JP3945775B2 - Lead electrode for field emission low-energy electron diffraction and electron diffraction apparatus using the same - Google Patents

Lead electrode for field emission low-energy electron diffraction and electron diffraction apparatus using the same Download PDF

Info

Publication number
JP3945775B2
JP3945775B2 JP2003270105A JP2003270105A JP3945775B2 JP 3945775 B2 JP3945775 B2 JP 3945775B2 JP 2003270105 A JP2003270105 A JP 2003270105A JP 2003270105 A JP2003270105 A JP 2003270105A JP 3945775 B2 JP3945775 B2 JP 3945775B2
Authority
JP
Japan
Prior art keywords
electrode
sample
probe
electron diffraction
energy electron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003270105A
Other languages
Japanese (ja)
Other versions
JP2005026169A (en
Inventor
清義 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2003270105A priority Critical patent/JP3945775B2/en
Publication of JP2005026169A publication Critical patent/JP2005026169A/en
Application granted granted Critical
Publication of JP3945775B2 publication Critical patent/JP3945775B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Description

本発明は、電界放出低速電子回折用引き込み電極及びそれを用いた電子回折装置に関する。   The present invention relates to a field-emission low-energy electron diffraction pulling electrode and an electron diffraction apparatus using the same.

従来から、表面の構造解析法として広く用いられている手法の1つに低速電子回折法がある。低速の電子線を用いるため表面構造に敏感であり、単位格子内の格子座標を10pm程度の高い精度で決定することができる。しかし、電子線の照射領域の直径は0.1mm程度と広く、表面微小領域の構造解析には適用できなかった。そこで、表面微小領域に低速電子線を照射する方法として、電界放出低速電子回折が考案された。しかし、従来の電界放出低速電子回折では、試料表面に平行な方向に表面からの散乱電子を引き出して検出していた(例えば、非特許文献1参照)。その結果、探針−試料間の引き出し電場のために多くの散乱電子は再び試料に引き返してしまい、検出効率を低下させていた。   Conventionally, there is a low-energy electron diffraction method as one of the methods widely used as a surface structural analysis method. Since a low-speed electron beam is used, it is sensitive to the surface structure, and the lattice coordinates in the unit lattice can be determined with high accuracy of about 10 pm. However, the diameter of the electron beam irradiation region is as wide as about 0.1 mm and cannot be applied to the structural analysis of the surface minute region. Thus, field emission low-energy electron diffraction has been devised as a method of irradiating a surface micro-region with a low-energy electron beam. However, in the conventional field emission low-energy electron diffraction, scattered electrons from the surface are extracted and detected in a direction parallel to the sample surface (see, for example, Non-Patent Document 1). As a result, the scattered electric field between the probe and the sample caused many scattered electrons to be returned to the sample again, thereby reducing the detection efficiency.

そこで、探針の周りに探針シールドを取り付けることにより、真空側へ引き出す能力を高めることができた。円筒形の探針シールドを用いることにより、散乱電子を試料表面垂直方向に対称性を保ったまま引き出す方法が提案された(例えば、非特許文献2、3参照)。   Therefore, by attaching a probe shield around the probe, we were able to enhance the ability to pull it out to the vacuum side. A method has been proposed in which scattered electrons are extracted while maintaining symmetry in the direction perpendicular to the sample surface by using a cylindrical probe shield (see, for example, Non-Patent Documents 2 and 3).

図2は、非特許文献3に記載の電界放出電子回折装置の構成例を示す図である。図2に示す電界放出電子回折装置Bは、超高真空チャンバー101と、この超高真空チャンバー101内に設けられたマイクロチャンネルプレート(MCP)103と、試料を載せるためのスキャナー105と、電解研磨により先鋭化したタングステン探針107と、タングステン探針107の外側に設けられ同軸円筒状のシールド電極111と、散乱電子を引き込むための引き込み電極115と、を有している。MCP103の上方のチャンバー壁に窓部117が形成されており、窓部117を介してその外側に設けられたビデオカメラ121によりMCP103に現れた像を観察、撮影することができる。   FIG. 2 is a diagram illustrating a configuration example of the field emission electron diffraction device described in Non-Patent Document 3. A field emission electron diffraction apparatus B shown in FIG. 2 includes an ultrahigh vacuum chamber 101, a microchannel plate (MCP) 103 provided in the ultrahigh vacuum chamber 101, a scanner 105 for placing a sample, and electropolishing. The tungsten probe 107 is sharpened by the above, a coaxial cylindrical shield electrode 111 provided outside the tungsten probe 107, and a drawing electrode 115 for drawing scattered electrons. A window 117 is formed on the chamber wall above the MCP 103, and an image appearing on the MCP 103 can be observed and photographed by the video camera 121 provided outside the window 117 through the window 117.

上記の装置において、試料表面の微小領域に先鋭化した探針から電界放出電子線を照射し、そこで散乱・回折した電子を、引き込み電極115により上方に引き込み、MCP103を介してビデオカメラ121により検出することによって、試料表面における数原子層の原子配列などの微細な原子配列を調べることもできるように構成されている。   In the above-described apparatus, a field emission electron beam is irradiated from a sharpened probe to a minute region on the surface of the sample, and scattered and diffracted electrons are drawn upward by the drawing electrode 115 and detected by the video camera 121 through the MCP 103. By doing so, a fine atomic arrangement such as an atomic arrangement of several atomic layers on the sample surface can be examined.

S. Mizuno, Journal of Vacuum Science and Technology B 19 (2001) 1874.S. Mizuno, Journal of Vacuum Science and Technology B 19 (2001) 1874. S. Mizuno, J. Fukada, H. Tochihara, Surf. Sci. 514 (2002) 291.S. Mizuno, J. Fukada, H. Tochihara, Surf. Sci. 514 (2002) 291. 水野 清義、 「ナノ新材料開発のための低速電子回折を用いた原子位置決定」、月刊「化学工業 Vol.53, (2002)。Mizuno Kiyoyoshi, “Atomic position determination using low-energy electron diffraction for the development of new nanomaterials”, Monthly “Chemical Industry Vol. 53, (2002)”.

電界放出低速電子回折装置においては、試料表面の対称性を保った回折パターンを得るために、試料表面に垂直な方向に散乱電子を引き出す必要がある。ところが、探針−試料間に引き戻し電場があるため、対称性を保ちつつ十分な効率で真空側へ引き出し、かつ、散乱角に応じて分散させて検出することが難しかった。   In a field emission low-energy electron diffraction apparatus, it is necessary to extract scattered electrons in a direction perpendicular to the sample surface in order to obtain a diffraction pattern that maintains symmetry of the sample surface. However, since there is a pull-back electric field between the probe and the sample, it is difficult to extract the sample to the vacuum side with sufficient efficiency while maintaining symmetry, and to detect by dispersing according to the scattering angle.

また、探針を用い散乱電子を試料に垂直な方向へ引き出すように改良しても、散乱電子の軌道に十分な対称性及び滑らかな変化を与えることはできず、結果として鮮明な回折パターンを得ることが出来なかった。図2に示すように、引き込み電極115が鉛直方向に直立し、試料107(又は探針111)から離れた構造を用いると、引き込み機能が弱くなる。また、引き込み電極115を試料107(又は探針111)に近づけ過ぎると、電場に急激な変化を与えてしまい、散乱角ごとに散乱電子を分散させることが困難になったり、試料からの散乱電子を遮ってしまう。さらに、探針や試料の交換のために、引き込み電極115に穴を開けると電場を乱してしまい、鮮明な回折パターンを得ることは出来なかった。   In addition, even if the probe is used to extract the scattered electrons in the direction perpendicular to the sample, it cannot provide sufficient symmetry and smooth change in the orbit of the scattered electrons, resulting in a clear diffraction pattern. I couldn't get it. As shown in FIG. 2, if a structure in which the lead electrode 115 stands upright in the vertical direction and is separated from the sample 107 (or the probe 111), the lead function is weakened. In addition, if the lead electrode 115 is too close to the sample 107 (or the probe 111), the electric field is suddenly changed, and it becomes difficult to disperse scattered electrons for each scattering angle, or scattered electrons from the sample. Will be blocked. Furthermore, if a hole is made in the lead-in electrode 115 for exchanging the probe and the sample, the electric field is disturbed, and a clear diffraction pattern cannot be obtained.

本発明は、電界放出低速電子回折装置において、散乱電子の軌道に十分な対称性及び滑らかな変化を与える技術を提供することを目的とする。   An object of the present invention is to provide a technique for giving sufficient symmetry and smooth change to the trajectory of scattered electrons in a field emission low-energy electron diffraction apparatus.

本発明の一観点によれば、試料に対して電界放出により低速電子線を照射する探針と、該探針をシールドする探針シールド電極と、前記試料から出射された散乱電子を引き込むための引き込み電極とを有し、前記探針シールド電極と前記引き込み電極とにより、前記散乱電子の軌道を画定する通路が形成されていることを特徴とする低速電子線回折装置が提供される。画定された通路は、散乱電子の軌道を遮らない限り、電子の軌道に可能な限り近い位置に設けられるのが好ましい。また、探針シールド電極の外表面は、できるだけ急激な電場を形成しない形状、例えば、半球形などの形状が好ましい。引き込み電極の内表面は、例えば円錐形などの形状が好ましい。   According to one aspect of the present invention, a probe that irradiates a sample with a low-energy electron beam by field emission, a probe shield electrode that shields the probe, and a method for drawing in scattered electrons emitted from the sample There is provided a low-energy electron diffraction apparatus characterized in that it has a lead-in electrode, and a passage defining the trajectory of the scattered electrons is formed by the probe shield electrode and the lead-in electrode. The defined path is preferably provided as close as possible to the electron trajectory as long as it does not obstruct the scattered electron trajectory. The outer surface of the probe shield electrode preferably has a shape that does not form an electric field as steep as possible, for example, a hemispherical shape. The inner surface of the lead-in electrode preferably has a conical shape, for example.

本発明の他の観点によれば、前記探針シールド電極の中心軸と前記引き込み電極の中心軸とが略同軸であり、前記探針シールド電極と前記引き込み電極との少なくとも一方が、前記試料から出射された散乱電子の軌道に沿うように近接して配置されていることを特徴とする低速電子線回折装置が提供される。   According to another aspect of the present invention, a central axis of the probe shield electrode and a central axis of the lead electrode are substantially coaxial, and at least one of the probe shield electrode and the lead electrode is from the sample. There is provided a low-energy electron diffraction apparatus characterized in that the low-energy electron diffraction apparatus is disposed so as to be along the trajectory of emitted scattered electrons.

この場合も、散乱電子の軌道を遮らない限り、前記探針シールド電極と前記引き込み電極との少なくとも一方が、電子の軌道に可能な限り近い位置に設けられるのが好ましい。   Also in this case, it is preferable that at least one of the probe shield electrode and the lead-in electrode is provided at a position as close as possible to the electron trajectory unless the trajectory of the scattered electrons is blocked.

また、前記引き込み電極は前記探針シールド電極の外側に配置されるとともに、前記探針シールドを収容する空間部であって、該空間部を形成する内壁が前記試料側に向けて狭くなるように形成されている空間部を有するのが好ましい。散乱電子は試料からある角度で出射されるため、進行するにつれて広がる傾向にあるためである。   The lead-in electrode is disposed outside the probe shield electrode, and is a space that accommodates the probe shield so that an inner wall forming the space narrows toward the sample side. It is preferable to have a formed space. This is because the scattered electrons are emitted from the sample at a certain angle and thus tend to spread as they travel.

さらに、前記引き込み電極に設けられ、前記探針シールド側に向けて突出する鍔部を有していることを特徴とする。また、前記鍔部は、前記引き込み電極又は前記探針シールドに対する相対位置を変更可能とする微調整機構を有しているのが好ましい。鍔部により、軌道の調整が可能であり、さらに微調整機構により軌道を微調整できる。   Furthermore, it is provided with the collar part which is provided in the said drawing electrode and protrudes toward the said probe shield side. Moreover, it is preferable that the said collar part has a fine adjustment mechanism which can change the relative position with respect to the said drawing electrode or the said probe shield. The track can be adjusted by the collar, and the track can be finely adjusted by the fine adjustment mechanism.

さらに、前記引き込み電極と前記探針シールド又は試料を保持する試料ホルダーの少なくとも一方とを相対移動させる移動機構を有しているのが好ましい。移動機構による移動により、探針ホルダー又は試料ホルダーのうち少なくとも一方を露出させて、試料や探針の受け渡しを容易にすることができる。また、引き込み電極に穴部を形成して試料や探針の受け渡しを容易にする方法に比べて、電場の乱れが少なくなり、散乱電子を安定して引き込むことができる。尚、引き込み電極は、例えば、第1電極部と第2電極部と鍔部を含む。さらに、グリッド又はMCPの少なくとも一方も移動可能としても良い。   Furthermore, it is preferable to have a moving mechanism for relatively moving the lead-in electrode and the probe shield or at least one of the sample holders holding the sample. By moving by the moving mechanism, at least one of the probe holder and the sample holder can be exposed, and the sample and the probe can be easily transferred. Further, as compared with a method in which a hole is formed in the lead-in electrode to facilitate delivery of the sample and the probe, the electric field is less disturbed and the scattered electrons can be stably drawn. The lead-in electrode includes, for example, a first electrode part, a second electrode part, and a collar part. Furthermore, at least one of the grid and the MCP may be movable.

本発明によれば、電界放出低速電子回折装置において、散乱電子の軌道に十分な対称性及び滑らかな変化を与えることができる。従って、装置内において、試料からの回折パターンを良く反映する散乱電子の軌道を形成することができる。   According to the present invention, a sufficient symmetry and a smooth change can be given to the orbit of scattered electrons in a field emission low-energy electron diffraction apparatus. Therefore, the trajectory of scattered electrons that well reflects the diffraction pattern from the sample can be formed in the apparatus.

以下、本発明の実施の形態による電界放出低速電子回折装置について、図面を参照しつつ説明を行う。   Hereinafter, a field emission low-energy electron diffraction apparatus according to an embodiment of the present invention will be described with reference to the drawings.

図1は、本発明の第1の実施の形態による電界放出低速電子回折装置における、走査トンネル顕微鏡探針を電界放出源として用いた装置の原理図である。図1に示すように、探針1から真空中3へと電界放出された電子は、ポテンシャルにより加速されながら試料表面に向かう。試料表面5において後方散乱した電子は、再び真空中へと戻る。電界放出低速電子回折装置では、この電子を検出する。   FIG. 1 is a principle diagram of an apparatus using a scanning tunneling microscope probe as a field emission source in the field emission low-energy electron diffraction apparatus according to the first embodiment of the present invention. As shown in FIG. 1, the electrons emitted from the probe 1 into the vacuum 3 are directed to the sample surface while being accelerated by the potential. The electrons scattered back on the sample surface 5 return to the vacuum again. The field emission low energy electron diffractometer detects this electron.

図3は、図2に対応する図であり、本実施の形態による電界放出電子回折装置ほぼ全体の構成例を示す断面図である。図4は、図3に示す構成を上面から見た様子を示す図である。図2に示されているMCPとビデオカメラとに関しては、図3においては図示を省略している。   FIG. 3 corresponds to FIG. 2 and is a cross-sectional view showing a configuration example of almost the entire field emission electron diffraction apparatus according to the present embodiment. FIG. 4 is a diagram illustrating a state in which the configuration illustrated in FIG. 3 is viewed from above. The MCP and video camera shown in FIG. 2 are not shown in FIG.

図3及び図4に示すように、本実施の形態による電界放出低速電子回折装置Aは、真空チャンバー101(図2)内に設けられ、図2に示す引き込み電極に対応する第1の電極部15であって図示下方に向けて(試料に近づくにつれて)徐々に小さくなる逆円錐状の内壁を有する第1電極部15と、第1電極部15の内壁よりも内側に形成された空間に配置された探針シールド電極17と、この探針シールド電極17を支持するアーム21と、このアーム21を支持する基台23と、探針シールド電極17に把持され、下方に向けて突出する探針25と、探針25の近傍に試料26を配置することができる試料ホルダー27と、この試料ホルダー27を移動させることができる移動機構30と、を有している。さらに、第1電極部15の外側には、第1電極部15と絶縁ガイシ20により絶縁状態となっている第2電極部19が設けられている。   As shown in FIGS. 3 and 4, the field emission low-energy electron diffraction apparatus A according to the present embodiment is provided in the vacuum chamber 101 (FIG. 2), and a first electrode portion corresponding to the lead-in electrode shown in FIG. The first electrode portion 15 has an inverted conical inner wall 15 that gradually decreases toward the lower side of the drawing (as it approaches the sample), and is disposed in a space formed inside the inner wall of the first electrode portion 15. The probe shield electrode 17, the arm 21 that supports the probe shield electrode 17, the base 23 that supports the arm 21, and the probe that is held by the probe shield electrode 17 and protrudes downward 25, a sample holder 27 that can place the sample 26 in the vicinity of the probe 25, and a moving mechanism 30 that can move the sample holder 27. Further, a second electrode portion 19 that is insulated by the first electrode portion 15 and the insulating insulator 20 is provided outside the first electrode portion 15.

第1電極部15を上記の形状にしたことにより、第1電極15である引き込み電極を探針17に近づけることができる。さらに、探針17に距離的に近い部分ほど第1電極部15の内壁が内側に入っている、いわゆるテーパ型の内壁を有している。   Since the first electrode portion 15 has the above shape, the lead-in electrode as the first electrode 15 can be brought close to the probe 17. Furthermore, it has what is called a taper-type inner wall in which the inner wall of the 1st electrode part 15 is located inside the part nearer to the probe 17 in the distance.

さらに、試料表面の微小領域に先鋭化した探針から電界放出電子線を照射し、そこで、散乱・回折した電子を真空チャンバーの上方に設けられ散乱電子を検出するための検出部を形成するマイクロチャンネルプレート(以下、「MCP」と称する。)と、MCPの近傍であって試料側に設けられたグリッドゲージと、を有している(図示せず)。   Furthermore, a microscopic area on the sample surface is irradiated with a field emission electron beam from a sharpened probe, and the scattered and diffracted electrons are provided above the vacuum chamber to form a detection unit for detecting scattered electrons. It has a channel plate (hereinafter referred to as “MCP”) and a grid gauge provided on the sample side in the vicinity of the MCP (not shown).

MCPは、散乱電子を検出するためのプレートであり、例えば、蛍光スクリーンが付けられており、真空チャンバーに設けられた窓を通して真空外から散乱パターンを観察することができる。グリッドゲージは、非弾性散乱を受けた電子を試料側に向けて戻す機能を有しており、散乱電子のみをMCPに到達させるための一種のフィルターの役割を有している。   The MCP is a plate for detecting scattered electrons. For example, a fluorescent screen is attached to the MCP, and a scattering pattern can be observed from outside the vacuum through a window provided in the vacuum chamber. The grid gauge has a function of returning inelastically scattered electrons toward the sample side, and has a role of a kind of filter for allowing only scattered electrons to reach the MCP.

上記構成を有する電子回折装置により試料からの散乱電子を検出することにより、試料表面における数原子層オーダーの微細な原子配列等を精度良く調べることができる。   By detecting the scattered electrons from the sample with the electron diffraction apparatus having the above-described configuration, it is possible to accurately investigate a fine atomic arrangement of the order of several atomic layers on the sample surface.

図5は、図3に対応する図であり、引き込み電極(第1電極部15、第2電極部19、絶縁ガイシ20)と探針シールド電極17又は試料26を保持する試料ホルダー27の少なくとも一方とを相対移動させる移動機構(図示せず)を有しているのが好ましい。移動機構による移動により、探針シールド電極17又は試料ホルダー27のうち少なくとも一方を露出させて、試料26や探針25の受け渡しを容易にすることができる。また、この方法によれば、引き込み電極に穴部を形成して試料や探針の受け渡しを容易にする従来の方法に比べて電場の乱れが少なくなり、散乱電子を安定して引き込むことができる。尚、引き込み電極は、例えば、第1電極部15と第2電極部19と鍔部31(後述する図7参照)とを含む。さらに、グリッド又はMCP(図2参照)の少なくとも一方も移動可能としても良い。   FIG. 5 is a view corresponding to FIG. 3, and at least one of the lead electrode (first electrode portion 15, second electrode portion 19, insulating insulator 20) and the probe shield electrode 17 or the sample holder 27 holding the sample 26. It is preferable to have a moving mechanism (not shown) for relatively moving the two. By movement by the moving mechanism, at least one of the probe shield electrode 17 and the sample holder 27 can be exposed, and the sample 26 and the probe 25 can be easily transferred. In addition, according to this method, the electric field is less disturbed than in the conventional method in which a hole is formed in the drawing electrode to facilitate the delivery of the sample and the probe, and scattered electrons can be drawn stably. . The lead-in electrode includes, for example, a first electrode portion 15, a second electrode portion 19, and a collar portion 31 (see FIG. 7 described later). Furthermore, at least one of the grid and the MCP (see FIG. 2) may be movable.

図6は、第2電極部19と探針25と探針シールド電極17と第1電極15と試料26と、MCP側(上方)へ向かう試料26との位置関係の例を示す図である。探針25と試料26との間の電位差(試料に対して探針側に負電位が印加される)に基づいて、図1に示すように電子が探針側のポテンシャル障壁をトンネルし、探針−試料間の真空領域へと飛び出してくる。この電界放出電子は、真空中のポテンシャルにより加速されながら試料表面へと向かう。運動エネルギーを有する電子が、試料表面で後方散乱すれば再び真空中へと跳ね返ってくる。この際、好ましくは弾性散乱のみを受けた電子のみによる回折パターンを観察することにより、表面微小領域の構造に関する情報を得ることが可能になる。   FIG. 6 is a diagram illustrating an example of a positional relationship among the second electrode unit 19, the probe 25, the probe shield electrode 17, the first electrode 15, the sample 26, and the sample 26 heading toward the MCP side (upward). Based on the potential difference between the probe 25 and the sample 26 (a negative potential is applied to the probe side with respect to the sample), the electrons tunnel through the potential barrier on the probe side as shown in FIG. It jumps out to the vacuum area between the needle and the sample. The field emission electrons travel toward the sample surface while being accelerated by the potential in vacuum. When electrons having kinetic energy are backscattered on the sample surface, they bounce back into the vacuum. At this time, it is possible to obtain information on the structure of the surface microregion by preferably observing a diffraction pattern of only electrons that have undergone only elastic scattering.

図7は、本発明の第2の実施の形態による電界放出電子回折装置であって、第1の実施の形態における第1電極15に加えて、第1電極15の内壁から探針25方向(内方)に向けて突出する例えば平板状の鍔部31を有している。図7に示す電界放出電子回折装置では、上記鍔部31の突出方向への長さ(幅)Wと、試料上面からの高さ方向の位置Hを変更することが可能である。探針25の延在方向を中心軸Cとした散乱電子の軌道例をB1〜B7で模式的に示している。C軸を中心に360度回転させたと考えることにより、実際の装置内での散乱電子の軌道を推定することができる。   FIG. 7 shows a field emission electron diffraction apparatus according to the second embodiment of the present invention. In addition to the first electrode 15 in the first embodiment, the direction from the inner wall of the first electrode 15 to the probe 25 ( For example, it has a flat plate-shaped flange portion 31 projecting inward. In the field emission electron diffraction apparatus shown in FIG. 7, it is possible to change the length (width) W in the protruding direction of the flange 31 and the position H in the height direction from the upper surface of the sample. Examples of scattered electron trajectories with the extending direction of the probe 25 as the central axis C are schematically shown as B1 to B7. By considering 360 degrees rotation about the C axis, the trajectory of the scattered electrons in the actual apparatus can be estimated.

図7に示すように、散乱電子の軌道位置は、符号B1からB7で示されるように、MCP(図2)の面内でほぼ均一に分布しており、電子の試料からの散乱角をほぼ忠実に反映している。尚、試料からの散乱角からの若干のずれは、検出後のデータ処理工程においてキャリブレーションが可能である。上記鍔部31は、第2の引き込み電極の一部をなしており、さらに、試料側により一層電極を近づけることができる。さらに、WとHとを調整することで、試料の周辺における電位分布を調整し、散乱電子の軌道を細かく調整することもできるという利点を有する。   As shown in FIG. 7, the orbital positions of scattered electrons are distributed almost uniformly in the plane of the MCP (FIG. 2) as indicated by symbols B1 to B7, and the scattering angle of the electrons from the sample is almost equal. Reflects faithfully. A slight deviation from the scattering angle from the sample can be calibrated in the data processing step after detection. The flange 31 forms part of the second lead-in electrode, and can further bring the electrode closer to the sample side. Furthermore, by adjusting W and H, the potential distribution around the sample can be adjusted, and the trajectory of scattered electrons can be finely adjusted.

尚、図6に示される各部材毎の電位の例としては、試料26の電位が50eV、探針25の電位が0eV、探針シールド電極17の電位が220eV、第1電極15と鍔部31との電位が180eV、第2電極19が20eV、グリッドゲージの電位が30eVである。   6, the potential of the sample 26 is 50 eV, the probe 25 is 0 eV, the probe shield electrode 17 is 220 eV, the first electrode 15 and the flange 31. Is 180 eV, the second electrode 19 is 20 eV, and the grid gauge potential is 30 eV.

図7に示すように、散乱電子の軌道は、ほぼ、探針シールド電極17と第1電極15及び鍔部31との形状によって決まることがわかる。換言すれば、探針シールド電極17と第1電極15及び鍔部31との形状を、散乱電子の軌道に沿うような形状にすることにより、試料の構造を素直に反映した角度で試料から出射された散乱電子を、探針シールド電極17や電極15・31などに邪魔されずに、かつ、電極15・31を可能な限り探針25に近づけるのが好ましいことがわかる。実際に、探針シールド電極17の外表面の形状と電極15の内表面の形状を図7に示すような形状にすることにより、上記の要件を満たすことができることがわかる。   As shown in FIG. 7, it can be seen that the trajectory of scattered electrons is substantially determined by the shapes of the probe shield electrode 17, the first electrode 15, and the collar portion 31. In other words, the probe shield electrode 17, the first electrode 15, and the flange portion 31 are shaped so as to follow the trajectory of the scattered electrons, thereby exiting from the sample at an angle that directly reflects the structure of the sample. It can be seen that it is preferable that the scattered electrons are not obstructed by the probe shield electrode 17 and the electrodes 15 and 31 and that the electrodes 15 and 31 are as close to the probe 25 as possible. Actually, it can be seen that the above requirements can be satisfied by making the shape of the outer surface of the probe shield electrode 17 and the shape of the inner surface of the electrode 15 as shown in FIG.

尚、探針シールド電極を、半球型又はそれに近い形状であって、散乱電子の軌道に近い位置に配置し、引き込み電極の形状を、半円球の空洞又は円錐型の空洞又はそれらに近い形状で散乱電子の軌道に近づけて配置することにより、散乱電子の対称性を保持したまま、散乱角に応じて電子を分散させて正確に散乱電子を検出することができる。   The probe shield electrode has a hemispherical shape or a shape close thereto, and is disposed at a position close to the orbit of scattered electrons, and the shape of the drawing electrode is a hemispherical cavity, a conical cavity, or a shape close to them. By disposing near the orbit of scattered electrons, the scattered electrons can be accurately detected by dispersing the electrons according to the scattering angle while maintaining the symmetry of the scattered electrons.

以上、実施の形態に沿って本発明を説明したが、本発明はこれらに制限されるものではない。その他、種々の変更、改良、組み合わせが可能なことは当業者に自明であろう。   As mentioned above, although this invention was demonstrated along embodiment, this invention is not restrict | limited to these. It will be apparent to those skilled in the art that other various modifications, improvements, and combinations can be made.

試料表面における数原子層の原子配列などの微細な原子配列を調べることもできるため、ナノ構造の解析の他に、種々の微細構造の解析に利用可能である。   Since a fine atomic arrangement such as an atomic arrangement of several atomic layers on the sample surface can be examined, it can be used for analysis of various fine structures in addition to the analysis of nanostructures.

本実施の形態による電界放出低速電子回折装置における、走査トンネル顕微鏡探針を電界放出源として用いた装置の原理図である。It is a principle figure of the apparatus which used the scanning tunnel microscope probe as a field emission source in the field emission low-energy electron diffraction apparatus by this Embodiment. 従来の電界放出電子回折装置の一構成例を示す図である。It is a figure which shows the example of 1 structure of the conventional field emission electron diffraction apparatus. 図2に対応する図であり、本発明の実施例1の電界放出電子回折装置のほぼ全体の構成例を示す断面図である。FIG. 3 is a diagram corresponding to FIG. 2, and is a cross-sectional view showing a configuration example of almost the entire field emission electron diffraction device of Example 1 of the present invention. 図3に示す構成を上面から見た様子を示す図である。It is a figure which shows a mode that the structure shown in FIG. 3 was seen from the upper surface. 図3に対応する図であり、引き込み電極と試料及び探針シールドを移動させた状態を示す断面図である。FIG. 4 is a view corresponding to FIG. 3, and is a cross-sectional view showing a state in which a lead electrode, a sample, and a probe shield are moved. 真空チャンバーと探針と探針シールド電極と電極と試料とを含む装置の構成例を示す図である。It is a figure which shows the structural example of the apparatus containing a vacuum chamber, a probe, a probe shield electrode, an electrode, and a sample. 本発明の実施例2の電界放出電子回折装置を示す図であり、図5に加えて電極に鍔部を負荷した構造における、MCP側(上方)へ向かう試料からの散乱電子の軌道との位置関係の例を示す図である。FIG. 6 is a diagram showing a field emission electron diffraction apparatus according to a second embodiment of the present invention, and the position of the scattered electrons from the sample toward the MCP side (upward) in the structure in which a collar is loaded on the electrode in addition to FIG. It is a figure which shows the example of a relationship.

符号の説明Explanation of symbols

A…電界放出低速電子回折装置、15…第1電極部、17…探針シールド電極、19…第2電極部、25…探針、26…試料、27…試料ホルダー、31…鍔部、101…超高真空チャンバー。 DESCRIPTION OF SYMBOLS A ... Field emission low-energy electron diffraction apparatus, 15 ... 1st electrode part, 17 ... Probe shield electrode, 19 ... 2nd electrode part, 25 ... Probe, 26 ... Sample, 27 ... Sample holder, 31 ... Saddle part, 101 ... an ultra-high vacuum chamber.

Claims (6)

試料に対して電界放出により低速電子線を照射する探針と、
該探針をシールドする探針シールド電極と、前記試料から出射された散乱電子を引き込むための引き込み電極とを有し、
前記引き込み電極は、前記探針シールド電極の外側に配置され、その内壁が前記試料側に向けて狭くなるように形成されていることを特徴とする低速電子線回折装置。
A probe that irradiates a sample with a low-energy electron beam by field emission;
A probe shield electrode that shields the probe, and a drawing electrode for drawing scattered electrons emitted from the sample;
The low-energy electron diffraction apparatus , wherein the lead-in electrode is disposed outside the probe shield electrode and has an inner wall that narrows toward the sample side .
前記探針シールド電極の中心軸と前記引き込み電極の中心軸とが略同軸であることを特徴とする請求項1に記載の低速電子線回折装置。 The low-energy electron diffraction apparatus according to claim 1, wherein a central axis of the probe shield electrode and a central axis of the lead-in electrode are substantially coaxial. 前記探針シールド電極は、前記試料側が半球型の形状を有することを特徴とする請求項2に記載の低速電子線回折装置。The low-energy electron diffraction apparatus according to claim 2, wherein the probe shield electrode has a hemispherical shape on the sample side. さらに、前記引き込み電極は、前記探針シールド側に向けて突出する鍔部を有していることを特徴とする請求項1から3までのいずれか1項に記載の低速電子線回折装置。   The low-energy electron diffraction apparatus according to any one of claims 1 to 3, wherein the lead-in electrode has a flange protruding toward the probe shield side. 前記鍔部は、前記引き込み電極又は前記探針シールドに対する相対位置を変更可能とする微調整機構を有していることを特徴とする請求項4に記載の低速電子線回折装置。   The low-energy electron diffraction apparatus according to claim 4, wherein the flange includes a fine adjustment mechanism that can change a relative position with respect to the lead-in electrode or the probe shield. さらに、前記引き込み電極と前記探針シールド又は試料を保持する試料ホルダーの少なくとも一方とを相対移動させる移動機構を有していることを特徴とする請求項3から5までのいずれか1項に記載の低速電子線回折装置。   6. The apparatus according to claim 3, further comprising a moving mechanism that relatively moves the lead-in electrode and at least one of the probe shield and the sample holder holding the sample. Low-energy electron diffraction device.
JP2003270105A 2003-07-01 2003-07-01 Lead electrode for field emission low-energy electron diffraction and electron diffraction apparatus using the same Expired - Fee Related JP3945775B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003270105A JP3945775B2 (en) 2003-07-01 2003-07-01 Lead electrode for field emission low-energy electron diffraction and electron diffraction apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003270105A JP3945775B2 (en) 2003-07-01 2003-07-01 Lead electrode for field emission low-energy electron diffraction and electron diffraction apparatus using the same

Publications (2)

Publication Number Publication Date
JP2005026169A JP2005026169A (en) 2005-01-27
JP3945775B2 true JP3945775B2 (en) 2007-07-18

Family

ID=34190164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003270105A Expired - Fee Related JP3945775B2 (en) 2003-07-01 2003-07-01 Lead electrode for field emission low-energy electron diffraction and electron diffraction apparatus using the same

Country Status (1)

Country Link
JP (1) JP3945775B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6010707B2 (en) * 2013-05-15 2016-10-19 学校法人沖縄科学技術大学院大学学園 Low-energy electron diffraction detection module and scanning electron microscope

Also Published As

Publication number Publication date
JP2005026169A (en) 2005-01-27

Similar Documents

Publication Publication Date Title
US6627889B2 (en) Apparatus and method for observing sample using electron beam
Klein et al. TSEM: A review of scanning electron microscopy in transmission mode and its applications
US20180330919A1 (en) Method of operating a charged particle beam specimen inspection system
EP1238405B1 (en) Method and system for the examination of specimen using a charged particle beam
EP2811506B1 (en) Method for imaging a sample in a dual-beam charged particle apparatus
JP6856987B2 (en) Charged particle beam devices and methods for inspecting and / or imaging samples
US20150214004A1 (en) Method for preparing and analyzing an object as well as particle beam device for performing the method
US20170271122A1 (en) Focused ion beam apparatus
US20100187433A1 (en) Improved particle beam generator
KR102571504B1 (en) Method for the in situ preparation of microscopic specimens
US10890545B2 (en) Apparatus for combined stem and EDS tomography
KR102590634B1 (en) Charged particle beam apparatus and sample processing method
CN104048979A (en) Multiple image metrology
JP4717481B2 (en) Scanning probe microscope system
TWI813760B (en) Sample Processing Observation Method
CN108666192B (en) Charged particle beam device
JP3945775B2 (en) Lead electrode for field emission low-energy electron diffraction and electron diffraction apparatus using the same
US9947506B2 (en) Sample holder and focused ion beam apparatus
US20200300736A1 (en) Thin-sample-piece fabricating device and thin-sample-piece fabricating method
US20190198284A1 (en) Electron source and electron beam irradiation device
JP7527282B2 (en) Electron diffraction imaging system for determining molecular structure and conformation
KR102718715B1 (en) Charged particle beam apparatus and sample processing observation method
Goldstein et al. High resolution imaging
CN115248145A (en) Method of machining an object, computer program product and material machining apparatus
CN118073159A (en) Particle radiation device operating method, computer program product, and particle radiation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060926

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070320

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070406

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees