JP3946171B2 - Method for controlling image reading apparatus - Google Patents

Method for controlling image reading apparatus Download PDF

Info

Publication number
JP3946171B2
JP3946171B2 JP2003199765A JP2003199765A JP3946171B2 JP 3946171 B2 JP3946171 B2 JP 3946171B2 JP 2003199765 A JP2003199765 A JP 2003199765A JP 2003199765 A JP2003199765 A JP 2003199765A JP 3946171 B2 JP3946171 B2 JP 3946171B2
Authority
JP
Japan
Prior art keywords
image reading
cathode tube
cold cathode
light
light quantity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003199765A
Other languages
Japanese (ja)
Other versions
JP2005045309A (en
Inventor
靖之 堀口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Document Solutions Inc
Original Assignee
Kyocera Mita Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Mita Corp filed Critical Kyocera Mita Corp
Priority to JP2003199765A priority Critical patent/JP3946171B2/en
Publication of JP2005045309A publication Critical patent/JP2005045309A/en
Application granted granted Critical
Publication of JP3946171B2 publication Critical patent/JP3946171B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Light Sources And Details Of Projection-Printing Devices (AREA)
  • Image Input (AREA)
  • Facsimile Scanning Arrangements (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、スキャナとして単体で用いられたり、複写機やファクシミリ等に搭載されたりして、原稿の画像を読み取る画像読取装置の制御方法に関し、特に、光源として冷陰極管ランプを備えた画像読取装置の制御方法に関する。
【0002】
【従来の技術】
一般に、画像読取装置は、画像読取動作において、原稿に対して光源から光を照射し、その反射光を複数のミラーで反射させながら集光レンズを通してCCD等の光センサに導き入れ、この光センサで原稿の画像を電気信号(画像信号)として取得する(読み取る)ようになっている。
【0003】
ここで、画像読取装置の光源としては、従来一般には、キセノンランプが多用されていた。しかし、キセノンランプは、安定した光量に達するまでの立ち上がりが格段に早いという利点を有する反面、寿命が短く、高価であり、しかも小型化には不向きであるという欠点を有する。そのために近年では、キセノンランプに比べて、寿命が長く、安価であり、しかも小型化に優れた冷陰極管ランプが光源として適用されるようになってきている。
【0004】
ところが、この冷陰極管ランプ(以下、単に「冷陰極管」と記すことがある)は、その特性上で、図6及び図7に示すように、安定光量に達するまでの立ち上がりにある程度の時間を要するという特質を有する。この立ち上がり時間は、実際の画像読取動作を開始する前の待ち時間に反映される。従って、冷陰極管を光源として用いるにあたっては、冷陰極管の立ち上がりに伴う待ち時間を極力短縮するために、何らかの工夫を施すことが要求される。
【0005】
これに対する従来の工夫としては、冷陰極管の特質の1つである管壁の温度すなわち光源付近の環境温度に対する立ち上がり時間の依存性(環境温度が高くなるほど立ち上がり時間が短くなる)に着眼し、待機時の冷陰極管に対して、補助点灯させて自己発熱させておいたり、或いは、格別の加熱機構(例えば、搭載された画像形成装置における定着器の熱源の流用)により予熱しておいたりして、常時高温に維持するようにしていた(例えば、特許文献1参照)。
【0006】
また、別の工夫としては、主として、上記の温度依存性とは異なる冷陰極管の特質である印加電圧に対する立ち上がり時間の依存性(冷陰極管への印加電圧が高いほど立ち上がり時間が短くなる)に着眼し、立ち上がりの際、画像読取動作の際に印加する電圧よりも高い電圧を冷陰極管に印加するようにしていた(例えば、特許文献2参照)。この場合の立ち上がり時間すなわち高電圧の印加時間は、直前の画像読取動作における冷陰極管の点灯に伴う自己発熱を考慮し、直前の画像読取動作が終了してからの経過時間が長くなるに従って長くなるように設定されるものもある。
【0007】
【特許文献1】
特開2002−99194号公報
【特許文献2】
特開平1−267630号公報
【0008】
【発明が解決しようとする課題】
しかし、上記した従来の工夫のうち、前者では、待機時の冷陰極管の補助点灯に伴って電力が浪費される上に、冷陰極管の寿命低下が引き起こされたり、或いは、待機時の冷陰極管を予熱するための加熱機構の付与に伴って画像読取装置そのものの構造が複雑化したりするという問題がある。また、画像読取用の光センサに対しては、冷陰極管の光量に基づいて、画像信号をA/D変換するためのゲイン調整及び白色基準調整といったキャリブレーションを行う必要があるが、冷陰極管に印加する電圧が立ち上がりの際と画像読取動作の際とで一定であるため、そのキャリブレーションを適正なタイミングで行わないと、その後の実際の画像読取動作で読み取った画像が白く抜けてしまう現象、いわゆる画像の白抜けが発生する場合がある。
【0009】
他方後者では、前者のような電力浪費や冷陰極管の寿命低下、或いは構造の複雑化は生じないものの、冷陰極管の実際の立ち上がりに際して、季節や使用環境間での光源付近の環境温度差が考慮されていないため、高電圧を印加する立ち上がり時間が実質的に不適になる場合がある。これは、冷陰極管の特質として、その立ち上がり時間が環境温度に応じて変動するからである。
【0010】
そこで、本発明は、上記の問題に鑑みてなされたものであり、光源として冷陰極管ランプを備えた画像読取装置において、光源付近の環境温度に応じて、冷陰極管ランプの立ち上がり時間を適正に短縮でき、しかも実際の画像読取動作で読み取った画像を確実に良好にできる制御方法を提供することを目的とするものである。
【0011】
【課題を解決するための手段】
上記目的を達成するため、本発明による画像読取装置の制御方法は、光源として冷陰極管ランプを備えた画像読取装置の制御方法において、画像読取動作を行う際に印加する電圧よりも高い初期電圧を印加して前記冷陰極管ランプを立ち上げるとともに、前記冷陰極管ランプの立ち上がりの光量を基準時間毎に順に画像読取用の光センサで検出し、この検出結果に基づく前記基準時間毎の光量変化率が基準値以下になった後に、画像信号をA/D変換するためのゲイン調整及び白色基準調整を行い、その後、前記初期電圧を前記画像読取動作を行う際に印加する電圧に切り替えて画像読取動作の可能な状態に移行するものであって、前記基準時間は、光源付近の環境温度が高いほど短く設定され、前記基準値は、前記ゲイン調整及び白色基準調整を開始する際の光量が、前記画像読取動作を行う際の安定光量付近となるように設定されるようになっている。
【0012】
これにより、冷陰極管の立ち上がりの際、光源付近の環境温度に対応した基準時間毎にその光量変化率が比較判断されるため、冷陰極管が安定光量に達したことを環境温度に応じて的確にいち早く見極めることができる。これと併せて、その際、実際の画像読取動作で印加される画像読取動作を行う際に印加する電圧よりも高い初期電圧が冷陰極管に印加されるため、冷陰極管の立ち上がり時間が適正に短縮される。しかも、初期電圧が冷陰極管に印加されたままの状態で、ゲイン調整及び白基準調整といったキャリブレーションが行われ、その後に、冷陰極管への印加電圧が初期電圧よりも低い画像読取動作を行う際に印加する電圧に切り替えられて、画像読取動作の可能な状態に移行されるため、その後の実際の画像読取動作で読み取った画像においては、調整されたゲインや白基準を確実に超えることはなくなり、その結果良好な画像となる。
【0013】
ここで、冷陰極管が安定光量に達したことをより高い確実性を持って見極め、その上でキャリブレーションを行う観点から、前記光量変化率が複数回連続して前記基準値以下になると、前記ゲイン調整及び白色基準調整を行うことが好ましい。
【0014】
また、冷陰極管の温度依存性より、環境温度が高くなるに従って、冷陰極管の立ち上がり時間が短くなる、すなわち安定光量に達した時点での単位時間あたりの光量変化率が大きくなることから、これを踏まえて、単位時間あたりの前記光量変化率は、光源付近の環境温度が高いほど大きいことが好ましい。
【0015】
【発明の実施の形態】
以下に、本発明の実施形態である画像読取装置の制御方法について、図面を参照しながら詳述する。図1は本発明に係る画像読取装置の概略構成を示すブロック図、図2は本発明の制御方法における画像読取装置の動作を示すフローチャート、図3はその制御方法において用いられるデータテーブルの一例である。
【0016】
本実施形態での画像読取装置1は、画像形成装置である複写機に搭載されたものであって、図1に示すように、概略、装置全体を制御するCPU2と、画像読取用の光センサであるCCD3と、冷陰極管ランプ4と、この冷陰極管4を駆動させるドライバ5と、冷陰極管ランプ4付近の環境温度を検出する温度センサ6と、後述のプログラム式やデータテーブルを格納するメモリ7と、より構成される。更に、画像読取装置1の画像読取動作によりCCD3で読み取った原稿画像の画像信号は、画像形成部8に送られ、この画像形成部8でその画像がシート等に形成される。
【0017】
引き続き、このような画像読取装置における冷陰極管の立ち上がりに際しての動作について、図2及び図3を参照しながら説明する。図2に示すように、CPU2は、先ずステップ#5で、ドライバ5に点灯指令を与え、これにより冷陰極管4に定格電圧V2よりも高い初期電圧V1を印加して点灯させる。これと同時に、温度センサ6で陰極管ランプ4付近の環境温度Aを検出する(ステップ#10)とともに、この温度センサ6からの検出結果である環境温度Aに基づいてメモリ7から基準時間B及び基準値Cを抽出する(ステップ#15)。
【0018】
ここでメモリ7には、図3に示すように、環境温度Aに対応した基準時間B及び基準値Cが予め設定されて格納されている。この基準時間Bは、後述するCCD3での光量検出ピッチに相当し、他方基準値Cは、CCD3で検出された光量から算出される光量変化率の比較判断の指標になるものである。
【0019】
本実施形態では、環境温度Aに対応して3つに区分されていて、環境温度Aの低い区分のA<15℃では、基準時間Bが1.5秒で基準値Cが1.2%、中間の区分の15℃≦A<20℃では、Bが1秒でCが2%、環境温度Aの高い区分の20℃≦Aでは、Bが0.2秒でCが1%となっている。このように基準時間Bが、環境温度Aが高いほど短くなっているのは、冷陰極管4の温度依存性より、環境温度Aが高くなるに従って、冷陰極管4の立ち上がり時間が短くなる、すなわち単位時間あたりの光量変化率が大きくなることを考慮しつつ、冷陰極管4が安定光量に達したことを的確に早期に見極めるためであって、環境温度Aが低い場合に、基準時間Bを長くして比較判断に十分な光量変化率の大きさを確保し、他方環境温度Aが高い場合には、基準時間Bを短くしても光量変化率の大きさが十分確保されるためである。更に、特に、安定光量に達した時点での単位時間あたりの光量変化率は、環境温度Aが高くなるに従って大きくなることから、各区分における基準値Cを各基準時間Bで除算した値C/Bは、環境温度Aが高いほど大きくなっている(図3の右欄外参照)。
【0020】
図2に戻り動作の説明を続ける。引き続きステップ#20で、CCD3により冷陰極管4の光量Xnを検出し、更に、ステップ#15において抽出の基準時間Bが経過(ステップ#25)すると、ステップ#30で、CCD3により冷陰極管4の光量Xn+1を検出する。続いてステップ#35で、ステップ#20、#30において検出の光量Xn、Xn+1から基準時間B毎の光量変化率Yを、メモリ7に予め格納されているプログラム式である次式(1)より算出し、この光量変化率Yをステップ#15において抽出の基準値Cと比較する。
Y=(XN+1−XN)/XN・・・式(1)
但し、N=1、2、・・・、n、n+1、・・・である。
【0021】
このステップ#35で、光量変化率Y(=(Xn+1−Xn)/Xn)が基準値C以下の場合、暫定的に、冷陰極管4が安定光量に達したものと判断し、ステップ#40に進み基準時間Bが経過すると、ステップ#45で、CCD3により冷陰極管4の光量Xn+2を再度検出する。続いてステップ#50で、ステップ#30、#45において検出の光量Xn+1、Xn+2から上記の式(1)より光量変化率Yを算出し、この光量変化率Yを基準値Cと再度比較する。
【0022】
このステップ#50で、光量変化率Y(=(Xn+2−Xn+1)/Xn+1)が基準値C以下の場合、確定的に、冷陰極管4が安定光量に達したものと判断する。その後、ステップ#55で、冷陰極管4に初期電圧V1を印加したまま、CCD3に対し、冷陰極管4の光量Xn+2に基づいて、画像信号をA/D変換するためのゲイン調整及び白色基準調整といったキャリブレーションを行う。そして、ステップ#60で、冷陰極管4に印加する電圧を初期電圧V1よりも低い定格電圧V2に切り替え、画像読取動作の可能な状態である読取動作Readyに移行する(ステップ#65)。
【0023】
一方、ステップ#35で、光量変化率Y(=(Xn+1−Xn)/Xn)が基準値C以下でない場合は、ステップ#90に進んでXn+1をXnに置き換え、またステップ#50で、光量変化率Y(=(Xn+2−Xn+1)/Xn+1)が基準値C以下でない場合は、ステップ#95に進んでXn+2をXnに置き換え、共にステップ#25に戻り、上記と同様の動作を繰り返す。これらの場合は、冷陰極管4が安定光量に達していないからである。
【0024】
このように、冷陰極管4の立ち上がりの際に、光源付近の環境温度Aに対応した基準時間B毎にその光量変化率Yが比較判断されるため、冷陰極管4が安定光量に達したことを環境温度Aに応じて的確にいち早く見極めることができる。これと併せて、その際、実際の画像読取動作で印加される定格電圧V2よりも高い初期電圧V1が冷陰極管4に印加されるため、冷陰極管4の立ち上がり時間が適正に短縮される。しかも、初期電圧V1が冷陰極管4に印加されたままの状態で、ゲイン調整及び白基準調整といったキャリブレーションが行われ、その後に、冷陰極管4への印加電圧が初期電圧V1よりも低い定格電圧V2に切り替えられて、読取動作Readyに移行されるため、その後の実際の画像読取動作で読み取った画像においては、調整されたゲインや白基準を確実に超えることはなくなり、その結果白抜けの生じない良好な画像となる。
【0025】
また、本実施形態では、冷陰極管4の光量変化率Yが2回連続して基準値C以下になった場合に、確定的に、冷陰極管4が安定光量に達したものと判断されるようになっているが、これは、CCD3からの光量に関する出力にノイズが発生した場合に配慮したものであって、冷陰極管4が安定光量に達したことをより高い確実性を持って見極めるためである。従って、その回数は多いほどよいが、見極め時間の短縮を図る観点から、上記の実施形態のように2回、多くても3回程度が望ましい。
【0026】
最後に、上記した動作による試験結果の一例を図4及び図5に示す。図4はその一例である所定時間毎の冷陰極管の光量変化率を表にまとめた図、図5は時間と冷陰極管の光量の関係を示す図である。ここでは、環境温度Aが22.6℃の場合を示しており、基準時間Bが0.2秒、基準値Cが1%である(図3参照)。また、冷陰極管4の点灯(初期電圧V1の印加)開始から8秒後よりCCD3でその光量(CCD出力値)が検出され始め、基準時間B毎に光量変化率Yが比較判断されている。但し本試験では、冷陰極管4の光量変化率Yが3回連続して基準値C以下になった場合に、冷陰極管4の安定光量の到達が確定されている。
【0027】
そして、点灯開始から12.2秒後に、冷陰極管4が安定光量に達したものと確定的に判断されて、キャリブレーションが行われ、その後、点灯開始から約14.5秒の時点で読取動作Ready(定格電圧V2の印加)に移行されている。なお、読取動作Ready直前に光量が一旦0(ゼロ)になっているが、これは冷陰極管4への電圧印加が一旦停止されて、その電圧が初期電圧V1から定格電圧V2に切り替えられたことを表している。
【0028】
その他本発明は上記の実施形態に限定されず、本発明の趣旨を逸脱しない範囲で、種々の変更が可能である。
【0029】
【発明の効果】
以上説明した通り、本発明の画像読取装置の制御方法によれば、光源として冷陰極管ランプを備えた画像読取装置の制御方法において、画像読取動作を行う際に印加する電圧よりも高い初期電圧を印加して前記冷陰極管ランプを立ち上げるとともに、前記冷陰極管ランプの立ち上がりの光量を基準時間毎に順に画像読取用の光センサで検出し、この検出結果に基づく前記基準時間毎の光量変化率が基準値以下になった後に、画像信号をA/D変換するためのゲイン調整及び白色基準調整を行い、その後、前記初期電圧を前記画像読取動作を行う際に印加する電圧に切り替えて画像読取動作の可能な状態に移行するものであって、前記基準時間は、光源付近の環境温度が高いほど短く設定され、前記基準値は、前記ゲイン調整及び白色基準調整を開始する際の光量が、前記画像読取動作を行う際の安定光量付近となるように設定されるようになっているので、冷陰極管の立ち上がりの際、光源付近の環境温度に対応した基準時間毎にその光量変化率が比較判断され、これにより、冷陰極管が安定光量に達したことを環境温度に応じて的確にいち早く見極めることができる。これと併せて、その際、実際の画像読取動作で印加される画像読取動作を行う際に印加する電圧よりも高い初期電圧が冷陰極管に印加されるため、冷陰極管の立ち上がり時間が適正に短縮される。しかも、初期電圧が冷陰極管に印加されたままの状態で、ゲイン調整及び白基準調整といったキャリブレーションが行われ、その後に、冷陰極管への印加電圧が初期電圧よりも低い画像読取動作を行う際に印加する電圧に切り替えられて、画像読取動作の可能な状態に移行されるため、その後の実際の画像読取動作で読み取った画像においては、調整されたゲインや白基準を確実に超えることはなくなり、その結果良好な画像となる。
【図面の簡単な説明】
【図1】 本発明に係る画像読取装置の概略構成を示すブロック図である。
【図2】 本発明の制御方法における画像読取装置の動作を示すフローチャートである。
【図3】 本発明の制御方法において用いられるデータテーブルの一例である。
【図4】 本発明の制御方法による試験結果の一例であって、所定時間毎の冷陰極管の光量変化率を表にまとめた図である。
【図5】 本発明の制御方法による試験結果の一例であって、時間と冷陰極管の光量の関係を示す図である。
【図6】 冷陰極管ランプの温度依存性に関する光量特性を示す図である。
【図7】 冷陰極管ランプの印加電圧依存性に関する光量特性を示す図である。
【符号の説明】
1 画像読取装置
2 CPU
3 CCD(光センサ)
4 冷陰極管ランプ
5 ドライバ
6 温度センサ
7 メモリ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for controlling an image reading apparatus that reads an image of a document that is used alone as a scanner or mounted on a copying machine, a facsimile, or the like, and more particularly, an image reading apparatus that includes a cold cathode tube lamp as a light source. The present invention relates to an apparatus control method.
[0002]
[Prior art]
In general, in an image reading operation, an image reading device irradiates a document with light from a light source, guides the reflected light to a photosensor such as a CCD through a condensing lens while reflecting the reflected light by a plurality of mirrors. The document image is acquired (read) as an electrical signal (image signal).
[0003]
Here, as a light source of the image reading device, a xenon lamp has been generally used conventionally. However, the xenon lamp has an advantage that the rise until reaching a stable light quantity is remarkably fast, but has a short life, is expensive, and is unsuitable for downsizing. Therefore, in recent years, cold cathode tube lamps that have a longer life and are cheaper than xenon lamps and are excellent in miniaturization have come to be applied as light sources.
[0004]
However, this cold-cathode tube lamp (hereinafter sometimes simply referred to as “cold-cathode tube”) has a certain amount of time to rise until it reaches a stable light amount, as shown in FIGS. It has the characteristic of requiring This rise time is reflected in the waiting time before starting the actual image reading operation. Therefore, when using the cold cathode fluorescent lamp as a light source, it is required to make some contrivance in order to shorten the waiting time associated with the rising of the cold cathode fluorescent lamp as much as possible.
[0005]
As a conventional device for this, attention is paid to the dependence of the rise time on the temperature of the tube wall, which is one of the characteristics of the cold cathode tube, that is, the ambient temperature near the light source (the rise time becomes shorter as the ambient temperature becomes higher), The cold-cathode tube during standby is lit up and self-heated, or preheated by a special heating mechanism (for example, diverting the heat source of the fixing device in the mounted image forming apparatus) Thus, the temperature is constantly maintained at a high temperature (see, for example, Patent Document 1).
[0006]
As another contrivance, the rise time dependency on the applied voltage, which is a characteristic of the cold cathode tube, which is different from the above temperature dependency (the rise time becomes shorter as the applied voltage to the cold cathode tube is higher). At the time of start-up, a voltage higher than the voltage applied during the image reading operation is applied to the cold cathode tube (for example, see Patent Document 2). In this case, the rise time, that is, the high voltage application time, becomes longer as the elapsed time from the end of the immediately preceding image reading operation becomes longer in consideration of self-heating due to the lighting of the cold cathode tube in the immediately preceding image reading operation. Some are set to be.
[0007]
[Patent Document 1]
Japanese Patent Laid-Open No. 2002-99194 [Patent Document 2]
JP-A-1-267630
[Problems to be solved by the invention]
However, among the conventional devices described above, in the former, power is wasted along with auxiliary lighting of the cold cathode tube during standby, and the lifetime of the cold cathode tube is reduced, or cooling during standby is performed. There is a problem that the structure of the image reading apparatus itself becomes complicated with the provision of a heating mechanism for preheating the cathode tube. Further, for an optical sensor for image reading, it is necessary to perform calibration such as gain adjustment and white reference adjustment for A / D conversion of an image signal based on the light quantity of the cold cathode tube. Since the voltage applied to the tube is constant between the rising edge and the image reading operation, if the calibration is not performed at an appropriate timing, the image read in the subsequent actual image reading operation will be white. In some cases, a so-called white spot in the image occurs.
[0009]
On the other hand, the latter does not cause power waste, cold cathode tube life reduction, or complicated structure like the former, but the actual temperature difference of the ambient temperature near the light source between the seasons and the usage environment when the cold cathode tube actually starts up. Is not considered, the rise time for applying the high voltage may be substantially inappropriate. This is because, as a characteristic of a cold cathode tube, its rise time varies depending on the environmental temperature.
[0010]
Accordingly, the present invention has been made in view of the above problems, and in an image reading apparatus provided with a cold cathode tube lamp as a light source, the rise time of the cold cathode tube lamp is appropriately set according to the environmental temperature in the vicinity of the light source. It is an object of the present invention to provide a control method that can be shortened to a high level and can reliably improve an image read by an actual image reading operation.
[0011]
[Means for Solving the Problems]
To achieve the above object, an image reading apparatus control method according to the present invention includes an initial voltage higher than a voltage applied when an image reading operation is performed in the image reading apparatus control method including a cold cathode tube lamp as a light source. The cold cathode tube lamp is started up by applying the light, and the light quantity at the rising edge of the cold cathode tube lamp is sequentially detected by the optical sensor for image reading every reference time, and the light quantity at the reference time based on the detection result After the rate of change falls below the reference value, gain adjustment and white reference adjustment for A / D conversion of the image signal are performed, and then the initial voltage is switched to a voltage applied when performing the image reading operation. It is one that transition to a state capable of image reading operation, the reference time, the environmental temperature in the vicinity of the light source is set higher short, the reference value, the gain adjustment and the white reference Amount in starting an integer is adapted to be set so as to stabilize the amount of light near the time of performing the image reading operation.
[0012]
As a result, when the cold cathode tube rises, the change rate of the amount of light is compared and determined for each reference time corresponding to the ambient temperature in the vicinity of the light source, so that the cold cathode tube has reached a stable amount of light according to the ambient temperature. It can be accurately and quickly identified. At the same time, since the initial voltage higher than the voltage applied during the image reading operation applied in the actual image reading operation is applied to the cold cathode tube, the rise time of the cold cathode tube is appropriate. Shortened to In addition, calibration such as gain adjustment and white reference adjustment is performed while the initial voltage is applied to the cold cathode tube, and thereafter, an image reading operation in which the applied voltage to the cold cathode tube is lower than the initial voltage is performed. Since it is switched to the voltage to be applied at the time of execution and the image reading operation is possible, in the image read in the subsequent actual image reading operation, the adjusted gain and the white reference are surely exceeded. As a result, a good image is obtained.
[0013]
Here, it is determined with high certainty that the cold cathode tube has reached a stable light amount, and from the viewpoint of performing calibration on it, when the light amount change rate is continuously below the reference value a plurality of times, It is preferable to perform the gain adjustment and the white reference adjustment.
[0014]
Also, from the temperature dependence of the cold cathode tube, as the environmental temperature increases, the rise time of the cold cathode tube is shortened, that is, the rate of change in light quantity per unit time at the time when the stable light quantity is reached, Based on this, it is preferable that the light amount change rate per unit time is larger as the ambient temperature near the light source is higher.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a method for controlling an image reading apparatus according to an embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 is a block diagram showing a schematic configuration of an image reading apparatus according to the present invention, FIG. 2 is a flowchart showing the operation of the image reading apparatus in the control method of the present invention, and FIG. 3 is an example of a data table used in the control method. is there.
[0016]
An image reading apparatus 1 according to the present embodiment is mounted on a copying machine that is an image forming apparatus. As shown in FIG. 1, a CPU 2 that generally controls the entire apparatus, and an optical sensor for image reading. CCD 3, cold cathode tube lamp 4, driver 5 for driving the cold cathode tube 4, temperature sensor 6 for detecting the ambient temperature in the vicinity of the cold cathode tube lamp 4, and program formulas and data tables to be described later are stored. And a memory 7 to be configured. Further, the image signal of the original image read by the CCD 3 by the image reading operation of the image reading device 1 is sent to the image forming unit 8, and the image forming unit 8 forms the image on a sheet or the like.
[0017]
Next, the operation when the cold cathode tube rises in such an image reading apparatus will be described with reference to FIGS. As shown in FIG. 2, first, in step # 5, the CPU 2 gives a lighting command to the driver 5, thereby applying an initial voltage V 1 higher than the rated voltage V 2 to the cold cathode tube 4 to light it. At the same time, the ambient temperature A in the vicinity of the cathode tube lamp 4 is detected by the temperature sensor 6 (step # 10), and the reference time B and the reference time B and the memory 7 are detected based on the ambient temperature A as a detection result from the temperature sensor 6. A reference value C is extracted (step # 15).
[0018]
Here, in the memory 7, as shown in FIG. 3, a reference time B and a reference value C corresponding to the environmental temperature A are preset and stored. The reference time B corresponds to a light amount detection pitch in the CCD 3 to be described later, and the reference value C serves as an index for comparison judgment of the light amount change rate calculated from the light amount detected by the CCD 3.
[0019]
In the present embodiment, the temperature is divided into three according to the environmental temperature A. When the environmental temperature A is low, A <15 ° C., the reference time B is 1.5 seconds and the reference value C is 1.2%. In the middle section of 15 ° C. ≦ A <20 ° C., B is 1 second in 2 seconds and C is 2%, and in the high ambient temperature section of 20 ° C. ≦ A, B is 0.2 seconds and C is 1%. ing. The reason why the reference time B is shorter as the environmental temperature A is higher is that the rise time of the cold cathode tube 4 is shorter as the environmental temperature A is higher than the temperature dependence of the cold cathode tube 4. That is, in order to accurately and quickly determine that the cold-cathode tube 4 has reached a stable light amount while taking into consideration that the light amount change rate per unit time becomes large, and when the ambient temperature A is low, the reference time B This is because the amount of change in light quantity sufficient for comparison and judgment is secured by increasing the length of time, and when the ambient temperature A is high, the amount of change in light quantity is sufficiently secured even if the reference time B is shortened. is there. Further, in particular, since the rate of change in light quantity per unit time when the stable light quantity is reached increases as the environmental temperature A increases, a value C / that is obtained by dividing the reference value C in each section by each reference time B B increases as the environmental temperature A increases (see the right column in FIG. 3).
[0020]
Returning to FIG. 2, the description of the operation will be continued. Subsequently, in step # 20, the light amount Xn of the cold cathode tube 4 is detected by the CCD 3, and when the reference time B for extraction elapses in step # 15 (step # 25), the cold cathode tube is detected by the CCD 3 in step # 30. A light quantity X n + 1 of 4 is detected. Subsequently, in step # 35, the light quantity change rate Y for each reference time B from the detected light quantities Xn and Xn + 1 in steps # 20 and # 30 is a program expression stored in advance in the memory 7. The light quantity change rate Y calculated from (1) is compared with the extraction reference value C in step # 15.
Y = (X N + 1 −X N ) / X N (1)
However, N = 1, 2,..., N, n + 1,.
[0021]
If the light quantity change rate Y (= (X n + 1 −X n ) / X n ) is equal to or smaller than the reference value C in step # 35, it is temporarily determined that the cold cathode tube 4 has reached a stable light quantity. In step # 40, when the reference time B has elapsed, in step # 45, the light amount Xn + 2 of the cold cathode tube 4 is detected again by the CCD 3. Subsequently, at step # 50, the light amount change rate Y is calculated from the detected light amounts Xn + 1 and Xn + 2 at step # 30 and # 45 from the above equation (1), and this light amount change rate Y is used as a reference value. Compare again with C.
[0022]
If the light quantity change rate Y (= (X n + 2 −X n + 1 ) / X n + 1 ) is equal to or smaller than the reference value C in step # 50, the cold cathode tube 4 finally reaches a stable light quantity. Judge that it was done. Thereafter, in step # 55, the gain for A / D converting the image signal to the CCD 3 based on the light quantity X n + 2 of the cold cathode tube 4 while applying the initial voltage V 1 to the cold cathode tube 4. Calibration such as adjustment and white reference adjustment is performed. Then, at step # 60, switching the voltage applied to the cold cathode tube 4 to the rated voltage V 2 is lower than the initial voltage V 1, the process proceeds to the image reading can state that reading operation Ready for operation (step # 65) .
[0023]
On the other hand, if the light quantity change rate Y (= (X n + 1 −X n ) / X n ) is not less than or equal to the reference value C in step # 35, the process proceeds to step # 90 and X n + 1 is replaced with X n . If the light quantity change rate Y (= (X n + 2 −X n + 1 ) / X n + 1 ) is not less than the reference value C in step # 50, the process proceeds to step # 95 and X n + 2 is set. Both are replaced with Xn , and both return to step # 25 to repeat the same operation as described above. This is because in these cases, the cold cathode fluorescent lamp 4 does not reach a stable light quantity.
[0024]
Thus, when the cold cathode tube 4 rises, the light quantity change rate Y is compared and determined for each reference time B corresponding to the ambient temperature A in the vicinity of the light source, so that the cold cathode tube 4 has reached a stable light amount. This can be determined quickly and accurately according to the environmental temperature A. At the same time, since the initial voltage V 1 higher than the rated voltage V 2 applied in the actual image reading operation is applied to the cold cathode tube 4, the rise time of the cold cathode tube 4 is appropriately shortened. Is done. In addition, calibration such as gain adjustment and white reference adjustment is performed while the initial voltage V 1 is still applied to the cold cathode tube 4, and thereafter, the applied voltage to the cold cathode tube 4 is changed from the initial voltage V 1 . Is switched to the lower rated voltage V 2 and shifts to the reading operation Ready, so that in the image read in the subsequent actual image reading operation, the adjusted gain and the white reference are not reliably exceeded. The result is a good image with no white spots.
[0025]
Further, in the present embodiment, when the light quantity change rate Y of the cold cathode tube 4 becomes the reference value C or less twice consecutively, it is definitely determined that the cold cathode tube 4 has reached the stable light quantity. However, this is for the case where noise is generated in the output relating to the light quantity from the CCD 3, and with higher certainty that the cold cathode tube 4 has reached a stable light quantity. This is to determine. Accordingly, the larger the number of times, the better. However, from the viewpoint of shortening the determination time, it is desirable that the number of times is two times or at most about three times as in the above embodiment.
[0026]
Finally, an example of the test result by the above operation is shown in FIGS. FIG. 4 is a table summarizing the light quantity change rate of the cold cathode tube every predetermined time as an example, and FIG. 5 is a diagram showing the relationship between time and the light quantity of the cold cathode tube. Here, the case where the environmental temperature A is 22.6 ° C. is shown, the reference time B is 0.2 seconds, and the reference value C is 1% (see FIG. 3). Further, the light quantity (CCD output value) starts to be detected by the CCD 3 after 8 seconds from the start of lighting of the cold cathode tube 4 (application of the initial voltage V 1 ), and the light quantity change rate Y is compared and judged every reference time B. Yes. However, in this test, when the light quantity change rate Y of the cold cathode tube 4 becomes the reference value C or less for three consecutive times, the arrival of the stable light amount of the cold cathode tube 4 is determined.
[0027]
Then, after 12.2 seconds from the start of lighting, it is definitely determined that the cold cathode tube 4 has reached a stable light quantity, calibration is performed, and then reading is performed at about 14.5 seconds from the start of lighting. The operation is shifted to Ready (application of the rated voltage V 2 ). It should be noted that the light quantity is once 0 (zero) immediately before the read operation Ready, but this is because the voltage application to the cold cathode tube 4 is temporarily stopped and the voltage is switched from the initial voltage V 1 to the rated voltage V 2 . It represents what has been done.
[0028]
In addition, the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.
[0029]
【The invention's effect】
As described above, according to the control method of the image reading apparatus of the present invention, in the control method of the image reading apparatus including the cold cathode tube lamp as the light source, the initial voltage higher than the voltage applied when performing the image reading operation. The cold cathode tube lamp is started up by applying the light, and the light quantity at the rising edge of the cold cathode tube lamp is sequentially detected by an optical sensor for image reading every reference time, and the light quantity at each reference time based on the detection result After the rate of change falls below the reference value, gain adjustment and white reference adjustment for A / D conversion of the image signal are performed, and then the initial voltage is switched to a voltage applied when performing the image reading operation. It is one that transition to a state capable of image reading operation, the reference time, the environmental temperature in the vicinity of the light source is set shorter the higher the reference value, the gain adjustment and the white reference adjustment Amount at the time of start, the so has manner is set to be near the stable light quantity when the image reading operation, when the rise of the cold cathode tube, a reference time corresponding to the environmental temperature around the light source The rate of change in the amount of light is compared and determined every time, so that the fact that the cold-cathode tube has reached a stable amount of light can be determined quickly and accurately according to the ambient temperature. At the same time, since the initial voltage higher than the voltage applied when performing the image reading operation applied in the actual image reading operation is applied to the cold cathode tube, the rise time of the cold cathode tube is appropriate. Shortened to Moreover, calibration such as gain adjustment and white reference adjustment is performed while the initial voltage is still applied to the cold cathode tube, and thereafter, an image reading operation in which the applied voltage to the cold cathode tube is lower than the initial voltage is performed. Since it is switched to the voltage to be applied at the time of execution and the image reading operation is possible, in the image read in the subsequent actual image reading operation, the adjusted gain or white reference is surely exceeded. As a result, a good image is obtained.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a schematic configuration of an image reading apparatus according to the present invention.
FIG. 2 is a flowchart showing the operation of the image reading apparatus in the control method of the present invention.
FIG. 3 is an example of a data table used in the control method of the present invention.
FIG. 4 is an example of test results obtained by the control method of the present invention, and is a table summarizing the light quantity change rates of the cold cathode tubes every predetermined time.
FIG. 5 is an example of a test result obtained by the control method of the present invention, and is a diagram showing a relationship between time and the amount of light of a cold cathode tube.
FIG. 6 is a graph showing light quantity characteristics related to temperature dependence of a cold cathode tube lamp.
FIG. 7 is a diagram showing light quantity characteristics related to applied voltage dependence of a cold cathode tube lamp.
[Explanation of symbols]
1 Image reader 2 CPU
3 CCD (light sensor)
4 Cold cathode tube lamp 5 Driver 6 Temperature sensor 7 Memory

Claims (3)

光源として冷陰極管ランプを備えた画像読取装置の制御方法において、
画像読取動作を行う際に印加する電圧よりも高い初期電圧を印加して前記冷陰極管ランプを立ち上げるとともに、前記冷陰極管ランプの立ち上がりの光量を基準時間毎に順に画像読取用の光センサで検出し、この検出結果に基づく前記基準時間毎の光量変化率が基準値以下になった後に、画像信号をA/D変換するためのゲイン調整及び白色基準調整を行い、その後、前記初期電圧を前記画像読取動作を行う際に印加する電圧に切り替えて画像読取動作の可能な状態に移行するものであって、
前記基準時間は、光源付近の環境温度が高いほど短く設定され
前記基準値は、前記ゲイン調整及び白色基準調整を開始する際の光量が、前記画像読取動作を行う際の安定光量付近となるように設定されることを特徴とする画像読取装置の制御方法。
In a control method of an image reading apparatus provided with a cold cathode tube lamp as a light source,
The cold cathode tube lamp is started up by applying an initial voltage higher than the voltage applied when performing the image reading operation, and the light quantity of the rising of the cold cathode tube lamp is sequentially read at every reference time. After the light amount change rate for each reference time based on the detection result becomes equal to or less than the reference value, gain adjustment and white reference adjustment for A / D conversion of the image signal are performed, and then the initial voltage Is switched to a voltage to be applied when performing the image reading operation to shift to a state in which the image reading operation is possible,
The reference time is set shorter as the environmental temperature near the light source is higher ,
The control method for an image reading apparatus, wherein the reference value is set such that a light amount when starting the gain adjustment and white reference adjustment is close to a stable light amount when performing the image reading operation .
前記光量変化率が複数回連続して前記基準値以下になると、前記ゲイン調整及び白色基準調整を行うことを特徴とする請求項1に記載の画像読取装置の制御方法。The method of controlling an image reading apparatus according to claim 1, wherein the gain adjustment and the white reference adjustment are performed when the light quantity change rate is continuously equal to or less than the reference value a plurality of times. 単位時間あたりの前記光量変化率は、光源付近の環境温度が高いほど大きいことを特徴とする請求項1又は2に記載の画像読取装置の制御方法。 The method of controlling an image reading apparatus according to claim 1 , wherein the light quantity change rate per unit time is larger as the ambient temperature near the light source is higher.
JP2003199765A 2003-07-22 2003-07-22 Method for controlling image reading apparatus Expired - Fee Related JP3946171B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003199765A JP3946171B2 (en) 2003-07-22 2003-07-22 Method for controlling image reading apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003199765A JP3946171B2 (en) 2003-07-22 2003-07-22 Method for controlling image reading apparatus

Publications (2)

Publication Number Publication Date
JP2005045309A JP2005045309A (en) 2005-02-17
JP3946171B2 true JP3946171B2 (en) 2007-07-18

Family

ID=34260424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003199765A Expired - Fee Related JP3946171B2 (en) 2003-07-22 2003-07-22 Method for controlling image reading apparatus

Country Status (1)

Country Link
JP (1) JP3946171B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4955532B2 (en) * 2007-03-23 2012-06-20 株式会社リコー Image reading apparatus and image forming apparatus
US8314977B2 (en) 2007-03-23 2012-11-20 Ricoh Company, Ltd. Image reading device and image forming apparatus
JP5023137B2 (en) * 2009-11-27 2012-09-12 京セラドキュメントソリューションズ株式会社 Lamp lighting control device and image forming apparatus

Also Published As

Publication number Publication date
JP2005045309A (en) 2005-02-17

Similar Documents

Publication Publication Date Title
JP3946171B2 (en) Method for controlling image reading apparatus
JP4895375B2 (en) Image processing system and image processing system control method
US7079791B2 (en) Apparatus for reducing warm-up time by auxiliary light source and method for the same
US8314977B2 (en) Image reading device and image forming apparatus
JP4248326B2 (en) Method for controlling image reading apparatus
JP4446694B2 (en) Method for controlling image reading apparatus
JP2005045310A (en) Control method of image scanner
JP5511231B2 (en) Image reading apparatus and method for controlling the apparatus
JP4955532B2 (en) Image reading apparatus and image forming apparatus
JP2009272860A (en) Image reading device, and control method of image reading device
JP2009204852A (en) Image reading apparatus
JP2012090072A (en) Image reader
JP2007259093A (en) Image reading apparatus, method and program for judging light quantity stabilization time, and recording medium
JPH11122441A (en) Picture reading device
JP2001285581A (en) Image reader, lighting control method and storage medium
JP2009098175A (en) Image reading apparatus
JP2008009128A (en) Image reader and image processor
JPH11220624A (en) Image forming device
JPH10257249A (en) Image reader
JP2008271130A (en) Image reader
JPH10257314A (en) Image reader
JP2007158416A (en) Image reader
JP2001148766A (en) Device and method for reading image
JP2001257843A (en) Image scanning apparatus and method and storage medium
JPH11187262A (en) Image forming device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070410

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070410

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100420

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110420

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120420

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130420

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130420

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130420

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130420

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140420

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees