JP3946041B2 - Surface cross-sectional shape or three-dimensional surface shape measuring device and scanning electron microscope - Google Patents

Surface cross-sectional shape or three-dimensional surface shape measuring device and scanning electron microscope Download PDF

Info

Publication number
JP3946041B2
JP3946041B2 JP2001393421A JP2001393421A JP3946041B2 JP 3946041 B2 JP3946041 B2 JP 3946041B2 JP 2001393421 A JP2001393421 A JP 2001393421A JP 2001393421 A JP2001393421 A JP 2001393421A JP 3946041 B2 JP3946041 B2 JP 3946041B2
Authority
JP
Japan
Prior art keywords
electrons
sample
shape
cross
electron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001393421A
Other languages
Japanese (ja)
Other versions
JP2003194534A (en
Inventor
三之 朝木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advantest Corp
Original Assignee
Advantest Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advantest Corp filed Critical Advantest Corp
Priority to JP2001393421A priority Critical patent/JP3946041B2/en
Publication of JP2003194534A publication Critical patent/JP2003194534A/en
Application granted granted Critical
Publication of JP3946041B2 publication Critical patent/JP3946041B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、被測定試料の表面上に形成されている形状をより正確に測定する表面の断面形状若しくは三次元表面形状測定装置に関する。特に、走査型電子顕微鏡において試料へ一次電子を照射し、この照射点から放出される二次電子を表面の断面形状若しくは三次元表面形状に対応する信号として良好に捕捉できる手段を備える表面の断面形状若しくは三次元表面形状測定装置に関する。
【0002】
【従来の技術】
従来の走査型電子顕微鏡(SEM:Scanning Electron Microscope)における表面の断面形状若しくは三次元表面形状測定装置では、試料(DUT)の表面から放出される二次電子が二次電子検出器へ取り込まれるまでの間に周囲の電磁場の影響を受けるために、より的確な形状測定が行えない難点があった。また、試料自身の壁面部位によって試料の表面から放出される二次電子が二次電子検出器へ取り込まれるまでの間に遮られ、受信する二次電子の量は壁面部位がない場合より大幅に少なくなり形状測定に大きな誤差が生じる場合がある。
【0003】
【発明が解決しようとする課題】
従来の走査型電子顕微鏡における表面の断面形状若しくは三次元表面形状測定装置においては、試料の表面から放出されてる二次電子が二次電子検出器へ取り込まれるまでの間に周囲の電磁場の影響を受けるために、より的確に捕捉できない難点があった。これに伴い、試料の表面の断面形状若しくは三次元表面形状の測定誤差が大きくなる難点がある。また、試料自身の壁面部位によって試料の表面から放出される二次電子が二次電子検出器へ取り込まれるまでの間に遮られ、受信する二次電子の量は壁面部位がない場合より大幅に少なくなり場合がある。このような場合には 試料の表面の断面形状若しくは三次元表面形状の測定結果に大きな誤差が生じてしまう。
一方で、加工技術の進歩により配線パターンや回路形成は複雑になり、更に深い溝状や凸凹形状に立体的形成され、また0.2μm以下の微細化も進んでいる。これらに伴いより一層正確に表面の断面形状若しくは三次元表面形状が測定可能な表面の断面形状若しくは三次元表面形状測定装置が求められている。
そこで、本発明が解決しようとする課題は、被測定試料の表面上に形成されている表面の断面形状若しくは三次元表面形状をより誤差を少なく測定する表面の断面形状若しくは三次元表面形状測定装置を提供することである。
また、被測定試料の表面上に形成されている表面の断面形状若しくは三次元表面形状を、反射電子若しくは二次電子を受けて、より高精度に測定する表面の断面形状若しくは三次元表面形状測定装置、及び走査型電子顕微鏡を提供することである。
【0004】
【課題を解決するための手段】
第1の解決手段を示す。
上記課題を解決するために、試料表面に入射電子を照射し、試料から発生する放出電子(反射電子若しくは二次電子)に基づいて被測定試料の形状を測定する、表面の断面形状若しくは三次元表面形状測定装置において、
放出角度限定受信手段として、試料から発生する放出電子(反射電子若しくは二次電子)の中で対物レンズの内側を通過する放出電子を検出する形状計測用の検出器(インレンズ型検出器)を所定に配設して備える、ことを特徴とする表面の断面形状若しくは三次元表面形状測定装置である。
上記発明によれば、被測定試料の表面上に形成されている表面の断面形状若しくは三次元表面形状をより誤差を少なく測定する表面の断面形状若しくは三次元表面形状測定装置が実現できる。
【0005】
次に、第2の解決手段を示す。
上記課題を解決するために、試料表面に入射電子を照射し、試料から発生する放出電子(反射電子若しくは二次電子)に基づいて被測定試料の形状を測定する、表面の断面形状若しくは三次元表面形状測定装置において、
試料から発生する放出電子(反射電子若しくは二次電子)の中で対物レンズの内側を通過する放出電子を検出する放出角度限定受信手段(例えば検出電子制限絞り)を所定に配設して備える、ことを特徴とする表面の断面形状若しくは三次元表面形状測定装置がある。
【0006】
次に、第3の解決手段を示す。
上記課題を解決するために、試料表面に入射電子e1を照射し、試料から発生する反射電子に基づいて被測定試料の形状を測定する、表面の断面形状若しくは三次元表面形状測定装置において、
試料に照射した入射電子e1に基づいて試料から発生する反射電子の中で、所定角度領域内の反射電子を受けて電気信号に変換する放出角度限定受信手段を具備する、ことを特徴とする表面の断面形状若しくは三次元表面形状測定装置がある。
【0007】
次に、第4の解決手段を示す。
上記課題を解決するために、試料表面に入射電子e1を照射し、試料から発生する二次電子に基づいて被測定試料の形状を測定する、表面の断面形状若しくは三次元表面形状測定装置において、
試料に照射した入射電子e1に基づいて試料から発生する二次電子の中で、所定角度領域内の二次電子を受けて電気信号に変換する放出角度限定受信手段を具備する、ことを特徴とする表面の断面形状若しくは三次元表面形状測定装置がある。
【0008】
次に、第5の解決手段を示す。ここで第4図は、本発明に係る解決手段を示している。
上記課題を解決するために、試料表面に入射電子e1を照射し、試料から発生する反射電子若しくは二次電子に基づいて被測定試料の形状を測定する、表面の断面形状若しくは三次元表面形状測定装置において、
試料に照射した入射電子e1に基づいて試料から発生する反射電子若しくは二次電子の中で、所定角度領域内の反射電子若しくは二次電子を所定に受けて電気信号に変換する放出角度限定受信手段を具備する、ことを特徴とする表面の断面形状若しくは三次元表面形状測定装置がある。
【0009】
次に、第6の解決手段を示す。ここで第4図は、本発明に係る解決手段を示している。
上述二次電子を検出対象とする上記放出角度限定受信手段の一態様は、
試料表面へ照射する入射電子e1の焦点を調整する静電型対物レンズ20を具備し、
試料に照射した入射電子e1に基づいて二次電子が発生されて、上記静電型対物レンズ20の内側を通過する二次電子の中で、照射軸中央に形成した所定の開口孔52で所定領域の二次電子e3のみを通過させる検出電子制限絞り50を具備し、
上記検出電子制限絞り50を通過してきた二次電子e3を受けて電気信号に変換する形状計測用インレンズ型の二次電子検出手段を具備し、
以上を具備することを特徴とする上述表面の断面形状若しくは三次元表面形状測定装置がある。
【0010】
次に、第7の解決手段を示す。
上述二次電子を検出対象とする上記放出角度限定受信手段の一態様は、
試料表面へ照射する入射電子e1の焦点を調整する静電型対物レンズ20を具備し、
試料に照射した入射電子e1に基づいて二次電子が発生されて、上記静電型対物レンズ20の内側を通過する二次電子の中で、照射軸中央に形成した所定の開口孔52で所定領域の二次電子e3のみを通過させる検出電子制限絞り50を具備し、
上記検出電子制限絞り50を通過してきた二次電子e3を受けて電気信号に変換する形状計測用インレンズ型の第1の二次電子検出手段を具備し、
試料表面から発生する二次電子の中で、上記静電型対物レンズ20の外側を通過する二次電子を受けて電気信号に変換するアウトレンズ型の第2の二次電子検出手段を具備し、
以上を具備することを特徴とする上述表面の断面形状若しくは三次元表面形状測定装置がある。
これによれば、形状計測用インレンズ型の第1の二次電子検出手段に基づく二次電子プロファイルと、アウトレンズ型の第2の二次電子検出手段に基づく二次電子プロファイルとに基づいて、より正確に二次元形状若しくは三次元形状の輪郭を特定することができる。
【0011】
次に、第8の解決手段を示す。ここで第2図は、本発明に係る解決手段を示している。
上述反射電子を検出対象とする上記放出角度限定受信手段の一態様は、
試料表面へ照射する入射電子e1の焦点を調整する静電型対物レンズ20を具備し、
試料に照射した入射電子e1に基づいて反射電子が発生されて、上記静電型対物レンズ20の内側を通過する反射電子の中で、照射軸中央に形成した所定の開口孔52で所定領域の反射電子E3のみを通過させる検出電子制限絞り50を具備し、
上記検出電子制限絞り50を通過してきた反射電子E3を受けて、これに対応した二次電子に変換して放出する二次電子変換板40を具備し、
上記二次電子変換板40からの二次電子を受けて電気信号に変換して出力する形状計測用インレンズ型の二次電子検出手段を具備し、
以上を具備することを特徴とする上述表面の断面形状若しくは三次元表面形状測定装置がある。
【0012】
次に、第9の解決手段を示す。ここで第4図は、本発明に係る解決手段を示している。
上述二次電子検出手段の一態様としては、試料の走査軸方向に対応して所定に配設して備える2個の二次電子検出器31、32である、ことを特徴とする上述表面の断面形状若しくは三次元表面形状測定装置がある。
【0013】
次に、第10の解決手段を示す。ここで第5図は、本発明に係る解決手段を示している。
上述二次電子検出手段の一態様は、試料の一方の走査軸方向(X軸方向)に対応して所定に配設して備える2個の第1の二次電子検出器31、32を具備し、前記第1の二次電子検出器31、32と直交して、試料の他方の走査軸方向(Y軸方向)に対応して所定に配設して備える2個の第2の二次電子検出器33、34を具備し、
以上を具備することを特徴とする上述表面の断面形状若しくは三次元表面形状測定装置がある。
【0014】
次に、第11の解決手段を示す。ここで第6図は、本発明に係る解決手段を示している。
上述二次電子を受ける上記検出電子制限絞り50の前面に、一定エネルギー以上の二次電子を通過させ、一定エネルギー以下の二次電子を通過阻止させるエネルギーフィルタ54を具備し、
上記エネルギーフィルタ54へ所定の負の減速電圧を供給する減速電圧源56を具備し、
以上を具備することを特徴とする上述表面の断面形状若しくは三次元表面形状測定装置がある。
【0015】
次に、第12の解決手段を示す。ここで第7図は、本発明に係る解決手段を示している。
試料表面に接近して配設されて、試料に照射した入射電子e1に基づいて発生する二次電子を引き出し加速させて上記検出電子制限絞り50へ供給する二次電子引出電極24を具備し、
上記二次電子引出電極24へ所定の正の引出電圧を供給する引出電圧源26を具備し、
以上を具備することを特徴とする上述表面の断面形状若しくは三次元表面形状測定装置がある。
【0016】
次に、第13の解決手段を示す。ここで第8図は、本発明に係る解決手段を示している。
上述検出電子制限絞り50の一態様としては、中央の開口孔の大きさを可変とする機械的な可変絞り機構を備える検出電子制限可変絞り80である、ことを特徴とする上述表面の断面形状若しくは三次元表面形状測定装置がある。
【0017】
次に、第14の解決手段を示す。
上述静電型対物レンズ20に代えて電磁型対物レンズを適用し、
上記電磁型対物レンズに伴う二次電子の軸方向の回転量に対応するように二次電子検出手段を配設して備える、ことを特徴とする上述表面の断面形状若しくは三次元表面形状測定装置がある。
これによれば、電磁型対物レンズに伴う二次電子の軸方向の回転量を予め求めておき、これに対応するように二次電子検出器31、32を配設することで、二次元形状若しくは三次元形状が実用的に測定可能となる。
【0018】
次に、第15の解決手段を示す。
上述表面の断面形状若しくは三次元表面形状測定装置を適用して、試料表面の断面形状若しくは三次元表面形状を、誤差が少なく高精度に測定する構成を備える、ことを特徴とする走査型電子顕微鏡がある。
【0019】
尚、本願発明手段は、所望により、上記解決手段における各要素手段を適宜組み合わせて、実用可能な他の構成手段としても良い。また、上記各要素に付与されている符号は、発明の実施の形態等に示されている符号に対応するものの、これに限定するものではなく、実用可能な他の均等物を適用した構成手段としても良い。
【0020】
【発明の実施の形態】
以下に本発明を適用した実施の形態の一例を図面を参照しながら説明する。また、以下の実施の形態の説明内容によって特許請求の範囲を限定するものではないし、更に、実施の形態で説明されている要素が解決手段に必須であるとは限らない。更に、実施の形態で説明されている要素の形容/形態は、一例でありその形容/形態内容のみに限定するものではない。
【0021】
本発明について、図1〜図9を参照して以下に説明する。
先ず、図1(a、b)の試料の表面の断面形状と二次電子の放出角度αとの関係について説明する。ここで、入射電子によって生ずる放出二次電子の中で二次電子検出器で受信する二次電子は左右にαの角度範囲内で放出されるものと仮定する。
図1(a)の溝型の表面の断面形状において、A地点に入射された入射電子に基づいて放出されるαの角度範囲内の方向への二次電子は、αの角度範囲内の方向に妨げるものは無いので二次電子検出器で全て検出される。
【0022】
一方、図1(b)の溝型の表面の断面形状において、A地点の斜面傾斜角度が同じである深部のB地点に入射された入射電子に基づいて放出されるαの角度範囲内の方向への二次電子の場合は、αの角度範囲内の方向に放出するものの、試料自身の壁面部位によって一部が妨げられる。即ち、右側の斜面の壁によって領域mの範囲が遮られる。更に、左側斜面によって領域nの範囲が遮られる。従って、B地点からの放出角度範囲は半減程度となってしまう。この結果、二次電子検出器で受ける二次電子の量は、上記点Aに対比して数分の1程度の少ない電子量の検出誤差を生じる。これに伴って試料の表面の断面形状を求める演算処理を行って求めた測定形状には大きな誤差が生じてしまう。この為、正確な形状測定を目的とした場合には好ましくない。
【0023】
そこで、本発明の原理手段を説明する。図1(c)に示すように、二次電子検出器で受ける二次電子は鋭角放出角度β領域の放出角度に限定して受信できる放出角度限定受信手段を備える。前記の放出角度限定受信手段については後述する。もしも、鋭角放出角度β領域のみの二次電子を受信することができれば、斜面の傾斜角度が等しい図1D,E,F地点の何れにおいても、試料自身によって一部が妨げられることが無くなる結果、同量の二次電子量が受信できる。この結果、求めた測定形状に大きな誤差を生じることが無く、正確な表面の断面形状測定が可能となる。
二次電子でなく反射電子の検出により形状測定が行われるものも同様に改善される。
【0024】
本発明手段は、第1の放出角度限定受信手段として、形状計測用二次電子検出器としてアウトレンズ型検出器の変わりにインレンズ型検出器を使う。即ち、対物レンズ上方で方位方向に複数配置された二次電子検出器を使う、ことを特徴としている。
これによれば、図1に示す鋭角放出角度α領域全体を、図9(b)に示すアウトレンズ型の検出器では受けていたのが、図1に示す鋭角放出角度β領域のみの二次電子を、図9(a)に示すようにインレンズ型の検出器で受けることが可能となるからして、誤差の少ない正確な表面の断面形状測定が可能となる利点が得られる。
【0025】
次に、図2は反射電子の場合における検出電子(検出対象電子)の角度範囲を制限する検出電子制限絞り50を備えた場合の原理構造図である。これは反射電子の場合である。ここで、検出電子制限絞り50が第2の放出角度限定受信手段である。
検出電子制限絞り50は、入射電子e1を照射する照射軸を中心とした所定直径の円形の開口孔52を備える遮蔽板であって、試料から対物レンズ(静電型対物レンズ)20を介して円錐状の広がりを有する広角度範囲θ1の領域に反射してくる反射電子E2の中で、限定角度範囲θ2(左右の鋭角放出角度β領域を合わせたものに該当)以内の限定した領域の反射電子E3を通過させる開口孔52の大きさとしている。この結果、限定角度範囲θ2の領域以外の反射電子E4は除外できる。そして、開口孔52を通過した反射電子E3は二次電子変換板40により二次電子に変換されて二次電子検出器31、32へ供給される。
尚、図1(d)に示すように斜面が垂直に立っている場合には、斜面と底面の側壁近傍部位は鋭角放出角度β領域の反射電子を適用しても実用的に測定できない。この場合には図1(e)に示すように、試料自身を傾斜させて検出系から見た斜面の傾斜角度を鋭角放出角度β(限定角度範囲θ2)に対応するように傾ける。また、少なくても底面中心でも遮蔽が生じないよう試料の傾斜角度を合わせる。更に、他方の斜面を測定するときは試料を反対側に傾斜させた後、同様の測定を行えば良い。
従って、上述した図2の発明原理構成例によれば、図1に示す鋭角放出角度β領域のみの反射電子を二次電子変換板40を介して二次電子検出器31、32で受信することができる利点が得られる。
【0026】
次に、図3は二次電子の場合における検出電子(検出対象電子)の角度範囲を制限する検出電子制限絞り50を備えた場合の原理構造図である。これは二次電子の場合である。ここで、検出電子制限絞り50が第3の放出角度限定受信手段である。
この場合における検出電子制限絞り50も上述と同様であり、限定角度範囲θ2以内の領域の二次電子e3を通過させる開口孔52の大きさとしている。この結果、限定角度範囲θ2以外の二次電子e4は除外できる。
従って、上述した図3の発明原理構成例によれば、図1に示す鋭角放出角度β領域のみの二次電子を受信することができる利点が得られる。
【0027】
次に、図4は検出電子制限絞りを備える走査型電子顕微鏡の本発明に係る原理構造図である。
この構成要素は、コンデンサレンズ60と、二次電子検出器31、32と、検出電子制限絞り50と、スキャンコイル70と、静電型対物レンズ20と、演算部110とを備える。ここで、検出電子制限絞り50が第4の放出角度限定受信手段である。ここで、走査型電子顕微鏡は公知であり技術的に良く知られている為、本願に係る要部を除き、その他の信号や構成要素、及びその詳細説明については省略する。
コンデンサレンズ60は、電子ビームを所定に集光するものである。
二次電子検出器31、32は、静電型対物レンズ20の内側を通過する二次電子を対象として検出する形状計測用インレンズ型の二次電子検出器であって、X軸方向(横方向)の走査によりX軸方向で変化する二次電子の変化を検出する。検出電子制限絞り50を通過して来た二次電子e3を受信して所定に増幅した電気信号を出力するものであって、電子ビーム軸に対して対向する位置に配設する。
スキャンコイル70は、外部からの制御に基づいて、試料へ入射させる入射電子e1を所望方向へ偏向制御する偏向手段である。例えば水平直線のX軸方向やY軸方向へ走査させたり、X軸Y軸の任意の平面方向への走査ができる。
【0028】
検出電子制限絞り50は、上述図3に示したように、試料から発生して静電型対物レンズ20を介してくる二次電子e2の中で、開口孔52を通過できる二次電子以外の二次電子を除外するものである。開口孔52の大きさは所望の鋭角放出角度βとなるような開口径の大きさにする。これによれば、図1に示す鋭角放出角度β領域のみを二次電子検出器31、32で受信することが可能となる利点が得られる。
【0029】
静電型対物レンズ20は、外部からの制御に基づいて、試料表面へ照射される入射電子e1の垂直方向(Z軸方向)の焦点(フォーカス)を調整制御するものである。図1に示すように大きな凹部がある場合、目的の高さ位置で焦点が結ばれるように、照射する入射電子e1の焦点を制御できる。尚、もしも磁界型対物レンズを適用すると、磁界によって二次電子e2が磁界型対物レンズを通過中に回転運動を起こすために、二次電子の放出方向性が失われて傾斜角度情報が失われる為、正確な形状測定を目的とした場合には好ましくない。
この静電型対物レンズ20の適用によって、円錐状の広がりを有するX軸Y軸の平面方向への放出方向性を有した状態のままで、二次電子検出器31、32が配設位置に対応する特定放出方向の二次電子e3を受信可能となる利点が得られる。
【0030】
ステージ100は、試料をXY軸水平方向とZ軸垂直方向へ所望量移動させる移動機構である。
演算部110は、上記要素を制御して所望区間を水平方向へ所望に走査(スキャン)して、二次電子検出器31、32から前記スキャン動作に同期相関した関係で得られる二次電子信号(二次電子プロファイル)を受けて、公知の表面の断面形状算出手段や三次元表面形状手段により走査区域の凹凸形状を二次元や三次元の画像情報として生成する。
【0031】
上述した図4の発明構成例によれば、対物レンズは静電型対物レンズ20を適用し、且つ、検出電子制限絞り50を具備する構成としたことにより、図1に示す鋭角放出角度β領域のみの二次電子を受けることができる。且つ、静電型対物レンズ20の適用によって、円錐状の広がりを有するX軸Y軸の平面方向への放出方向性を有した状態のままで二次電子検出器31、32が配設位置に対応する特定放出方向の二次電子e3を受信可能となる利点が得られる。これによって誤差の少ない正確な二次元や三次元の画像情報を生成できる大きな利点が得られる。
【0032】
次に、図5は図4の2個の二次電子検出器に対して、4個の二次電子検出器31、32、33、34を配設したときの鏡筒本体上部から見た配置図である。
二次電子検出器31、32、33、34の各々は、鏡筒本体の円周に対して90度の配置角度に配設して備える。これは図1(e)に示すように試料を傾斜させた状態での形状測定に好適である。
上記図5の構成によれば、放出方向性を有した状態の二次電子e3をX軸Y軸の平面方向で同時に測定可能となる結果、試料を乗せたステージを90度回転させることが不要となるので、ステージの位置決め誤差に伴う測定誤差を無くすることができる。従って、特に極微細な凹凸形状を正確に測定できる結果、二次元や三次元の画像情報を一層正確に生成できる大きな利点が得られる。
【0033】
次に、図6は不要な低エネルギーの二次電子を除去するエネルギーフィルタ54と減速電圧源56とを追加して備える構成例である。
エネルギーフィルタ54は、一定エネルギー以上の高エネルギー二次電子を通過させ、一定エネルギー以下の低エネルギー二次電子を減速反発させて通過阻止させるものである。構造は細かい網目状のグリッド電極であって、二次電子e2が通過する領域全面に平面的に配設する。この電極には、減速電圧源56により所望の負の直流電圧を印加する。
減速電圧源56は、負の直流可変電源であって、外部からの制御に基づいて、所望の負の減速電圧を上記エネルギーフィルタ54へ供給する。この電圧制御により、所望エネルギーレベル以下の低エネルギー二次電子を通過阻止する。
【0034】
上記図6の構成によれば、エネルギーフィルタ54に減速電圧を印加し一定エネルギー以下の電子は引き戻され通過できなくなる結果、無用な二次電子を排除することが可能となるからして受信目的の二次電子とそれ以外の無用なノイズ的な二次電子を効果的に分離できる。従って、受信する電気信号のSN比を向上できる結果、二次元や三次元の画像情報を一層正確に生成できる大きな利点が得られる。
【0035】
次に、図7は試料から放出される二次電子の放出量を増加させる二次電子引出電極24と引出電圧源26とを追加して備える構成例である。 二次電子引出電極24は、受信する二次電子の量を増加させて検出効率を向上することを目的とした二次電子引出用の電極であって、特にアスペクト比が高い深溝の底などに対して、鋭角放出角度β領域の狭い受信範囲を適用するときに有効である。この二次電子引出電極24は、試料に接近した直上部位に配設されていて、この中央部には二次電子を通過させるための丸い開口孔25を備えている。これにより、低エネルギーレベルの二次電子を引き出すことができる。
引出電圧源26は、正の直流可変電源であって、外部からの制御に基づいて、最良の検出条件となるように、所定の引出電圧を上記二次電子引出電極24へ供給する。
【0036】
上記図7の構成によれば、特に、アスペクト比が高い溝底などからの二次電子の検出効率を上げることができる。但し、測定精度は多少犠牲となるので、アスペクト比が高い溝に対して限定的に適用することが望ましい。この結果、アスペクト比が高い溝に対しても、SN比が改善される結果、より正確な形状測定情報を生成できる大きな利点が得られる。
【0037】
次に、図8は検出電子制限可変絞り80を備える走査型電子顕微鏡の本発明に係る原理構造図である。ここで、検出電子制限可変絞り80が第5の放出角度限定受信手段である。
検出電子制限可変絞り80は、二次電子e3を通過させる可変開口孔82の大きさにおいて、外部からの制御に基づいて開口径を機械的に可変とする可変絞り機構を有するものである。可変絞りの開口は、第1に、ほぼ全開の開口径のときには絞りが無いに等しい大きな開口径まで可能にし、第2に、実用的に制御可能な最小の開口径まで可能とする。このとき、入射軸を中心と開口孔の中心とが一致するように絞り機構を構成する。
可変開口孔82の形状は、円形が望ましいが、円形である必要は無い。例えば、2個の二次電子検出器31、32に対応する場合には、並行したスリット状(図8A参照)の開口孔(開口幅)でも良い。また、4個の二次電子検出器31〜34に対応する場合には、4角形状(図8B参照)の開口孔でも良い。
ところで、検出電子制限可変絞り80を挿入することは、測定できる傾斜角範囲を鋭角放出角度β領域のみとすることができるが、他方で、二次電子検出器が受信する信号の一部カットすることになるのでSN比が悪くなってくる。この為、可変開口孔82によって、測定対象の状況に対応した絞り条件に調整できることは優れた利点となる。
【0038】
上記図8の構成によれば、第1に、二次電子検出器が出力する検出対象の電気信号と二次電子検出器等から発生するノイズ成分とのSN比を考慮して最適な条件の絞り口径に調整制御することができる。更に、二次電子検出器から出力される二次電子検出信号は、最適のSN比条件にすることが可能となるからして、最も正確な形状測定情報を生成できる大きな利点が得られる。更に、正確な形状測定情報の生成を必要しない場合には、従来と同様の条件となるように全開状態にして測定することもできる利点が得られる。
【0039】
尚、本発明の技術的思想は、上述実施の形態の具体構成例、構造例に限定されるものではない。更に、本発明の技術的思想に基づき、上述実施の形態を適宜変形して広汎に応用してもよい。
例えば、上述実施例では、試料からの二次電子を受けて正確な形状測定を行う二次元若しくは三次元表面形状測定装置の場合とした具体例で説明していたが、二次電子の代わりに反射電子を受ける場合においても上述同様の効果を発揮する。従って、試料からの反射電子を適用して正確な形状が測定可能な二次元若しくは三次元表面形状測定装置としても良い。
【0040】
また、上述した図7の二次電子引出電極24において、所望により、この二次電子引出電極24の代わりに、静電型対物レンズ20の最下段の電極に対して対物レンズとしての機能を維持しながら、二次電子引出電極24の機能も兼ね備えるように機能されても良い。この場合には、兼用に伴って、より安価に実現できる。
【0041】
また、上述した、個々の放出角度限定受信手段である検出電子制限絞り、4個の二次電子検出器の配設、エネルギーフィルタと減速電圧源、二次電子引出電極と引出電圧源、検出電子制限可変絞り、の放出角度限定受信手段の各々の手段要素を適宜組み合わせて、所望の走査型電子顕微鏡を実現しても良い。これにより、測定用途に対応した最適な走査型電子顕微鏡が実現可能である。
【0042】
また、上述では静電型対物レンズ20を使用する場合で説明していたが、所望により、静電型対物レンズ20に代えて電磁型対物レンズを適用する。但し、当該電磁型対物レンズに伴って二次電子の軸方向の回転が生じるので、この回転量を予め他の測定手段で求めておき、この回転量に対応するように二次電子検出器31、32側の配設位置を定める構成手段としても良い。この場合には、電磁型対物レンズに伴う二次電子の軸方向の既知の回転量に対応する二次電子検出器31、32の配設により、静電型対物レンズ20の場合よりは劣るものの、実用的に測定可能となる利点が得られる。
【0043】
また、上述した図4の検出電子制限絞り50を移動できる移動機構を備えるように構成しても良い。この場合には、測定状況に対応して従来と同様の検出条件となる全開状態での通常の測定精度と、本発明の高い測定精度との両方が適用可能となる利点が得られる。
【0044】
【発明の効果】
本発明は、上述の説明内容からして、下記に記載される効果を奏する。
上述した図2の発明原理構成例によれば、図1に示す鋭角放出角度β領域のみの反射電子を二次電子検出器31、32で受信することができる利点が得られる。
上述した図3の発明原理構成例によれば、図1に示す鋭角放出角度β領域のみの二次電子を受信することができる利点が得られる。
【0045】
上述した図4の発明構成例によれば、対物レンズは静電型対物レンズ20を適用し、且つ、検出電子制限絞り50を具備する構成としたことにより、図1に示す鋭角放出角度β領域のみの二次電子を受けることができる。且つ、静電型対物レンズ20の適用によって、円錐状の広がりを有するX軸Y軸の平面方向への放出方向性を有した状態のままで二次電子検出器31、32が配設位置に対応する特定放出方向の二次電子e3を受信可能となる利点が得られる。これによって試料照射点の二次元的な位置が明確に特定可能となる測定信号とすることが可能となる結果、誤差の少ない正確な二次元や三次元の画像情報を生成できる大きな利点が得られる。
【0046】
上述図5の構成によれば、放出方向性を有した状態の二次電子e3をX軸Y軸の平面方向で同時に測定可能となる結果、誤差の少ない正確な二次元や三次元の画像情報を生成できる大きな利点が得られる。
【0047】
上述図6の構成によれば、エネルギーフィルタ54に減速電圧を印加し一定エネルギー以下の電子は引き戻され通過できなる結果、無用な二次電子を排除することが可能となるからして受信目的の二次電子とそれ以外の無用なノイズ的な二次電子を効果的に分離できる。従って、受信する電気信号のSN比を向上できる結果、一層正確な形状測定情報を生成できる大きな利点が得られる。
【0048】
上述図7の構成によれば、特に、アスペクト比が高い溝底などからの二次電子の検出効率を上げることができる。但し、測定精度は多少犠牲となるので、アスペクト比が高い溝に対して限定的に適用することが望ましい。この結果、アスペクト比が高い溝に対しても、SN比が改善される結果、より正確な形状測定情報を生成できる大きな利点が得られる。
【0049】
上述図8の構成によれば、第1に、二次電子検出器が受けて出力する目的の電気信号と二次電子検出器自身から発生するホワイトノイズ等のノイズ成分との比率(SN比)との両者の関係から最適な条件の絞り状態に調整制御することができる。従って、二次電子検出器から出力される二次電子検出信号は、最適のSN比条件にすることが可能となるからして、最も正確な形状測定情報を生成できる大きな利点が得られる。逆に、正確な形状測定情報の生成を必要しない場合には、従来と同様に全開状態にして測定することもできる利点が得られる。
従って、本発明の技術的効果は大であり、産業上の経済効果も大である。
【図面の簡単な説明】
【図1】試料の表面の断面形状と二次電子(又は反射電子)の放出角度αとの関係について説明する図である。
【図2】本発明の、反射電子の場合における検出電子(検出対象電子)の角度範囲を制限する検出電子制限絞りを備えた場合の原理構造図である。
【図3】本発明の、二次電子の場合における検出電子(検出対象電子)の角度範囲を制限する検出電子制限絞りを備えた場合の原理構造図である。
【図4】本発明の、検出電子制限絞りを備える走査型電子顕微鏡の本発明に係る原理構造図である。
【図5】本発明の、4個の二次電子検出器を配設したときの鏡筒本体上部から見た配置図である。
【図6】本発明の、不要な低エネルギーの二次電子を除去するエネルギーフィルタと減速電圧源とを追加して備える構成例である。
【図7】本発明の、試料から放出される二次電子の放出量を増加させる二次電子引出電極と引出電圧源とを追加して備える構成例である。
【図8】本発明の、検出電子制限可変絞りを備える走査型電子顕微鏡の本発明に係る原理構造図である。
【図9】本発明の、インレンズ検出器で二次電子を検出する原理構成図と、アウトレンズ検出器で二次電子を検出する原理構造図である。
【符号の説明】
20 静電型対物レンズ(対物レンズ)
24 二次電子引出電極
26 引出電圧源
31,32,33,34 二次電子検出器
50 検出電子制限絞り
54 エネルギーフィルタ
56 減速電圧源
60 コンデンサレンズ
70 スキャンコイル
80 検出電子制限可変絞り
110 演算部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a surface cross-sectional shape or three-dimensional surface shape measuring apparatus for more accurately measuring a shape formed on the surface of a sample to be measured. In particular, a surface cross-section provided with means capable of irradiating a sample with primary electrons in a scanning electron microscope and capturing well secondary electrons emitted from the irradiation point as a signal corresponding to the cross-sectional shape or three-dimensional surface shape of the surface. The present invention relates to a shape or three-dimensional surface shape measuring apparatus.
[0002]
[Prior art]
In a conventional scanning electron microscope (SEM: Scanning Electron Microscope) surface cross-sectional shape or three-dimensional surface shape measuring device, secondary electrons emitted from the surface of a sample (DUT) are taken into a secondary electron detector. Because of the influence of the surrounding electromagnetic field, there was a problem that more accurate shape measurement could not be performed. In addition, the secondary electrons emitted from the surface of the sample by the sample itself are blocked before being taken into the secondary electron detector, and the amount of secondary electrons to be received is much larger than when there is no wall surface. There are cases where the error is reduced and a large error occurs in the shape measurement.
[0003]
[Problems to be solved by the invention]
In a conventional cross-sectional shape or three-dimensional surface shape measuring device for a scanning electron microscope, the influence of the surrounding electromagnetic field is measured before the secondary electrons emitted from the sample surface are taken into the secondary electron detector. In order to receive, there was a difficulty that could not be captured more accurately. Along with this, there is a drawback that the measurement error of the cross-sectional shape or three-dimensional surface shape of the surface of the sample becomes large. In addition, the secondary electrons emitted from the surface of the sample by the sample itself are blocked before being taken into the secondary electron detector, and the amount of secondary electrons to be received is much larger than when there is no wall surface. May be less. In such a case, a large error occurs in the measurement result of the cross-sectional shape or three-dimensional surface shape of the sample surface.
On the other hand, with the progress of processing technology, the formation of wiring patterns and circuits is complicated, and three-dimensionally formed into a deep groove shape or uneven shape, and miniaturization of 0.2 μm or less is also progressing. Accordingly, there is a need for a surface cross-sectional shape or three-dimensional surface shape measuring apparatus capable of measuring the surface cross-sectional shape or three-dimensional surface shape more accurately.
Therefore, the problem to be solved by the present invention is a surface cross-sectional shape or three-dimensional surface shape measuring device for measuring the cross-sectional shape or three-dimensional surface shape of the surface formed on the surface of the sample to be measured with less error. Is to provide.
In addition, the cross-sectional or three-dimensional surface shape of the surface formed on the surface of the sample to be measured is measured with higher accuracy by receiving reflected electrons or secondary electrons, and the cross-sectional shape or three-dimensional surface shape of the surface is measured. An apparatus and a scanning electron microscope are provided.
[0004]
[Means for Solving the Problems]
A first solution will be described.
In order to solve the above problems, the surface of the sample is irradiated with incident electrons, and the shape of the sample to be measured is measured based on the emitted electrons (reflected electrons or secondary electrons) generated from the sample. In the surface shape measuring device,
A detector (in-lens type detector) for shape measurement that detects the emitted electrons that pass through the inside of the objective lens among the emitted electrons (reflected electrons or secondary electrons) generated from the sample A device for measuring a cross-sectional shape of a surface or a three-dimensional surface shape, which is provided in a predetermined manner.
According to the above-described invention, it is possible to realize a surface cross-sectional shape or three-dimensional surface shape measuring apparatus for measuring the cross-sectional shape or three-dimensional surface shape of the surface formed on the surface of the sample to be measured with less error.
[0005]
Next, a second solving means will be shown.
In order to solve the above problems, the surface of the sample is irradiated with incident electrons, and the shape of the sample to be measured is measured based on the emitted electrons (reflected electrons or secondary electrons) generated from the sample. In the surface shape measuring device,
An emission angle limited receiving means (for example, a detection electron limiting diaphragm) for detecting the emitted electrons passing through the inside of the objective lens among the emitted electrons (reflected electrons or secondary electrons) generated from the sample is provided in a predetermined manner. There is an apparatus for measuring a cross-sectional shape of a surface or a three-dimensional surface shape.
[0006]
Next, a third solving means will be shown.
In order to solve the above-described problem, in a surface cross-sectional shape or three-dimensional surface shape measuring apparatus that irradiates a sample surface with incident electrons e1 and measures the shape of a sample to be measured based on reflected electrons generated from the sample.
A surface having emission angle limited receiving means for receiving reflected electrons within a predetermined angle region and converting them into electric signals among the reflected electrons generated from the sample based on the incident electrons e1 irradiated on the sample. There is a cross-sectional shape or three-dimensional surface shape measuring device.
[0007]
Next, a fourth solving means will be shown.
In order to solve the above-described problem, in a surface cross-sectional shape or three-dimensional surface shape measuring apparatus that irradiates a sample surface with incident electrons e1 and measures the shape of a sample to be measured based on secondary electrons generated from the sample.
It comprises emission angle limited receiving means for receiving secondary electrons in a predetermined angle region from secondary electrons generated from the sample based on incident electrons e1 irradiated on the sample and converting them into electric signals. There is a device for measuring the cross-sectional shape or three-dimensional surface shape of a surface.
[0008]
Next, a fifth solving means will be shown. FIG. 4 shows the solving means according to the present invention.
In order to solve the above problems, the surface of the sample is irradiated with incident electrons e1 and the shape of the sample to be measured is measured based on the reflected electrons or secondary electrons generated from the sample. In the device
An emission angle limited receiving means for receiving, in a predetermined manner, reflected electrons or secondary electrons in a predetermined angle region among reflected electrons or secondary electrons generated from the sample based on incident electrons e1 irradiated on the sample and converting them into an electrical signal. There is a surface cross-sectional shape or three-dimensional surface shape measuring apparatus characterized by comprising:
[0009]
Next, sixth solving means will be described. FIG. 4 shows the solving means according to the present invention.
One aspect of the emission angle limited receiving means for detecting the secondary electrons is as follows.
An electrostatic objective lens 20 that adjusts the focal point of incident electrons e1 that irradiate the sample surface;
Secondary electrons are generated based on the incident electrons e1 irradiated on the sample, and the secondary electrons passing through the inside of the electrostatic objective lens 20 have a predetermined opening 52 formed at the center of the irradiation axis. A detection electronic limiting aperture 50 that allows only secondary electrons e3 in the region to pass through;
In-lens type secondary electron detection means for shape measurement that receives secondary electrons e3 that have passed through the detection electron limiting diaphragm 50 and converts them into electrical signals,
There is an apparatus for measuring a cross-sectional shape or a three-dimensional surface shape of the above-mentioned surface characterized by comprising the above.
[0010]
Next, a seventh solving means will be shown.
One aspect of the emission angle limited receiving means for detecting the secondary electrons is as follows.
An electrostatic objective lens 20 that adjusts the focal point of incident electrons e1 that irradiate the sample surface;
Secondary electrons are generated based on the incident electrons e1 irradiated on the sample, and the secondary electrons passing through the inside of the electrostatic objective lens 20 have a predetermined opening 52 formed at the center of the irradiation axis. A detection electronic limiting aperture 50 that allows only secondary electrons e3 in the region to pass through;
In-lens type first secondary electron detection means for shape measurement that receives secondary electrons e3 that have passed through the detection electron limiting diaphragm 50 and converts them into electrical signals;
Out-lens type second secondary electron detection means for receiving secondary electrons that pass outside the electrostatic objective lens 20 among the secondary electrons generated from the sample surface and converting them into electrical signals is provided. ,
There is an apparatus for measuring a cross-sectional shape or a three-dimensional surface shape of the above-mentioned surface characterized by comprising the above.
According to this, based on the secondary electron profile based on the in-lens type first secondary electron detection means for shape measurement and the secondary electron profile based on the second secondary electron detection means of the out lens type. The contour of the two-dimensional shape or the three-dimensional shape can be specified more accurately.
[0011]
Next, an eighth solving means will be shown. Here, FIG. 2 shows a solution means according to the present invention.
One aspect of the emission angle limited receiving means for detecting the reflected electrons is as follows.
An electrostatic objective lens 20 that adjusts the focal point of incident electrons e1 that irradiate the sample surface;
Reflected electrons are generated based on the incident electrons e1 irradiated on the sample. Among the reflected electrons passing through the inside of the electrostatic objective lens 20, a predetermined region is formed by a predetermined opening 52 formed at the center of the irradiation axis. A detection electronic limiting diaphragm 50 that allows only the reflected electrons E3 to pass;
A secondary electron conversion plate 40 that receives the reflected electrons E3 that have passed through the detection electron limiting diaphragm 50, converts them into secondary electrons corresponding thereto, and emits them;
In-lens type secondary electron detection means for shape measurement that receives secondary electrons from the secondary electron conversion plate 40, converts them into electrical signals and outputs them,
There is an apparatus for measuring a cross-sectional shape or a three-dimensional surface shape of the above-mentioned surface characterized by comprising the above.
[0012]
Next, ninth solving means will be described. FIG. 4 shows the solving means according to the present invention.
As an aspect of the secondary electron detection means, there are two secondary electron detectors 31 and 32 provided in a predetermined arrangement corresponding to the scanning axis direction of the sample. There is a cross-sectional shape or three-dimensional surface shape measuring device.
[0013]
Next, a tenth solution means will be shown. FIG. 5 shows the solving means according to the present invention.
One aspect of the secondary electron detection means includes two first secondary electron detectors 31 and 32 that are provided in a predetermined arrangement corresponding to one scanning axis direction (X-axis direction) of the sample. Then, two second secondary elements provided perpendicularly to the first secondary electron detectors 31 and 32 and corresponding to the other scanning axis direction (Y-axis direction) of the sample are provided. Comprising electron detectors 33, 34;
There is an apparatus for measuring a cross-sectional shape or a three-dimensional surface shape of the above-mentioned surface characterized by comprising the above.
[0014]
Next, eleventh solving means will be shown. FIG. 6 shows the solution means according to the present invention.
An energy filter 54 is provided on the front surface of the detection electron limiting diaphragm 50 that receives the secondary electrons. The energy filter 54 passes secondary electrons having a predetermined energy or higher and blocks secondary electrons having a predetermined energy or lower.
A deceleration voltage source 56 for supplying a predetermined negative deceleration voltage to the energy filter 54;
There is an apparatus for measuring a cross-sectional shape or a three-dimensional surface shape of the above-mentioned surface characterized by comprising the above.
[0015]
Next, a 12th solution means is shown. FIG. 7 shows the solution means according to the present invention.
A secondary electron extraction electrode 24 which is disposed close to the sample surface and extracts and accelerates secondary electrons generated based on incident electrons e1 irradiated on the sample and supplies the secondary electrons to the detection electron limiting diaphragm 50;
An extraction voltage source 26 for supplying a predetermined positive extraction voltage to the secondary electron extraction electrode 24;
There is an apparatus for measuring a cross-sectional shape or a three-dimensional surface shape of the above-mentioned surface characterized by comprising the above.
[0016]
Next, thirteenth solving means will be shown. FIG. 8 shows the solving means according to the present invention.
One aspect of the detection electronic restriction diaphragm 50 is a detection electronic restriction variable diaphragm 80 having a mechanical variable diaphragm mechanism that makes the size of the central opening hole variable. Alternatively, there is a three-dimensional surface shape measuring device.
[0017]
Next, fourteenth solving means will be shown.
Applying an electromagnetic objective lens instead of the electrostatic objective lens 20 described above,
An apparatus for measuring a cross-sectional shape or a three-dimensional surface shape of the surface, characterized in that a secondary electron detecting means is provided so as to correspond to an axial rotation amount of secondary electrons accompanying the electromagnetic objective lens. There is.
According to this, the amount of rotation of the secondary electrons in the axial direction associated with the electromagnetic objective lens is obtained in advance, and the secondary electron detectors 31 and 32 are arranged so as to correspond to this, thereby obtaining a two-dimensional shape. Alternatively, a three-dimensional shape can be measured practically.
[0018]
Next, the fifteenth solving means will be shown.
A scanning electron microscope comprising a configuration for measuring a cross-sectional shape or a three-dimensional surface shape of a sample surface with a small amount of error and a high accuracy by applying the above-described surface cross-sectional shape or three-dimensional surface shape measuring device. There is.
[0019]
In addition, the invention means of the present application may be combined with each element means in the above-described solution means as appropriate to form other practical means that can be used as desired. Moreover, although the code | symbol provided to each said element respond | corresponds to the code | symbol shown by embodiment etc. of this invention, it is not limited to this, The structural means to which the other equivalent which is practical is applied It is also good.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
An example of an embodiment to which the present invention is applied will be described below with reference to the drawings. Further, the scope of the claims is not limited by the description of the following embodiment, and further, the elements described in the embodiment are not necessarily essential to the solution means. Furthermore, the features / forms of the elements described in the embodiments are merely examples, and are not limited to only the features / form contents.
[0021]
The present invention will be described below with reference to FIGS.
First, the relationship between the cross-sectional shape of the surface of the sample shown in FIGS. 1A and 1B and the secondary electron emission angle α will be described. Here, it is assumed that the secondary electrons received by the secondary electron detector among the emitted secondary electrons generated by the incident electrons are emitted from the left and right within an angle range of α.
In the cross-sectional shape of the groove-shaped surface of FIG. 1A, secondary electrons emitted in the direction within the angle range of α emitted based on the incident electrons incident on the point A are directions within the angle range of α. Since there is nothing to obstruct, the secondary electron detector can detect everything.
[0022]
On the other hand, in the cross-sectional shape of the groove-shaped surface of FIG. 1B, the direction within the angular range of α emitted based on the incident electrons incident on the deeper B point where the slope inclination angle of the A point is the same. In the case of secondary electrons, the electron is emitted in the direction within the angle range of α, but is partially blocked by the wall surface portion of the sample itself. That is, the area m is blocked by the right slope wall. Furthermore, the area n is blocked by the left slope. Therefore, the emission angle range from the point B is about half. As a result, the amount of secondary electrons received by the secondary electron detector causes a detection error of a small amount of electrons, which is about a fraction of that of the point A. Along with this, a large error occurs in the measurement shape obtained by performing the calculation process for obtaining the cross-sectional shape of the surface of the sample. For this reason, it is not preferable for the purpose of accurate shape measurement.
[0023]
Therefore, the principle means of the present invention will be described. As shown in FIG. 1C, the secondary electrons received by the secondary electron detector are provided with emission angle limited receiving means that can receive only the emission angles in the acute angle emission angle β region. The release angle limited receiving means will be described later. If secondary electrons of only the acute emission angle β region can be received, the sample itself is not partially obstructed at any of the points of FIGS. 1D, 1E, and F where the inclination angle of the slope is equal. The same amount of secondary electrons can be received. As a result, an accurate measurement of the cross-sectional shape of the surface is possible without causing a large error in the obtained measurement shape.
Those in which shape measurement is performed by detecting reflected electrons instead of secondary electrons are similarly improved.
[0024]
The means of the present invention uses an in-lens type detector instead of an out-lens type detector as a secondary electron detector for shape measurement as the first emission angle limited receiving means. In other words, a plurality of secondary electron detectors arranged in the azimuth direction above the objective lens are used.
According to this, the entire acute angle emission angle α region shown in FIG. 1 is received by the out-lens type detector shown in FIG. 9B, but only the acute angle emission angle β region shown in FIG. Since electrons can be received by an in-lens type detector as shown in FIG. 9A, there is obtained an advantage that accurate cross-sectional shape measurement of the surface with few errors can be performed.
[0025]
Next, FIG. 2 is a principle structural diagram in the case of including a detection electron limiting diaphragm 50 that limits the angle range of detection electrons (detection target electrons) in the case of reflected electrons. This is the case for reflected electrons. Here, the detection electronic limit diaphragm 50 is a second emission angle limited receiving unit.
The detection electron limiting diaphragm 50 is a shielding plate having a circular opening 52 having a predetermined diameter centered on the irradiation axis for irradiating the incident electrons e1 and is passed from the sample through the objective lens (electrostatic objective lens) 20. Among the reflected electrons E2 reflected in the region of the wide angle range θ1 having a conical expanse, the reflection of the limited region within the limited angle range θ2 (corresponding to the combination of the right and left acute emission angle β regions). The size of the opening hole 52 through which the electron E3 passes is set. As a result, the reflected electrons E4 other than the limited angle range θ2 can be excluded. The reflected electrons E3 that have passed through the opening hole 52 are converted into secondary electrons by the secondary electron conversion plate 40 and supplied to the secondary electron detectors 31 and 32.
In addition, when the inclined surface stands vertically as shown in FIG. 1 (d), the portion near the side wall of the inclined surface and the bottom surface cannot be measured practically even if the reflected electrons in the acute emission angle β region are applied. In this case, as shown in FIG. 1 (e), the sample itself is tilted, and the tilt angle of the slope viewed from the detection system is tilted so as to correspond to the acute angle emission angle β (limited angle range θ2). In addition, the tilt angle of the sample is adjusted so that at least the center of the bottom surface is not shielded. Furthermore, when measuring the other slope, the same measurement may be performed after the sample is tilted to the opposite side.
Therefore, according to the above-described configuration example of the inventive principle of FIG. 2, the reflected electrons in only the acute emission angle β region shown in FIG. 1 are received by the secondary electron detectors 31 and 32 via the secondary electron conversion plate 40. The advantage that can be obtained.
[0026]
Next, FIG. 3 is a principle structural diagram in the case of including a detection electron limiting aperture 50 that limits the angle range of detection electrons (detection target electrons) in the case of secondary electrons. This is the case for secondary electrons. Here, the detection electronic limit diaphragm 50 is a third emission angle limited receiving unit.
The detection electron limiting diaphragm 50 in this case is the same as described above, and has the size of the opening hole 52 through which the secondary electrons e3 in the region within the limited angle range θ2 pass. As a result, secondary electrons e4 other than the limited angle range θ2 can be excluded.
Therefore, according to the configuration example of the principle of the invention shown in FIG. 3 described above, there is an advantage that secondary electrons only in the acute emission angle β region shown in FIG. 1 can be received.
[0027]
Next, FIG. 4 is a principle structural diagram according to the present invention of a scanning electron microscope having a detection electron limiting diaphragm.
This component includes a condenser lens 60, secondary electron detectors 31 and 32, a detection electron limiting diaphragm 50, a scan coil 70, an electrostatic objective lens 20, and a calculation unit 110. Here, the detection electronic limit diaphragm 50 is a fourth emission angle limited receiving unit. Here, since the scanning electron microscope is publicly known and well known in the art, other signals and components, and detailed description thereof, are omitted except for the main part according to the present application.
The condenser lens 60 condenses the electron beam in a predetermined manner.
The secondary electron detectors 31 and 32 are in-lens type secondary electron detectors for shape measurement that detect secondary electrons passing through the inside of the electrostatic objective lens 20, and are X-axis direction (lateral) Change in secondary electrons that change in the X-axis direction is detected. The secondary electron e3 that has passed through the detection electron limiting diaphragm 50 is received and an electric signal amplified in a predetermined manner is output, and is disposed at a position facing the electron beam axis.
The scan coil 70 is a deflection unit that controls the deflection of the incident electrons e1 incident on the sample in a desired direction based on control from the outside. For example, it is possible to scan in the X-axis direction and Y-axis direction of a horizontal straight line, or to scan in an arbitrary plane direction of the X-axis and Y-axis.
[0028]
As shown in FIG. 3, the detection electron limiting diaphragm 50 is a secondary electron e2 generated from the sample and passing through the electrostatic objective lens 20, and other than the secondary electrons that can pass through the aperture hole 52. Secondary electrons are excluded. The size of the opening hole 52 is set to a size of the opening diameter so as to obtain a desired acute angle emission angle β. This provides the advantage that the secondary electron detectors 31 and 32 can receive only the acute emission angle β region shown in FIG.
[0029]
The electrostatic objective lens 20 adjusts and controls the focus (focus) in the vertical direction (Z-axis direction) of the incident electrons e1 irradiated on the sample surface based on control from the outside. When there is a large recess as shown in FIG. 1, the focus of the incident electrons e1 to be irradiated can be controlled so that the focus is set at the target height position. If a magnetic field type objective lens is applied, the secondary electrons e2 cause a rotational movement while passing through the magnetic field type objective lens due to the magnetic field, so that the emission directionality of the secondary electrons is lost and the tilt angle information is lost. For this reason, it is not preferable for the purpose of accurate shape measurement.
By applying the electrostatic objective lens 20, the secondary electron detectors 31 and 32 are placed at the positions where the X-axis and Y-axis having a conical expanse are emitted in the plane direction. There is an advantage that the secondary electrons e3 in the corresponding specific emission direction can be received.
[0030]
The stage 100 is a moving mechanism that moves a sample by a desired amount in the horizontal direction of the XY axis and the vertical direction of the Z axis.
The calculation unit 110 controls the above elements to scan a desired section in the horizontal direction as desired, and obtains secondary electron signals obtained from the secondary electron detectors 31 and 32 in a relationship that is synchronously correlated with the scanning operation. In response to the (secondary electron profile), the concavo-convex shape of the scanning area is generated as two-dimensional or three-dimensional image information by a known surface cross-sectional shape calculating means or three-dimensional surface shape means.
[0031]
According to the above-described configuration example of FIG. 4, the objective lens uses the electrostatic objective lens 20 and includes the detection electronic limiting diaphragm 50, so that the acute angle emission angle β region shown in FIG. 1 is obtained. Can only receive secondary electrons. In addition, by applying the electrostatic objective lens 20, the secondary electron detectors 31 and 32 remain at the arrangement positions while maintaining the emission directivity in the plane direction of the X-axis and Y-axis having a conical extension. There is an advantage that the secondary electrons e3 in the corresponding specific emission direction can be received. This provides a great advantage that accurate two-dimensional and three-dimensional image information with little error can be generated.
[0032]
Next, FIG. 5 shows an arrangement of the two secondary electron detectors shown in FIG. 4 as viewed from the upper part of the lens barrel body when four secondary electron detectors 31, 32, 33, and 34 are arranged. FIG.
Each of the secondary electron detectors 31, 32, 33, and 34 is provided with an arrangement angle of 90 degrees with respect to the circumference of the barrel main body. This is suitable for shape measurement in a state where the sample is inclined as shown in FIG.
According to the configuration of FIG. 5 described above, secondary electrons e3 in the state of emission direction can be measured simultaneously in the plane direction of the X-axis and Y-axis, so that it is unnecessary to rotate the stage on which the sample is placed by 90 degrees. Therefore, the measurement error accompanying the stage positioning error can be eliminated. Therefore, in particular, as a result of being able to accurately measure an extremely fine concavo-convex shape, a great advantage is obtained that two-dimensional and three-dimensional image information can be generated more accurately.
[0033]
Next, FIG. 6 shows a configuration example in which an energy filter 54 for removing unnecessary low-energy secondary electrons and a deceleration voltage source 56 are additionally provided.
The energy filter 54 allows high energy secondary electrons having a certain energy or higher to pass through, and slows and repels low energy secondary electrons having a certain energy or lower to block the passage thereof. The structure is a fine mesh-like grid electrode, and is disposed in a plane over the entire region through which the secondary electrons e2 pass. A desired negative DC voltage is applied to this electrode by a deceleration voltage source 56.
The deceleration voltage source 56 is a negative DC variable power supply, and supplies a desired negative deceleration voltage to the energy filter 54 based on control from the outside. This voltage control prevents passage of low energy secondary electrons below the desired energy level.
[0034]
According to the configuration shown in FIG. 6, since a deceleration voltage is applied to the energy filter 54 and electrons below a certain energy are pulled back and cannot pass, unnecessary secondary electrons can be eliminated. Secondary electrons and other unnecessary noise-like secondary electrons can be effectively separated. Therefore, as a result of improving the signal-to-noise ratio of the received electrical signal, a great advantage can be obtained that two-dimensional and three-dimensional image information can be generated more accurately.
[0035]
Next, FIG. 7 shows a configuration example in which a secondary electron extraction electrode 24 and an extraction voltage source 26 for increasing the amount of secondary electrons emitted from the sample are additionally provided. The secondary electron extraction electrode 24 is an electrode for secondary electron extraction intended to improve the detection efficiency by increasing the amount of secondary electrons to be received, particularly at the bottom of a deep groove having a high aspect ratio. On the other hand, it is effective when a narrow receiving range with an acute emission angle β region is applied. The secondary electron extraction electrode 24 is disposed at a position immediately above the sample, and has a round opening hole 25 for allowing secondary electrons to pass therethrough. Thereby, secondary electrons at a low energy level can be extracted.
The extraction voltage source 26 is a positive DC variable power supply, and supplies a predetermined extraction voltage to the secondary electron extraction electrode 24 so as to satisfy the best detection condition based on control from the outside.
[0036]
According to the configuration of FIG. 7, the detection efficiency of secondary electrons from the groove bottom having a high aspect ratio can be increased. However, since the measurement accuracy is somewhat sacrificed, it is desirable to apply it to a groove having a high aspect ratio. As a result, even for a groove having a high aspect ratio, the SN ratio is improved, so that a great advantage that more accurate shape measurement information can be generated is obtained.
[0037]
Next, FIG. 8 is a structural diagram of the principle of the present invention of a scanning electron microscope provided with a detection electron limiting variable stop 80. Here, the detection electronic limit variable aperture 80 is the fifth emission angle limit receiving means.
The detection electronic limit variable aperture 80 has a variable aperture mechanism that mechanically varies the aperture diameter based on control from the outside in the size of the variable aperture hole 82 through which the secondary electrons e3 pass. The aperture of the variable aperture can be firstly made up to a large aperture size which is almost equal to the aperture without an aperture when the aperture size is almost fully open, and secondly, the smallest aperture size which can be practically controlled. At this time, the diaphragm mechanism is configured such that the center of the incident axis coincides with the center of the opening hole.
The shape of the variable opening hole 82 is preferably circular, but need not be circular. For example, when it corresponds to the two secondary electron detectors 31 and 32, it may be a parallel slit-like (see FIG. 8A) opening hole (opening width). Further, in the case of corresponding to the four secondary electron detectors 31 to 34, an opening hole having a quadrangular shape (see FIG. 8B) may be used.
By the way, the insertion of the detection electron limiting variable diaphragm 80 can make the measurable inclination angle range only the acute emission angle β region, but on the other hand cuts a part of the signal received by the secondary electron detector. As a result, the signal-to-noise ratio becomes worse. For this reason, it is an excellent advantage that the variable aperture hole 82 can be adjusted to the diaphragm condition corresponding to the situation of the measurement object.
[0038]
According to the configuration shown in FIG. 8, first, the optimum condition is considered in consideration of the SN ratio between the electrical signal to be detected output from the secondary electron detector and the noise component generated from the secondary electron detector or the like. It is possible to adjust and control the aperture diameter. Furthermore, since the secondary electron detection signal output from the secondary electron detector can be set to the optimum signal-to-noise ratio condition, a great advantage can be obtained that the most accurate shape measurement information can be generated. Furthermore, when it is not necessary to generate accurate shape measurement information, there is an advantage that measurement can be performed in a fully opened state so as to satisfy the same conditions as in the prior art.
[0039]
The technical idea of the present invention is not limited to the specific configuration example and the structural example of the above-described embodiment. Furthermore, based on the technical idea of the present invention, the above-described embodiment may be modified as appropriate and applied widely.
For example, in the above-described embodiment, the description has been given with a specific example in the case of a two-dimensional or three-dimensional surface shape measuring device that receives a secondary electron from a sample and performs accurate shape measurement, but instead of a secondary electron. The same effect as described above is exhibited when receiving reflected electrons. Therefore, a two-dimensional or three-dimensional surface shape measuring apparatus capable of measuring an accurate shape by applying reflected electrons from a sample may be used.
[0040]
Further, in the secondary electron extraction electrode 24 of FIG. 7 described above, a function as an objective lens is maintained for the lowermost electrode of the electrostatic objective lens 20 in place of the secondary electron extraction electrode 24 if desired. However, it may function so as to also have the function of the secondary electron extraction electrode 24. In this case, it can be realized at a lower cost with the combined use.
[0041]
In addition, the above-described detection electron limiting diaphragm, which is an emission angle limited receiving means, arrangement of four secondary electron detectors, energy filter and deceleration voltage source, secondary electron extraction electrode and extraction voltage source, detection electron You may implement | achieve a desired scanning electron microscope by combining suitably each element element of the discharge angle limited receiving means of a limit variable aperture. Thereby, an optimal scanning electron microscope corresponding to the measurement application can be realized.
[0042]
In the above description, the electrostatic objective lens 20 is used. However, an electromagnetic objective lens may be used instead of the electrostatic objective lens 20 if desired. However, since the secondary electrons are rotated in the axial direction along with the electromagnetic objective lens, the amount of rotation is obtained in advance by other measuring means, and the secondary electron detector 31 corresponds to the amount of rotation. , 32 may be configured to determine the arrangement position on the 32 side. In this case, it is inferior to the electrostatic objective lens 20 due to the arrangement of the secondary electron detectors 31 and 32 corresponding to the known amount of secondary electron rotation in the axial direction accompanying the electromagnetic objective lens. The advantage that it can be measured practically is obtained.
[0043]
Moreover, you may comprise so that the movement mechanism which can move the detection electronic restriction aperture 50 of FIG. 4 mentioned above is provided. In this case, there can be obtained an advantage that both the normal measurement accuracy in the fully opened state, which is the detection condition similar to the conventional detection condition corresponding to the measurement situation, and the high measurement accuracy of the present invention can be applied.
[0044]
【The invention's effect】
The present invention has the following effects in view of the above description.
According to the configuration example of the inventive principle of FIG. 2 described above, there is an advantage that the secondary electron detectors 31 and 32 can receive the reflected electrons only in the acute emission angle β region shown in FIG.
According to the configuration example of the principle of the invention shown in FIG. 3 described above, there is an advantage that secondary electrons in only the acute emission angle β region shown in FIG. 1 can be received.
[0045]
According to the above-described configuration example of FIG. 4, the objective lens uses the electrostatic objective lens 20 and includes the detection electronic limiting diaphragm 50, so that the acute angle emission angle β region shown in FIG. 1 is obtained. Can only receive secondary electrons. In addition, by applying the electrostatic objective lens 20, the secondary electron detectors 31 and 32 remain at the arrangement positions while maintaining the emission directivity in the plane direction of the X-axis and Y-axis having a conical extension. There is an advantage that the secondary electrons e3 in the corresponding specific emission direction can be received. As a result, it is possible to obtain a measurement signal that can clearly identify the two-dimensional position of the sample irradiation point. As a result, it is possible to obtain a great advantage that accurate two-dimensional and three-dimensional image information with less errors can be generated. .
[0046]
According to the configuration of FIG. 5 described above, the secondary electrons e3 having the emission directionality can be simultaneously measured in the plane direction of the X axis and the Y axis, and as a result, accurate two-dimensional and three-dimensional image information with less errors. A great advantage is obtained.
[0047]
According to the configuration of FIG. 6 described above, a deceleration voltage is applied to the energy filter 54, and electrons below a certain energy cannot be pulled back and passed. As a result, useless secondary electrons can be eliminated. Secondary electrons and other unnecessary noise-like secondary electrons can be effectively separated. Therefore, the signal-to-noise ratio of the received electrical signal can be improved, resulting in a great advantage that more accurate shape measurement information can be generated.
[0048]
According to the configuration of FIG. 7 described above, it is possible to increase the detection efficiency of secondary electrons particularly from the groove bottom having a high aspect ratio. However, since the measurement accuracy is somewhat sacrificed, it is desirable to apply it to a groove having a high aspect ratio. As a result, even for a groove having a high aspect ratio, the SN ratio is improved, so that a great advantage that more accurate shape measurement information can be generated is obtained.
[0049]
According to the configuration of FIG. 8 described above, first, a ratio (SN ratio) between a target electrical signal received and output by the secondary electron detector and a noise component such as white noise generated from the secondary electron detector itself. Therefore, it is possible to adjust and control the aperture state under the optimum conditions. Therefore, since the secondary electron detection signal output from the secondary electron detector can be set to the optimum S / N ratio condition, a great advantage that the most accurate shape measurement information can be generated is obtained. On the other hand, when it is not necessary to generate accurate shape measurement information, there is an advantage that measurement can be performed in a fully opened state as in the prior art.
Therefore, the technical effect of the present invention is great, and the industrial economic effect is also great.
[Brief description of the drawings]
FIG. 1 is a diagram for explaining a relationship between a cross-sectional shape of a surface of a sample and an emission angle α of secondary electrons (or reflected electrons).
FIG. 2 is a principle structural diagram in the case where a detection electron limiting diaphragm for limiting the angle range of detection electrons (detection target electrons) in the case of reflected electrons is provided according to the present invention.
FIG. 3 is a structural diagram of the principle when a detection electron limiting diaphragm for limiting the angle range of detection electrons (detection target electrons) in the case of secondary electrons is provided according to the present invention.
FIG. 4 is a structural diagram of the principle of the present invention of a scanning electron microscope having a detection electron limiting diaphragm according to the present invention.
FIG. 5 is an arrangement view of the present invention as seen from the upper part of the lens barrel body when four secondary electron detectors are arranged.
FIG. 6 is a configuration example additionally including an energy filter for removing unnecessary low-energy secondary electrons and a deceleration voltage source according to the present invention.
FIG. 7 is a structural example of the present invention additionally including a secondary electron extraction electrode and an extraction voltage source for increasing the amount of secondary electrons emitted from a sample.
FIG. 8 is a principle structural diagram according to the present invention of a scanning electron microscope having a detection electron limiting variable aperture according to the present invention.
FIG. 9 is a principle configuration diagram for detecting secondary electrons with an in-lens detector and a principle structure diagram for detecting secondary electrons with an out-lens detector according to the present invention.
[Explanation of symbols]
20 Electrostatic objective lens (objective lens)
24 Secondary electron extraction electrode
26 Extraction voltage source
31, 32, 33, 34 Secondary electron detector
50 detection electronic limit aperture
54 Energy Filter
56 Deceleration voltage source
60 condenser lens
70 scan coil
80 Detection electronic limit variable aperture
110 Calculation unit

Claims (10)

試料表面に入射電子を照射し、試料から発生する放出電子に基づいて被測定試料の形状を測定する、表面の断面形状若しくは三次元表面形状測定装置において、
試料表面へ照射する入射電子の焦点を調整する静電型対物レンズと、
試料に照射した入射電子に基づいて二次電子が発生されて、該静電型対物レンズの内側を通過する二次電子の中で、照射軸中央に形成した所定の開口孔で所定領域の二次電子のみを通過させる検出電子制限絞りと、
該検出電子制限絞りを通過してきた二次電子を受けて電気信号に変換する形状計測用インレンズ型の二次電子検出手段と、
を具備することを特徴とする、表面の断面形状若しくは三次元表面形状測定装置。
In the surface cross-sectional shape or three-dimensional surface shape measuring device that irradiates the sample surface with incident electrons and measures the shape of the sample to be measured based on the emitted electrons generated from the sample.
An electrostatic objective lens that adjusts the focal point of incident electrons irradiated on the sample surface;
Secondary electrons are generated based on the incident electrons irradiated on the sample. Among the secondary electrons that pass through the inside of the electrostatic objective lens, a predetermined aperture is formed at the center of the irradiation axis, and a secondary region of a predetermined region is formed. A detection electronic restriction aperture that allows only the secondary electrons to pass through;
In-lens type secondary electron detection means for shape measurement that receives secondary electrons that have passed through the detection electron limiting diaphragm and converts them into electrical signals;
An apparatus for measuring a cross-sectional shape of a surface or a three-dimensional surface shape, comprising:
試料表面に入射電子を照射し、試料から発生する放出電子に基づいて被測定試料の形状を測定する、表面の断面形状若しくは三次元表面形状測定装置において、
試料表面へ照射する入射電子の焦点を調整する静電型対物レンズと、
試料に照射した入射電子に基づいて二次電子が発生されて、該静電型対物レンズの内側を通過する二次電子の中で、照射軸中央に形成した所定の開口孔で所定領域の二次電子のみを通過させる検出電子制限絞りと、
該検出電子制限絞りを通過してきた二次電子を受けて電気信号に変換する形状計測用インレンズ型の第1の二次電子検出手段と、
試料表面から発生する二次電子の中で、該静電型対物レンズの外側を通過する二次電子を受けて電気信号に変換するアウトレンズ型の第2の二次電子検出手段と、
を具備することを特徴とする、表面の断面形状若しくは三次元表面形状測定装置。
In the surface cross-sectional shape or three-dimensional surface shape measuring device that irradiates the sample surface with incident electrons and measures the shape of the sample to be measured based on the emitted electrons generated from the sample.
An electrostatic objective lens that adjusts the focal point of incident electrons irradiated on the sample surface;
Secondary electrons are generated based on the incident electrons irradiated on the sample. Among the secondary electrons that pass through the inside of the electrostatic objective lens, a predetermined aperture is formed at the center of the irradiation axis, and a secondary region of a predetermined region is formed. A detection electronic restriction aperture that allows only the secondary electrons to pass through;
In-lens type first secondary electron detection means for shape measurement that receives secondary electrons that have passed through the detection electron limiting diaphragm and converts them into electrical signals;
Out-lens type second secondary electron detection means that receives secondary electrons that pass outside the electrostatic objective lens and converts them into electrical signals among the secondary electrons generated from the sample surface;
An apparatus for measuring a cross-sectional shape of a surface or a three-dimensional surface shape, comprising:
試料表面に入射電子を照射し、試料から発生する放出電子に基づいて被測定試料の形状を測定する、表面の断面形状若しくは三次元表面形状測定装置において、
試料表面へ照射する入射電子の焦点を調整する静電型対物レンズと、
試料に照射した入射電子に基づいて反射電子が発生されて、該静電型対物レンズの内側を通過する反射電子の中で、照射軸中央に形成した所定の開口孔で所定領域の反射電子のみを通過させる検出電子制限絞りと、
該検出電子制限絞りを通過してきた反射電子を受けて、これに対応した二次電子に変換して放出する二次電子変換板と、
該二次電子変換板からの二次電子を受けて電気信号に変換して出力する形状計測用インレンズ型の二次電子検出手段と、
を具備することを特徴とする、表面の断面形状若しくは三次元表面形状測定装置。
In the surface cross-sectional shape or three-dimensional surface shape measuring device that irradiates the sample surface with incident electrons and measures the shape of the sample to be measured based on the emitted electrons generated from the sample.
An electrostatic objective lens that adjusts the focal point of incident electrons irradiated on the sample surface;
Reflected electrons are generated based on the incident electrons irradiated on the sample. Among the reflected electrons passing through the inside of the electrostatic objective lens, only the reflected electrons in a predetermined region are formed at a predetermined aperture formed in the center of the irradiation axis. A detection electronic restriction aperture that passes through,
A secondary electron conversion plate that receives the reflected electrons that have passed through the detection electron limiting diaphragm, converts them into secondary electrons corresponding thereto, and emits them;
In-lens type secondary electron detection means for shape measurement that receives secondary electrons from the secondary electron conversion plate, converts them into electrical signals and outputs them, and
An apparatus for measuring a cross-sectional shape of a surface or a three-dimensional surface shape, comprising:
該二次電子検出手段は、試料の走査軸方向に対応して所定に配設して備える2個の二次電子検出器である、ことを特徴とする請求項1乃至3記載の、表面の断面形状若しくは三次元表面形状測定装置。  4. The surface of the surface according to claim 1, wherein the secondary electron detection means is two secondary electron detectors provided in a predetermined arrangement corresponding to a scanning axis direction of the sample. Cross-sectional shape or three-dimensional surface shape measuring device. 該二次電子検出手段は、試料の一方の走査軸方向(X軸方向)に対応して所定に配設して備える2個の第1の二次電子検出器と、
前記第1の二次電子検出器と直交して、試料の他方の走査軸方向(Y軸方向)に対応して所定に配設して備える2個の第2の二次電子検出器と、
を具備することを特徴とする請求項1乃至3記載の、表面の断面形状若しくは三次元表面形状測定装置。
The secondary electron detection means includes two first secondary electron detectors provided in a predetermined arrangement corresponding to one scanning axis direction (X-axis direction) of the sample,
Two second secondary electron detectors provided perpendicularly to the first secondary electron detector and provided in a predetermined manner corresponding to the other scanning axis direction (Y-axis direction) of the sample;
The apparatus for measuring a cross-sectional shape of a surface or a three-dimensional surface shape according to claim 1, comprising:
二次電子を受ける該検出電子制限絞りの前面に、一定エネルギー以上の二次電子を通過させ、一定エネルギー以下の二次電子を通過阻止させるエネルギーフィルタと、
該エネルギーフィルタへ所定の負の減速電圧を供給する減速電圧源と、を具備することを特徴とする請求項1乃至3記載の、表面の断面形状若しくは三次元表面形状測定装置。
An energy filter that passes secondary electrons of a predetermined energy or higher and blocks secondary electrons of a predetermined energy or lower on the front surface of the detection electron limiting diaphragm that receives secondary electrons;
The apparatus for measuring a sectional shape of a surface or a three-dimensional surface shape according to claim 1, further comprising: a deceleration voltage source that supplies a predetermined negative deceleration voltage to the energy filter.
試料表面に接近して配設されて、試料に照射した入射電子に基づいて発生する二次電子を引き出して該検出電子制限絞りへ供給する二次電子引出電極と、
該二次電子引出電極へ所定の正の引出電圧を供給する引出電圧源と、
を具備することを特徴とする請求項1乃至3記載の、表面の断面形状若しくは三次元表面形状測定装置。
A secondary electron extraction electrode that is arranged close to the sample surface, extracts secondary electrons generated based on incident electrons irradiated on the sample, and supplies the secondary electrons to the detection electron limiting aperture;
An extraction voltage source for supplying a predetermined positive extraction voltage to the secondary electron extraction electrode;
The apparatus for measuring a cross-sectional shape of a surface or a three-dimensional surface shape according to claim 1, comprising:
該検出電子制限絞りは、中央の開口孔の大きさを可変とする機械的な可変絞り機構を備える検出電子制限可変絞りである、ことを特徴とする請求項1乃至3記載の、表面の断面形状若しくは三次元表面形状測定装置。  The cross section of the surface according to claim 1, wherein the detection electronic restriction diaphragm is a detection electronic restriction variable diaphragm provided with a mechanical variable diaphragm mechanism that makes a size of a central opening hole variable. Shape or three-dimensional surface shape measuring device. 静電型対物レンズに代えて電磁型対物レンズを適用し、
該電磁型対物レンズに伴う二次電子の軸方向の回転量に対応するように二次電子検出手段を配設して備える、ことを特徴とする請求項1乃至3記載の、表面の断面形状若しくは三次元表面形状測定装置。
Applying an electromagnetic objective lens instead of an electrostatic objective lens,
The cross-sectional shape of the surface according to claim 1, further comprising a secondary electron detection unit arranged so as to correspond to an axial rotation amount of secondary electrons accompanying the electromagnetic objective lens. Or a three-dimensional surface shape measuring device.
請求項1乃至9記載の該表面の断面形状若しくは三次元表面形状測定装置を適用して、試料表面の断面形状若しくは三次元表面形状を、高精度に測定する構成を備える、ことを特徴とする走査型電子顕微鏡。  A configuration for measuring the cross-sectional shape or three-dimensional surface shape of the sample surface with high accuracy by applying the cross-sectional shape or three-dimensional surface shape measuring device of the surface according to claim 1 to 9 is provided. Scanning electron microscope.
JP2001393421A 2001-12-26 2001-12-26 Surface cross-sectional shape or three-dimensional surface shape measuring device and scanning electron microscope Expired - Fee Related JP3946041B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001393421A JP3946041B2 (en) 2001-12-26 2001-12-26 Surface cross-sectional shape or three-dimensional surface shape measuring device and scanning electron microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001393421A JP3946041B2 (en) 2001-12-26 2001-12-26 Surface cross-sectional shape or three-dimensional surface shape measuring device and scanning electron microscope

Publications (2)

Publication Number Publication Date
JP2003194534A JP2003194534A (en) 2003-07-09
JP3946041B2 true JP3946041B2 (en) 2007-07-18

Family

ID=27600419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001393421A Expired - Fee Related JP3946041B2 (en) 2001-12-26 2001-12-26 Surface cross-sectional shape or three-dimensional surface shape measuring device and scanning electron microscope

Country Status (1)

Country Link
JP (1) JP3946041B2 (en)

Also Published As

Publication number Publication date
JP2003194534A (en) 2003-07-09

Similar Documents

Publication Publication Date Title
JP6668408B2 (en) System and method for SEM overlay measurement
TWI582817B (en) Apparatus and methods for electron beam detection
JP6955325B2 (en) Systems and methods for imaging secondary charged particle beams using adaptive secondary charged particle optics
US8766182B2 (en) Method for detecting information of an electric potential on a sample and charged particle beam apparatus
JP5948084B2 (en) Scanning electron microscope
EP1238405B1 (en) Method and system for the examination of specimen using a charged particle beam
JP2003157790A (en) Micro ruggedness value measurement device and scanning electron microscope
JP2006236601A (en) Orbital position detecting device, composition analyzer, orbit adjusting method for charged particle beam and position coordinate detecting device
KR102164232B1 (en) Charged particle beam apparatus
US7800062B2 (en) Method and system for the examination of specimen
JP3946041B2 (en) Surface cross-sectional shape or three-dimensional surface shape measuring device and scanning electron microscope
JP6820660B2 (en) Charged particle beam device
EP0335398A1 (en) Scanning electron microscope for observing and measuring minute pattern of samples
JPH04132909A (en) Size measuring apparatus with electron beam
JP4590590B2 (en) SEM for transmission operation with position sensitive detector
EP1883094B1 (en) Charged particle beam device and method for inspecting specimen
JP3960544B2 (en) Beam adjusting specimen, beam adjusting method and beam adjusting apparatus
CN102922127A (en) Method for operating a laser scanner and processing system with laser scanner
KR101377938B1 (en) Medium Energy Ion Scattering spectrometer
KR102374926B1 (en) Calibration sample, electron beam adjustment method and electron beam device using the same
CN111081515A (en) Charged particle beam device and sample processing and observation method
KR20230010756A (en) Generation of three-dimensional information about the structural elements of the specimen
JP2006284592A (en) Inspection apparatus
JPS6197509A (en) Inspecting device
JPH1125899A (en) Secondary electron detector and mark detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040609

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070118

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070410

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110420

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees