion method for a coke oven, and more particularly to a technique for preventing generation of fine dust (soot) of combustion exhaust gas (hereinafter also referred to as waste gas).
[0002]
[Prior art]
In the coke oven, the combustion chamber and the coking chamber are separated by a single brick. However, as the coke oven ages, the joints of the bricks are cut off, passing through the joints and going from the carbonization chamber to the combustion chamber. The generated gas may leak. The leaked gas may disturb the air-fuel ratio of the combustion chamber, causing incomplete combustion and soot.
[0003]
When this soot is discharged from the chimney as it is, it becomes chimney black smoke. Such chimney black smoke is likely to be generated immediately after the coal charging in which the pressure in the carbonization chamber is particularly increased.
Conventionally, measures have been taken against this black smoke, such as providing a flue dust collector on the inlet side of the chimney. However, this measure has a problem that the amount of investment is enormous although the generation of black smoke in the chimney is zero.
[0004]
On the other hand, in Japanese Patent Application Laid-Open No. 06-063334, downstream of the coke oven waste air valve, the waste air is branched into a new dust collection system and an existing flue system, so that there is a lot of soot or black smoke. Only a lot of waste air is guided to the dust collector. By doing so, the diameter of the newly installed dust collection duct can be reduced, and the dust collector itself can be reduced in size.
However, when there is no space downstream of the waste air valve, a switching damper or a dust collection duct for switching between the dust collection system and the flue system cannot be installed. In addition, in a furnace group composed of a large number of gates, the number of switching dampers is large, so the overall cost is not necessarily low.
[0005]
As another prior art, as disclosed in Japanese Patent Laid-Open No. 06-256764, etc., the leakage gas is completely burned by controlling the flow rate of the fuel gas to the combustion chamber adjacent to the charging furnace when charging coal. There is technology to let you. However, in this case, although the leaked gas burns, there is a problem that the combustion chamber partially becomes excessive in air, and the carbon contained in the brick joints is also burned to promote joint breakage.
[0006]
Further, although the above method is effective, it is necessary to make the entire combustion chamber have an air ratio sufficient to burn the leaked gas, and it is very difficult to control the flow rate of the fuel gas.
Furthermore, the method disclosed in Japanese Patent Laid-Open No. 10-168459, which is another prior art, is a method in which air is blown from a combustion chamber peep hole on the furnace to burn the leaked gas. It is very difficult to control the air flow rate.
[0007]
In addition to the conventional technology, the pressure in the carbonization chamber is controlled by controlling the injection process of the high pressure water spray and the process of opening the damper that cuts off the edge of the dry main. There is a method to prevent the generated gas from leaking to the side, but the pressure control in the carbonization chamber is mostly in the upper space of the carbonization chamber where coal is not charged, and the part where coal is charged Leakage of the generated gas to the combustion chamber side from the joint portion of the furnace wall close to the bottom of the carbonization chamber, particularly near the bottom of the carbonization chamber, cannot be avoided.
[0008]
[Problems to be solved by the invention]
The present invention solves the above-mentioned problems of the prior art by a simple operation without burning out carbon adhering to the joints of the combustion chamber, and can effectively remove fine carbon in the combustion gas. A gas combustion control method and apparatus are provided.
[0009]
[Means for Solving the Problems]
The present invention has solved the above problems by a gas combustion control method and apparatus for a coke oven described in the following sections.
(1) A gas combustion control method in a combustion chamber of a coke oven , wherein the internal pressure of a carbonization chamber charged with coal is measured, and the combustion chamber adjacent to the carbonization chamber is connected to a waste gas side rich gas supply path. A method for controlling gas combustion in a coke oven, wherein non-combustible gas is supplied in accordance with the internal pressure .
(2) pre-Symbol non retardant gas, coke oven gas combustion control method according to the above (1), characterized in that the combustion exhaust gas of the coke oven.
(3 ) A gas combustion control device in a combustion chamber of a coke oven, wherein a path for supplying noncombustible gas from a rich gas supply path on the waste air side of a combustion chamber adjacent to a carbonization chamber charged with coal, and the path In addition, a booster blower that boosts and delivers nonflammable gas, a nonflammable gas flow control valve that is provided in the passage and controls the supply of nonflammable gas, and a pressure gauge that measures the internal pressure of the carbonization chamber And a control device that controls the noncombustible gas flow rate control valve based on the measured value of the pressure gauge and controls the internal pressure of the combustion chamber.
(4 ) The coke oven gas combustion control apparatus according to (3 ), wherein the non-combustible gas is a combustion exhaust gas of a coke oven.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to FIGS. 1 and 2 by taking a (Curl Still type) coke oven 10 as an example.
In FIG. 1, a two-part Karlstilt coke oven 10 is at the center of the heat storage chamber 31 and the combustion chamber 21 at the extruder side (machine side side, that is, the right side of FIG. 1). 2) and fire extinguisher side (coke side, ie, left side of FIG. 1, fire extinguisher not shown).
[0011]
Then, the introduction of the combustion gas is periodically switched, and the combustion is alternately repeated on the extruder side and the fire extinguisher side every predetermined time (20 to 30 minutes). In addition, as a chamber furnace type coke oven, there are various other types such as a Coppers type, an Otto type, etc. due to the difference in the structure of the combustion chamber and the heat storage chamber respectively devised for uniform heating of the furnace and improvement of thermal efficiency. A furnace is known.
[0012]
The coke oven 10 includes a fuel supply section 11 on each of the extruder side and the fire extinguisher side, and a combustion chamber 21, a carbonization chamber 24, a heat storage chamber 31, a waste air passage 41, and the like. The smoke is discharged from the chimney 44.
The fuel supply unit 11 is provided with a C gas pipe 12 and an M gas pipe 13 respectively so that fuel can be alternately supplied from both ends of the coke oven 10.
[0013]
The carbonization chamber 24 and the combustion chamber 21 are arranged in multiple rows alternately adjacent to form a furnace group, and a coal charging port 22 and a peephole 23 are provided on the upper surface thereof.
Further, as shown in FIG. 1, the combustion chamber 21 of the coke oven 10 is formed with a complicated path through which fuel gas and air are circulated. A heat storage chamber 31 is provided.
[0014]
The flue gas passes through the heat accumulating chamber 31 as shown by the flue gas flow 32 and transfers heat to the bricks forming the heat accumulating chamber 31, and then passes through the exhaust path 41 such as the small flue 42 and the large flue 43. After that, it is discharged from the chimney 44 to the outside air.
When the poor gas (mixed gas: M gas) is combusted, the fuel gas is sent to the M gas pipe 13 and at the same time, air is sent as shown as the air flow 14. These fuel gas and air are heated separately by exchanging heat with high-temperature bricks separately via the heat storage chamber 31, and merge in the combustion chamber 21 and burn. By doing in this way, sensible heat of combustion gas can be used effectively.
[0015]
On the other hand, during combustion of rich gas (coke oven gas: C gas), fuel gas and air are supplied directly to the burner in the combustion chamber 21 without passing through the heat storage chamber 31. The rich gas (C gas) contains a large amount of hydrocarbon gas, and if it is kept at a high temperature, it may be decomposed to generate soot, so that it is usually burned without preheating.
In the coke oven 10 to which the present invention shown in FIG. 1 is applied, the flue gas stream 32 is branched by, for example, a large flue 43 and pressurized by a booster blower 20 and disposed on the waste air side (chimney 44 side). Connected to the supply path to the rich gas supply path 12b which is a C gas branch pipe.
[0016]
Then, combustion exhaust gas is supplied from a waste gas-side rich gas supply passage 12b at the lower part of the combustion chamber 21 on both sides of the carbonization chamber 24 into which coal is charged. At this time, as shown in FIG. 2, the pressure of the carbonization chamber 24b into which the coal is charged is measured with the pressure gauge 17 together with the pressure of the combustion chamber 21 on both sides thereof, and the supply is made according to the measured pressure values. Adjust the flow rate of the combustion exhaust gas. That is, for a while after the start of coal charging, the pressure inside the carbonization chamber 24b is higher than the pressure inside the combustion chamber 21, so the pressure measurement value inside the combustion chamber is almost equal to the pressure measurement inside the carbonization chamber 21. Therefore, the flow rate of the combustion exhaust gas to be supplied is adjusted.
[0017]
By doing so, the combustion exhaust gas flow 32 can be supplied to the combustion chambers adjacent to the combustion chamber to increase the pressure of the combustion chamber in accordance with the pressure increase in the carbonization chamber that occurs during coal charging. Leakage of gas generated to the room side can be prevented, and generation of black smoke from the chimney can be eliminated.
Moreover, in the present invention, since the flue gas stream 32 is supplied to the lower part of the combustion chamber 21 on the waste air side, the carbon present in the joints of the combustion chambers 21 is not burned, and there is a concern of promoting the breakage of brick joints. Absent. Further, since the supply amount of the flue gas stream 32 is adjusted according to the pressure in the carbonization chamber 24b and the combustion chamber 21, the inflow of fuel gas and air into the combustion chamber 21 without excessive pressure increase in the combustion chamber Therefore, there is no concern that the combustion of the fuel gas in the combustion chamber will be hindered.
[0018]
In the above description, it has been described that the combustion exhaust gas stream 32 is supplied to the combustion chamber 21 on both sides of the carbonization chamber 24 into which the coal is charged, but this is a non-combustible gas in which the combustion exhaust gas is most easily obtained. This is because it is possible to introduce an incombustible gas such as nitrogen gas into the combustion chamber 21.
[0019]
【Example】
The operation was carried out by applying the gas combustion method of the coke oven according to the present invention to the operation of a Karlstilt coke oven having 102 carbonization chambers. This is an example of the present invention.
In the present invention example, the combustion exhaust gas was supplied to the combustion chamber on both sides of the carbonization chamber charged with coal of the coke oven according to the internal pressure of the carbonization chamber. The supply was performed from the waste gas side rich gas supply branch at the bottom of the combustion chamber, and was performed for 10 minutes from the start of coal charging.
[0020]
On the other hand, the operation which applied only the poor gas combustion using M gas was implemented as a prior art example. In the conventional operation, the pressure in the combustion chamber was 4 to 5 mmAq.
As a result of the above, the transition of the soot concentration after charging the coal is as shown in FIG. 3, and in the example of the present invention, it can be seen that the soot concentration after charging the coal is greatly reduced. Here, the soot concentration index is a relative value indicating the transition of the soot concentration in the conventional example, with the maximum value of the soot concentration in the combustion exhaust gas after charging the coal being 1. The dust concentration was determined as the amount of dust in the combustion exhaust gas sampled for 1 minute each by inserting a sampling pipe into the waste gas valve portion of the combustion chamber and sampling at a constant speed.
[0021]
That is, in the example of the present invention, the pressure in the combustion chamber was 6 to 7 mmAq, which was almost equal to the pressure in the carbonization chamber, so that it was possible to achieve a dust concentration reduction of 90% or more.
[0022]
【The invention's effect】
By applying the present invention, the leakage of generated gas from the carbonization chamber side to the combustion chamber side is reduced, the fine carbon mixed in the combustion exhaust gas of the coke oven is greatly reduced, and the chimney is installed without installing a flue dust collector. It became possible to maintain the amount of dust discharged from the water at a very low level.
[0023]
In addition, since the combustion exhaust gas, which is an incombustible gas, is supplied to the lower part of the combustion chamber, the carbon existing in the joints of the combustion chamber is not burned, and the joint breakage of the bricks is not promoted.
[Brief description of the drawings]
FIG. 1 is a schematic view of a coke oven to which the present invention is applied.
FIG. 2 is a schematic diagram showing a gas combustion flow of a coke oven to which the present invention is applied.
FIG. 3 is a graph showing the change over time in the dust concentration of the present invention example and the conventional example.
[Explanation of symbols]
10 (Carlstil type) coke oven
11 Fuel supply section
12 C gas piping
12b Rich gas supply path (C gas branch pipe)
13 Poor gas supply channel (M gas piping)
14 Air flow
16 Waste air valve
17 Pressure gauge
18 Control unit
19 Combustion exhaust gas (non-combustible gas) flow control valve
20 Booster blower
21 Combustion chamber
22 Coal charging entrance
23 Peephole
24 Carbonization chamber
24b Carbonization chamber (charging coal)
31 Thermal storage room
32 Flue gas flow
41 Waste air route
42 Small flues
43 Large flues
44 Chimney

Claims (4)

コークス炉の燃焼室におけるガス燃焼制御方法であって、
石炭を装入する炭化室の内部圧力を測定し、前記炭化室に隣接する燃焼室に、廃気側の富ガス供給路から前記内部圧力に応じて不燃性ガスを供給することを特徴とするコークス炉のガス燃焼制御方法。
A method for controlling gas combustion in a combustion chamber of a coke oven,
The internal pressure of the carbonization chamber charged with coal is measured, and a noncombustible gas is supplied to the combustion chamber adjacent to the carbonization chamber from the rich gas supply path on the waste air side according to the internal pressure. Coke oven gas combustion control method.
前記不燃性ガスを、コークス炉の燃焼排ガスとすることを特徴とする請求項1に記載のコークス炉のガス燃焼制御方法。The method for controlling gas combustion in a coke oven according to claim 1, wherein the non-combustible gas is used as combustion exhaust gas from a coke oven. コークス炉の燃焼室におけるガス燃焼制御装置であって、
石炭を装入する炭化室に隣接する燃焼室の廃気側の富ガス供給路から不燃性ガスを供給する経路と、
該経路に、不燃性ガスを昇圧して送給する昇圧ブロワと、
該経路中に設けられ、不燃性ガスの供給を調節する不燃性ガス流量調節弁と、
前記炭化室の内部圧力を測定する圧力計と、
該圧力計の測定値に基づき前記不燃性ガス流量調節弁を制御し、前記の燃焼室の内部圧力を制御する制御装置と、
を有することを特徴とするコークス炉のガス燃焼制御装置。
A gas combustion control device in a combustion chamber of a coke oven,
A path for supplying non-combustible gas from a rich gas supply path on the waste air side of the combustion chamber adjacent to the carbonization chamber charged with coal;
A booster blower that boosts and delivers non-flammable gas to the path;
A non-flammable gas flow control valve provided in the path for adjusting the supply of non-flammable gas;
A pressure gauge for measuring the internal pressure of the carbonization chamber;
A control device for controlling the incombustible gas flow rate control valve based on the measured value of the pressure gauge and controlling the internal pressure of the combustion chamber;
A gas combustion control device for a coke oven, comprising:
前記不燃性ガスを、コークス炉の燃焼排ガスとすることを特徴とする請求項に記載のコークス炉のガス燃焼制御装置。The coke oven gas combustion control apparatus according to claim 3 , wherein the non-combustible gas is a combustion exhaust gas of a coke oven.
JP2002149928A 2002-05-24 2002-05-24 Coke oven gas combustion control method and apparatus Expired - Fee Related JP3948347B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002149928A JP3948347B2 (en) 2002-05-24 2002-05-24 Coke oven gas combustion control method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002149928A JP3948347B2 (en) 2002-05-24 2002-05-24 Coke oven gas combustion control method and apparatus

Publications (2)

Publication Number Publication Date
JP2003342581A JP2003342581A (en) 2003-12-03
JP3948347B2 true JP3948347B2 (en) 2007-07-25

Family

ID=29767899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002149928A Expired - Fee Related JP3948347B2 (en) 2002-05-24 2002-05-24 Coke oven gas combustion control method and apparatus

Country Status (1)

Country Link
JP (1) JP3948347B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103911166A (en) * 2014-04-15 2014-07-09 石家庄新华能源环保科技股份有限公司 Semi-coke furnace capable of processing pulverized coal raw material

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007045871A (en) * 2005-08-08 2007-02-22 Jfe Steel Kk Method for burning soot dust in coke oven
EP3531018B1 (en) 2012-07-31 2024-03-20 SunCoke Technology and Development LLC System for handling coal processing emissions
US9243186B2 (en) 2012-08-17 2016-01-26 Suncoke Technology And Development Llc. Coke plant including exhaust gas sharing
US9359554B2 (en) 2012-08-17 2016-06-07 Suncoke Technology And Development Llc Automatic draft control system for coke plants
US9169439B2 (en) 2012-08-29 2015-10-27 Suncoke Technology And Development Llc Method and apparatus for testing coal coking properties
US10883051B2 (en) 2012-12-28 2021-01-05 Suncoke Technology And Development Llc Methods and systems for improved coke quenching
US9238778B2 (en) 2012-12-28 2016-01-19 Suncoke Technology And Development Llc. Systems and methods for improving quenched coke recovery
WO2014105063A1 (en) 2012-12-28 2014-07-03 Suncoke Technology And Development Llc. Systems and methods for maintaining a hot car in a coke plant
US10047295B2 (en) 2012-12-28 2018-08-14 Suncoke Technology And Development Llc Non-perpendicular connections between coke oven uptakes and a hot common tunnel, and associated systems and methods
US9476547B2 (en) 2012-12-28 2016-10-25 Suncoke Technology And Development Llc Exhaust flow modifier, duct intersection incorporating the same, and methods therefor
WO2014105065A1 (en) 2012-12-28 2014-07-03 Suncoke Technology And Development Llc. Vent stack lids and associated systems and methods
CN104902984B (en) 2012-12-28 2019-05-31 太阳焦炭科技和发展有限责任公司 System and method for removing the mercury in emission
US9273250B2 (en) 2013-03-15 2016-03-01 Suncoke Technology And Development Llc. Methods and systems for improved quench tower design
PL3090034T3 (en) 2013-12-31 2020-10-05 Suncoke Technology And Development Llc Methods for decarbonizing coking ovens, and associated systems and devices
WO2016004106A1 (en) 2014-06-30 2016-01-07 Suncoke Technology And Development Llc Horizontal heat recovery coke ovens having monolith crowns
AU2015308687A1 (en) 2014-08-28 2017-03-16 Suncoke Technology And Development Llc Improved burn profiles for coke operations
JP2017526798A (en) 2014-09-15 2017-09-14 サンコーク テクノロジー アンド ディベロップメント リミテッド ライアビリティ カンパニー Coke oven with monolith component structure
BR112017014233A2 (en) 2014-12-31 2018-03-27 Suncoke Tech & Development Llc coke material multimodal beds
CN107922846B (en) 2015-01-02 2021-01-01 太阳焦炭科技和发展有限责任公司 Integrated coker automation and optimization using advanced control and optimization techniques
US11060032B2 (en) 2015-01-02 2021-07-13 Suncoke Technology And Development Llc Integrated coke plant automation and optimization using advanced control and optimization techniques
AU2016382975A1 (en) 2015-12-28 2018-07-19 Suncoke Technology And Development Llc Method and system for dynamically charging a coke oven
BR112018074924A2 (en) 2016-06-03 2019-03-12 Suncoke Technology And Development Llc methods and systems to automatically generate corrective action in an industrial facility
CA3064430C (en) 2017-05-23 2022-04-26 Suncoke Technology And Development Llc System and method for repairing a coke oven
CA3125337C (en) 2018-12-28 2022-06-21 Suncoke Technology And Development Llc Particulate detection for industrial facilities, and associated systems and methods
CA3125332C (en) 2018-12-28 2022-04-26 Suncoke Technology And Development Llc Decarbonization of coke ovens, and associated systems and methods
BR112021012455B1 (en) 2018-12-28 2023-10-24 Suncoke Technology And Development Llc COKE OVEN
BR112021012725B1 (en) 2018-12-28 2024-03-12 Suncoke Technology And Development Llc METHOD FOR REPAIRING A LEAK IN A COKE OVEN OF A COKE OVEN, METHOD FOR REPAIRING THE SURFACE OF A COKE OVEN CONFIGURED TO OPERATE UNDER NEGATIVE PRESSURE AND HAVING AN OVEN FLOOR, AN OVEN CHAMBER AND A SINGLE CHIMNEY, AND METHOD OF CONTROLLING UNCONTROLLED AIR IN A SYSTEM FOR COAL COKE
CA3125340C (en) 2018-12-28 2022-04-26 Suncoke Technology And Development Llc Spring-loaded heat recovery oven system and method
WO2020140074A1 (en) 2018-12-28 2020-07-02 Suncoke Technology And Development Llc Improved oven uptakes
US11486572B2 (en) 2018-12-31 2022-11-01 Suncoke Technology And Development Llc Systems and methods for Utilizing flue gas
WO2020142391A1 (en) 2018-12-31 2020-07-09 Suncoke Technology And Development Llc Methods and systems for providing corrosion resistant surfaces in contaminant treatment systems
BR112022022326A2 (en) 2020-05-03 2022-12-13 Suncoke Tech & Development Llc HIGH QUALITY COKE PRODUCTS
WO2023081821A1 (en) 2021-11-04 2023-05-11 Suncoke Technology And Development Llc Foundry coke products, and associated systems, devices, and methods
US11946108B2 (en) 2021-11-04 2024-04-02 Suncoke Technology And Development Llc Foundry coke products and associated processing methods via cupolas

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103911166A (en) * 2014-04-15 2014-07-09 石家庄新华能源环保科技股份有限公司 Semi-coke furnace capable of processing pulverized coal raw material

Also Published As

Publication number Publication date
JP2003342581A (en) 2003-12-03

Similar Documents

Publication Publication Date Title
JP3948347B2 (en) Coke oven gas combustion control method and apparatus
CN104685027B (en) Comprise the coker that waste gas is shared
BR102013002741B1 (en) Automatic draft control system for coconut trees
RU153204U1 (en) HEATING BOILER
KR940011377A (en) Recuperative glass furnaces, methods of operation thereof, and methods of reducing the emission of harmful substances in the waste gases leaving the glass furnaces
JPS59217411A (en) Method for burning combustible and combustion chamber for burning exhaust gas
JP6653862B2 (en) Method and ignition device for combustion management in an ignition device
CN108709413A (en) A method of dry coke quenching warm air is carried out using combustion gas furnace and dries baker
JP3948346B2 (en) Coke oven gas combustion method
JP2007045871A (en) Method for burning soot dust in coke oven
JP3912115B2 (en) Coke oven gas combustion method
CN116658913A (en) Asphalt smoke incinerator and control method thereof
JPS5659115A (en) Improved wall surface burner type duct heat and method of controlling thereof
CN105650618A (en) Water gas production and combustion integrated combustion method and equipment
CN105925276B (en) A kind of coke oven combustion chamber segmentation gas supply heating device and its method
CN206787262U (en) Energy saving and environment friendly rock wool drying hot-blast stove
JP5268561B2 (en) Daily combustion management method in oil fired boiler facilities
CN106047377B (en) A kind of quirk of pyrolysis oven, pyrolysis oven and application
CN104296151A (en) Trapezoid fire grate with V-shaped cracks and hot-blast heater achieving automatic stoking
CN220083083U (en) Integrated kiln
JP3918476B2 (en) Coke oven exhaust gas discharge device and black smoke discharge prevention method
CN209783322U (en) Flue gas heating device
JP2821985B2 (en) Combustible gas combustion control method for coke dry fire extinguishing equipment
JP3557819B2 (en) Prevention method of black smoke generation from coke oven chimney
SU715891A1 (en) Gas exhaust neutralisation plant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070327

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070409

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100427

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110427

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110427

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120427

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130427

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees