JP3948323B2 - Method of joining aluminum or aluminum alloy sheet - Google Patents

Method of joining aluminum or aluminum alloy sheet Download PDF

Info

Publication number
JP3948323B2
JP3948323B2 JP2002093628A JP2002093628A JP3948323B2 JP 3948323 B2 JP3948323 B2 JP 3948323B2 JP 2002093628 A JP2002093628 A JP 2002093628A JP 2002093628 A JP2002093628 A JP 2002093628A JP 3948323 B2 JP3948323 B2 JP 3948323B2
Authority
JP
Japan
Prior art keywords
plate
joining
aluminum
aluminum alloy
bonding material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002093628A
Other languages
Japanese (ja)
Other versions
JP2002331370A (en
Inventor
純 原
雅章 熊井
久司 堀
慎也 牧田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP2002093628A priority Critical patent/JP3948323B2/en
Publication of JP2002331370A publication Critical patent/JP2002331370A/en
Application granted granted Critical
Publication of JP3948323B2 publication Critical patent/JP3948323B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、板厚が相違する一対のアルミニウム又はアルミニウム合金(以下、単にアルミニウム合金という)板材で、特に圧延成形された板材をそれぞれの端面に沿って、突合わせ状態に接合する接合方法に関する。
【0002】
【従来の技術】
近年、アーク溶接等に比べて簡単に金属材同士を接合できる摩擦攪拌接合が注目されている。この摩擦攪拌接合は図8(A)及び(B)に示すように、互いに端面を突合わせ且つ拘束した一対のアルミニウム合金製の板材20,21間の突合わせ面に沿って、回転する工具22を押圧しつつ移動することにより施される。この工具22は、被接合材より硬度及び軟化温度が高い材料からなり、回転する円筒形のボビン24と、その凹んだ底面である表面抑え部26と、その中心から同軸に垂下する摩擦ピン28からなる。
【0003】
そして、図8(B)に示すように、工具22は上記突合わせ面に沿ってやや傾けた状態で水平(左)方向に移動され、且つ垂直方向の押し込み力が付加される。上記摩擦ピン28の周面には、図示しない水平方向に沿ったネジ状の摩擦攪拌翼が形成され、摩擦熱の発生及びこれにより軟化した材料の攪拌を容易にしている。
尚、通常摩擦ピン28の摩擦部の長さは3〜10mm、その直径は3〜10mm、表面抑え部26の直径は6〜25mmである。また、この場合工具22の回転速度は500〜15000rpm、送り速度は0.05〜2m/分で、工具22に加える軸方向の押し込み力は1kN〜20kNの範囲内で、接合する板材の板厚や材質に応じて選定される。
【0004】
上記摩擦ピン28の回転と移動に伴って、各板材20,21の突合わせ面付近のアルミニウム合金は、摩擦熱により加熱して可塑化されると共に、突合わせ面を挟んで各板材20,21間に渉って水平及び垂直方向に流動化し攪拌される。また、表面抑え部26は、流動化したアルミニウム合金の垂直方向の動きを抑制し、摩擦熱を発生させると共に、表面抑え部26と摩擦ピン28とにより流動化されたアルミニウム合金を攪拌する。これにより、図8(C)に示すように、上記アルミニウム合金は固化し、一定の幅と深さを有する接合線Wとなる。従って、アーク溶接等のように盛り上がった溶接ビートがなく、後加工が容易になる。
【0005】
【発明が解決すべき課題】
しかしながら、上記流動化されたアルミニウム合金の攪拌及び表面抑え部26の押圧により、板材20,21の接合部付近の板厚が減り、図8(C)に示すように、接合線Wの表面に凹溝Waを形成される。この凹溝Waの深さd分だけ、少なくとも一対の板材20,21間の接合強度が低下するという問題を有する。この凹溝Waの問題は、アルミニウム合金板材の板厚が薄くなるほど顕著である。即ち、厚肉の板材同士を接合する場合、接合線Wを深く形成しても形成される凹溝Waの深さはあまり変わらないため、所要の接合強度が保てるためである。また、凹溝Wa表面の両端に形成される一対の突起Weは、摩擦攪拌の結果各板材20,21の表面SFよりも突出するバリで、これが形成されない場合もある。
【0006】
一方、図8(D)に示すように、一対のアルミニウム合金の押出形材30,31を接合する場合、各形材30,31の端面に沿って上記凹溝Waの深さdに相当する分を厚肉にした凸条部32,32を予め一体に形成することができる。
従って、各形材30,31の端面同士を摩擦攪拌接合による深い接合線Wを形成すると、図8(E)に示すように、各凸条部32の高さにより、接合線W表面の凹溝Waの深さd相当分の板厚減少を吸収することができる。
しかしながら、接合すべき部材が圧延成形材の場合等、上記押出形材30等で凸条部32を一体に成形しておくことが困難な場合、図8(D),(E)で示した接合方法は適用できないと共に、板厚が相違する板材同士の摩擦攪拌接合については、これまで全く知られていなかった。
本発明は、以上に説明した従来の技術における問題点を解決し、接合部における板厚減少を生じさせず、板厚が相違する比較的薄肉のアルミニウム合金板材同士を所要の強度を保ちつつ、確実且つ容易に摩擦攪拌接合できるアルミニウム合金板材の接合方法を提供することを課題とする。
【0007】
【課題を解決するための手段】
本発明は、上記課題を解決するため、一対のアルミニウム合金板材の端面同士間に断面略T形等の接合材の垂直片を挟持し、且つこの接合材の水平片を各板材の表面に接触させて、一対の板材と接合材の三者を同時に摩擦攪拌接合することにより、各板材の板厚を補償することに着想して成されたものである。
【0008】
即ち、本発明のアルミニウム又はアルミニウム合金板材の接合方法(請求項1)は、板厚が相違する一対のアルミニウム又はアルミニウム合金板材の端面間に、断面略T形の接合材の垂直片を挟持し、且つこの接合材の水平片における段違いの底面を上記板材の表面に接触させる工程と、上記一対のアルミニウム又はアルミニウム合金板材同士の表面側から、回転するボビン底面の表面抑え部で上記接合材の水平片における傾斜した上面を押圧し、この表面抑え部の中心から垂下し表面抑え部と同時に回転する摩擦ピンを接合材の水平片に貫通し、且つその垂直片および上記板材同士の端面間に対し斜めで且つ所定の深さ進入させると共に、このボビン及び摩擦ピンを回転しつつ上記板材同士の端面間の長手方向に沿って移動させて摩擦攪拌接合を施す工程と、を含み、上記一対の板材間の長手方向に沿って表面が傾いた接合線を形成する、
ことを特徴とする。
【0009】
これによれば、板厚が相違する一対の板材と共に可塑化され流動化する接合材の水平片により、各板材間に跨る接合部の板厚減少を補償することができ、摩擦攪拌接合による薄肉の板材同士の突合わせ接合を所要の強度を有して確実に施すことができる。しかも、接合材の固定は、その垂直片を一対の板材間に挟持するのみで良く、通常の板材の拘束方法により容易に行うことが可能である。
【0010】
更に、板厚が相違する一対の板材に応じて、接合材の傾斜した上面を有する水平片が配置でき、摩擦攪拌接合による板厚減少を効果的に防止することできる。
【0011】
更に、前記ボビン及び摩擦ピンは、前記接合材の水平片の傾斜した上面に対して、直交するように傾けられつつ用いる、アルミニウム又はアルミニウム合金板材の接合方法(請求項)も含まれる。
これによれば、板厚が相違する一対の前記板材を突き合わせつつ摩擦攪拌接合することを一層確実に行える。尚、上記ボビン及び摩擦ピンは、後述する工具に含まれる。
【0012】
加えて、前記接合材が、前記アルミニウム又はアルミニウム合金板材と同じ組成又は異なる組成のアルミニウム又はアルミニウム合金製の押出形材である、アルミニウム合金板材の接合方法(請求項)も含まれる。
これによれば、摩擦攪拌接合を一層確実に施すことができ、且つ押出形材の接合材を用いるため、その製造は押出成形にて簡単でき、断面形状の設計も容易であると共に、板材同士の位置決めも容易に行える
【0013】
【発明の実施の形態】
以下において本発明の実施に好適な形態を図面と共に説明する。
図1〜6は、本発明の前提となる参考形態の摩擦攪拌接合方法に関する。
図1(A)は、接合すべき一対のアルミニウム合金板材1a,1bと、その間に介在させる接合材2の断面を示す。上記板材1a,1bのアルミニウム合金には、純Al系(例えばJIS:A1080,A1100)、Al−Mn系(例えばJIS:A3003)、Al−Mg系(例えばJIS:A5052,A5457)、Al−Mg−Si系(例えばJIS:A6061)等が用いられる。また、接合材2は、水平片4とその中央から直角に延びる垂直片6とを一体に有する断面略T形を呈し、アルミニウム合金製の押出形材からなる。係る形材2のアルミニウム合金には、例えばAl−Mg−Si系のJIS:A6061−T5,A6063−T5又はT6,6N01−T5等が用いられる。尚、板材1a,1bの材質や接合材2の合金組成は、何れのものでも利用できるが、接合後の強度を勘案して適切なものを選択すれば良い。また、板材1a,1bの板厚は、約3〜12mm程度である。
【0014】
先ず、図1(A)及び(B)に示すように、一対の板材1a,1bの端面間に接合材2の垂直片6を挿入し、且つ水平片4の左右半分ずつを板材1a,1bの各表面に接触するようにした状態で、板材1a,1bを図示しない治具により拘束する。これにより、接合材2はその垂直片6が板材1a,1bの端面間に挟持されつつ固定される。尚、接合材2における垂直片6の長さは、板材1a,1bの板厚と同じである。
次に、図1(B)に示すように、拘束した上記板材1a,1bの外側で且つ接合材2の水平片4の中央付近に摩擦攪拌接合用の工具10を近付ける。工具10は円筒形のボビン12と、その底面を形成する緩くカーブして凹む表面抑え部14と、その中心からボビン12と同軸にして垂下する摩擦ピン16とを有する。該ピン16の表面には図示しないネジ形状の水平な摩擦攪拌翼が形成されている。
【0015】
尚、摩擦ピン16の長さは3〜10mm、その直径は2〜10mm、表面抑え部14の直径は6〜25mmである。また、この工具10の回転速度は500〜15000rpm、送り速度は0.05〜2m/分で、工具10の軸方向に加える押し込み力は1kN〜20kN程度で、板厚や材質及び接合材の寸法や材質に応じて適正値を選択する。
そして、図1(C)に示すように、回転する工具10の摩擦ピン16を、接合材2の水平片4に貫通させ且つその垂直片6の下部付近まで進入させる。同時に工具10の表面抑え部14は、接合材2の水平片4を上から押え込む。この状態で、工具10を図示で手前方向に移動(送り)させることにより、参考形態の摩擦攪拌接合の施工が可能となる。
【0016】
ここで、板材1a,1bと接合材2との関係を図2(A)により説明する。
接合材2の垂直片6の高さfは、板材1a,1bの板厚tと同じが僅かに相違する程度が望ましい。これにより、板材1a,1bの端面間が垂直片6にて占有され、後述する工具10による健全な接合線Wを断面全体に形成し得る。
また、接合材2の水平片4の厚さgは、板材1a,1bの板厚tの0.2〜1.0倍とするのが望ましい。これにより、比較的薄肉の板材の1a,1bの端面付近の板厚を増加でき、摩擦攪拌接合しても強度の低下を防ぎ、所要の接合強度を得ることが容易になる。尚、0.2倍未満では板厚が増えず、接合後に板材1a,1bの板厚tよりも薄肉の部分が接合部に生じるため、接合強度が不十分になり得る。一方、1.0倍を超えると接合材2のサイズが大きくなり、その加工に要する時間も多くなると共に、摩擦ピン16が板材1a,1bの端面間に進入しにくくなる。
【0017】
更に、接合材2と工具10との関係を図2(A)及び(B)により説明する。
接合材2の水平片4の幅Xは、工具10におけるボビン底面12(即ち表面抑え部14の直径)の外径Pの0.8〜1.0倍とするのが望ましい。これにより、ボビン12底面の表面抑え部14により水平片4の略全体を下向きに押圧でき、且つ可塑・流動化したアルミニウム合金が外部に飛散するのを防ぎ得る。
また、工具10における摩擦ピン16の直径pは、接合材2の垂直片6の厚さxの1.2倍以上とすることが望ましい。これにより、摩擦ピン16が垂直片6とその両側の板材1a,2aの端面付近にも進入し、これら三者間の各アルミニウム合金の可塑・流動化による健全な攪拌部を有する接合線Wを形成することができる。尚、上記直径pの上限は厚さxの約2.0倍程度が好ましい。
更に、前記摩擦ピン16の長さSは、板材1a(1b)の板厚tと接合材2の水平片4の厚さgとの合計よりも0.05〜0.4mm短くすることが望ましい。これにより、健全な攪拌部を有する接合線Wを接合部の断面全体に形成できる。
【0018】
図3は、本発明の参考形態である摩擦攪拌接合の工程に関する。
図3(A)は、各端面間に接合材2を固定した板材1a,1bに対し、500〜15000rpmで回転する工具10を僅かに接合部の長手方向に傾けて進入させる状態を示す。工具10は、図3(B)に示すように、摩擦ピン16の先端を接合材2の垂直片6の下部付近まで進入させ、且つ表面抑え部14を水平片4全体に押圧する。この際の工具10の軸方向に加える押し込み力は1kN〜20kN程度である。この状態で、工具10は図示で左側に送られる。その送り速度は、0.05〜2m/分である。
これにより、図3(C)にも示すように、上記摩擦ピン16の回転と移動に伴って、各板材1a,1bの端面付近と接合材2の水平・垂直片4,6の各アルミニウム合金は、摩擦熱により加熱して可塑化されると共に、垂直片6を挟んで各板材1a,1b間に渉って水平及び垂直方向に流動化される。また、表面抑え部14は、流動化したアルミニウム合金の垂直方向の動きを抑制すると共に、摩擦ピン16により流動化されたアルミニウム合金を攪拌する。
【0019】
その結果、工具10が通過した跡には、図3(D)に示すように、上記アルミニウム合金は固相状態で固化し、一定の幅と深さの攪拌部を有する接合線Wが形成される。この接合線Wの表面には、中央に極く浅い凹溝Waと、その両側に低い一対の凸部Wbが形成される。この凹溝Wa及び凸部Wbは、何れも各板材1a,1bの各表面よりも外方に位置しているため、接合線Wによって板材1a,1bの板厚よりも薄肉の部分が形成されない。また、接合線Wの底部Wcは各板材1a,1bの反対側の裏面に達している。係る接合線Wを形成することにより、板材1a,1b間の接合強度を低下させず、健全な接合を行うことがてきる。尚、各凸部Wbを凹溝Waの位置まで切除すると外観上も好ましくなる。また、接合部の強度低下を防ぐため、外観上支障なければ板材1a,1bの板厚よりも、接合部の最少厚さが大きくなるように、接合材2の寸法を設定しても良い。
【0020】
図4(A)は、板材1a,1b間に固定した接合材2の水平片4の幅Xが、工具10におけるボビン12の外径Pの1.0倍の条件で、摩擦攪拌接合を施すことによって得られた接合線Wの断面を示す。この場合、ボビン12底面の表面抑え部14の直径pと水平片4の幅Xが同じであるため、図示のように、接合線Wの表面の両側にはバリ状に斜めに突出した凸部Wbが一対ほぼ対称に形成される。従って、各凸部Wbを凹溝Waの位置まで切除することが必要となる。
また、図4(B)は、板材1a,1bの板厚tを最小の3mmとし、両者間に水平片4の厚さgをその0.4倍で且つ水平片4の幅Xをボビン12の外径Pの0.8倍として接合材2を固定して、摩擦攪拌接合を施すことによって得られた接合線Wの断面を示す。この場合、接合線Wは比較的偏平な断面形状となるが、その表面の凹溝Wa及び凸部Wbは、何れも各板材1a,1bの各表面よりも外方に位置していた。
【0021】
図4(C)は異なる参考形態の接合材2′を示す。この接合材2′は、長尺で矩形のアルミニウム合金の板材をその長手方向に沿う中央で断面U形に折り曲げて垂直片6とし、且つその左右両端部を90度互いに反対側にそれぞれ折り曲げて水平片4を形成したものである。この場合、水平片4の厚さは垂直片6の約半分になるので、これを留意して前記板材1a,1b及び工具10の各部との条件を考慮することが必要である。尚、断面U形の垂直片6の中に隙間が多少残っていても、板材1a,1bの端面間に挟持する際に強く押圧して解消でき、また、水平片4が多少上向きに傾斜していても、工具10のボビン12による軸方向の押圧力によって、摩擦攪拌接合に供することが可能である。
【0022】
図5は、異なる参考形態の接合方法に関する。
図5(A)は、前記形態よりも厚肉の約14〜25mmの板厚tを有する板材1a,1bと、これらの間に固定する一対の接合材2,2を示す。図5(A)に示すように、各接合材2はその垂直片6を板材1a,1bの端面の両側から互いに接近するように挿入して、挟持・固定される。この場合、二つの垂直片6の高さfの合計は、板材1a,1bの各板厚tと略同じか、僅かに長めとする。
次に、前記工具10を用いて板材1a,1bの一方の表面からその表面に位置する接合材2と共に、摩擦攪拌接合を施して前記同様の接合線Wを形成する。更に、板材1a,1bの他方の表(裏)面からその裏面に位置する接合材2と共に、摩擦攪拌接合を施して同様の接合線Wを形成する。
【0023】
その結果、図5(B)に示すように、一対の接合線Wが対称に位置し、且つそれぞれの底部Wcは互いに重複し合う。しかも、各接合線Wの表面における浅い凹溝Waと凸部Wbは、何れも板材1a,1bの各表裏面より外方に位置し、強度を保った接合を得ることができる。
【0024】
尚、図5(A)に示す状態で一対の接合材2,2を用いず、図6(A)に示すように、これらを一つの垂直片6で一体に接合した参考形態の断面略エ字形の押出形材2″を用いることもできる。係る断面略エ字形の押出形材2″の垂直片6の高さfは、接合すべき板材1a,1bの板厚よりも僅かに大きくしておけば良い。この断面略エ字形の押出形材2″は、隣接する板材1a,1bの各端面間に、その長手方向に沿って挿入する。これにより、約20mm程度の厚肉のアルミニウム合金板材同士を少ない接合材で、位置決めを容易にしつつ確実に摩擦攪拌接合を施すことが可能となる。
図6(B)は、更に異なる参考形態の接合材に関する。
図6(B)に示すように、一対のアルミニウム合金板材1a,1bの端面間に沿って、断面チャンネル形の一対の接合材2a,2aを挟持し固定して用いることもできる。この形態では、一対の接合材2a,2aで本発明の接合材となる。
【0025】
図7は、本発明の接合方法における実施の形態に関する。
図7(A)に示すように、接合すべき一対のアルミニウム合金板材1a,1bの板厚が相違している。この際、図7(B)に示すように、水平片4bと垂直片6とを有する断面略T形の接合材2bの垂直片6を、板材1a,1b間に挟んで固定する上記水平片4bは、傾斜した上面4cと段違いの底面4d,4eとを有し、上記固定に際し、係る底面4d,4eを板材1a,1bの表面に接触させている
次いで、水平片4bの傾斜した上面4cに対して、摩擦ピン16が直交するように、工具10を同様に傾斜させて摩擦攪拌接合を施す。この際、摩擦ピン16は、垂直片6および板材1a,1b間に対し、斜めに進入した状態で回転しつつ、図7 ( ) の前後方向、即ち、板材1a,1b間の長手方向に沿って移動する
その結果、図7(C)に示すように、水平片4b及び工具10に倣って、凹溝Waおよび一対の凸部Wbを含む表面が傾いた接合線Wを板材1a,1b間に形成して接合することができる。
【0026】
尚、断面略T形又は略エ字形の接合材の水平片における外側のコーナ部に面取りを形成したり、或いは水平片の表面を緩くカーブした湾曲面とした断面の押出形材を用いることも可能である。
【0027】
【発明の効果】
本発明の接合方法(請求項1)によれば、板厚が相違する一対のアルミニウム又はアルミニウム合金板材と共に可塑化され流動化する接合材の水平片により、各板材間の板厚減少を補うことができ、摩擦攪拌接合による薄肉の板材同士の突合わせ接合を所要の強度を有して確実に施すことができる。しかも、接合材の固定は、その垂直片を一対の板材間に挟持するのみで良く、通常の板材の拘束方法により容易に行うことが可能である。
また、請求項2の接合方法によれば、板厚が相違し且つ薄肉の板材同士の摩擦攪拌接合による突合わせ接合を一層確実に行うことが可能となる。
【図面の簡単な説明】
【図1】(A)〜(C)は参考形態の接合方法の各工程を示す部分概略図。
【図2】(A)は参考形態における板材と接合材の関係を説明する概略図、(B)は係る形態における接合材と工具の関係を説明する概略図。
【図3】(A)〜(D)は参考形態の接合方法の各工程を示す部分概略図。
【図4】(A)及び(B)は参考形態の接合方法により得られた各接合部を示す部分概略図、(C)は異なる参考形態の接合材を用いる工程の部分概略図。
【図5】(A)及び(B)は異なる参考形態の接合方法の各工程を示す部分概略図。
【図6】(A)及び(B)は更に異なる参考形態の接合方法を示す部分概略図。
【図7】(A)〜(C)は本発明の実施の形態である接合方法の各工程を示す部分概略図。
【図8】(A)〜(C)は従来の摩擦攪拌接合の各工程を示す概略図、(D)と(E)は押出形材同士の摩擦攪拌接合の各工程を示す部分概略図。
【符号の説明】
1a,1b…アルミニウム合金板材
2b…………接合材
4b…………水平片
4c…………上面
4d,4e底面
6……………垂直片
12…………ボビン
14…………表面抑え部
16…………摩擦ピン
W……………接合線
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a joining method in which a pair of aluminum or aluminum alloy (hereinafter simply referred to as aluminum alloy) plate materials having different plate thicknesses, and particularly, a rolled and formed plate material are joined in a butt state along respective end surfaces.
[0002]
[Prior art]
In recent years, friction stir welding that can easily join metal materials to each other as compared with arc welding or the like has attracted attention. In this friction stir welding, as shown in FIGS. 8A and 8B, a tool 22 that rotates along a butt surface between a pair of aluminum alloy plate materials 20 and 21 whose end surfaces butt and restrain each other. It is given by moving while pressing. The tool 22 is made of a material having a higher hardness and softening temperature than the material to be joined, a rotating cylindrical bobbin 24, a surface restraining portion 26 that is a concave bottom surface, and a friction pin 28 that hangs coaxially from the center thereof. Consists of.
[0003]
Then, as shown in FIG. 8B, the tool 22 is moved in the horizontal (left) direction while being slightly inclined along the abutting surface, and a vertical pushing force is applied. On the peripheral surface of the friction pin 28, a screw-like friction stirrer blade is formed along a horizontal direction (not shown) to facilitate generation of frictional heat and stirring of the softened material.
In addition, the length of the friction part of the normal friction pin 28 is 3 to 10 mm, its diameter is 3 to 10 mm, and the diameter of the surface restraining part 26 is 6 to 25 mm. Further, in this case, the rotational speed of the tool 22 is 500 to 15000 rpm, the feed speed is 0.05 to 2 m / min, and the axial pushing force applied to the tool 22 is within the range of 1 kN to 20 kN, and the thickness of the plate to be joined It is selected according to the material.
[0004]
As the friction pin 28 rotates and moves, the aluminum alloy in the vicinity of the abutting surfaces of the plate members 20 and 21 is heated and plasticized by frictional heat, and the plate members 20 and 21 are sandwiched between the abutting surfaces. In between, it is fluidized and stirred in the horizontal and vertical directions. In addition, the surface restraining portion 26 suppresses the vertical movement of the fluidized aluminum alloy to generate frictional heat, and stirs the fluidized aluminum alloy by the surface restraining portion 26 and the friction pin 28. As a result, as shown in FIG. 8C, the aluminum alloy is solidified to form a joining line W having a certain width and depth. Therefore, there is no raised welding beat like arc welding, and post-processing becomes easy.
[0005]
[Problems to be Solved by the Invention]
However, due to the stirring of the fluidized aluminum alloy and the pressing of the surface restraining portion 26, the plate thickness in the vicinity of the joint portion of the plate members 20 and 21 is reduced, and as shown in FIG. A concave groove Wa is formed. There is a problem that the bonding strength between at least the pair of plate members 20 and 21 is reduced by the depth d of the concave groove Wa. The problem of the concave groove Wa becomes more conspicuous as the thickness of the aluminum alloy sheet becomes thinner. That is, when thick plate members are joined together, the depth of the recessed groove Wa formed even if the joining line W is formed deeply does not change so much, so that the required joining strength can be maintained. Further, the pair of protrusions We formed at both ends of the surface of the concave groove Wa are burrs protruding from the surface SF of the plate members 20 and 21 as a result of frictional stirring, and this may not be formed.
[0006]
On the other hand, as shown in FIG. 8D, when joining a pair of extruded profiles 30, 31 of aluminum alloy, it corresponds to the depth d of the groove Wa along the end faces of the profiles 30, 31. The ridges 32, 32 having thick portions can be integrally formed in advance.
Therefore, when a deep joining line W is formed by friction stir welding between the end faces of the respective shapes 30 and 31, as shown in FIG. It is possible to absorb the thickness reduction corresponding to the depth d of the groove Wa.
However, in the case where it is difficult to integrally form the ridges 32 with the extruded shape member 30 or the like, such as when the member to be joined is a rolled molded material, it is shown in FIGS. 8D and 8E. A joining method cannot be applied, and friction stir welding between plate members having different plate thicknesses has never been known so far.
The present invention solves the problems in the prior art described above, does not cause a reduction in the plate thickness at the joint, while maintaining the required strength between relatively thin aluminum alloy plate materials having different plate thicknesses, It is an object of the present invention to provide a method for joining aluminum alloy sheets that can be reliably and easily subjected to friction stir welding.
[0007]
[Means for Solving the Problems]
In order to solve the above-described problems, the present invention sandwiches a vertical piece of a bonding material having a substantially T-shaped cross section between the end surfaces of a pair of aluminum alloy plate materials, and contacts the horizontal piece of the bonding material to the surface of each plate material. Thus, the idea is to compensate for the plate thickness of each plate material by simultaneously performing friction stir welding of the three members of the pair of plate material and the bonding material.
[0008]
That is, according to the method for joining aluminum or aluminum alloy sheets of the present invention (Claim 1), a vertical piece of joining material having a substantially T-shaped cross section is sandwiched between the end faces of a pair of aluminum or aluminum alloy sheets having different thicknesses. and a step of the bottom surface of the stepped in the horizontal strip of the joining material in contact with the front surface of the sheet from the surface side between the pair of aluminum or aluminum alloy sheet, the bonding material on the surface restraining portion of the bobbin bottom rotating Pressing the inclined upper surface of the horizontal piece, penetrating from the center of the surface holding part and rotating at the same time with the surface holding part, the friction pin passes through the horizontal piece of the bonding material, and between the vertical piece and the end faces of the plate members friction stir together to and enters a predetermined depth in oblique, it is moved along the longitudinal direction between the end surface of the plate member to each other while rotating the bobbin and friction pins to Includes a step of performing focus, and to form a joining line where the surface is inclined in the longitudinal direction between said pair of plate members,
It is characterized by that.
[0009]
According to this, by the horizontal piece of the joining material that is plasticized and fluidized together with a pair of plate materials having different thicknesses, it is possible to compensate for the reduction in the thickness of the joining portion straddling between the respective plate materials, and the thin wall by friction stir welding However, it is possible to reliably perform the butt joining between the plate members with the required strength. In addition, the bonding material can be fixed simply by sandwiching the vertical piece between the pair of plate members, and can be easily performed by a normal plate member restraining method.
[0010]
Furthermore , according to a pair of board | plate materials from which board thickness differs, the horizontal piece which has the inclined upper surface of a joining material can be arrange | positioned, and the board thickness reduction | decrease by friction stir welding can also be prevented effectively.
[0011]
Furthermore, the joining method (Claim 2 ) of the aluminum or aluminum alloy plate material in which the bobbin and the friction pin are used while being inclined so as to be orthogonal to the inclined upper surface of the horizontal piece of the joining material is also included.
According to this, it is possible to more reliably perform the friction stir welding while a pair of plate materials having different plate thicknesses are brought into contact with each other. The bobbin and the friction pin are included in a tool described later.
[0012]
In addition, the bonding material, the aluminum or the same or different composition of aluminum or an aluminum alloy extruded shape of aluminum alloy sheet, method of joining an aluminum alloy sheet (claim 3) are also included.
According to this, Ki de be subjected to friction stir welding more reliably, and for using the bonding material of the extruded profile, its preparation easy in extrusion molding, with the design of the cross-sectional shape is also easy, plate They can be positioned easily .
[0013]
DETAILED DESCRIPTION OF THE INVENTION
In the following, preferred embodiments of the present invention will be described with reference to the drawings.
FIGS. 1-6 is related with the friction stir welding method of the reference form used as the premise of this invention.
FIG. 1 (A) shows a cross section of a pair of aluminum alloy sheets 1a and 1b to be joined and a joining material 2 interposed therebetween. The aluminum alloys of the plate materials 1a and 1b include pure Al (for example, JIS: A1080, A1100), Al-Mn (for example, JIS: A3003), Al-Mg (for example, JIS: A5052, A5457), Al-Mg. -Si type (for example, JIS: A6061) or the like is used. The bonding material 2 has a substantially T-shaped cross section integrally including a horizontal piece 4 and a vertical piece 6 extending at a right angle from the center thereof, and is formed of an extruded shape made of an aluminum alloy. For the aluminum alloy of the shape member 2, for example, Al-Mg-Si JIS: A6061-T5, A6063-T5, T6, 6N01-T5, or the like is used. Any material may be used as the material of the plate materials 1a and 1b and the alloy composition of the bonding material 2, but an appropriate material may be selected in consideration of the strength after bonding. The plate thickness of the plate materials 1a and 1b is about 3 to 12 mm.
[0014]
First, as shown in FIGS. 1A and 1B, the vertical piece 6 of the bonding material 2 is inserted between the end surfaces of the pair of plate materials 1a and 1b, and the left and right halves of the horizontal piece 4 are respectively placed on the plate materials 1a and 1b. The plate members 1a and 1b are restrained by a jig (not shown) in a state where they are in contact with each of the surfaces. Thereby, the joining material 2 is fixed while the vertical piece 6 is sandwiched between the end faces of the plate materials 1a and 1b. In addition, the length of the vertical piece 6 in the bonding material 2 is the same as the plate thickness of the plate materials 1a and 1b.
Next, as shown in FIG. 1B, the friction stir welding tool 10 is brought close to the outside of the restrained plate members 1a and 1b and near the center of the horizontal piece 4 of the bonding material 2. The tool 10 has a cylindrical bobbin 12, a gently curving and concave surface restraining part 14 that forms the bottom surface thereof, and a friction pin 16 that hangs down coaxially with the bobbin 12 from the center thereof. A screw-shaped horizontal friction stirrer blade (not shown) is formed on the surface of the pin 16.
[0015]
In addition, the length of the friction pin 16 is 3 to 10 mm, the diameter is 2 to 10 mm, and the diameter of the surface holding portion 14 is 6 to 25 mm. The rotation speed of the tool 10 is 500 to 15000 rpm, the feed speed is 0.05 to 2 m / min, the pushing force applied in the axial direction of the tool 10 is about 1 kN to 20 kN, and the thickness, material, and dimensions of the bonding material Select an appropriate value according to the material.
Then, as shown in FIG. 1 (C), the friction pin 16 of the rotating tool 10 passes through the horizontal piece 4 of the bonding material 2 and enters the vicinity of the lower part of the vertical piece 6. At the same time, the surface holding portion 14 of the tool 10 presses the horizontal piece 4 of the bonding material 2 from above. In this state, by moving (feeding) the tool 10 toward the front in the drawing, the friction stir welding of the reference form can be performed.
[0016]
Here, the relationship between the plate materials 1a and 1b and the bonding material 2 will be described with reference to FIG.
The height f of the vertical piece 6 of the bonding material 2 is preferably the same as the thickness t of the plate materials 1a and 1b but slightly different. Thereby, the space between the end surfaces of the plate materials 1a and 1b is occupied by the vertical piece 6, and a healthy joining line W by the tool 10 described later can be formed in the entire cross section.
Further, the thickness g of the horizontal piece 4 of the bonding material 2 is preferably 0.2 to 1.0 times the plate thickness t of the plate materials 1a and 1b. As a result, the plate thickness in the vicinity of the end surfaces of the relatively thin plate materials 1a and 1b can be increased, and even when friction stir welding is performed, the strength is prevented from lowering and the required bonding strength can be easily obtained. If the thickness is less than 0.2 times, the plate thickness does not increase, and a portion thinner than the plate thickness t of the plate members 1a and 1b is formed in the bonded portion after bonding, so that the bonding strength may be insufficient. On the other hand, if it exceeds 1.0 times, the size of the bonding material 2 becomes large, the time required for the processing increases, and the friction pin 16 hardly enters between the end faces of the plate materials 1a and 1b.
[0017]
Further, the relationship between the bonding material 2 and the tool 10 will be described with reference to FIGS.
The width X of the horizontal piece 4 of the bonding material 2 is desirably 0.8 to 1.0 times the outer diameter P of the bobbin bottom surface 12 (that is, the diameter of the surface restraining portion 14) of the tool 10. Thereby, the surface restraining portion 14 on the bottom surface of the bobbin 12 can press the substantially entire horizontal piece 4 downward, and can prevent the plasticized and fluidized aluminum alloy from being scattered outside.
Further, the diameter p of the friction pin 16 in the tool 10 is desirably 1.2 times or more the thickness x of the vertical piece 6 of the bonding material 2. As a result, the friction pin 16 also enters the vicinity of the end face of the vertical piece 6 and the plate materials 1a and 2a on both sides thereof, and a joining line W having a sound stirring portion by plasticizing and fluidizing each aluminum alloy between these three members is formed. Can be formed. The upper limit of the diameter p is preferably about 2.0 times the thickness x.
Furthermore, the length S of the friction pin 16 is preferably 0.05 to 0.4 mm shorter than the sum of the thickness t of the plate material 1a (1b) and the thickness g of the horizontal piece 4 of the bonding material 2. . Thereby, the joining line W which has a healthy stirring part can be formed in the whole cross section of a junction part.
[0018]
FIG. 3 relates to a friction stir welding process which is a reference embodiment of the present invention.
FIG. 3A shows a state in which the tool 10 rotating at 500 to 15000 rpm is slightly inclined in the longitudinal direction of the joint portion with respect to the plate materials 1a and 1b in which the joint material 2 is fixed between the end faces. As shown in FIG. 3B, the tool 10 advances the tip of the friction pin 16 to the vicinity of the lower portion of the vertical piece 6 of the bonding material 2 and presses the surface holding portion 14 to the entire horizontal piece 4. The pushing force applied in the axial direction of the tool 10 at this time is about 1 kN to 20 kN. In this state, the tool 10 is sent to the left side in the figure. The feeding speed is 0.05 to 2 m / min.
Accordingly, as shown in FIG. 3C, the aluminum alloy of the horizontal and vertical pieces 4 and 6 of the joining material 2 and the vicinity of the end surfaces of the plate materials 1a and 1b as the friction pin 16 rotates and moves. Is plasticized by heating with frictional heat, and fluidized in the horizontal and vertical directions between the plate members 1a and 1b with the vertical piece 6 interposed therebetween. Further, the surface restraining portion 14 suppresses the vertical movement of the fluidized aluminum alloy and stirs the aluminum alloy fluidized by the friction pin 16.
[0019]
As a result, as shown in FIG. 3 (D), the aluminum alloy is solidified in the solid state, and a joining line W having a constant width and depth is formed in the trace that the tool 10 has passed. The On the surface of the joining line W, a very shallow groove Wa is formed at the center, and a pair of low protrusions Wb are formed on both sides thereof. Since both the concave groove Wa and the convex portion Wb are located outward from the respective surfaces of the plate members 1a and 1b, no thin portion is formed by the joining line W than the plate thickness of the plate members 1a and 1b. . Further, the bottom Wc of the joining line W reaches the back surface on the opposite side of each of the plate materials 1a and 1b. By forming such a joining line W, sound joining can be performed without reducing the joining strength between the plate members 1a and 1b. In addition, when each convex part Wb is excised to the position of the concave groove Wa, the appearance is also preferable. Moreover, in order to prevent the strength reduction of the joint portion, the dimensions of the joint material 2 may be set so that the minimum thickness of the joint portion is larger than the plate thickness of the plate materials 1a and 1b if there is no problem in appearance.
[0020]
FIG. 4A shows the friction stir welding under the condition that the width X of the horizontal piece 4 of the bonding material 2 fixed between the plate materials 1a and 1b is 1.0 times the outer diameter P of the bobbin 12 in the tool 10. The cross section of the joining line W obtained by this is shown. In this case, since the diameter p of the surface restraining portion 14 on the bottom surface of the bobbin 12 and the width X of the horizontal piece 4 are the same, as shown in the figure, convex portions protruding obliquely in a burr form on both sides of the surface of the joining line W. A pair of Wb is formed almost symmetrically. Therefore, it is necessary to cut each convex portion Wb to the position of the concave groove Wa.
FIG. 4B shows that the thickness t of the plate members 1a and 1b is set to a minimum of 3 mm, the thickness g of the horizontal piece 4 is 0.4 times between them, and the width X of the horizontal piece 4 is set to the bobbin 12. The cross section of the joining line W obtained by fixing the joining material 2 as 0.8 times the outer diameter P and performing friction stir welding is shown. In this case, the joining line W has a relatively flat cross-sectional shape, but the concave grooves Wa and the convex portions Wb on the surface thereof are both located outward from the surfaces of the plate members 1a and 1b.
[0021]
FIG. 4C shows a bonding material 2 ′ of a different reference form. This joining material 2 'is formed by bending a long and rectangular aluminum alloy plate material into a U-shaped section 6 at the center along its longitudinal direction, and bending both left and right ends 90 degrees opposite to each other. A horizontal piece 4 is formed. In this case, since the thickness of the horizontal piece 4 is about half that of the vertical piece 6, it is necessary to consider the conditions of the plate members 1a and 1b and the respective parts of the tool 10 with this in mind. It should be noted that even if some gaps remain in the vertical piece 6 having a U-shaped cross section, it can be eliminated by pressing strongly when sandwiched between the end faces of the plate members 1a and 1b, and the horizontal piece 4 is inclined slightly upward. However, it is possible to use for friction stir welding by the axial pressing force of the tool 10 by the bobbin 12.
[0022]
FIG. 5 relates to a joining method of different reference forms.
FIG. 5A shows plate members 1a and 1b having a thickness t of about 14 to 25 mm, which is thicker than that of the above embodiment, and a pair of bonding materials 2 and 2 fixed between them. As shown in FIG. 5 (A), each joining member 2 is sandwiched and fixed by inserting the vertical pieces 6 so as to approach each other from both sides of the end faces of the plate members 1a and 1b. In this case, the total height f of the two vertical pieces 6 is substantially the same as or slightly longer than the plate thicknesses t of the plate members 1a and 1b.
Next, by using the tool 10, friction stir welding is performed together with the bonding material 2 located on one surface of the plate materials 1a and 1b to form the same joining line W as described above. Furthermore, the friction stir welding is performed together with the bonding material 2 located on the back surface from the other front (back) surface of the plate materials 1a and 1b to form a similar bonding line W.
[0023]
As a result, as shown in FIG. 5B, the pair of joining lines W are positioned symmetrically, and the bottom portions Wc overlap each other. In addition, the shallow concave grooves Wa and the convex portions Wb on the surface of each joint line W are both located outward from the front and back surfaces of the plate materials 1a and 1b, and a bond with high strength can be obtained.
[0024]
In the state shown in FIG. 5A, the pair of joining materials 2 and 2 are not used, and as shown in FIG. It is also possible to use an extruded shape 2 ″ having a letter shape. The height f of the vertical piece 6 of the extruded shape 2 ″ having a substantially E-shaped cross section is slightly larger than the thickness of the plates 1a and 1b to be joined. Just keep it. This extruded section 2 ″ having a substantially E-shaped cross section is inserted along the longitudinal direction between the end faces of the adjacent plates 1a and 1b. This reduces the thickness of about 20 mm thick aluminum alloy plates. With the bonding material, the friction stir welding can be surely performed while facilitating positioning.
FIG. 6B relates to a bonding material of a different reference form.
As shown in FIG. 6 (B), a pair of bonding materials 2a, 2a having a cross-sectional channel shape can be sandwiched and fixed between the end faces of the pair of aluminum alloy sheets 1a, 1b. In this embodiment, the pair of bonding materials 2a and 2a becomes the bonding material of the present invention.
[0025]
FIG. 7 relates to an embodiment of the joining method of the present invention.
As shown in FIG. 7 (A), the plate thicknesses of the pair of aluminum alloy plates 1a and 1b to be joined are different. At this time, as shown in FIG. 7 (B), the vertical piece 6 of the bonding material 2b of cross section T-shaped having a water Tairahen 4b and the vertical piece 6, fixed by sandwiching between the plate members 1a, 1b. The horizontal piece 4b has an inclined upper surface 4c and uneven bottom surfaces 4d and 4e, and the bottom surfaces 4d and 4e are brought into contact with the surfaces of the plate members 1a and 1b during the fixing .
Next, the tool 10 is similarly inclined so that friction stir welding is performed so that the friction pins 16 are orthogonal to the inclined upper surface 4c of the horizontal piece 4b . At this time, the friction pin 16 is vertical piece 6 and the plate member 1a, to inter-1b, while rotating in a state of entering obliquely rear direction in FIG. 7 (B), i.e., plate 1a, in the longitudinal direction between 1b Move along .
As a result, as shown in FIG. 7 (C), a joining line W having an inclined surface including the concave groove Wa and the pair of convex portions Wb is formed between the plate members 1a and 1b following the horizontal piece 4b and the tool 10. Can be joined together.
[0026]
In addition, it is also possible to form a chamfer at the outer corner portion of the horizontal piece of the joining material having a substantially T-shaped or substantially E-shaped cross section, or to use an extruded profile having a cross-sectional shape with a curved surface that is loosely curved on the surface of the horizontal piece. Is possible.
[0027]
【The invention's effect】
According to the joining method of the present invention (Claim 1), the horizontal piece of joining material that is plasticized and fluidized together with a pair of aluminum or aluminum alloy plate materials having different plate thicknesses compensates for the reduction in plate thickness between the respective plate materials. It is possible to butt-join thin-walled plates by friction stir welding with a required strength. In addition, the bonding material can be fixed simply by sandwiching the vertical piece between the pair of plate members, and can be easily performed by a normal plate member restraining method.
Moreover, according to the joining method of Claim 2, it becomes possible to more reliably perform the butt | joint joining by the friction stir welding of board | plate materials from which board thickness differs and thin.
[Brief description of the drawings]
FIGS. 1A to 1C are partial schematic views showing steps of a joining method according to a reference embodiment.
FIG. 2A is a schematic diagram for explaining the relationship between a plate material and a bonding material in a reference embodiment, and FIG. 2B is a schematic diagram for explaining the relationship between the bonding material and a tool in such a configuration.
FIGS. 3A to 3D are partial schematic views showing respective steps of a joining method according to a reference embodiment. FIGS.
FIGS. 4A and 4B are partial schematic views showing each joint obtained by the joining method of the reference form, and FIG. 4C is a partial schematic view of a process using a joining material of a different reference form.
FIGS. 5A and 5B are partial schematic views showing respective steps of a joining method of different reference forms. FIGS.
FIGS. 6A and 6B are partial schematic views showing a joining method of still another reference embodiment.
FIGS. 7A to 7C are partial schematic views showing each step of a bonding method according to an embodiment of the present invention.
FIGS. 8A to 8C are schematic views showing steps of conventional friction stir welding, and FIGS. 8D and 9E are partial schematic views showing steps of friction stir welding between extruded shapes.
[Explanation of symbols]
1a, 1b ... Aluminum alloy plate 2b ………… Joint 4b ………… Horizontal piece
4c ………… Top surface
4d, 4e ... bottom surface 6 ......... vertical piece 12 ......... bobbin 14 ......... surface restraint 16 ......... friction pin W ............... joining line

Claims (3)

板厚が相違する一対のアルミニウム又はアルミニウム合金板材の端面間に、断面略T形の接合材の垂直片を挟持し、且つこの接合材の水平片における段違いの底面を上記板材の表面に接触させる工程と、
上記一対のアルミニウム又はアルミニウム合金板材同士の表面側から、回転するボビン底面の表面抑え部で上記接合材の水平片における傾斜した上面を押圧し、この表面抑え部の中心から垂下し表面抑え部と同時に回転する摩擦ピンを接合材の水平片に貫通し、且つその垂直片および上記板材同士の端面間に対し斜めで且つ所定の深さ進入させると共に、このボビン及び摩擦ピンを回転しつつ上記板材同士の端面間の長手方向に沿って移動させて摩擦攪拌接合を施す工程と、を含み、
上記一対の板材間の長手方向に沿って表面が傾いた接合線を形成する、
ことを特徴とするアルミニウム又はアルミニウム合金板材の接合方法。
Between the end surfaces of the pair of aluminum or aluminum alloy sheet thickness are different, clamp the vertical piece of the bonding material of a substantially T-shaped, and contact the bottom surface of the stepped in the horizontal plate of the bonding material on the front surface of the plate member A process of
From the surface side of the pair of aluminum or aluminum alloy plate members, press the inclined upper surface of the horizontal piece of the bonding material with the surface restraining portion on the bottom surface of the rotating bobbin, and hang down from the center of the surface restraining portion and the surface restraining portion. The friction pins that rotate simultaneously penetrate through the horizontal piece of the joining material, and enter the slant and a predetermined depth between the vertical piece and the end faces of the plate materials , and the plate material while rotating the bobbin and the friction pins. And a step of performing friction stir welding by moving along the longitudinal direction between the end faces of each other,
Forming a joining line whose surface is inclined along the longitudinal direction between the pair of plate members;
A method for joining aluminum or aluminum alloy sheets.
前記ボビンおよび摩擦ピンは、前記接合材の水平片の傾斜した上面に対して、直交するように傾けられつつ用いる
ことを特徴とする請求項1に記載のアルミニウム又はアルミニウム合金板材の接合方法。
The bobbin and the friction pin are used while being inclined so as to be orthogonal to the inclined upper surface of the horizontal piece of the bonding material ,
The method for joining aluminum or aluminum alloy sheets according to claim 1.
前記接合材が、前記アルミニウム又はアルミニウム合金板材と同じ組成又は異なる組成のアルミニウム又はアルミニウム合金製の押出形材である
ことを特徴とする請求項1又は2に記載のアルミニウム又はアルミニウム合金板材の接合方法。
The bonding material is an extruded shape made of aluminum or aluminum alloy having the same composition as or different from the aluminum or aluminum alloy plate .
The method for joining aluminum or aluminum alloy sheets according to claim 1 or 2.
JP2002093628A 2002-03-29 2002-03-29 Method of joining aluminum or aluminum alloy sheet Expired - Fee Related JP3948323B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002093628A JP3948323B2 (en) 2002-03-29 2002-03-29 Method of joining aluminum or aluminum alloy sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002093628A JP3948323B2 (en) 2002-03-29 2002-03-29 Method of joining aluminum or aluminum alloy sheet

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP26215098A Division JP3329281B2 (en) 1998-09-16 1998-09-16 Aluminum or aluminum alloy sheet joining method

Publications (2)

Publication Number Publication Date
JP2002331370A JP2002331370A (en) 2002-11-19
JP3948323B2 true JP3948323B2 (en) 2007-07-25

Family

ID=19193547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002093628A Expired - Fee Related JP3948323B2 (en) 2002-03-29 2002-03-29 Method of joining aluminum or aluminum alloy sheet

Country Status (1)

Country Link
JP (1) JP3948323B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101885109A (en) * 2010-07-30 2010-11-17 北京理工大学 Friction stir welding method of medium plate AZ AZ1 magnesium alloy

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4898217B2 (en) * 2005-12-27 2012-03-14 川崎重工業株式会社 Method for producing hollow body
JP2007222933A (en) * 2006-02-27 2007-09-06 Hitachi Ltd Friction stir welding method
JP2009202212A (en) * 2008-02-28 2009-09-10 Mitsubishi Heavy Ind Ltd Method and apparatus for joining different kinds of material
BR112012004131B1 (en) * 2009-08-31 2017-09-26 Mitsubishi-Hitachi Metals Machinery, Inc METHOD AND APPLICATION OF WELDING ATTENTION ON BOTH SIDES, METHOD OF JUNCTION OF METAL PLATES IN COLD LAMINATION SYSTEM, AND COLD LAMINATION SYSTEM
EP2502698B1 (en) * 2009-11-18 2020-08-12 Primetals Technologies Japan, Ltd. Two-surface friction stir welding method and device, tool set for two-surface friction stir
JP6429104B2 (en) * 2013-07-05 2018-11-28 スズキ株式会社 Friction stir joint
CN110039170B (en) * 2019-03-28 2021-07-13 哈尔滨工业大学 Device and method for assisting single-pass friction stir welding of T-shaped joint by using homogeneous clamp

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101885109A (en) * 2010-07-30 2010-11-17 北京理工大学 Friction stir welding method of medium plate AZ AZ1 magnesium alloy

Also Published As

Publication number Publication date
JP2002331370A (en) 2002-11-19

Similar Documents

Publication Publication Date Title
JP3329281B2 (en) Aluminum or aluminum alloy sheet joining method
JP3307330B2 (en) Friction stir welding method and joining structure for thick workpieces
US6068178A (en) Friction agitation joining method and friction agitation joining device
JP4056587B2 (en) Method of forming joints by friction stir welding
TWI335251B (en) Method ana apparatus of joining metallic plates by frictional pressure welding
JP3948323B2 (en) Method of joining aluminum or aluminum alloy sheet
TW491741B (en) Friction stir welding method
JP4407113B2 (en) Joining method
JP3289690B2 (en) Aluminum alloy sheet joining method
JPH1128583A (en) Method for joining of work by friction stirring joining
JP3761736B2 (en) Friction stir welding method
JP3935234B2 (en) Manufacturing method of butt joint
JP4195579B2 (en) Friction stir welding material and manufacturing method thereof
JP3732668B2 (en) Friction stir welding method
JP3761735B2 (en) Friction stir welding method
JP2001162383A (en) Friction-stir-welding method
JP3974708B2 (en) Butt joint structure
JP3288669B2 (en) Joint structure of hollow material with friction stir welding
JP2000052065A (en) Extruding mold jointing method and extruding mold
JP2004223587A (en) Joint structure of hollow extruded shape
JPH10230373A (en) Joining method for metal stock
JPWO2002058880A1 (en) Friction bonding method and friction bonded body
JP2005334970A (en) Friction stir joining method
JP6539362B2 (en) Aluminum structural member
JP4440522B2 (en) Hollow profile for friction stir welding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070327

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070409

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees