JP3947952B2 - Battery full charge judgment method - Google Patents

Battery full charge judgment method Download PDF

Info

Publication number
JP3947952B2
JP3947952B2 JP11975699A JP11975699A JP3947952B2 JP 3947952 B2 JP3947952 B2 JP 3947952B2 JP 11975699 A JP11975699 A JP 11975699A JP 11975699 A JP11975699 A JP 11975699A JP 3947952 B2 JP3947952 B2 JP 3947952B2
Authority
JP
Japan
Prior art keywords
voltage
battery
current
full charge
charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11975699A
Other languages
Japanese (ja)
Other versions
JP2000311721A (en
Inventor
貴史 山下
徹也 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP11975699A priority Critical patent/JP3947952B2/en
Publication of JP2000311721A publication Critical patent/JP2000311721A/en
Application granted granted Critical
Publication of JP3947952B2 publication Critical patent/JP3947952B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電池の充電装置に関し、特にその満充電判定に関する。
【0002】
【従来の技術】
近年、例えば、電気自動車に使われる電池には、高性能で長寿命なNiーMH電池が使われるようになってきた。NiーMH電池の満充電判定法として、特開平7−14612号公報は、単位時間当たりの電圧変化率dV/dtが前回より降下する場合に、満充電と判定する方式を提案している。
【0003】
【発明が解決しようとする課題】
上記したNiーMH電池のごときアルカリ系二次電池における電圧変化率dV/dtによる満充電判定では、充電電流変化により電圧変化率dV/dtの変化のために満充電判定に誤差が生じるという問題があった。
この問題に対し、本出願人は単位充電量当たりの電圧変化率dV/dAhの正ピーク値の検出により満充電を判定する方式を開発した。
【0004】
すなわち、アルカリ系二次電池における電圧変化率dV/dAhは、充電初期において急速に低下し、充電中期ではほぼ一定となり、充電終盤にて急速に増加し(電解液の電気分解が始まるから)、満充電でピークとなり、その後、負値にまで急激に低下する(発熱し電気分解電圧が低下するから)ので、電圧変化率dV/dAhのピーク値(正ピーク値ともいう)を検出して満充電と判定することにより、充電電流のばらつきが多少あっても正確に満充電を判定することができる。なお、この満充電判定方式では、温度が高温となると上記ピークが小さくなり、更に高温になると上記ピークが消失してしまうため、電圧変化率dV/dAhが0又は負値となる場合に満充電と判定している。
【0005】
しかしながら、この電圧変化率dV/dAhでも、充電電流が変動すると、この電流変化×電池の内部抵抗の分だけ電圧が変動し、この電圧変動などにより満充電になる以前に電圧変化率dV/dAhが正ピーク値となるという問題があることがわかった。また、電池の内部温度が変動する場合も満充電になる以前に電圧変化率dV/dAhが正ピーク値となる可能性が考えられる。
【0006】
充電電流が変化しないようにするために高精度の定電流充電器を用いることもできるが、高価となる。また、電気自動車搭載の充電器などのように、充電器が電池充電中に負荷インピーダンスが変動する他の負荷へ給電を行なう場合もあり、この場合、電池の充電電流にも影響が生じることを防止することは容易ではない。
【0007】
本発明は、上記問題点に鑑みなされたものであり、満充電を高精度に判定可能な電池の満充電判定方式を提供することを、その目的としている。
【0008】
【課題を解決するための手段】
請求項1に記載した本発明の電池の充電装置によれば、単位充電量当たりの電圧の変化量に基づいて電池の満充電を判定する。
このようにすれば、従来のように電圧の単位時間当たりの変化率ではなく、単位充電量当たりのそれらの変化量により満充電を判定するので、充電電流がばらついてもピークの大きさは変わらないため、正確に満充電を判定することができる。
【0009】
また、端子電圧や温度の絶対値ではなく、その変化量ににより満充電を判定するので、センサ誤差や電池特性のばらつきによる検出精度の低下を回避することができる。
更に、単位充電量当たりの電圧変化率が所定の正のしきい値より大きい領域にあり、かつ、電圧変化率が略正ピークとなる場合に満充電と判定し、電圧変化率が正のしきい値より小さい領域で満充電と判定しないので、上記説明した充電電流の変化により電池の端子電圧が変動し、これにより電圧変化率dV/dAhが正ピーク値をもち、その結果として満充電と誤判定するという問題を解決することができる。
【0010】
すなわち、充電電流がかなり大きく変動しても、この電流変化に電池の内部抵抗を掛けて求めた電圧変化の正ピーク値は、内部抵抗が小さいので常温時における満充電時の正ピーク値よりかなり小さくなり、したがって、充電電流の変動による電圧変化率dV/dAhの変動が満充電と判定されることがない。
なお、上記所定の正のしきい値とは、一定値とする他、今回の充電時の電圧変化率dV/dAhの最小値に正の一定値を加えた値としてもよく、前回充電時の電圧変化率dV/dAhの正ピーク値と最小値との間の差に所定割合を掛けたものでもよい。更に、温度により電圧変化率dV/dAhの正ピーク値が変化することから検出温度により正ピーク値を変更してもよい。
【0011】
更に加えて請求項1に記載した本発明の電池の充電装置では、電圧変化率dV/dAhが0又は所定の負値となる場合に満充電と判定し、この電圧変化率が0〜正のしきい値の領域で満充電と判定しない。
このようにすれば、高温時にも満充電判定できるとともに、常温時において万一、正ピーク値判定の見逃しにより満充電と判定できず過充電状態に移行しても、その後、電圧変化率dV/dAhが0又は負値となる場合に満充電と再判定できるので、早期に過充電を防止することができる。
【0012】
請求項記載の構成によれば請求項記載の電池の満充電判定方式において更に、正のしきい値を、電池の温度に相関を有して変更するので、すなわち電圧変化率dV/dAhと充電量Ahとを二軸とする二次元平面上における電圧変化率dV/dAhの正ピーク値が温度上昇とともに小さくなってもそれに応じて正のしきい値も小さくするので、温度変化にかかわらず高精度の満充電判定を行うことができる。
【0013】
請求項記載の構成によれば請求項1乃至のいずれか記載の電池の満充電判定方式において更に、複数対の電圧・電流データにより所定の定電流時(I=0も可能)の端子電圧である定電流端子電圧Vsを算出し、この定電流端子電圧Vsの変化率により、満充電を算出する。たとえば、複数対の電圧・電流データにより電池の内部抵抗を求め、この内部抵抗に電流を掛けて電池の内部電圧降下を求め、端子電圧Vからこの内部電圧降下を減算して開放電圧を求め、この開放電圧を本発明で言う定電流換算電圧Vsとして、その電圧変化率(dVs/dAh又はdVs/dt)を求めればよい。結局、複数対の電圧・電流データがあればそれらから所定の定電流時の定電流換算電圧Vsを求められることは明白である。
【0014】
このようにすれば、充電電流が変動していても正確に満充電判定することができる。また、充電装置の出力電流のふらつきを許容できるので、充電装置の回路構成を簡素化することができる。更に、出力電流値がばらつく種々の充電装置を用いることができ、たとえば充電ステーションが代わっても問題が生じない。
更に、電池の内部抵抗は電池温度によって変化するが、この温度変化による内部抵抗変化に起因して端子電圧Vが変動してもそれを同時に補償することができるので、温度変化による端子電圧Vと充電電流Iとの関係が変動するのも補償することができる。
【0015】
なお、上記電圧・電流データとは、所定の同時点における端子電圧Vと充電電流値iとのペアを意味する。
請求項記載の構成によれば請求項記載の電池の満充電判定方式において更に、電圧・電流データは周期的にサンプリングされ、このサンプリング期間中に前記充電電流Iを変更することにより前記複数対の電圧・電流データを得る。このようにすれば、簡単かつ各サンプリング期間ごとに定電流換算電圧Vsを求めることができる。
【0016】
【発明の実施の形態】
以下、本発明の電池の充電装置の好適な態様を以下の実施例により具体的に説明する。
【0017】
【実施例】
図1は、電気自動車の充電装置のブロック図である。
(装置の全体構成)
1は組み電池であり、多数の電池モジュール2を直列接続してなる。電池モジュール2は10個の縦続接続された単電池セルからなる。3は温度センサ、4は電流センサ、5は各電池モジュール2の両端の電圧を検出する電圧検出回路、6は電池モジュール2の温度を検出する温度検出回路、7は組み電池1の充放電電流を検出する電流検出回路である。これら検出回路5〜7はこの実施例ではA/Dコンバータで構成されるが、専用回路で構成してもよい。
【0018】
8は各検出回路5〜7からの信号を受け取り、充電器9の出力電流(充電電流)を制御するためのマイコン内蔵の充電制御回路であり、充電器9は所定の定電流で組み電池1を充電するよう接続されている。充電制御回路8は、実際には電池コントローラとして満充電判定動作を含む充電制御の他に、放電制御や電池保護制御などの他のル−チンを行う。充電制御回路8の満充電判定に関連する動作については後述する。各検出回路5〜7及び充電制御回路8は電池コントローラ10を構成しており、電池コントローラ10は充電器9及び外部コントローラ(図示せず)と通信可能となっている。
【0019】
(ニッケル水素電池の特性)
定格容量が100Ahの電池モジュール2の定電流(10A)充電時における充電容量(充電量)とモジュール電圧との関係を図2に示す。充電容量(充電量ともいう)Ahの増加とともにモジュ−ル電圧Vは一貫して増大し、満充電(100Ah)の直前において電圧Vの変化率(増加率)は増加し、その後、減少することがわかる。なお、図2における温度は電池モジュール2のケースの外表面の温度(環境温度)であり、温度検出回路6の検出温度とは異なる。
【0020】
図3は、図2の電池充電における充電量Ahと電圧変化率dV/dAhとの関係を示す。
図3から、満充電直前で電圧変化率が顕著に立ち上がり、満充電で正ピークとなり、その後電圧変化率が急激に低下し、その後、電圧変化率が負となることがわかる。また、温度が増加するとともに正ピークが小さくなり、温度が40℃を超えると正ピークがかなり小さくなり、50℃では電圧Vは満充電(100Ah)に達する前に逆に低下することがわかる。
【0021】
図4は、各充電電流値における充電量Ahと電圧変化率dV/dAhとの関係を示す。
図4から、充電電流が変動すると電圧変化率dV/dtが変動することがわかる。
(満充電判定動作)
次に、この実施例の要旨である満充電判定動作を含む充電制御動作について図5のフローチャートを参照して以下に説明する。
【0022】
まず、外部からの充電信号の入力によりこの充電制御動作が開始され、最初に各部の初期化が行われ、充電器9に所定の定電流(10A)での充電を開始させ、内蔵タイマーのカウントを開始する(S1)。
次に、検出回路5〜7から、端子電圧VB、充電電流IB、電池温度TBを読み込み(S2)、充電開始からの時間を内蔵タイマから読み込む(S3)。
【0023】
なお、割り込みルーチンを用いて所定間隔(たとえば100msec)ごとに端子電圧VB、充電電流IB、電池温度TBを読み込んでもよいことはもちろんである。
次に、充電異常判定を行い(S4)、異常であればアラーム発報、充電中止などの充電以上処理を行って(S5)、ルーチンを終了する。なお、この実施例における充電異常は、充電時間が異常に長く所定の基準時間を超えた場合、又は、電池温度が異常に高温で所定の基準温度を超え、正ピーク値の検出が期待できない場合を指定するものとする。
【0024】
S4において充電異常と判定されない場合には、満充電であることを示すフラグFlagが立っている(ON)かどうかを調べ、立っていれば、均等充電処理を行って(S7)、ルーチンを終了する。
フラグがオフであれば、内蔵タイマの前回のカウント時間と今回のカウント時間との時間差を算出し、この時間差に読み込み済みの充電電流IBを掛けて今回の充電量を算出し、この充電量を前回の充電量に累算して充電量Qgを求める(S8)。
【0025】
(定電流換算電圧Vs算出処理)、
次に、定電流換算電圧Vs算出処理を行う。この処理を図6を参照して以下に説明する。
(データサンプリング)
まず、満充電判定中を示すフラグF2が0(オフ)かどうかを調べ(S90)、オフであればフラグF2を1(オン)にして(S91)S92に進む。
【0026】
S92では、満充電判定期間となったかどうかを判定し、なったならS93に進み、なっていなければS2へ戻る。なお、満充電判定期間となったかどうかは、前回のS9以下の満充電判定動作から累算した充電量ΔQg(=現時点の充電量Qgから前回の満充電判定動作開始時点の充電量Qg’を差し引いた量)を求め、差ΔQgが所定の単位充放電量Ahxに達した場合にS93以下の満充電判定を行い、そうでなければ満充電判定には時期尚早であるとしてS2へリターンする。
【0027】
S93では、電圧・電流データをサンプリングするタイミングを決定する単位充電量差ΔAhが所定しきい値Ahyに達したかどうかを調べ、達しなければS2へ戻り、達したら、電圧・電流データVB、IB、充電量Qgを読み込んで記憶し、単位充電量差ΔAhを0にリセットするデータサンプリング・ルーチンを12回繰り返す。
【0028】
次に、最初の3回分の電圧・電流データVB、IBから平均の電圧・電流データVBM1、IBM1(前期平均電圧・電流データという)を求め、次の6回分の電圧・電流データVB、IBから平均の電圧・電流データVBM2、IBM2(中期平均電圧・電流データという)を求め、最後の3回分の電圧・電流データVB、IBから平均の電圧・電流データVBM3、IBM3(後期平均電圧・電流データという)を求める。
【0029】
なお、このデータサンプリング・ルーチンは最初の3回が終了したら、充電器9に指令して充電電流を、前期平均電流データIBM1からΔI(ここでは3A)だけ低下させる。その後、この充電電流(ばらつきがなければ7A)で上記データサンプリング・ルーチンを6回実施し、その後、再度、充電器9に指令して中期平均電流データIBM2からからΔI(ここでは3A)だけ増加させ、その後、この充電電流(ばらつきがなければ10A)で上記データサンプリング・ルーチンを3回実施する。
【0030】
結局、この連続して実施される12回のデータサンプリング・ルーチンにより、12組の電圧・電流データVB、IB、充電量Qgが得られ、それらから、前期平均電圧・電流データVBM1、IBM1、中期平均電圧・電流データVBM2、IBとM2、後期平均電圧・電流データVBM3、IBM3を求めることができる。なお、各充電量Qgのデータは単位充電量差ΔAhずつ異なっていることになる。
【0031】
図7は上記データサンプリングタイミングを示すタイミングチャートである。101〜103は最初の3回のデータサンプリングタイミングを示し、108〜110は最後の3回のデータサンプリングタイミングを示す。
(内部抵抗r算出)
次に、前期平均電圧・電流データVBM1、IBM1、中期平均電圧・電流データVBM2、IBとM2、後期平均電圧・電流データVBM3、IBM3より、内部抵抗rの算出を行う(S94)。
【0032】
まず、前期平均電圧・電流データVBM1、IBM1と後期平均電圧・電流データVBM3、IBM3より、平均電圧Vm1と平均電流im1を求める。この平均電圧Vm1と平均電流im1と中期平均電圧・電流データVBM2、IBM2とから次式で電池1の内部抵抗rを算出する(S94)。
r=ΔVm/Δm
なお、ΔVmはVm1−VBM2の式で算出され、ΔImはim1−IBM2の式で算出される。
【0033】
(定電流換算電圧Vs算出)
次に、求めた内部抵抗に基づいて定電流換算電圧Vsを次の式で算出する(S95)。
Vs=
−(基準定電流(ここでは10A)−平均電流)×r+平均電圧
なお、平均電流とは直前の3回分の電流データIBの平均値、平均電圧とは直前の3回分の電圧データVBの平均値である。
【0034】
なお、基準定電流(ここでは10A)は任意の値とすることができ、0としてもよい。この場合、定電流換算電圧Vsは開放電圧となる。
次に、フラグF2を0にリセットしてS10へ進む。
S10では、算出した定電流換算電圧Vsから電圧変化率dV/dAhを算出する。
【0035】
この実施例では、前回のルーチンのS9で算出した定電流換算電圧Vs(以下、定電流換算電圧Vsの前回値という)及び充電量Qgの値(定電流換算電圧Vsを算出するための期間の中央の時点での充電量とする。この実施例では、前回のルーチンのS9の6回目のデータサンプリング時点における充電量Qgの値であり、充電量Qgの前回値という)と、今回のルーチンのS9で算出した定電流換算電圧Vs(以下、定電流換算電圧Vsの前回値という)及び充電量Qgの値(今回のルーチンのS9の6回目のデータサンプリング時点における充電量Qgの値であり、充電量Qgの今回値という)とから次式で求める。
【0036】
電圧変化率dVs/dAh
=(定電流換算電圧Vsの今回値−定電流換算電圧Vsの前回値)/(充電量Qgの今回値−充電量Qgの前回値)
(放電量以上充電したかどうかの判別)
次に、今回の充電開始からの累計の充電量Qgが直前の放電における累計の放電量Qsよりも大きいかどうかを判定し(S11)、大きければS12へ、大きくなければS13へ進む。これは、充電ロスなどを考慮すれば少なくとも直前の放電量Qs以上の充電がなされない限り、通常では満充電にはならないことを利用して誤満充電判定の確率を減らすためである。
【0037】
(正ピーク値による常温時満充電判定)
次に、求めた電圧変化率dVs/dAhが正ピーク値かどうかを判定する(S12)。なお、この実施例では、この正ピーク値かどうかの判定は、電圧変化率dVs/dAhが増加傾向になった後、減少傾向になったかどうかで判定するものとする。
【0038】
このステップS12を図8に示すフローチャートを参照して更に詳しく説明する。
(正のしきい値の設定及び増加傾向の判定)
この実施例では、増加傾向になったかどうかは、電圧変化率dVs/dAhがしきい値Vthより正方向に大きいかどうかで判定する。この実施例ではしきい値VtHを可変値とするので、上記判定の前にしきい値VtHを次の式で算出する(S121)。
【0039】
Vth=K・ΔI・r+Voffset+ΔV
なお、Kは内部抵抗による補正係数であり、0〜1の間の所定値たとえば0.5に設定される。ΔIは想定される上記平均電流の変動幅である。したがって、K・ΔI・rは充電電流の変動による定電流換算電圧Vsの変化幅に比例する値である。Voffsetは電流変化検出系のオフセット電圧などで決定される値であり、電流変化がない場合における定電流換算電圧Vsの変動量に関連する量である。ΔVは、定電流充電時の定電流換算電圧Vsの通常の電圧増加量であり、ここでは常温時の充電中期における電圧変化率dVs/dAhに等しい値とする。
【0040】
次のS121では、電圧変化率dVs/dAhがしきい値Vthより大きい場合に電圧が増加傾向にあると判定してS123へ進み、そうでなければS13へ進む。
(減少傾向の判定)
増加傾向になったかどうかは、ノイズ誤差を減らすために、電圧変化率dVs/dAhの直前の5回の移動平均値を求め(S123)、この移動平均値が3回連続して直前の移動平均値から小さくなったかどうかを調べ(S124)、なった場合に減少傾向になったと判定してS15へ進み、そうでなければS13へ進んで高温時の満充電判定を行う。
【0041】
(高温時満充電判定)
次に、高温時での満充電判定のために電圧変化率dVs/dAhが2回続けて0以下かどうか(又は所定の負値以下)かどうかを判定し(S13)、そうでなければ満充電を示すフラグFlagをOFF(すなわち0)とし(S14)、そうであれば満充電を示すフラグFlagをON(すなわち1)とし(S15)、S2へリターンする。
【0042】
なお、S11において、充電量QgがQsより小さい場合にS13へ進むのは、電池が高温の状態では電池の蓄電能力が低下し、早期に満充電となる可能性があるので早期にS13による満充電判定を行う必要があるからである。
なお、S15では、満充電と判定して満充電を示すフラグFlagを立ててS2へ戻る。
【0043】
(実施例効果)
上記説明したこの実施例の満充電判定動作では、従来のように電圧の単位時間当たりの変化率ではなく、単位充電量当たりのそれらの変化量により満充電を判定するので、充電電流がばらついてもピークの大きさは変わらないため、正確に満充電を判定することができる。
【0044】
また、端子電圧や温度の絶対値ではなく、その変化量ににより満充電を判定するので、センサ誤差や電池特性のばらつきによる検出精度の低下を回避することができる。
また、単位充電量当たりの電圧変化率が所定の正のしきい値より大きい領域にあり、かつ、電圧変化率が略正ピークとなる場合に満充電と判定し、電圧変化率が正のしきい値より小さい正の領域で満充電と判定しないので、上記説明した充電電流の変化により電池の端子電圧が変動し、これにより電圧変化率dV/dAhが正ピーク値をもち、その結果として満充電と誤判定するという問題を解決することができる。
【0045】
また、充電電流の変動が電池の内部抵抗に関連して電圧変動となり、電圧変化率dV/dAhが変動し、電圧変化率dV/dAhによる満充電判定の信頼性を低下させるという問題を、複数組の電圧・電流データから定電流換算電圧Vsを求め、この定電流換算電圧Vsの電圧変化率dVs/dAhで満充電判定を行うという補償処理によりキャンセルしているので高精度の満充電判定を行うことができる。
【0046】
また、この実施例では、充電器9が変更されたりして、充電電流が変動してもそれと無関係に定電流換算電圧Vsを算出することができるので、たとえば複数の充電ステーションを利用しても満充電判定の信頼性が低下しないなどの効果も奏する。
また、電圧変化率dV/dAhが0又は所定の負値となる場合に満充電と判定するので、高温時にも満充電判定できるとともに、常温時において万一、正ピーク値判定の見逃しにより満充電と判定できず過充電状態に移行しても、その後、電圧変化率dV/dAhが0又は負値となる場合に満充電と再判定できるので、早期に過充電を防止することができる。
【0047】
また、しきい値Vthを上記式(Vth=K・ΔI・r+Voffset+ΔV)のように設定することにより、内部抵抗の変化や検出系の誤差による電圧変化をピークと誤検出することを抑止することができるので、満充電検出精度を向上することができる。
(変形態様)
しきい値Vthを、電池の満充電容量の85%〜95%の容量における電圧変化率dV/dAhの値に等しく設定することができる。このようにすれば、正しい正ピーク値を確実に満充電と判定するとともに、電流変動による偽の正ピーク値を良好に排除することができる。
【0048】
ただし、電池の満充電容量の85%〜95%の容量における電圧変化率dV/dAhの値は電池温度により変動するので、予めマップに電池温度としきい値Vthとの関係を記憶しておき、検出した電池温度をこのマップに代入してしきい値を求めてもよい。
また、電池の充電電流の10%×電池の満充電容量の10%〜80%の容量における内部抵抗との積よりも大きく正のしきい値を設定するので、充電電流が10%変化しても正確に満充電判定を行うことができる。
【0049】
また、上記所定の正のしきい値とは、一定値でもよく、今回の充電時の電圧変化率dV/dAhの最小値に正の一定値を加えた値としてもよく、前回充電時の電圧変化率dV/dAhの正ピーク値と最小値との間の差に所定割合を掛けたものでもよい。更に、温度により電圧変化率dV/dAhの正ピーク値が変化することから検出温度により正ピーク値を変更してもよい。電圧変化率dVs/dAhの正ピーク値の大きさと温度との関係を予めマップに記憶しておき、検出した温度に基づいて正ピーク値の大きさを予想し、この大きさと電圧変化率dVs/dAhの最小値との差に所定の係数を掛けて、正のしきい値Vthとしてもよい。
しきい値Vthを、予想される満充電時の電圧変化率dVs/dAhの正ピーク値)と、非満充電時の予想される最大の正ピーク値との差の半分程度としてもよい。前回の満充電時の正ピーク値の大きさを記憶しておき、この記憶値を前回と今回との温度差で補正して今回の正ピーク値とし、この正ピーク値から今回の電圧変化率dVs/dAhの最小値を差し引いた値に所定の係数(たとえば0.5)を掛けて今回のしきい値Vthとしてもよい。
【0050】
また、上記実施例では、図7に示す電流パターンで内部抵抗rを算出したが、単純に単位充電量ΔAhごとに充電電流値を周期的かつ段階的に変化させ、互いに充電電流が異なる隣接する2つの期間の端子電圧VBを検出すれば内部抵抗rを検出することができる。
(他の電圧・電流データのサンプリング方式1)
更に、上記実施例では、単位充電量ΔAhごとに12回のデータサンプリングを行い、かつ、最初3回のデータサンプリングを所定の充電電流値ip1(10A)での充電を行う充電期間T1に行い、次の6回のデータサンプリングを所定の充電電流値ip2(7A)での充電を行う充電期間T2に行い、最後の3回のデータサンプリングを所定の充電電流値ip1(10A)での充電を行う充電期間T3に行い、充電期間T1における各電圧・電流データの平均値と充電期間T3における電圧・電流データの平均値とから定電流換算電圧Vsを求めている。
【0051】
しかし、更に次のようにして内部抵抗算出のための各電圧・電流データをサンプリングしてもよい。
すなわち、まず充電電流を所定の充電電流値ip1(ここでは10A)にセットし、このセットから所定時間経過後又は所定充電量充電後、第一回目の電圧・電流データのサンプリングを行う。次に、充電電流をip1と異なる所定の充電電流値ip2(ここでは7A)にセットし、このセットから所定時間経過後又は所定充電量充電後、第二回目の次の電圧・電流データのサンプリングを行う。次に、求めた両電圧・電流データVB、IBから上述の方法で内部抵抗の算出及び定電流換算電圧Vsの算出を行う。
【0052】
このようにすれば、充電電流値のセットから実際に充電電流がその値に落ち着くまでの間の電圧値、電流値のばらつきをなくすことができ、より正確な電圧・電流データVB、IBを得ることができる。
(他の電圧・電流データのサンプリング方式2)
更に、上記他の電圧・電流データのサンプリング方式1において、第二回目の電圧・電流データのサンプリングを行った後、再び充電電流を元のip1に再セットし、この再セットから所定時間経過後又は所定充電量充電後、第三回目の次の電圧・電流データのサンプリングを行う。次に、求めた第一回目の電圧・電流と第三回目の次の電圧・電流データとの補間の電圧・電流データVB、IBを求め、この補間の電圧・電流データVB、IBと第二回目の電圧・電流データVB、IBとから上述の方法で内部抵抗の算出及び定電流換算電圧Vsの算出を行う。
【0053】
このようにすれば、充電の進行によるパラメータ変化を上記補間処理によりキャンセルできるので、一層正確な電圧・電流データVB、IBを得ることができる。
(他の電圧変化率dVs/dAhの算出法)
また、上記した電圧変化率dVs/dAhは次のように求めてもよい。
【0054】
まず、上記した他の電圧・電流データのサンプリング方式1又は2によって得た電圧・電流データVB、IBを用いて第一回目の定電流換算電圧Vsの第一回値を求め、この定電流換算電圧Vsの第一回値の算出の基礎となる電圧・電流データVB、IBのサンプリング時点から所定の充電量値dAh遅れた時点にて、再度、上記した他の電圧・電流データのサンプリング方式1又は2によって次の電圧・電流データVB、IBのサンプリングを行い、得た電圧・電流データVB、IBを用いて定電流換算電圧Vsの第二回値を求め、これら定電流換算電圧Vsの第一回値と第二回値との差を上記所定の充電量値dAhで除算することによって、電圧変化率dVs/dAhを求める。
【0055】
なお、電圧・電流データVB、IBのサンプリングに上記した他の電圧・電流データのサンプリング方式1を用いる場合には、定電流換算電圧Vsの第一回値、第二回値の算出の基礎となる電圧・電流データVB、IBのサンプリング時点としては、上記した他の電圧・電流データのサンプリング方式1における充電電流値ip2(ここでは7A)での上記第二回目の電圧・電流データのサンプリング時点を選択することが好ましい。
【0056】
また、電圧・電流データVB、IBのサンプリングに上記した他の電圧・電流データのサンプリング方式2を用いる場合には、定電流換算電圧Vsの第一回値、第二回値の算出の基礎となる電圧・電流データVB、IBのサンプリング時点としては、上記した他の電圧・電流データのサンプリング方式2における充電電流値ip1(ここでは10A)での上記第三回目の電圧・電流データのサンプリング時点を選択することが好ましい。
【図面の簡単な説明】
【図1】 実施例1で用いた充電装置のブロック図である。
【図2】 電池モジュール2の定電流充電時における充電容量(充電量)とモジュール電圧との関係を示す特性図である。
【図3】 電池モジュール2の定電流充電時における充電容量(充電量)とモジュール電圧変化率との関係を示す特性図である。
【図4】 電池モジュール2の種々の充電電流値での充電時における充電容量(充電量)とモジュール電圧変化率との関係を示す特性図である。
【図5】 この実施例の満充電判定方式を示すフローチャートである。
【図6】 図5に示す満充電判定方式の一部を示すフローチャートである。
【図7】 図6におけるデータサンプリングタイミング及び充電電流の強制変更状態を示すタイミングチャートである。
【図8】 図5に示す満充電判定方式の一部を示すフローチャートである。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a battery charging device, and more particularly to full charge determination thereof.
[0002]
[Prior art]
In recent years, for example, high-performance and long-life Ni-MH batteries have been used for batteries used in electric vehicles. As a method for determining the full charge of a Ni-MH battery, Japanese Patent Application Laid-Open No. 7-14612 proposes a method for determining a full charge when the voltage change rate dV / dt per unit time drops from the previous time.
[0003]
[Problems to be solved by the invention]
In the full charge determination based on the voltage change rate dV / dt in the alkaline secondary battery such as the Ni-MH battery described above, an error occurs in the full charge determination due to the change in the voltage change rate dV / dt due to the change in the charging current. was there.
In response to this problem, the present applicant has developed a method of determining full charge by detecting a positive peak value of the voltage change rate dV / dAh per unit charge amount.
[0004]
That is, the voltage change rate dV / dAh in the alkaline secondary battery decreases rapidly at the beginning of charging, becomes almost constant at the middle of charging, and increases rapidly at the end of charging (because electrolysis of the electrolyte starts), Since it reaches a peak at full charge and then suddenly decreases to a negative value (because it generates heat and the electrolysis voltage decreases), it detects the peak value of the voltage change rate dV / dAh (also referred to as a positive peak value). By determining as charging, full charging can be accurately determined even if there is some variation in charging current. In this full charge determination method, the peak becomes small when the temperature becomes high, and the peak disappears when the temperature becomes higher. Therefore, when the voltage change rate dV / dAh becomes 0 or a negative value, the full charge is determined. It is determined.
[0005]
However, even with this voltage change rate dV / dAh, when the charging current fluctuates, the voltage fluctuates by the amount of this current change × battery internal resistance, and the voltage change rate dV / dAh before full charge is caused by this voltage fluctuation. It turned out that there is a problem that becomes a positive peak value. In addition, even when the internal temperature of the battery fluctuates, there is a possibility that the voltage change rate dV / dAh becomes a positive peak value before the battery is fully charged.
[0006]
A high-accuracy constant current charger can be used to prevent the charging current from changing, but it is expensive. In addition, the charger may supply power to other loads whose load impedance varies during battery charging, such as a charger mounted on an electric vehicle. In this case, the charging current of the battery is also affected. It is not easy to prevent.
[0007]
The present invention has been made in view of the above problems, and an object of the present invention is to provide a battery full charge determination method capable of determining full charge with high accuracy.
[0008]
[Means for Solving the Problems]
According to the battery charging device of the present invention described in claim 1, the full charge of the battery is determined based on the amount of change in voltage per unit charge amount.
In this way, the full charge is determined not by the rate of change of voltage per unit time as in the prior art but by the amount of change per unit charge, so the peak size will change even if the charge current varies. Therefore, full charge can be accurately determined.
[0009]
Further, since full charge is determined not by the absolute value of the terminal voltage or temperature but by the amount of change thereof, a decrease in detection accuracy due to variations in sensor error or battery characteristics can be avoided.
Further, when the voltage change rate per unit charge amount is in a region larger than a predetermined positive threshold and the voltage change rate reaches a substantially positive peak, it is determined that the battery is fully charged, and the voltage change rate is positive. Since it is not determined that the battery is fully charged in a region smaller than the threshold value, the terminal voltage of the battery fluctuates due to the change in the charging current described above, and thus the voltage change rate dV / dAh has a positive peak value. The problem of erroneous determination can be solved.
[0010]
In other words, even if the charging current fluctuates considerably, the positive peak value of the voltage change obtained by multiplying this current change by the internal resistance of the battery is much smaller than the positive peak value at full charge at room temperature because the internal resistance is small. Therefore, a change in voltage change rate dV / dAh due to a change in charging current is not determined to be fully charged.
The predetermined positive threshold value may be a constant value or a value obtained by adding a positive constant value to the minimum value of the voltage change rate dV / dAh at the time of current charging. The difference between the positive peak value and the minimum value of the voltage change rate dV / dAh may be multiplied by a predetermined ratio. Furthermore, since the positive peak value of the voltage change rate dV / dAh changes depending on the temperature, the positive peak value may be changed depending on the detected temperature.
[0011]
In addition, in the battery charger of the present invention described in claim 1, When the voltage change rate dV / dAh is 0 or a predetermined negative value, it is determined that the battery is fully charged, and it is not determined that the battery is fully charged when the voltage change rate is 0 to a positive threshold.
In this way, it is possible to determine full charge even at a high temperature, and even if at normal temperature it is not possible to determine full charge due to overlooking the positive peak value determination, and even after shifting to an overcharge state, the voltage change rate dV / When dAh becomes 0 or a negative value, it can be re-determined as full charge, so that overcharge can be prevented at an early stage.
[0012]
Claim 2 Claims according to the arrangement described 1 In the battery full charge determination method described above, the positive threshold is further set to the battery temperature. Phase That is, even if the positive peak value of the voltage change rate dV / dAh on the two-dimensional plane with the voltage change rate dV / dAh and the charge amount Ah as two axes becomes smaller as the temperature rises, Accordingly, the positive threshold value is also reduced, so that a highly accurate full charge determination can be performed regardless of the temperature change.
[0013]
Claim 4 According to the described configuration, claims 1 to 3 In the battery full charge determination method described in any one of the above, a constant current terminal voltage Vs that is a terminal voltage at a predetermined constant current (I = 0 is also possible) is calculated from a plurality of pairs of voltage / current data, and this constant voltage is determined. Full charge is calculated from the rate of change of the current terminal voltage Vs. For example, the internal resistance of the battery is obtained from a plurality of pairs of voltage / current data, the internal resistance of the battery is obtained by multiplying the current by the internal resistance, and the open voltage is obtained by subtracting the internal voltage drop from the terminal voltage V. The voltage change rate (dVs / dAh or dVs / dt) may be obtained using the open-circuit voltage as the constant current conversion voltage Vs referred to in the present invention. After all, if there are a plurality of pairs of voltage / current data, it is obvious that the constant current conversion voltage Vs at a predetermined constant current can be obtained from them.
[0014]
In this way, the full charge can be accurately determined even if the charging current varies. In addition, since the fluctuation of the output current of the charging device can be allowed, the circuit configuration of the charging device can be simplified. Furthermore, various charging devices with variable output current values can be used. For example, even if the charging station is changed, no problem occurs.
Furthermore, although the internal resistance of the battery changes depending on the battery temperature, even if the terminal voltage V fluctuates due to the internal resistance change due to this temperature change, it can be compensated at the same time. It is also possible to compensate for fluctuations in the relationship with the charging current I.
[0015]
The voltage / current data means a pair of the terminal voltage V and the charging current value i at a predetermined simultaneous point.
Claim 5 Claims according to the arrangement described 4 Further, in the battery full charge determination method described above, the voltage / current data is periodically sampled, and the plurality of pairs of voltage / current data are obtained by changing the charging current I during the sampling period. In this way, the constant current conversion voltage Vs can be easily obtained for each sampling period.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the battery charging device of the present invention will be specifically described with reference to the following examples.
[0017]
【Example】
FIG. 1 is a block diagram of a charging device for an electric vehicle.
(Overall configuration of the device)
Reference numeral 1 denotes an assembled battery, which is formed by connecting a large number of battery modules 2 in series. The battery module 2 consists of ten unit cells connected in cascade. 3 is a temperature sensor, 4 is a current sensor, 5 is a voltage detection circuit that detects the voltage across each battery module 2, 6 is a temperature detection circuit that detects the temperature of the battery module 2, and 7 is the charge / discharge current of the assembled battery 1. Is a current detection circuit for detecting These detection circuits 5 to 7 are constituted by A / D converters in this embodiment, but may be constituted by dedicated circuits.
[0018]
8 is a charge control circuit with a built-in microcomputer for receiving a signal from each of the detection circuits 5 to 7 and controlling the output current (charge current) of the charger 9, and the charger 9 is assembled battery 1 with a predetermined constant current. Connected to charge. The charge control circuit 8 actually performs other routines such as discharge control and battery protection control in addition to charge control including a full charge determination operation as a battery controller. The operation related to the full charge determination of the charge control circuit 8 will be described later. Each of the detection circuits 5 to 7 and the charge control circuit 8 constitute a battery controller 10, and the battery controller 10 can communicate with a charger 9 and an external controller (not shown).
[0019]
(Characteristics of nickel metal hydride battery)
FIG. 2 shows the relationship between the charging capacity (charge amount) and the module voltage at the time of constant current (10 A) charging of the battery module 2 having a rated capacity of 100 Ah. The module voltage V increases consistently with an increase in charge capacity (also referred to as charge amount) Ah, the rate of change (increase rate) in voltage V increases immediately before full charge (100 Ah), and then decreases. I understand. 2 is the temperature of the outer surface of the case of the battery module 2 (environmental temperature), and is different from the temperature detected by the temperature detection circuit 6.
[0020]
FIG. 3 shows the relationship between the charge amount Ah and the voltage change rate dV / dAh in the battery charge of FIG.
From FIG. 3, it can be seen that the voltage change rate rises significantly immediately before full charge, reaches a positive peak at full charge, then the voltage change rate decreases rapidly, and then the voltage change rate becomes negative. It can also be seen that as the temperature increases, the positive peak becomes smaller, and when the temperature exceeds 40 ° C., the positive peak becomes considerably smaller. At 50 ° C., the voltage V decreases conversely before reaching full charge (100 Ah).
[0021]
FIG. 4 shows the relationship between the charge amount Ah and the voltage change rate dV / dAh at each charge current value.
FIG. 4 shows that the voltage change rate dV / dt varies as the charging current varies.
(Full charge judgment operation)
Next, the charge control operation including the full charge determination operation, which is the gist of this embodiment, will be described below with reference to the flowchart of FIG.
[0022]
First, this charging control operation is started by the input of an external charging signal. Initialization of each part is performed first, charging the battery charger 9 with a predetermined constant current (10 A) is started, and the built-in timer is counted. Is started (S1).
Next, the terminal voltage VB, the charging current IB, and the battery temperature TB are read from the detection circuits 5 to 7 (S2), and the time from the start of charging is read from the built-in timer (S3).
[0023]
Of course, the terminal voltage VB, the charging current IB, and the battery temperature TB may be read at predetermined intervals (for example, 100 msec) using an interrupt routine.
Next, charge abnormality determination is performed (S4), and if it is abnormal, processing more than charging such as alarm notification and charge stop is performed (S5), and the routine is terminated. The charging abnormality in this embodiment is when the charging time is abnormally long and exceeds a predetermined reference time, or when the battery temperature is abnormally high and exceeds the predetermined reference temperature, and detection of a positive peak value cannot be expected. Shall be specified.
[0024]
If it is not determined that charging is abnormal in S4, it is checked whether or not the flag Flag indicating full charge is set (ON). If it is set, equal charge processing is performed (S7), and the routine is terminated. To do.
If the flag is off, the time difference between the previous count time of the built-in timer and the current count time is calculated, and the current charge amount is calculated by multiplying this time difference by the read charging current IB. The charge amount Qg is obtained by accumulating the previous charge amount (S8).
[0025]
(Constant current conversion voltage Vs calculation process),
Next, a constant current conversion voltage Vs calculation process is performed. This process will be described below with reference to FIG.
(Data sampling)
First, it is checked whether or not the flag F2 indicating full charge determination is 0 (off) (S90). If it is off, the flag F2 is set to 1 (on) (S91), and the process proceeds to S92.
[0026]
In S92, it is determined whether or not the full charge determination period is reached. If YES, the process proceeds to S93, and if not, the process returns to S2. Whether or not the full charge determination period has been reached is determined by calculating the charge amount ΔQg accumulated from the previous full charge determination operation of S9 or less (= the charge amount Qg ′ at the start of the previous full charge determination operation from the current charge amount Qg). When the difference ΔQg reaches a predetermined unit charge / discharge amount Ahx, a full charge determination of S93 or less is performed. Otherwise, the full charge determination is premature and the process returns to S2.
[0027]
In S93, it is checked whether or not the unit charge amount difference ΔAh for determining the timing for sampling the voltage / current data has reached the predetermined threshold value Ahy. If not, the process returns to S2, and if reached, the voltage / current data VB, IB The data sampling routine for reading and storing the charge amount Qg and resetting the unit charge amount difference ΔAh to 0 is repeated 12 times.
[0028]
Next, average voltage / current data VBM1 and IBM1 (referred to as previous term average voltage / current data) are obtained from the first three voltage / current data VB and IB, and from the next six voltage / current data VB and IB. Average voltage / current data VBM2 and IBM2 (referred to as medium-term average voltage / current data) are obtained, and average voltage / current data VBM3 and IBM3 (late-term average voltage / current data) from the last three voltage / current data VB and IB. Ask).
[0029]
When the first three times of this data sampling routine are completed, the charger 9 is instructed to reduce the charging current by ΔI (here, 3A) from the previous average current data IBM1. Thereafter, the above data sampling routine is executed 6 times with this charging current (7A if there is no variation), and then the charger 9 is again commanded to increase by ΔI (here 3A) from the medium-term average current data IBM2. Thereafter, the data sampling routine is executed three times with this charging current (10 A if there is no variation).
[0030]
Eventually, 12 sets of voltage / current data VB, IB and charge amount Qg are obtained by the 12 data sampling routines executed in succession, from which the previous average voltage / current data VBM1, IBM1, Average voltage / current data VBM2, IB and M2, and late average voltage / current data VBM3, IBM3 can be obtained. Note that the data of each charge amount Qg is different by unit charge amount difference ΔAh.
[0031]
FIG. 7 is a timing chart showing the data sampling timing. 101 to 103 indicate the first three data sampling timings, and 108 to 110 indicate the last three data sampling timings.
(Internal resistance r calculation)
Next, the internal resistance r is calculated from the previous period average voltage / current data VBM1, IBM1, the middle period average voltage / current data VBM2, IB and M2, and the latter period average voltage / current data VBM3, IBM3 (S94).
[0032]
First, the average voltage Vm1 and the average current im1 are obtained from the previous period average voltage / current data VBM1, IBM1 and the latter period average voltage / current data VBM3, IBM3. The internal resistance r of the battery 1 is calculated from the average voltage Vm1, the average current im1, and the medium-term average voltage / current data VBM2 and IBM2 by the following equation (S94).
r = ΔVm / Δm
ΔVm is calculated by the formula of Vm1-VBM2, and ΔIm is calculated by the formula of im1-IBM2.
[0033]
(Constant current conversion voltage Vs calculation)
Next, the constant current conversion voltage Vs is calculated by the following formula based on the obtained internal resistance (S95).
Vs =
-(Reference constant current (here 10A)-average current) x r + average voltage
The average current is the average value of the current data IB for the last three times, and the average voltage is the average value of the voltage data VB for the last three times.
[0034]
Note that the reference constant current (here, 10 A) can be an arbitrary value, and may be zero. In this case, the constant current converted voltage Vs is an open circuit voltage.
Next, the flag F2 is reset to 0 and the process proceeds to S10.
In S10, a voltage change rate dV / dAh is calculated from the calculated constant current converted voltage Vs.
[0035]
In this embodiment, the constant current conversion voltage Vs calculated in S9 of the previous routine (hereinafter referred to as the previous value of the constant current conversion voltage Vs) and the value of the charge amount Qg (the period for calculating the constant current conversion voltage Vs). In this embodiment, the amount of charge Qg at the time of the sixth data sampling in S9 of the previous routine is referred to as the previous value of the amount of charge Qg). The constant current converted voltage Vs calculated in S9 (hereinafter referred to as the previous value of the constant current converted voltage Vs) and the charge amount Qg (the value of the charge amount Qg at the time of the sixth data sampling of S9 in this routine) (Referred to as the current value of the charge amount Qg).
[0036]
Voltage change rate dVs / dAh
= (Current value of constant current converted voltage Vs−Previous value of constant current converted voltage Vs) / (Current value of charge amount Qg−Previous value of charge amount Qg)
(Determination of whether the battery has been charged more than the discharge amount)
Next, it is determined whether or not the cumulative charge amount Qg from the start of the current charge is larger than the cumulative discharge amount Qs in the previous discharge (S11). This is to reduce the probability of erroneous full charge determination by taking advantage of the fact that the battery is not normally fully charged unless at least the previous discharge amount Qs is charged in consideration of the charge loss.
[0037]
(Full charge judgment at normal temperature by positive peak value)
Next, it is determined whether or not the obtained voltage change rate dVs / dAh is a positive peak value (S12). In this embodiment, whether or not the peak value is positive is determined based on whether or not the voltage change rate dVs / dAh tends to increase and then decreases.
[0038]
This step S12 will be described in more detail with reference to the flowchart shown in FIG.
(Positive threshold setting and judgment of increasing tendency)
In this embodiment, whether or not the tendency has been increased is determined by whether or not the voltage change rate dVs / dAh is larger in the positive direction than the threshold value Vth. In this embodiment, since the threshold value VtH is a variable value, the threshold value VtH is calculated by the following equation before the above determination (S121).
[0039]
Vth = K · ΔI · r + Voffset + ΔV
K is a correction coefficient due to internal resistance, and is set to a predetermined value between 0 and 1, for example 0.5. ΔI is an assumed fluctuation range of the average current. Therefore, K · ΔI · r is a value proportional to the change width of the constant current conversion voltage Vs due to the fluctuation of the charging current. Voffset is a value determined by the offset voltage of the current change detection system and the like, and is an amount related to the fluctuation amount of the constant current conversion voltage Vs when there is no current change. ΔV is a normal voltage increase amount of the constant current conversion voltage Vs at the time of constant current charging, and here is a value equal to the voltage change rate dVs / dAh in the middle of charging at normal temperature.
[0040]
In the next S121, when the voltage change rate dVs / dAh is larger than the threshold value Vth, it is determined that the voltage tends to increase, and the process proceeds to S123. Otherwise, the process proceeds to S13.
(Determining a decreasing trend)
In order to reduce the noise error, the moving average value of 5 times immediately before the voltage change rate dVs / dAh is obtained (S123), and this moving average value is the 3rd consecutive moving average. It is checked whether or not the value has become smaller (S124). If it has become smaller, it is determined that there is a decreasing tendency, and the process proceeds to S15. If not, the process proceeds to S13 to determine full charge at high temperature.
[0041]
(Full charge judgment at high temperature)
Next, for full charge determination at high temperature, it is determined whether the voltage change rate dVs / dAh is continuously 0 or less (or less than a predetermined negative value) (S13). The flag Flag indicating charging is set to OFF (that is, 0) (S14). If so, the flag Flag indicating full charge is set to ON (that is, 1) (S15), and the process returns to S2.
[0042]
In S11, if the charge amount Qg is smaller than Qs, the process proceeds to S13 because the storage capacity of the battery is reduced when the battery is at a high temperature, and the battery may be fully charged early. This is because it is necessary to make a charge determination.
In S15, it is determined that the battery is fully charged, a flag Flag indicating full charge is set, and the process returns to S2.
[0043]
(Example effect)
In the full charge determination operation of this embodiment described above, since full charge is determined not by the rate of change per unit time of voltage as in the prior art but by the amount of change per unit charge amount, the charging current varies. However, since the peak size does not change, full charge can be accurately determined.
[0044]
Further, since full charge is determined not by the absolute value of the terminal voltage or temperature but by the amount of change thereof, a decrease in detection accuracy due to variations in sensor error or battery characteristics can be avoided.
In addition, when the voltage change rate per unit charge amount is in a region larger than a predetermined positive threshold and the voltage change rate reaches a substantially positive peak, it is determined that the battery is fully charged, and the voltage change rate is positive. Since it is not determined that the battery is fully charged in a positive region smaller than the threshold value, the terminal voltage of the battery fluctuates due to the change in the charging current described above. As a result, the voltage change rate dV / dAh has a positive peak value. The problem of erroneous determination as charging can be solved.
[0045]
Further, there are a plurality of problems that the fluctuation of the charging current becomes a voltage fluctuation related to the internal resistance of the battery, the voltage change rate dV / dAh fluctuates, and the reliability of the full charge determination by the voltage change rate dV / dAh is lowered. Since the constant current conversion voltage Vs is obtained from the voltage / current data of the set and the full charge determination is performed at the voltage change rate dVs / dAh of the constant current conversion voltage Vs, it is canceled by the compensation process. It can be carried out.
[0046]
In this embodiment, even if the charger 9 is changed and the charging current varies, the constant current conversion voltage Vs can be calculated independently of the charging current. For example, even if a plurality of charging stations are used. There is also an effect that the reliability of the full charge determination is not lowered.
In addition, when the voltage change rate dV / dAh is 0 or a predetermined negative value, it is determined that the battery is fully charged. Therefore, the battery can be fully charged even at a high temperature. Even if the state is shifted to the overcharged state, the full charge can be redetermined when the voltage change rate dV / dAh becomes 0 or a negative value, so that overcharge can be prevented at an early stage.
[0047]
In addition, by setting the threshold value Vth as in the above formula (Vth = K · ΔI · r + Voffset + ΔV), it is possible to prevent erroneous detection of a voltage change due to a change in internal resistance or an error in the detection system as a peak. Therefore, the full charge detection accuracy can be improved.
(Modification)
The threshold value Vth can be set equal to the voltage change rate dV / dAh at a capacity of 85% to 95% of the full charge capacity of the battery. In this way, it is possible to reliably determine that the correct positive peak value is fully charged, and to favorably eliminate false positive peak values due to current fluctuations.
[0048]
However, since the value of the voltage change rate dV / dAh in the capacity of 85% to 95% of the full charge capacity of the battery varies depending on the battery temperature, the relationship between the battery temperature and the threshold value Vth is stored in advance in the map, The threshold value may be obtained by substituting the detected battery temperature into this map.
In addition, a positive threshold value is set larger than the product of 10% of the battery charging current × 10% to 80% of the battery full charging capacity and the internal resistance, so that the charging current changes by 10%. Can accurately determine full charge.
[0049]
The predetermined positive threshold value may be a constant value, or may be a value obtained by adding a positive constant value to the minimum value of the voltage change rate dV / dAh at the time of current charging. The difference between the positive peak value and the minimum value of the change rate dV / dAh may be multiplied by a predetermined ratio. Furthermore, since the positive peak value of the voltage change rate dV / dAh changes depending on the temperature, the positive peak value may be changed depending on the detected temperature. The relationship between the magnitude of the positive peak value of the voltage change rate dVs / dAh and the temperature is stored in advance in the map, the magnitude of the positive peak value is predicted based on the detected temperature, and the magnitude and the voltage change rate dVs / The positive threshold value Vth may be obtained by multiplying the difference from the minimum value of dAh by a predetermined coefficient.
The threshold value Vth may be about half of the difference between the expected positive peak value of the voltage change rate dVs / dAh at full charge) and the expected maximum positive peak value at non-full charge. The magnitude of the positive peak value at the time of the last full charge is stored, and this stored value is corrected by the temperature difference between the previous time and the current time to obtain the current positive peak value. From this positive peak value to the current voltage change rate The current threshold value Vth may be obtained by multiplying a value obtained by subtracting the minimum value of dVs / dAh by a predetermined coefficient (for example, 0.5).
[0050]
In the above embodiment, the internal resistance r is calculated using the current pattern shown in FIG. 7, but the charging current value is simply changed periodically and stepwise for each unit charging amount ΔAh, and the charging currents are adjacent to each other. If the terminal voltage VB in two periods is detected, the internal resistance r can be detected.
(Other voltage / current data sampling method 1)
Further, in the above-described embodiment, data sampling is performed 12 times for each unit charge amount ΔAh, and the data sampling is initially performed 3 times during the charging period T1 in which charging is performed with a predetermined charging current value ip1 (10A). The next six data samplings are performed during the charging period T2 in which charging is performed at a predetermined charging current value ip2 (7A), and the last three data samplings are performed at a predetermined charging current value ip1 (10A). In the charging period T3, the constant current conversion voltage Vs is obtained from the average value of each voltage / current data in the charging period T1 and the average value of the voltage / current data in the charging period T3.
[0051]
However, each voltage / current data for calculating the internal resistance may be sampled as follows.
That is, first, the charging current is set to a predetermined charging current value ip1 (here, 10A), and after a predetermined time has elapsed from this setting or after charging a predetermined amount of charge, the first voltage / current data sampling is performed. Next, the charging current is set to a predetermined charging current value ip2 (in this case, 7A) different from ip1, and after the predetermined time has elapsed from this setting or after charging a predetermined amount of charge, sampling of the next voltage / current data for the second time is performed. I do. Next, the internal resistance and the constant current converted voltage Vs are calculated from the obtained voltage / current data VB and IB by the above-described method.
[0052]
By doing this, it is possible to eliminate variations in voltage value and current value from when the charging current value is set until the charging current actually settles to that value, and to obtain more accurate voltage / current data VB and IB. be able to.
(Other voltage / current data sampling method 2)
Furthermore, in the other voltage / current data sampling method 1, after the second voltage / current data sampling, the charging current is reset to the original ip1, and after a predetermined time has elapsed since the resetting. Alternatively, after charging a predetermined amount of charge, the third voltage / current data sampling is performed for the third time. Next, voltage / current data VB and IB for interpolation between the obtained first voltage / current and the next voltage / current data for the third time are obtained. The internal resistance and the constant current converted voltage Vs are calculated from the second voltage / current data VB and IB by the above-described method.
[0053]
In this way, parameter changes due to the progress of charging can be canceled by the interpolation process, so that more accurate voltage / current data VB and IB can be obtained.
(Other voltage change rate dVs / dAh calculation methods)
The voltage change rate dVs / dAh described above may be obtained as follows.
[0054]
First, the first value of the first constant current converted voltage Vs is obtained using the voltage / current data VB, IB obtained by the other voltage / current data sampling method 1 or 2, and the constant current conversion is performed. When the voltage / current data VB, IB, which is the basis for calculating the first value of the voltage Vs, is delayed by a predetermined charge amount value dAh from the sampling time of the voltage / current data VB, the above-described other voltage / current data sampling method 1 Or the next voltage / current data VB, IB is sampled by 2 and the obtained voltage / current data VB, IB is used to obtain the second value of the constant current converted voltage Vs. The voltage change rate dVs / dAh is obtained by dividing the difference between the first time value and the second time value by the predetermined charge amount value dAh.
[0055]
When the above-described sampling method 1 of other voltage / current data is used for sampling of the voltage / current data VB, IB, the calculation of the first value and the second value of the constant current conversion voltage Vs The sampling time of the voltage / current data VB and IB is the sampling time of the second voltage / current data at the charging current value ip2 (7A in this case) in the other voltage / current data sampling method 1 described above. Is preferably selected.
[0056]
In addition, when using the other voltage / current data sampling method 2 described above for sampling the voltage / current data VB and IB, the basis for calculating the first and second values of the constant current conversion voltage Vs The sampling time of the voltage / current data VB and IB is the third sampling time of the voltage / current data at the charging current value ip1 (here, 10A) in the other voltage / current data sampling method 2 described above. Is preferably selected.
[Brief description of the drawings]
1 is a block diagram of a charging device used in Example 1. FIG.
FIG. 2 is a characteristic diagram showing the relationship between the charge capacity (charge amount) and the module voltage during constant current charging of the battery module 2;
FIG. 3 is a characteristic diagram showing a relationship between a charge capacity (charge amount) and a module voltage change rate during constant current charging of the battery module 2;
FIG. 4 is a characteristic diagram showing the relationship between the charging capacity (charge amount) and the module voltage change rate when the battery module 2 is charged with various charging current values.
FIG. 5 is a flowchart showing a full charge determination method of this embodiment.
6 is a flowchart showing a part of the full charge determination method shown in FIG. 5; FIG.
7 is a timing chart showing a data sampling timing and a charging current forcibly changing state in FIG. 6; FIG.
FIG. 8 is a flowchart showing a part of the full charge determination method shown in FIG. 5;

Claims (5)

充電時に求めた電池の端子電圧V及び充電量Ahから単位充電量当たりの電圧変化率を演算し、
前記電圧変化率が所定の正のしきい値より大きい領域にあり、かつ、前記電圧変化率が略正ピークとなる場合に満充電と判定する電池の満充電判定方式であって、
前記電圧変化率が0又は所定の負値となる場合に満充電と判定し、
前記電圧変化率が0より大きく前記正のしきい値未満の領域で満充電と判定しないことを特徴とする電池の満充電判定方式
The voltage change rate per unit charge amount is calculated from the battery terminal voltage V and the charge amount Ah obtained at the time of charging,
A battery full charge determination method in which the voltage change rate is in a region greater than a predetermined positive threshold and the voltage change rate is substantially positive peak, and is determined to be full charge,
When the voltage change rate is 0 or a predetermined negative value, it is determined that the battery is fully charged,
A battery full charge determination method, wherein the battery is not determined to be fully charged in a region where the voltage change rate is greater than 0 and less than the positive threshold value .
請求項1記載の電池の満充電判定方式において、
前記正のしきい値を、前記電池の温度に相関を有して変更することを特徴とする電池の満充電判定方式。
The battery full charge determination method according to claim 1,
Said positive threshold, the full charge determination method of cell and changes with a correlation to the temperature of the battery.
請求項1又は2記載の電池の満充電判定方式において、
前記電池は、ニッケル水素電池からなることを特徴とする電池の満充電判定方式。
In the battery full charge determination method according to claim 1 or 2 ,
The battery is a nickel metal hydride battery, wherein the battery is fully charged.
請求項1乃至のいずれか記載の電池の満充電判定方式において、
前記端子電圧Vのデータ及び充電電流Iのデータの対からなる電圧・電流データを複数対検出して、前記複数対の電圧・電流データに基づいて前記充電電流Iの所定値における前記端子電圧又はそれと所定の相関関係をもつ電圧である定電流換算電圧Vsを演算し、単位充電量又は単位時間当たりの前記定電流換算電圧Vsの変化率(dVs/dAh)を求めて前記電圧変化率とすることを特徴とする電池の満充電判定方式。
In the battery full charge determination method according to any one of claims 1 to 3 ,
A plurality of voltage / current data consisting of a pair of data of the terminal voltage V and data of the charging current I are detected, and the terminal voltage at a predetermined value of the charging current I based on the plurality of pairs of voltage / current data or A constant current conversion voltage Vs, which is a voltage having a predetermined correlation with it, is calculated, and a rate of change (dVs / dAh) of the constant current conversion voltage Vs per unit charge amount or unit time is obtained as the voltage change rate. A battery full charge determination method characterized by the above.
請求項記載の電池の満充電判定方式において、
前記電圧・電流データのサンプリング期間中に前記充電電流Iを変更することにより前記複数対の電圧・電流データを得ることを特徴とする電池の満充電判定方式。
In the battery full charge determination method according to claim 4 ,
A battery full-charge determination method, wherein the plurality of pairs of voltage / current data are obtained by changing the charging current I during the sampling period of the voltage / current data.
JP11975699A 1999-04-27 1999-04-27 Battery full charge judgment method Expired - Fee Related JP3947952B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11975699A JP3947952B2 (en) 1999-04-27 1999-04-27 Battery full charge judgment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11975699A JP3947952B2 (en) 1999-04-27 1999-04-27 Battery full charge judgment method

Publications (2)

Publication Number Publication Date
JP2000311721A JP2000311721A (en) 2000-11-07
JP3947952B2 true JP3947952B2 (en) 2007-07-25

Family

ID=14769398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11975699A Expired - Fee Related JP3947952B2 (en) 1999-04-27 1999-04-27 Battery full charge judgment method

Country Status (1)

Country Link
JP (1) JP3947952B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8828610B2 (en) 2004-01-06 2014-09-09 Sion Power Corporation Electrolytes for lithium sulfur cells
US7646171B2 (en) * 2004-01-06 2010-01-12 Sion Power Corporation Methods of charging lithium sulfur cells
US7358012B2 (en) 2004-01-06 2008-04-15 Sion Power Corporation Electrolytes for lithium sulfur cells
US10297827B2 (en) 2004-01-06 2019-05-21 Sion Power Corporation Electrochemical cell, components thereof, and methods of making and using same
CA2720231C (en) * 2008-03-31 2017-07-11 A123 Systems, Inc. Method for detecting cell state-of-charge and state-of-discharge divergence of a series string of batteries or capacitors
CN103283064B (en) 2010-08-24 2017-07-11 锡安能量公司 For the electrolyte for using in an electrochemical cell
JP5315369B2 (en) * 2011-03-01 2013-10-16 株式会社日立製作所 Abnormally charged state detection device and inspection method for lithium secondary battery
US8735002B2 (en) 2011-09-07 2014-05-27 Sion Power Corporation Lithium sulfur electrochemical cell including insoluble nitrogen-containing compound
US9577289B2 (en) 2012-12-17 2017-02-21 Sion Power Corporation Lithium-ion electrochemical cell, components thereof, and methods of making and using same
JP5987711B2 (en) * 2013-01-30 2016-09-07 コニカミノルタ株式会社 Secondary battery system and image forming apparatus
JP6690584B2 (en) 2017-03-10 2020-04-28 トヨタ自動車株式会社 Battery condition estimation device
CN107942130A (en) * 2017-12-07 2018-04-20 珠海横琴小可乐信息技术有限公司 A kind of method and system of electric automobile charging pile dealing of abnormal data
JP2021044151A (en) * 2019-09-11 2021-03-18 三洋化成工業株式会社 Lithium ion battery module and method for charging lithium ion battery module

Also Published As

Publication number Publication date
JP2000311721A (en) 2000-11-07

Similar Documents

Publication Publication Date Title
JP4388094B2 (en) Battery pack protection device and battery pack device
JP6119402B2 (en) Internal resistance estimation device and internal resistance estimation method
US8779729B2 (en) Electric storage device monitor
KR101500826B1 (en) Battery charging apparatus and battery charging method
US7974796B2 (en) Fully-charged battery capacity detection method
US8143852B2 (en) State of charge optimizing device and assembled battery system including same
JP3947952B2 (en) Battery full charge judgment method
US5684387A (en) Voltage cutoff compensation method for a battery in a charger
JP7217474B2 (en) Management device and power supply system
US20090153104A1 (en) Charging method
US20120290236A1 (en) Battery condition detecting apparatus
JPH0997629A (en) Plural lithium ion secondary battery charging method
JP2006337155A (en) Battery-monitoring device
EP2279425A1 (en) Method of estimation of the state of charge of a battery
JP3109603B2 (en) Battery pack and charging method thereof
JP3855248B2 (en) Battery full charge judgment method
JP3391227B2 (en) How to charge lead storage batteries
JP2001157366A (en) Method of controlling charging and discharging of battery pack
WO2019188889A1 (en) Power storage system and charging control method
JP4090713B2 (en) Nickel metal hydride battery capacity estimation method
JP6672976B2 (en) Charge amount calculation device, computer program, and charge amount calculation method
JP2019024285A (en) Balance device and battery unit
JP2002199606A (en) Battery pack and charging method of the battery
JP3818780B2 (en) Battery charger
JPH11234917A (en) Charger for combined batteries

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060919

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070405

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100427

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110427

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120427

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120427

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130427

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130427

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140427

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees