JP3945752B2 - guide bush - Google Patents

guide bush Download PDF

Info

Publication number
JP3945752B2
JP3945752B2 JP2002006458A JP2002006458A JP3945752B2 JP 3945752 B2 JP3945752 B2 JP 3945752B2 JP 2002006458 A JP2002006458 A JP 2002006458A JP 2002006458 A JP2002006458 A JP 2002006458A JP 3945752 B2 JP3945752 B2 JP 3945752B2
Authority
JP
Japan
Prior art keywords
guide bush
inner cylinder
bar
elastic
piece members
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002006458A
Other languages
Japanese (ja)
Other versions
JP2003211303A (en
Inventor
重雄 長谷川
由洋 野島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Holdings Co Ltd
Citizen Watch Co Ltd
Original Assignee
Citizen Holdings Co Ltd
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Holdings Co Ltd, Citizen Watch Co Ltd filed Critical Citizen Holdings Co Ltd
Priority to JP2002006458A priority Critical patent/JP3945752B2/en
Priority to PCT/JP2003/000217 priority patent/WO2003059558A1/en
Priority to CNB038000644A priority patent/CN1298467C/en
Publication of JP2003211303A publication Critical patent/JP2003211303A/en
Application granted granted Critical
Publication of JP3945752B2 publication Critical patent/JP3945752B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B13/00Arrangements for automatically conveying or chucking or guiding stock
    • B23B13/12Accessories, e.g. stops, grippers
    • B23B13/126Supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B31/00Chucks; Expansion mandrels; Adaptations thereof for remote control
    • B23B31/02Chucks
    • B23B31/10Chucks characterised by the retaining or gripping devices or their immediate operating means
    • B23B31/12Chucks with simultaneously-acting jaws, whether or not also individually adjustable
    • B23B31/20Longitudinally-split sleeves, e.g. collet chucks
    • B23B31/201Characterized by features relating primarily to remote control of the gripping means
    • B23B31/202Details of the jaws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2226/00Materials of tools or workpieces not comprising a metal
    • B23B2226/33Elastomers, e.g. rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2228/00Properties of materials of tools or workpieces, materials of tools or workpieces applied in a specific manner
    • B23B2228/24Hard, i.e. after being hardened

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Turning (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、旋削加工中の棒材をその被加工部位近傍で支持するガイドブッシュに関する。さらに本発明は、そのようなガイドブッシュを備えた自動旋盤に関する。
【0002】
【従来の技術】
NC旋盤等の、種々の自動旋削加工を実施できる工作機械(本明細書で自動旋盤と総称する)において、工具による加工作業位置の近傍で旋盤機台上に設置され、主軸に把持された棒状の被加工素材(以下、棒材と称する)を、その先端の加工部位の近傍で支持する補助支持装置としてのガイドブッシュを備えたものが知られている。ガイドブッシュは、径方向へ弾性変形可能な中空筒状の棒材支持部を有し、この棒材支持部に、旋削加工中の棒材をその加工部位に振れが生じないように支持して、製品を高精度に加工成形することを可能にする。従来、自動旋盤では、旋削加工中に高速回転する棒材に対して固定的に配置される固定型のガイドブッシュと、棒材と共に高速回転する回転型のガイドブッシュとが、適宜選択して使用されている。
【0003】
また、従来の自動旋盤において、製品となる棒材先端の加工長さ部分を加工作業位置に供給するため、及び加工途上でそのような加工長さ部分の長手方向所望位置に工具刃先を配置するために、棒材を把持した主軸が軸線方向へ移動する構成を有したものは周知である。この自動旋盤では、ガイドブッシュは、固定型及び回転型のいずれの形式においても、棒材支持部に棒材を心出し支持(すなわち棒材軸線を回転軸線に合致させるように支持)した状態で、主軸の軸線方向移動により送り出される棒材を、軸線方向へ正確に案内しつつ支持できることが要求される。そこで従来、加工作業開始前にガイドブッシュに加工対象棒材(丸棒、角棒)を挿入し、棒材支持部を弾性変形させてその内径寸法を棒材外径寸法に合わせて微調整することにより、棒材の心出し支持と軸線方向案内支持との双方を達成できるようにしている。
【0004】
この種のガイドブッシュにおいて、棒材支持部を外筒と内筒との二層構造にして、加工対象棒材の外径寸法の変更や、棒材支持部の内周面(すなわち棒材支持面)の損耗程度に応じて適宜、内筒を交換できるようにしたガイドブッシュが提案されている(特開2001−138102号公報参照)。このガイドブッシュは、自動旋盤に搭載した状態で、必要に応じて内筒のみを交換することにより、多様な外径寸法を有する異種棒材(丸棒、角棒)を支持することができ、また棒材支持面の損耗に起因する加工精度の低下に迅速に対処することができる。さらに、内筒を自己潤滑性に優れた材料から作製すれば、内筒の棒材支持面と加工対象棒材の外周面との隙間を実質的に排除するとともに、棒材の軸線方向送り時に内筒との摩擦によって生じ得る棒材外周面の傷を可及的に削減して、高品質の製品を製造することが可能になる。
【0005】
【発明が解決しようとする課題】
上記した二層構造の棒材支持部を有する従来のガイドブッシュでは、棒材支持部の内径寸法を加工対象棒材の外径寸法に合わせて微調整できるように、一般的なすり割り構造を外筒に形成する一方で、内筒にはそれ自体の径寸法を拡縮可能とする所望の弾性を付与していた。このような弾性を有する内筒は、特にその材料自体を比較的柔軟な物質で構成した場合に、棒材の軸線方向送り時に棒材との摩擦により棒材支持面に損耗を生じる危惧がある。特に、加工対象棒材として、所定径に引抜き加工された引抜き材をそのまま使用する場合には、引抜き材の外形寸法精度の低さや面粗さに起因して内筒の損耗が生じ易くなり、結果として内筒の交換頻度が増加することが懸念される。
【0006】
本発明の目的は、自動旋盤に設置されるガイドブッシュにおいて、加工対象棒材の外径寸法の変更や棒材支持面の摩耗に迅速に対処できる複層構造の棒材支持部を有し、しかも棒材支持面の耐摩耗性を著しく向上させることができるガイドブッシュを提供することにある。
本発明のさらに他の目的は、そのようなガイドブッシュを備えた高性能の自動旋盤を提供することにある。
【0007】
【課題を解決するための手段】
上記目的を達成するために、請求項1に記載の発明は、中空筒状の基部と、基部の軸線方向一端に隣接して設けられる中空筒状の棒材支持部とを具備するガイドブッシュにおいて、棒材支持部は、基部に一体的に連結される外筒部分と、外筒部分の内側に設置され、各々が硬質材料から形成されるとともに互いに協働して筒状の棒材支持面を形成する複数の内筒片部材と、複数の内筒片部材を、外筒部分の内側で棒材支持面を形成する位置に、外筒部分から独立して変位可能に、弾性的に保持する弾性部材とを具備すること、を特徴とするガイドブッシュを提供する。
【0008】
請求項2に記載の発明は、請求項1に記載のガイドブッシュにおいて、弾性部材は、隣り合う内筒片部材の間に介在してそれら内筒片部材を相互に弾性的に連結する弾性連結要素を備えるガイドブッシュを提供する。
請求項3に記載の発明は、請求項2に記載のガイドブッシュにおいて、弾性連結要素が液状ガスケットから形成されるガイドブッシュを提供する。
【0009】
請求項4に記載の発明は、請求項1〜3のいずれか1項に記載のガイドブッシュにおいて、弾性部材は、外筒部分と複数の内筒片部材の各々との間に介在してそれら内筒片部材を外側から弾性的に支持する弾性中間筒を備えるガイドブッシュを提供する。
請求項5に記載の発明は、請求項4に記載のガイドブッシュにおいて、弾性中間筒が、外筒部分と複数の内筒片部材との間で圧縮されて弾性変形可能な軟質材料から形成されるガイドブッシュを提供する。
【0010】
請求項6に記載の発明は、請求項1〜5のいずれか1項に記載のガイドブッシュにおいて、弾性部材は、複数の内筒片部材に係合してそれら内筒片部材を内側から弾性的に支持する弾性支持要素を備えるガイドブッシュを提供する。
請求項7に記載の発明は、請求項6に記載のガイドブッシュにおいて、弾性支持要素が、複数の内筒片部材を径方向外方へ弾性的に付勢するばねから形成されるガイドブッシュを提供する。
【0011】
請求項8に記載の発明は、請求項1〜7のいずれか1項に記載のガイドブッシュにおいて、複数の内筒片部材の各々は、少なくとも棒材支持面を形成する部分がセラミックスから作製されるガイドブッシュを提供する。
請求項9に記載の発明は、請求項1〜8のいずれか1項に記載のガイドブッシュにおいて、棒材支持部の外筒部分が径方向へ弾性変形でき、外筒部分の弾性変形に伴って、複数の内筒片部材が形成する棒材支持面の内径寸法が変化するガイドブッシュを提供する。
請求項10に記載の発明は、請求項1〜9のいずれか1項に記載のガイドブッシュを、棒材の加工作業位置近傍に設置してなる自動旋盤を提供する。
【0012】
【発明の実施の形態】
以下、添付図面を参照して、本発明の実施の形態を詳細に説明する。全図面に渡り、対応する構成要素には共通の参照符号を付す。
図面を参照すると、図1は、本発明の第1の実施形態によるガイドブッシュ10を示す。ガイドブッシュ10は、自動旋盤において、主軸に把持された棒材をその先端の被加工部位の近傍で支持する中空筒状の補助支持装置として、工具による加工作業位置の近傍で旋盤機台上に設置されるものであり、回転型ガイドブッシュ及び固定型ガイドブッシュのいずれにも適用できる。
【0013】
ガイドブッシュ10は、中空筒状の基部12と、基部12の軸線方向一端に隣接して設けられ、自動旋盤で加工される棒材を軸線方向送り可能に心出し支持する中空筒状の棒材支持部14とを備える。基部12は、棒材支持部14から離れた軸線方向後端側に、自動旋盤の旋盤機台上で主軸から送出された棒材を導入する開口端面12aを有し、開口端面12aに隣接して、棒材を非接触に受容する円筒状の内周面12bと、外周面の雄ねじ部12cとが形成される。
【0014】
棒材支持部14は、基部12に一体的に連結される径方向へ弾性変形可能な外筒部分16と、外筒部分16の内側に設置され、各々が硬質材料から形成されるとともに互いに協働して実質的筒状の棒材支持面18を形成する複数の内筒片部材20と、それら内筒片部材20を、外筒部分16の内側で棒材支持面18を形成する位置に弾性的に保持する弾性部材22とを備えて構成される。棒材支持部14は、支持対象の棒材の中心軸線に合致する中心軸線14aを有して、棒材を心出し支持(すなわち棒材軸線を旋削中の回転軸線に合致させるように支持)する。
【0015】
図1及び図2に示すように、外筒部分16は、各々の基端24aで基部12に一体的に連結される複数(図示実施形態では3個)の縦割片24を有する。それら縦割片24は、外筒部分16の周方向へ等間隔に設けられる複数(図示実施形態では3個)のスリット26を介して、互いに周方向へ隣接して配置される。それらスリット26は、基部12から離れた軸線方向前端側の外筒部分16の開口端面16aから基部12に至る範囲で、棒材支持部14の中心軸線14aに平行に、かつ中心軸線14aに関して放射状に形成される。それにより各縦割片24は、基端24aを支点として、外筒部分16の径方向へ板ばね状に弾性変形できるようになっている。
【0016】
外筒部分16を構成する3個の縦割片24は、弓形に湾曲する内面24bをそれぞれに有し、それら内面24bが互いに協働して、外筒部分16の実質的円筒状の内周面を構成する。この内周面は、各縦割片24が弾性変形していない状態で、棒材支持部14の中心軸線14aに合致する中心軸線を規定する。また、各縦割片24には、その自由端すなわち外筒部分16の開口端面16aに隣接して、径方向外方へ膨出するフランジ部分28が形成される。各縦割片24のフランジ部分28の外周面には、基端24aに向けてテーパ状に延びる圧力受け面28aが形成される。
【0017】
さらに、外筒部分16の各縦割片24には、開口端面16aに沿って内面24bから径方向内方へ突出する爪30が形成される。それら爪30は、開口端面16aに向かってテーパ状に延びる係止面30aをそれぞれに有し、互いに協働して実質的環状の係止構造を形成する。
【0018】
図1及び図3に示すように、ガイドブッシュ10では、外筒部分16の3個の縦割片24に対応して、3個の内筒片部材20が棒材支持部14に組み込まれている。各内筒片部材20は、外筒部分16の対応の縦割片24の内面24bに隙間を介して対向する円弧面状の外面20aと、外面20aの反対側の円弧面状の内面20bと、それら外面20aと内面20bとの間に延びる一対の側面20cとを有する。3個の内筒片部材20は、それぞれの内面20bが共通の円筒面上に実質的に位置するとともに、それぞれの一側面20cが互いに隙間を介して対向する相対配置で、円筒形状に組み合わされる。この状態で、それら内筒片部材20の内面20bが互いに協働して、棒材を軸線方向送り可能に心出し支持する実質的円筒状の棒材支持面18(中心軸線18aを有する)を形成する。
【0019】
各内筒片部材20は、その軸線方向一端面20dに隣接して、径方向外方へ突出するフランジ部分32を有する。各内筒片部材20のフランジ部分32には、軸線方向一端面20dに向けてテーパ状に延びる係合面32aが形成される。また、1つの内筒片部材20のフランジ部分32には、その径方向外端面に沿って軸線方向へ延びる溝32bが刻設される。
【0020】
各内筒片部材20に好適に使用できる硬質材料としては、セラミックスを挙げることができる。この場合、少なくとも棒材支持面18を形成する内面20bを含む部分を、アルミナ(Al23 )、ジルコニア(ZrO2 )、窒化珪素(Si34 )、炭化珪素(SiC)等の、耐摩耗性に優れたエンジニアリングセラミックスから作製することができる。特に、棒材支持面18に要求される耐摩耗性、表面平滑性に加えて、棒材の挿入、送出を繰り返すことによる内筒片部材20の破損を可及的に防止する観点で、衝撃強度や靭性に優れたジルコニアセラミックスから作製することが有利である。このような構成によれば、特に各内筒片部材20の耐久性を著しく向上させることができる。
【0021】
弾性部材22は、周方向へ隣り合う内筒片部材20の対向する側面20cの間に介在して、それら内筒片部材20を相互に弾性的に連結する複数(図では3個)の弾性連結要素34を備える。ガイドブッシュ10においては、それら弾性連結要素34の各々は、隣り合う内筒片部材20の対向側面20c間の空所に実質的全体に渡って充填される液状ガスケットから形成される。液状ガスケットは、各種機械部品の接合面間の封止用シール剤として知られており、それ自体、硬化後に接合面に対して所要の接着性を発揮するとともに、硬化状態でも所望の弾性を維持できるものである。弾性連結要素34に好適に使用できる液状ガスケットとしては、例えばスリーボンド社から入手可能な「#1215液状ガスケット」が挙げられる。
【0022】
弾性連結要素34は、周方向へ隣り合う内筒片部材20を相対変位可能に相互連結して、棒材支持部14の外筒部分16の内側で3個の内筒片部材20が互いに離散することを防止するとともに、それら内筒片部材20を、円筒状の棒材支持面18を形成する位置に弾性的に保持する。また、弾性連結要素34は、3個の内筒片部材20の外面20aにそれぞれ径方向内方への押圧力が負荷されたときに、隣り合う内筒片部材20の対向側面20c間でそれぞれ多様に弾性変形する。それに伴い、3個の内筒片部材20は、対向側面20c同士が弾性連結要素34を介して互いに押し付けられるまでの範囲で径方向内方へ変位し、結果として、それら内筒片部材20の内面20bが形成する棒材支持面18の内径寸法が減少する。各内筒片部材20の外面20aへの押圧力が解除されると、弾性連結要素34の弾性復元力下で、各内筒片部材20が初期位置に復帰して、棒材支持面18の内径寸法が復元する。
【0023】
液状ガスケットからなる弾性連結要素34は、図示のように内筒片部材20の対向側面20c間の空所を全体に渡って封止するように設置されることにより、例えば後述する自動旋盤での棒材旋削加工中に切粉が内筒片部材20間の空所に侵入することを防止できる。しかし、弾性連結要素34の配置はこれに限定されず、例えば内筒片部材20間の空所内の所望部位に局所的に設置されることにより、両内筒片部材20を相互連結する構成とすることもできる。また、液状ガスケットに限らず、例えばゴム板等の弾性体と接着剤との組み合わせによって、弾性連結要素34を構成することもできる。
【0024】
弾性部材22はさらに、外筒部分16と3個の内筒片部材20の各々との間に介在して、それら内筒片部材20を外側から弾性的に支持する弾性中間筒36を備える。図1及び図4に示すように、弾性中間筒36は、外筒部分16の3個の縦割片24の内面24bに当接される実質的円筒状の外面36aと、外面36aの反対側で、3個の内筒片部材20の外面20aに当接される円筒状の内面36bとを有する円筒状部材である。弾性中間筒36には、その外面36aに沿って軸線方向へ直線状に延びる複数(図示実施形態では3個)のスリット38が、周方向等間隔配置で形成される。それらスリット38は、弾性中間筒36の軸線方向全長に渡って外面36aに開口するとともに、内面36bから離れて(すなわち内面36bに開口することなく)放射状に形成される。その結果、弾性中間筒36には、3個の弧状壁部分40と、それら弧状壁部分40をそれぞれの内面に沿って周方向へ一体的に相互連結する3個の肉薄の連結部分42とが形成される。なお、1つの弧状壁部分40には、その外面に沿って軸線方向へ延びる溝44が刻設される。
【0025】
弾性中間筒36は、その外面36aに径方向内方への押圧力が負荷されたときに、3個の連結部分42に応力が集中して、それら連結部分42がそれぞれ多様に弾性変形する。それに伴い、3個の弧状壁部分40は、隣り合う弧状壁部分40が互いに接触するまでの範囲で、径方向内方へ変位する。それにより、弾性中間筒36の内面36bは本来の円筒形状から歪みを生じ、結果として弾性中間筒36の実質的内径寸法が減少する。弾性中間筒36の外面36aへの押圧力が解除されると、各連結部分42の弾性復元力下で、各弧状壁部分40が初期位置に復帰して、弾性中間筒36の内径寸法が復元する。
【0026】
弾性中間筒36は、外筒部分16の各縦割片24に負荷される径方向内方への押圧力を、各縦割片24の径方向内側に位置する対応の内筒片部材20に確実に伝達するように作用する。また弾性中間筒36は、複数の内筒片部材20を径方向外側から支持することにより、それら内筒片部材20を、円筒状の棒材支持面18を形成する位置に弾性的に保持する。さらに、弾性中間筒36は、外筒部分16の3個の縦割片24と3個の内筒片部材20との間で両者からの圧力を受けて、隣り合う弧状壁部分40が互いに接触するまでの範囲で、各弧状壁部分40自体が圧縮されて弾性変形し得る程度の柔軟性を有する。このような特性を発揮し得る弾性中間筒36の好適な軟質材料としては、例えば軸受材料等で「ターカイトB」の商品名で知られているフッ素樹脂系エンジニアリングプラスチック等の樹脂材料を挙げることができる。
【0027】
ガイドブッシュ10は、上記した各種構成要素を別々に作製した後に、以下のようにして組み立てることにより製造される。基部12と棒材支持部14の外筒部分16とを一体に有するブッシュ本体は、所望の金属材料から切削工程等を経て作製される。そこで、「ターカイトB」等の樹脂材料から射出成形工程等を経て一体成形した弾性中間筒36を、その外面36aが外筒部分16の各縦割片24の内面24bに密着するように、各縦割片24及び弾性中間筒36の少なくとも一方を弾性変形させながら、外筒部分16の内側に嵌入する。このとき、外筒部分16の各縦割片24と弾性中間筒36の各弧状壁部分40とを互いに位置合せし、1つの縦割片24の内面24bに突設した回り止め46(図1)を、弾性中間筒36の溝44に挿入する。その結果、弾性中間筒36は、外筒部分16に対する回転が阻止された状態で、外筒部分16の内側の所定位置に、弾性中間筒36及び外筒部分16の少なくとも一方が生じる弾性復元力下で保持される。
【0028】
他方、ジルコニアセラミックス等の硬質材料からそれぞれに成形した3個の内筒片部材20を、前述したように弾性連結要素34により円筒形状に接合して内筒構造を作製する。この内筒構造を、外筒部分16に嵌入した弾性中間筒36の内面36bに各内筒片部材20の外面20aが密着するように、外筒部分16及び弾性中間筒36と内筒構造(弾性連結要素34)との少なくとも一方を弾性変形させながら、外筒部分16及び弾性中間筒36の内側に嵌入する。このとき、外筒部分16の各縦割片24及び弾性中間筒36の各弧状壁部分40と、内筒構造の各内筒片部材20とを互いに位置合せし、1つの縦割片24の内面24bに突設した第2の回り止め48(図1)を、1つの内筒片部材20のフランジ部分32に形成した溝32bに挿入する。その結果、内筒構造は、外筒部分16に対する全ての内筒片部材20の回転が阻止された状態で、外筒部分16及び弾性中間筒36の内側の所定位置に、内筒構造及び外筒部分16の少なくとも一方が生じる弾性復元力下で保持される。
【0029】
このようにしてガイドブッシュ10を適正に組み立てると、内筒構造の3個の内筒片部材20は、それらが形成する棒材支持面18の中心軸線18aが、棒材支持部14の中心軸線14aに合致する状態に保持される。また、内筒構造の各内筒片部材20に形成したフランジ部分32の係合面32aは、外筒部分16の各縦割片24に形成した爪30の係止面30aに密に当接され、各内筒片部20の軸線方向端面20dが外筒部分16の開口端面16aに隣接して略同一平面上に配置される。この状態で内筒構造は、外筒部分16の内側の所定位置から、外筒部分16の外方へ意図せず突き出ることが阻止される。また、弾性中間筒36は、各内筒片部材20のフランジ部分32によって、外筒部分16の開口端面16aから離れた位置に実質的に遮蔽して配置される。その結果、比較的柔軟な材料からなる弾性中間筒36は、旋削工程中に飛散する切り粉から隔離されるので、その損傷が防止される。
【0030】
なおガイドブッシュ10では、外筒部分16の各縦割片24、内筒構造の各内筒片部材20、及び弾性中間筒36の各弧状壁部分40は、周方向へ互いにずれて配置されてもよい。また、外筒部分16、内筒構造及び弾性中間筒36が所期の弾性変形を生じ得ることを前提条件として、外筒部分16の縦割片24、内筒構造の内筒片部材20、及び弾性中間筒36の弧状壁部分40の個数が互いに異なっていてもよく、また3個以外の様々な個数とすることもできる。
【0031】
上記構成を有するガイドブッシュ10において、外筒部分16の3個の縦割片24に径方向内方への外力を加えると、各縦割片24が弾性変形すると同時に、各縦割片24の内面24bに接触する弾性中間筒36の外面36aに各縦割片24から径方向内方への外力が負荷され、それにより前述したように、弾性中間筒36が弾性変形してその実質的内径寸法が減少する。それに伴い、弾性中間筒36の内面36bに接触する3個の内筒片部材20の外面20aに、弾性中間筒36から径方向内方への外力が負荷され、その結果、前述したように、弾性連結要素34の弾性変形下で、それら内筒片部材20の内面20bが形成する棒材支持面18の内径寸法が減少する。このとき同時に、外筒部分16の各縦割片24に形成した爪30の係止面30aから、各内筒片部材20に形成したフランジ部分32の係合面32aに直接に押圧力が負荷され、この押圧力によっても棒材支持面18の内径寸法が減少する。
【0032】
この状態から、外筒部分16の各縦割片24への径方向外力を弱めると、各縦割片24が弾性復元し、それに伴い弾性中間筒36及び弾性連結要素34が弾性復元して、棒材支持面18の内径寸法が増加(復元)する。なお、棒材支持面18の内径寸法が減少及び増加する間、3個の内筒片部材20は、棒材支持面18の中心軸線18aを棒材支持部14の中心軸線14aに合致させた状態を維持しつつ、径方向へ変位する。このようにガイドブッシュ10では、棒材支持部14に径方向内方へ負荷される外力すなわち押圧力を調節することによって、3個の内筒片部材20によって形成される棒材支持面18の内径寸法を調節することができる。
【0033】
ガイドブッシュ10においては、3個の内筒片部材20によって形成される棒材支持面18の内径寸法は、ガイドブッシュ10が非作用状態にある間、支持(加工)対象棒材の外径寸法よりも大きくなるように設定される。そして、ガイドブッシュ10が作用状態に置かれる実際の加工作業の開始前に、棒材支持部14に対象棒材を挿入し、上記したように棒材支持面18の内径寸法を棒材の外径寸法に合わせて微調整することにより、棒材支持面18と棒材外周面との間にμmオーダの所望の微細隙間を得る。ガイドブッシュ10は、作用状態においてこのような微細隙間を確保することにより、棒材を軸線方向送り可能に心出し支持することができる。
【0034】
ここで、支持(加工)対象棒材として、所定径に引抜き加工された外形寸法精度の低い引抜き材をそのまま使用する場合には、棒材の最小外径部分に対して上記した微細隙間が形成されるように、棒材支持面18の内径寸法を微調整する。この作用状態で、ガイドブッシュ10に支持した棒材を軸線方向へ送る間に、棒材の外径寸法の増加により棒材支持面18と棒材外周面との摩擦が増大すると、外筒部分16の各縦割片24は径方向外方へ変位できない状態にあるので、弾性中間筒36の各弧状壁部分40が、外筒部分16と内筒構造との間で圧力を受けて前述したように弾性変形する。その結果、内筒構造の弾性連結要素34の弾性変形下で、各内筒片部材20が径方向外方へ変位し、棒材支持面18の内径寸法が棒材の外径寸法に合わせて受動的に拡大する。このようにしてガイドブッシュ10は、引抜き材からなる棒材をも、軸線方向送り可能に心出し支持することができる。しかもこのとき、各内筒片部材20が硬質材料から形成されるので、棒材支持面18の耐摩耗性を著しく向上させて、棒材との摩擦に起因する各内筒片部材20の損耗の進行を可及的に抑制することができる。
【0035】
上記構成を有するガイドブッシュ10では、前述した組立手順とは逆の手順で、内筒構造及び弾性中間筒36を外筒部分16から必要に応じて取り外すことができるので、支持対象棒材の外径寸法の変更に対応して棒材支持部14の内径寸法を変更するときには、棒材支持面18の内径寸法が異なる他の内筒構造に交換すればよい。したがって、ガイドブッシュ10を搭載した自動旋盤で多様な外径寸法を有する異種棒材(丸棒、角棒)を加工する際には、それら異種棒材に対応した内径寸法をそれぞれに有する多種類の内筒構造を用意し、基部12と外筒部分16とからなるブッシュ本体を自動旋盤に搭載したままで内筒構造のみを適宜交換することにより、異種棒材の高精度加工を順次実施できる。また、長時間の加工作業により各内筒片部材20の内面20bが摩耗したときにも、ブッシュ本体は交換せずに、内筒構造のみを適宜交換すればよい。ここでガイドブッシュ10によれば、棒材支持面18の耐摩耗性の向上により、内筒片部材20を含む内筒構造の交換頻度を削減することができる。
【0036】
次に図5を参照して、上記構成を有するガイドブッシュ10を組み込んで備えた自動旋盤50の主要部分の構成を説明する。ガイドブッシュ10は、スリーブ部材52、軸受装置54及びフランジ部材56を介して、旋盤機台上に設定された工具58による加工作業位置の近傍で、機台上のコラム60に回転可能に設置される。
【0037】
ガイドブッシュ10は、スリーブ部材52の前端(図で左端)領域に軸線方向へ摺動可能にかつ相対回転不能に収納される。スリーブ部材52の内周面前端には、ガイドブッシュ10の棒材支持部14の外周面に設けた複数の圧力受け面28aに接触可能な圧力負荷面62が形成される。スリーブ部材52の後端(図で右端)領域には、ガイドブッシュ10の基部12に設けた雄ねじ部12c(図1)に螺合する雌ねじ部を有した調節ナット64が、軸線方向へ固定して回転可能に収納される。それにより、調節ナット64が回転すると、ガイドブッシュ10がスリーブ部材52内で軸線方向へ移動する。
【0038】
スリーブ部材52の外周面の後端領域には、キー66を介して被動歯車68が取付けられる。被動歯車68は、図示しない動力伝達機構を介して図示しないガイドブッシュ駆動源に連結され、ガイドブッシュ駆動源により、コラム60の後方に設置される主軸70の回転速度と同一の回転速度で回転駆動される。その結果、被動歯車68、調節ナット64、スリーブ部材52及びガイドブッシュ10が、フランジ部材56の内部で一体的に、主軸70の回転速度と同一の回転速度で回転する。
【0039】
フランジ部材56は、例えばボルト72によりコラム60に固定される。このように、ガイドブッシュ10、スリーブ部材52、フランジ部材56、調節ナット64及び被動歯車68は、予め組み立てた回転型ガイドブッシュ装置として、自動旋盤50のコラム60の所定位置に取付けることができる。なお、ガイドブッシュ10を固定型ガイドブッシュ装置として使用する場合は、軸受装置54、被動歯車68、ガイドブッシュ駆動源等が省略される。
【0040】
主軸70は、旋削加工すべき棒材Wを把持して、図示しない主軸駆動源により回転駆動される。主軸70は、コラム60の後方で、ガイドブッシュ10の回転軸線と主軸70の回転軸線とが互いに一致するようにして、軸線方向移動可能に設置される。主軸70の前端領域には、棒材Wを把持可能な開閉式のチャック74が収容される。チャック74は、先端にすり割り部を有したいわゆるコレットチャックであり、すり割り部に径方向内方への外力すなわち押圧力が加わることにより、先端の棒材把持孔76が縮径してチャック74が閉じ、棒材Wを強固に固定的に把持するようになっている。すり割り部への径方向外力が解除されると、すり割り部が復元して棒材把持孔76が拡径し、チャック74が開いて棒材Wを解放する。
【0041】
主軸70にはさらに、中空筒状の作動部材78が軸線方向へ移動可能に収容される。作動部材78は、その前端領域にチャック74を収容し、図示しないチャック駆動源により軸線方向前方(図で左方)へ移動することによって、チャック74のすり割り部に径方向内方への押圧力を負荷してチャック74を閉じる。この状態から、作動部材78を軸線方向後方(図で右方)へ移動すれば、チャック74が開かれる。なお、主軸70の構成は上記に限定されるものではない。例えばチャックの開閉作動機構として、チャック後端に連結した作動部材をチャックとともに軸線方向後方へ移動することにより、チャックのすり割り部に径方向内方への押圧力を加える構成を採用することもできる。
【0042】
上記構成を有する自動旋盤50において、棒材Wの加工作業を実施する際には、まず、ガイドブッシュ10の外筒部分16に、加工対象の棒材Wの外径寸法に対応する名目内径寸法を有した内筒構造と、適当な弾性中間筒36とを選択して取付け、コラム60に搭載されたスリーブ部材52に装着する。次いで、外筒部分16に径方向内方への外力を加えない状態で、主軸70に把持した棒材Wを主軸70の軸線方向移動により、ガイドブッシュ10の後方から棒材支持部16に挿入する。その状態から、調節ナット64を回してガイドブッシュ10を軸線方向後方へ移動し、外筒部分16の圧力受け面28aをスリーブ部材52の圧力負荷面62に押付ける。それにより、外筒部分16の3個の縦割片24(図1)を弾性変形させるとともに、弾性中間筒36及び弾性連結要素34の弾性変形下で3個の内筒片部材20を径方向内方へ変位させて、棒材支持面18と棒材Wの外周面との間にμmオーダの所望の微小隙間を形成する。このようにして、ガイドブッシュ10の棒材支持面18の内径寸法を調節した後、ガイドブッシュ10により棒材Wの被加工部位近傍を心出し支持しつつ、例えば工具58により旋削加工を実施する。
【0043】
ところで、上記したガイドブッシュ10においては、棒材を軸線方向へ送る間に棒材の外径寸法が局所的に増加したときに、弾性中間筒36の各弧状壁部分40が外筒部分16と各内筒片部材20との間で圧縮されて弾性変形することにより、複数の内筒片部材20が径方向外方へ変位して、棒材支持面18の内径寸法が棒材の外径寸法に合わせて受動的に拡大するようになっている。このような弾性中間筒36の作用を利用すれば、前述した棒材支持面18の内径寸法調節に際し、棒材支持面18と棒材外周面との間にμmオーダの微小隙間を敢えて形成せずとも、棒材支持面18を棒材外周面に当接させておくだけで、棒材を軸線方向送り可能に心出し支持することができる。
【0044】
このような観点では、ガイドブッシュの棒材支持面の内径寸法調節機構を省略することもできる。図6は、そのような簡略化した構成を有する本発明の第2の実施形態によるガイドブッシュ80を示す。ガイドブッシュ80は、棒材支持部の外筒部分の構成以外は、前述したガイドブッシュ10と実質的同一の構成を有するので、対応する構成要素には共通の参照符号を付してその説明を省略する。
【0045】
ガイドブッシュ80の棒材支持部82は、基部12に一体的に連結される外筒部分84と、外筒部分84の内側に設置される複数(3個)の内筒片部材20と、それら内筒片部材20を、外筒部分84の内側で棒材支持面18を形成する位置に弾性的に保持する弾性部材22とを備える。棒材支持部82は、支持対象の棒材の中心軸線に合致する中心軸線82aを有して、棒材を心出し支持する。外筒部分84は、前述したガイドブッシュ10の外筒部分16におけるスリット26を省略した構成を有するものであり、棒材支持部82の中心軸線82aに合致する中心軸線を規定する円筒状の内周面84aを備える(図7)。したがって外筒部分84は、径方向へ実質的に弾性変形できず、その内周面84aの内径寸法を変更できない。
【0046】
弾性部材22を構成する弾性中間筒36は、その外面36a(図4)が外筒部分84の内周面84aに当接されるとともに、その内面36b(図4)が3個の内筒片部材20の外面20aに当接されて、外筒部分84とそれら内筒片部材20との間に配置され、その状態で各内筒片部材20を外側から支持する。このような構成を有する棒材支持部82は、3個の内筒片部材20が形成する棒材支持面18の内径寸法を積極的には調節できないものである。その一方で棒材支持部82は、棒材支持面18に径方向外方への外力が負荷されたときに、弾性中間筒36の各弧状壁部分40(図4)が外筒部分84と各内筒片部材20との間で圧縮されて弾性変形することにより、それら内筒片部材20を径方向外方へ変位させて、棒材支持面18の内径寸法を受動的に拡大させることができる。
【0047】
したがって、上記構成を有するガイドブッシュ80は、前述した自動旋盤50に搭載したときに、棒材支持面18の内径寸法に対応する外径寸法を有した棒材を、棒材支持面18を棒材外周面に当接させた状態で、軸線方向送り可能に心出し支持できる。ここで、棒材として外形寸法精度の低い引抜き材をそのまま使用した場合にも、弾性中間筒36の各弧状壁部分40の弾性変形可能範囲内で、棒材支持面18の内径寸法を受動的に拡大/縮小させて、棒材を軸線方向送り可能に心出し支持することができる。
【0048】
前述したガイドブッシュ10、80では、棒材支持部14、82に設置される複数の内筒片部材20が、弾性連結要素34を介して互いに相対変位可能に連結される構成を有していた。しかし本発明に係るガイドブッシュは、複数の内筒片部材が互いに分離した状態で外筒部分の内側に配置されてなる棒材支持部を有することもできる。図8は、そのような構成を有する本発明の第3の実施形態によるガイドブッシュ90を示す。ガイドブッシュ90は、棒材支持部の内筒片部材及び弾性部材の構成以外は、前述したガイドブッシュ10と実質的同一の構成を有するので、対応する構成要素には共通の参照符号を付してその説明を省略する。
【0049】
ガイドブッシュ90の棒材支持部92は、基部12に一体的に連結される径方向へ弾性変形可能な外筒部分16と、外筒部分16の内側に設置され、各々が硬質材料から形成されるとともに互いに協働して実質的筒状の棒材支持面94を形成する複数(3個)の内筒片部材96と、それら内筒片部材96を、外筒部分16の内側で棒材支持面94を形成する位置に弾性的に保持する弾性部材98とを備えて構成される。棒材支持部92は、支持対象の棒材の中心軸線に合致する中心軸線92aを有して、棒材を心出し支持する。
【0050】
図9に示すように、ガイドブッシュ90の各内筒片部材96は、外筒部分16の対応の縦割片24の内面24b(図2)に隙間を介して対向する円弧面状の外面96aと、外面96aの反対側の円弧面状の内面96bと、それら外面96aと内面96bとの間に延びる一対の側面96cとを有する。3個の内筒片部材96は、それぞれの内面96bが共通の円筒面上に実質的に位置するとともに、それぞれの一側面96cが互いに隙間を介して対向する相対配置で、外筒部分16の内側に収容される。この状態で、それら内筒片部材96の内面96bが互いに協働して、棒材を軸線方向送り可能に心出し支持する実質的円筒状の棒材支持面94(中心軸線94aを有する)を形成する。
【0051】
各内筒片部材96は、その軸線方向一端面96dに隣接して、径方向外方へ突出するフランジ部分100を有する。各内筒片部材96のフランジ部分100には、軸線方向一端面96dに向けてテーパ状に延びる係合面100aが形成されるとともに、その径方向外端面に沿って軸線方向へ延びる溝100bが刻設される。さらに各内筒片部材96には、その内面96bと軸線方向一端面96d及び軸線方向他端面96eとの境界領域に、鋭角断面の縁溝102がそれぞれ形成される。
【0052】
各内筒片部材96に好適に使用できる硬質材料としては、エンジニアリングセラミックスを挙げることができる。この場合、少なくとも棒材支持面94を形成する内面96bを含む部分を、耐摩耗性、衝撃強度、表面平滑性に優れたジルコニアセラミックスから作製することが有利である。このような構成によれば、特に棒材支持面94の耐久性を著しく向上させることができる。
【0053】
弾性部材98は、外筒部分16と3個の内筒片部材96の各々との間に介在して、それら内筒片部材96を外側から弾性的に支持する弾性中間筒36と、3個の内筒片部材96に係合してそれら内筒片部材96を内側から弾性的に支持する一対の弾性支持要素104とを備える。弾性中間筒36は、その外面36a(図4)で、外筒部分16の3個の縦割片24の内面24bに当接されるとともに、その内面36b(図4)で、3個の内筒片部材96の外面96aに当接される。弾性中間筒36は、外筒部分16の各縦割片24に負荷される径方向内方への押圧力を、各縦割片24の径方向内側に位置する対応の内筒片部材96に確実に伝達するように作用する。また弾性中間筒36は、複数の内筒片部材96を径方向外側から支持することにより、それら内筒片部材96を、円筒状の棒材支持面94を形成する位置に弾性的に保持する。さらに、弾性中間筒36は、外筒部分16の3個の縦割片24と3個の内筒片部材96との間で両者からの圧力を受けて、隣り合う弧状壁部分40(図4)が互いに接触するまでの範囲で、各弧状壁部分40自体が圧縮されて弾性変形し得る程度の柔軟性を有する。
【0054】
図10に示すように、一対の弾性支持要素104の各々は、ばね線材をCリング状に曲成してなる環状のばねから形成される。それら弾性支持要素104は、それぞれの全長を略3等分した長さ領域で、各内筒片部材96の一対の縁溝102にそれぞれ受容されて、3個の内筒片部材96を径方向外方へ弾性的に付勢する。それにより、それら弾性支持要素104が互いに協働して、3個の内筒片部材96を、円筒状の棒材支持面94を形成する位置に弾性的に保持する。各弾性支持要素104は、内筒片部材96同士の機械的相互連結機能を有さないが、3個の内筒片部材96の外面96aにそれぞれ径方向内方への押圧力が負荷されたときには、弾性支持要素104自体の径寸法を縮小するように弾性変形する。それに伴い、3個の内筒片部材96は、対向側面96c同士が互いに接触するまでの範囲で径方向内方へ変位し、結果として、それら内筒片部材96の内面96bが形成する棒材支持面94の内径寸法が減少する。各内筒片部材96の外面96aへの押圧力が解除されると、両弾性支持要素104の弾性復元力下で、各内筒片部材96が初期位置に復帰して、棒材支持面94の内径寸法が復元する。
【0055】
ガイドブッシュ90は、上記した各種構成要素を別々に作製した後に、以下のようにして組み立てることにより製造される。まず、前述したガイドブッシュ10の組立工程と同様に、基部12と棒材支持部92の外筒部分16とを一体に有するブッシュ本体に、弾性中間筒36を組み付ける。このとき、外筒部分16の1つの縦割片24に設置した回り止め46を、弾性中間筒36の溝44(図4)に挿入ことにより、外筒部分16に対する弾性中間筒36の回転を阻止する。なお、図11に示すように、外筒部分16の全ての縦割片24には、その内面24bから突出する第2の回り止め48が設置される。
【0056】
他方、ジルコニアセラミックス等の硬質材料からそれぞれに成形した3個の内筒片部材96に、一対の弾性支持要素104を前述したように組み付けて、実質的円筒形状の内筒構造を作製する。この内筒構造を、外筒部分16に嵌入した弾性中間筒36の内面36bに各内筒片部材96の外面96aが密着するように、外筒部分16及び弾性中間筒36と内筒構造(弾性支持要素104)との少なくとも一方を弾性変形させながら、外筒部分16及び弾性中間筒36の内側に嵌入する。このとき、各縦割片24及び弾性中間筒36の各弧状壁部分40と、内筒構造の各内筒片部材96とを互いに位置合せし、各縦割片24の内面24bに突設した第2の回り止め48を、対応の内筒片部材96のフランジ部分100に形成した溝100bに挿入する。その結果、内筒構造は、外筒部分16に対する全ての内筒片部材96の回転が阻止された状態で、外筒部分16及び弾性中間筒36の内側の所定位置に、外筒部分16及び弾性中間筒36と内筒構造(弾性支持要素104)との少なくとも一方が生じる弾性復元力下で保持される。なお、好ましくはこの状態で、各弾性支持要素104はそれ自体の弾性復元力により、3個の内筒片部材96の縁溝102内に固定的に受容保持される。
【0057】
このようにしてガイドブッシュ90を適正に組み立てると、内筒構造の3個の内筒片部材96は、それらが形成する棒材支持面94の中心軸線94aが、棒材支持部92の中心軸線92aに合致する状態に保持される。また、内筒構造の各内筒片部材96に形成したフランジ部分100の係合面100aは、外筒部分16の各縦割片24に形成した爪30の係止面30a(図11)に密に当接され、各内筒片部96の軸線方向端面96dが外筒部分16の開口端面16a(図11)に隣接して略同一平面上に配置される。この状態で内筒構造は、外筒部分16の内側の所定位置から、外筒部分16の外方へ意図せず突き出ることが阻止される。また、弾性中間筒36は、各内筒片部材96のフランジ部分100によって、外筒部分16の開口端面16aから離れた位置に実質的に遮蔽して配置される。その結果、比較的柔軟な材料からなる弾性中間筒36は、旋削工程中に飛散する切り粉から隔離されるので、その損傷が防止される。
【0058】
なおガイドブッシュ90では、外筒部分16の各縦割片24、内筒構造の各内筒片部材96、及び弾性中間筒36の各弧状壁部分40は、周方向へ互いにずれて配置されてもよい。また、外筒部分16、内筒構造及び弾性中間筒36が所期の弾性変形を生じ得ることを前提条件として、外筒部分16の縦割片24、内筒構造の内筒片部材96、及び弾性中間筒36の弧状壁部分40の個数が互いに異なっていてもよく、また3個以外の様々な個数とすることもできる。
【0059】
上記構成を有するガイドブッシュ90は、前述したガイドブッシュ10と同様に作用する。すなわち、外筒部分16の3個の縦割片24に径方向内方への外力を加えると、各縦割片24が弾性変形すると同時に、各縦割片24の内面24bに接触する弾性中間筒36の外面36aに各縦割片24から径方向内方への外力が負荷され、それにより前述したように、弾性中間筒36が弾性変形してその実質的内径寸法が減少する。それに伴い、弾性中間筒36の内面36bに接触する3個の内筒片部材96の外面96aに、弾性中間筒36から径方向内方への外力が負荷され、その結果、前述したように、一対の弾性支持要素104の弾性変形下で、それら内筒片部材96の内面96bが形成する棒材支持面94の内径寸法が減少する。
【0060】
この状態から、外筒部分16の各縦割片24への径方向外力を弱めると、各縦割片24が弾性復元し、それに伴い弾性中間筒36及び両弾性支持要素104が弾性復元して、棒材支持面94の内径寸法が増加(復元)する。なお、棒材支持面94の内径寸法が減少及び増加する間、3個の内筒片部材96は、棒材支持面94の中心軸線94aを棒材支持部92の中心軸線92aに合致させた状態を維持しつつ、径方向へ変位する。このようにガイドブッシュ90では、棒材支持部92に径方向内方へ負荷される外力すなわち押圧力を調節することによって、3個の内筒片部材96によって形成される棒材支持面94の内径寸法を調節することができる。
【0061】
ガイドブッシュ90においては、3個の内筒片部材96によって形成される棒材支持面94の内径寸法は、ガイドブッシュ90が非作用状態にある間、支持(加工)対象棒材の外径寸法よりも大きくなるように設定される。そして、ガイドブッシュ90が作用状態に置かれる実際の加工作業の開始前に、棒材支持部92に対象棒材を挿入し、上記したように棒材支持面94の内径寸法を棒材の外径寸法に合わせて微調整することにより、棒材支持面94と棒材外周面との間にμmオーダの所望の微細隙間を得る。ガイドブッシュ90は、作用状態においてこのような微細隙間を確保することにより、棒材を軸線方向送り可能に心出し支持することができる。
【0062】
ここで、支持(加工)対象棒材として、所定径に引抜き加工された外形寸法精度の低い引抜き材をそのまま使用する場合には、棒材の最小外径部分に対して上記した微細隙間が形成されるように、棒材支持面94の内径寸法を微調整する。この作用状態で、ガイドブッシュ90に支持した棒材を軸線方向へ送る間に、棒材の外径寸法の増加により棒材支持面94と棒材外周面との摩擦が増大すると、外筒部分16の各縦割片24は径方向外方へ変位できない状態にあるので、弾性中間筒36の各弧状壁部分40が、外筒部分16と内筒構造との間で圧力を受けて前述したように弾性変形する。その結果、各内筒片部材96が径方向外方へ変位し、棒材支持面94の内径寸法が棒材の外径寸法に合わせて受動的に拡大する。このようにしてガイドブッシュ90は、引抜き材からなる棒材をも、軸線方向送り可能に心出し支持することができる。しかもこのとき、各内筒片部材96が硬質材料から形成されるので、棒材支持面94の耐摩耗性を著しく向上させて、棒材との摩擦に起因する各内筒片部材96の損耗の進行を可及的に抑制することができる。
【0063】
なお、上記ガイドブッシュ90に組み込んだ弾性支持要素104は、弾性連結要素34を有する前述したガイドブッシュ10に組み込むこともできる。このような構成によれば、ガイドブッシュ10における弾性部材22の弾性作用を強化できるので、内筒片部材20の径方向変位動作の応答性を向上させて、棒材支持部14による一層高精度の心出し支持特性を獲得できる。また、液状ガスケットからなる弾性連結要素34を用いて複数の内筒片部材20を円筒状に組み合わせる際に、各内筒片部材20の位置精度が多少低く組み合わされていても、弾性支持要素104の支持作用によって、結果的に各内筒片部材20の位置精度を獲得することができる。それにより、ガイドブッシュ10の製造工程が簡略化され、内筒片部材20を交換する際にもその作業コストが削減される。
【0064】
【発明の効果】
以上の説明から明らかなように、本発明によれば、自動旋盤に設置されるガイドブッシュにおいて、複層構造の棒材支持部を備えたことにより加工対象棒材の外径寸法の変更や棒材支持面の摩耗に迅速に対処できるだけでなく、棒材支持面の耐摩耗性を著しく向上させることができる。したがって本発明によれば、ガイドブッシュの特に棒材支持面の損耗が、自動旋盤における製品の加工精度及び製造コストに及ぼす影響を可及的に低減でき、引抜き材からなる棒材を用いる場合にも高品質の製品を製造することが可能になる。
【図面の簡単な説明】
【図1】本発明の第1実施形態によるガイドブッシュの、(a)線I−Iに沿った断面図、及び(b)軸線方向端面図である。
【図2】図1のガイドブッシュにおける基部及び外筒部分の、(a)線II−IIに沿った断面図、及び(b)軸線方向端面図である。
【図3】図1のガイドブッシュにおける内筒構造の、(a)線III−IIIに沿った断面図、及び(b)軸線方向端面図である。
【図4】図1のガイドブッシュにおける弾性中間筒の、(a)線IV−IVに沿った断面図、及び(b)軸線方向端面図である。
【図5】図1のガイドブッシュを搭載した自動旋盤の主要部を示す断面図である。
【図6】本発明の第2実施形態によるガイドブッシュの、(a)線VI−VIに沿った断面図、及び(b)軸線方向端面図である。
【図7】図6のガイドブッシュにおける基部及び外筒部分の、(a)線VII−VIIに沿った断面図、及び(b)軸線方向端面図である。
【図8】本発明の第3実施形態によるガイドブッシュの、(a)線VIII−VIIIに沿った断面図、及び(b)軸線方向端面図である。
【図9】図8のガイドブッシュにおける複数の内筒片部材の、(a)線IX−IXに沿った断面図、及び(b)軸線方向端面図である。
【図10】図8のガイドブッシュにおける弾性支持要素の正面図である。
【図11】図8のガイドブッシュにおける基部及び外筒部分の、(a)線XI−XIに沿った断面図、及び(b)線B−Bに沿った断面図である。
【符号の説明】
10、80、90…ガイドブッシュ
12…基部
14、82、92…棒材支持部
16、84…外筒部分
18、94…棒材支持面
20、96…内筒片部材
22、98…弾性部材
24…縦割片
30…爪
34…弾性連結要素
36…弾性中間筒
50…自動旋盤
70…主軸
104…弾性支持要素
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a guide bush for supporting a bar during turning in the vicinity of a portion to be processed. Furthermore, the present invention relates to an automatic lathe provided with such a guide bush.
[0002]
[Prior art]
In a machine tool (generally referred to as an automatic lathe in this specification) such as an NC lathe that can perform various automatic turning operations, a rod-like shape that is installed on a lathe machine stand in the vicinity of a machining work position by a tool and gripped by a spindle A material having a guide bush as an auxiliary support device for supporting a workpiece material (hereinafter referred to as a bar) in the vicinity of the processing portion at the tip thereof is known. The guide bush has a hollow cylindrical bar support part that can be elastically deformed in the radial direction. The bar support part supports the bar being turned so that there is no wobbling in the processed part. The product can be processed and molded with high accuracy. Conventional automatic lathes use a fixed guide bush that is fixedly mounted on a bar that rotates at high speed during turning and a rotary guide bush that rotates at a high speed together with the bar. Has been.
[0003]
Further, in a conventional automatic lathe, a tool cutting edge is arranged at a desired position in the longitudinal direction of such a processing length portion in order to supply the processing length portion of the tip of a bar material to be a product to a processing work position. For this reason, it is well known that the main shaft holding the bar moves in the axial direction. In this automatic lathe, the guide bush is in a state in which the bar is centered and supported (that is, supported so that the bar axis is aligned with the rotation axis) in the bar support part in both the fixed type and the rotary type. It is required that the bar fed by the movement of the main shaft in the axial direction can be supported while being accurately guided in the axial direction. Therefore, conventionally, before starting the machining operation, the bar to be machined (round bar, square bar) is inserted into the guide bush, the bar support part is elastically deformed, and the inner diameter is finely adjusted to match the bar outer diameter. This makes it possible to achieve both the centering support and the axial guide support of the bar.
[0004]
In this type of guide bush, the bar support part has a two-layer structure of an outer cylinder and an inner cylinder, and the outer diameter of the bar to be processed is changed, or the inner peripheral surface of the bar support part (ie, the bar support) A guide bush has been proposed in which the inner cylinder can be appropriately replaced according to the degree of wear of the surface (see Japanese Patent Laid-Open No. 2001-138102). This guide bush can support dissimilar bar materials (round bar, square bar) with various outer diameters by replacing only the inner cylinder as necessary while mounted on an automatic lathe. Further, it is possible to quickly cope with a decrease in processing accuracy due to wear of the bar support surface. Furthermore, if the inner cylinder is made of a material having excellent self-lubricating properties, the gap between the bar support surface of the inner cylinder and the outer peripheral surface of the bar to be processed is substantially eliminated, and at the time of axial feeding of the bar High-quality products can be manufactured by reducing as much as possible scratches on the outer peripheral surface of the bar material that may be caused by friction with the inner cylinder.
[0005]
[Problems to be solved by the invention]
In the conventional guide bush having the above-mentioned two-layered bar support part, a general slot structure is used so that the inner diameter dimension of the bar support part can be finely adjusted according to the outer diameter dimension of the bar to be processed. While the outer cylinder is formed, the inner cylinder is provided with a desired elasticity that allows the diameter of the inner cylinder to be enlarged or reduced. The inner cylinder having such elasticity may cause wear on the bar support surface due to friction with the bar when the bar is fed in the axial direction, particularly when the material itself is made of a relatively soft material. . In particular, when using a drawn material that has been drawn to a predetermined diameter as a processing target bar, the inner cylinder is likely to be worn due to the low external dimensional accuracy and surface roughness of the drawn material, As a result, there is a concern that the replacement frequency of the inner cylinder will increase.
[0006]
The object of the present invention is a guide bush installed in an automatic lathe, having a multi-layered bar support that can quickly cope with changes in the outer diameter of the bar to be processed and wear of the bar support surface, Moreover, it is an object of the present invention to provide a guide bush that can remarkably improve the wear resistance of the bar support surface.
Still another object of the present invention is to provide a high-performance automatic lathe equipped with such a guide bush.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the invention according to claim 1 is a guide bush comprising a hollow cylindrical base portion and a hollow cylindrical rod support portion provided adjacent to one axial end of the base portion. The bar support part is installed on the inner side of the outer cylinder part integrally connected to the base part, and is formed of a hard material and cooperates with each other to form a cylindrical bar support surface. A plurality of inner cylinder piece members and a plurality of inner cylinder piece members at a position where a bar support surface is formed inside the outer cylinder portion. Can be displaced independently from the outer cylinder part, A guide bush characterized by comprising an elastic member that is elastically held.
[0008]
According to a second aspect of the present invention, in the guide bush according to the first aspect, the elastic member is interposed between adjacent inner cylindrical piece members and elastically connects the inner cylindrical piece members to each other. A guide bush comprising the element is provided.
The invention according to claim 3 provides the guide bush according to claim 2, wherein the elastic connecting element is formed of a liquid gasket.
[0009]
The invention according to claim 4 is the guide bush according to any one of claims 1 to 3, wherein the elastic member is interposed between the outer cylinder portion and each of the plurality of inner cylinder piece members. Provided is a guide bush including an elastic intermediate cylinder that elastically supports an inner cylinder piece member from the outside.
According to a fifth aspect of the present invention, in the guide bush according to the fourth aspect, the elastic intermediate cylinder is formed of a soft material that is elastically deformable by being compressed between the outer cylinder portion and the plurality of inner cylinder piece members. Provide a guide bush.
[0010]
According to a sixth aspect of the present invention, in the guide bush according to any one of the first to fifth aspects, the elastic member engages with the plurality of inner cylindrical piece members and elastically causes the inner cylindrical piece members to be elastic from the inside. A guide bushing is provided with a resiliently supporting elastic support element.
The invention according to claim 7 is the guide bush according to claim 6, wherein the elastic support element is formed of a spring that elastically biases the plurality of inner cylindrical piece members radially outward. provide.
[0011]
The invention according to an eighth aspect is the guide bush according to any one of the first to seventh aspects, wherein each of the plurality of inner cylindrical piece members is made of ceramics at least at a portion forming the bar support surface. Provide a guide bush.
According to a ninth aspect of the present invention, in the guide bush according to any one of the first to eighth aspects, the outer cylindrical portion of the bar support portion can be elastically deformed in the radial direction, and the elastic deformation of the outer cylindrical portion is accompanied. Thus, a guide bush is provided in which the inner diameter dimension of the bar support surface formed by the plurality of inner cylinder piece members is changed.
A tenth aspect of the present invention provides an automatic lathe in which the guide bush according to any one of the first to ninth aspects is installed in the vicinity of a machining work position of a bar.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings. Corresponding components are denoted by common reference symbols throughout the drawings.
Referring to the drawings, FIG. 1 shows a guide bush 10 according to a first embodiment of the present invention. In an automatic lathe, the guide bush 10 serves as a hollow cylindrical auxiliary support device that supports a bar gripped by a spindle in the vicinity of a processed part at the tip thereof, and is placed on a lathe table near a machining work position by a tool. It is installed, and can be applied to both a rotating guide bush and a fixed guide bush.
[0013]
The guide bush 10 is provided with a hollow cylindrical base 12 and a hollow cylindrical bar provided adjacent to one end of the base 12 in the axial direction so as to center and support a bar processed by an automatic lathe so as to be axially fed. And a support unit 14. The base 12 has an open end surface 12a for introducing a bar fed from the main shaft on the lathe machine base of the automatic lathe on the rear end side in the axial direction away from the bar support 14 and is adjacent to the open end surface 12a. Thus, a cylindrical inner peripheral surface 12b that receives the bar material in a non-contact manner and an external threaded portion 12c on the outer peripheral surface are formed.
[0014]
The bar material support part 14 is installed inside the outer cylinder part 16 and the outer cylinder part 16 which is elastically deformable in the radial direction and is integrally connected to the base part 12 and is formed of a hard material and cooperates with each other. A plurality of inner cylinder piece members 20 that work to form a substantially cylindrical bar support surface 18, and these inner cylinder piece members 20 are positioned at positions where the bar support surface 18 is formed inside the outer cylinder portion 16. And an elastic member 22 that is elastically held. The bar support part 14 has a center axis 14a that matches the center axis of the bar to be supported, and supports the bar in a centered manner (that is, supports the bar axis so as to match the axis of rotation during turning). To do.
[0015]
As shown in FIGS. 1 and 2, the outer cylinder portion 16 has a plurality (three in the illustrated embodiment) of vertically split pieces 24 that are integrally connected to the base 12 at each base end 24 a. These vertically divided pieces 24 are arranged adjacent to each other in the circumferential direction via a plurality of (three in the illustrated embodiment) slits 26 provided at equal intervals in the circumferential direction of the outer cylinder portion 16. The slits 26 are in a range from the opening end surface 16a of the outer cylindrical portion 16 on the axial front end side away from the base portion 12 to the base portion 12, and are parallel to the central axis line 14a of the bar support 14 and radial with respect to the central axis line 14a. Formed. Accordingly, each of the vertically divided pieces 24 can be elastically deformed in a leaf spring shape in the radial direction of the outer cylinder portion 16 with the base end 24a as a fulcrum.
[0016]
The three vertically divided pieces 24 constituting the outer cylinder portion 16 each have an inner surface 24b curved in an arcuate shape, and the inner surface 24b cooperates with each other to form a substantially cylindrical inner periphery of the outer cylinder portion 16. Configure the surface. The inner peripheral surface defines a central axis line that matches the central axis line 14a of the bar support portion 14 in a state where each of the vertically divided pieces 24 is not elastically deformed. Further, each vertical split piece 24 is formed with a flange portion 28 that bulges outward in the radial direction, adjacent to the free end thereof, that is, the open end surface 16a of the outer cylinder portion 16. A pressure receiving surface 28a extending in a tapered shape toward the base end 24a is formed on the outer peripheral surface of the flange portion 28 of each vertical split piece 24.
[0017]
Further, each vertical split piece 24 of the outer cylinder portion 16 is formed with a claw 30 protruding radially inward from the inner surface 24b along the opening end surface 16a. Each of the claws 30 has a locking surface 30a extending in a tapered shape toward the opening end surface 16a, and cooperates with each other to form a substantially annular locking structure.
[0018]
As shown in FIGS. 1 and 3, in the guide bush 10, three inner cylinder piece members 20 are incorporated in the bar support portion 14 in correspondence with the three vertically divided pieces 24 of the outer cylinder portion 16. Yes. Each inner cylinder piece member 20 has an arcuate outer surface 20a facing the inner surface 24b of the corresponding vertical split piece 24 of the outer cylinder portion 16 via a gap, and an arcuate inner surface 20b opposite to the outer surface 20a. And a pair of side surfaces 20c extending between the outer surface 20a and the inner surface 20b. The three inner cylinder piece members 20 are combined in a cylindrical shape with their inner surfaces 20b substantially located on a common cylindrical surface and their one side surfaces 20c facing each other with a gap therebetween. . In this state, the inner surface 20b of the inner cylindrical piece member 20 cooperates with each other to form a substantially cylindrical bar support surface 18 (having a central axis 18a) for centering and supporting the bar so that it can be axially fed. Form.
[0019]
Each inner cylinder piece member 20 has a flange portion 32 that protrudes radially outward, adjacent to one axial end surface 20d thereof. The flange portion 32 of each inner cylinder piece member 20 is formed with an engagement surface 32a extending in a tapered shape toward the one axial end surface 20d. Further, a groove 32b extending in the axial direction along the radially outer end surface is formed in the flange portion 32 of one inner cylinder piece member 20.
[0020]
Examples of the hard material that can be suitably used for each inner cylinder piece member 20 include ceramics. In this case, at least a portion including the inner surface 20b that forms the bar support surface 18 is made of alumina (Al 2 O Three ), Zirconia (ZrO 2 ), Silicon nitride (Si Three N Four ), Silicon carbide (SiC), and other engineering ceramics having excellent wear resistance. In particular, in addition to the wear resistance and surface smoothness required for the bar support surface 18, the impact is prevented in order to prevent damage to the inner cylinder piece member 20 due to repeated insertion and feeding of the bar as much as possible. It is advantageous to produce from zirconia ceramics excellent in strength and toughness. According to such a configuration, the durability of each inner cylinder piece member 20 can be remarkably improved.
[0021]
The elastic member 22 is interposed between the opposing side surfaces 20c of the inner cylinder piece members 20 adjacent to each other in the circumferential direction, and a plurality of (three in the figure) elasticity that elastically connect the inner cylinder piece members 20 to each other. A connecting element 34 is provided. In the guide bush 10, each of the elastic coupling elements 34 is formed of a liquid gasket that is filled substantially entirely in the space between the opposing side surfaces 20 c of the adjacent inner cylinder piece members 20. Liquid gaskets are known as sealing agents for sealing between the joint surfaces of various machine parts. They themselves exhibit the required adhesion to the joint surfaces after curing and maintain the desired elasticity even in the cured state. It can be done. Examples of the liquid gasket that can be suitably used for the elastic connecting element 34 include “# 1215 liquid gasket” available from ThreeBond.
[0022]
The elastic connecting element 34 interconnects the inner cylinder piece members 20 adjacent to each other in the circumferential direction so as to be relatively displaceable, and the three inner cylinder piece members 20 are separated from each other inside the outer cylinder portion 16 of the bar support portion 14. And the inner cylindrical piece member 20 is elastically held at a position where the cylindrical bar support surface 18 is formed. In addition, the elastic connecting element 34 is provided between the opposing side surfaces 20c of the adjacent inner cylinder piece members 20 when the radially inner inward pressing force is applied to the outer surfaces 20a of the three inner cylinder piece members 20, respectively. Various elastic deformations. Accordingly, the three inner cylindrical piece members 20 are displaced inward in the radial direction until the opposing side surfaces 20c are pressed against each other via the elastic connecting element 34. As a result, the inner cylindrical piece members 20 The inner diameter dimension of the bar support surface 18 formed by the inner surface 20b is reduced. When the pressing force to the outer surface 20a of each inner cylinder piece member 20 is released, each inner cylinder piece member 20 returns to the initial position under the elastic restoring force of the elastic connecting element 34, and the rod support surface 18 The inner diameter is restored.
[0023]
The elastic connecting element 34 made of a liquid gasket is installed so as to seal the space between the opposing side surfaces 20c of the inner cylinder piece member 20 as shown in the figure, for example, in an automatic lathe described later. It is possible to prevent chips from entering the space between the inner cylinder piece members 20 during the bar turning. However, the arrangement of the elastic connecting element 34 is not limited to this, and for example, the elastic connecting element 34 is locally installed at a desired portion in the space between the inner cylindrical piece members 20 to mutually connect the inner cylindrical piece members 20. You can also In addition, the elastic coupling element 34 can be configured not only by a liquid gasket but also by a combination of an elastic body such as a rubber plate and an adhesive.
[0024]
The elastic member 22 further includes an elastic intermediate cylinder 36 that is interposed between the outer cylinder portion 16 and each of the three inner cylinder piece members 20 and elastically supports the inner cylinder piece members 20 from the outside. As shown in FIGS. 1 and 4, the elastic intermediate cylinder 36 includes a substantially cylindrical outer surface 36 a that is in contact with the inner surfaces 24 b of the three vertical split pieces 24 of the outer cylinder portion 16, and an opposite side of the outer surface 36 a. The cylindrical member has a cylindrical inner surface 36b that is in contact with the outer surface 20a of the three inner cylindrical piece members 20. A plurality of (three in the illustrated embodiment) slits 38 that extend linearly in the axial direction along the outer surface 36a are formed in the elastic intermediate cylinder 36 at equal intervals in the circumferential direction. The slits 38 are formed in a radial shape apart from the inner surface 36b (that is, without opening to the inner surface 36b) while opening to the outer surface 36a over the entire axial length of the elastic intermediate cylinder 36. As a result, the elastic intermediate tube 36 has three arc-shaped wall portions 40 and three thin connecting portions 42 that integrally interconnect the arc-shaped wall portions 40 along the respective inner surfaces in the circumferential direction. It is formed. A single arcuate wall portion 40 is provided with a groove 44 extending in the axial direction along the outer surface thereof.
[0025]
In the elastic intermediate tube 36, when a radially inward pressing force is applied to the outer surface 36a, stress concentrates on the three connecting portions 42, and the connecting portions 42 are variously elastically deformed. Accordingly, the three arcuate wall portions 40 are displaced inward in the radial direction until the adjacent arcuate wall portions 40 come into contact with each other. Thereby, the inner surface 36b of the elastic intermediate cylinder 36 is distorted from the original cylindrical shape, and as a result, the substantial inner diameter dimension of the elastic intermediate cylinder 36 is reduced. When the pressing force to the outer surface 36a of the elastic intermediate tube 36 is released, each arcuate wall portion 40 returns to the initial position under the elastic restoring force of each connecting portion 42, and the inner diameter dimension of the elastic intermediate tube 36 is restored. To do.
[0026]
The elastic intermediate cylinder 36 applies the radially inward pressing force applied to each vertical split piece 24 of the outer cylinder portion 16 to the corresponding inner cylindrical piece member 20 located inside the vertical split piece 24 in the radial direction. Acts to ensure transmission. The elastic intermediate cylinder 36 supports the plurality of inner cylinder piece members 20 from the outside in the radial direction, thereby elastically holding the inner cylinder piece members 20 at positions where the cylindrical bar support surfaces 18 are formed. . Further, the elastic intermediate cylinder 36 receives pressure from the three vertically split pieces 24 and the three inner cylinder piece members 20 of the outer cylinder portion 16 so that the adjacent arc-shaped wall portions 40 come into contact with each other. In the range up to this point, each arcuate wall portion 40 itself has a flexibility that can be compressed and elastically deformed. As a suitable soft material for the elastic intermediate cylinder 36 that can exhibit such characteristics, for example, a resin material such as a fluororesin-based engineering plastic known as a trade name “Turkite B” as a bearing material or the like can be given. it can.
[0027]
The guide bush 10 is manufactured by separately manufacturing the various components described above and then assembling as follows. The bush main body integrally including the base portion 12 and the outer cylindrical portion 16 of the bar support portion 14 is manufactured from a desired metal material through a cutting process or the like. Therefore, each of the elastic intermediate cylinders 36 integrally molded from a resin material such as “Turkite B” through an injection molding process or the like so that the outer surface 36a is in close contact with the inner surface 24b of each vertical split piece 24 of the outer cylinder portion 16 While at least one of the vertically split piece 24 and the elastic intermediate cylinder 36 is elastically deformed, it is fitted inside the outer cylinder portion 16. At this time, each vertical split piece 24 of the outer cylinder portion 16 and each arc-shaped wall portion 40 of the elastic intermediate cylinder 36 are aligned with each other, and the rotation stopper 46 (FIG. 1) is provided protruding from the inner surface 24b of one vertical split piece 24. ) Is inserted into the groove 44 of the elastic intermediate cylinder 36. As a result, the elastic intermediate cylinder 36 has an elastic restoring force in which at least one of the elastic intermediate cylinder 36 and the outer cylinder portion 16 is generated at a predetermined position inside the outer cylinder portion 16 in a state where rotation with respect to the outer cylinder portion 16 is prevented. Held below.
[0028]
On the other hand, the three inner cylinder piece members 20 respectively molded from a hard material such as zirconia ceramics are joined into a cylindrical shape by the elastic connecting element 34 as described above to produce an inner cylinder structure. This inner cylinder structure is formed so that the outer surface 20a of each inner cylinder piece member 20 is in close contact with the inner surface 36b of the elastic intermediate cylinder 36 fitted into the outer cylinder portion 16, and the inner cylinder structure ( While at least one of the elastic connecting element 34) is elastically deformed, it is fitted inside the outer cylinder portion 16 and the elastic intermediate cylinder 36. At this time, each vertical split piece 24 of the outer cylindrical portion 16 and each arc-shaped wall portion 40 of the elastic intermediate cylinder 36 and each inner cylindrical piece member 20 of the inner cylindrical structure are aligned with each other, and one vertical split piece 24 is formed. A second detent 48 (FIG. 1) projecting from the inner surface 24 b is inserted into a groove 32 b formed in the flange portion 32 of one inner cylinder piece member 20. As a result, the inner cylinder structure and the outer cylinder part 16 are located at predetermined positions inside the outer cylinder part 16 and the elastic intermediate cylinder 36 in a state where all the inner cylinder piece members 20 are prevented from rotating with respect to the outer cylinder part 16. At least one of the cylindrical portions 16 is held under an elastic restoring force generated.
[0029]
When the guide bush 10 is properly assembled in this way, the three inner cylinder piece members 20 of the inner cylinder structure have the center axis 18a of the bar support surface 18 formed by them as the center axis of the bar support 14. 14a is maintained. Further, the engagement surface 32a of the flange portion 32 formed on each inner cylinder piece member 20 of the inner cylinder structure closely contacts the locking surface 30a of the claw 30 formed on each vertical split piece 24 of the outer cylinder portion 16. Each inner cylinder piece Material The 20 axial end faces 20 d are disposed on substantially the same plane adjacent to the open end face 16 a of the outer cylinder portion 16. In this state, the inner cylinder structure is prevented from unintentionally protruding outward from the outer cylinder part 16 from a predetermined position inside the outer cylinder part 16. Further, the elastic intermediate cylinder 36 is disposed so as to be substantially shielded by the flange portion 32 of each inner cylinder piece member 20 at a position away from the opening end surface 16 a of the outer cylinder portion 16. As a result, the elastic intermediate cylinder 36 made of a relatively soft material is isolated from the chips scattered during the turning process, so that the damage is prevented.
[0030]
In the guide bush 10, the vertical split pieces 24 of the outer cylindrical portion 16, the inner cylindrical piece members 20 of the inner cylindrical structure, and the arc-shaped wall portions 40 of the elastic intermediate cylinder 36 are arranged so as to be shifted from each other in the circumferential direction. Also good. Further, on the precondition that the outer cylinder portion 16, the inner cylinder structure and the elastic intermediate cylinder 36 can cause the desired elastic deformation, the vertical split piece 24 of the outer cylinder portion 16, the inner cylinder piece member 20 of the inner cylinder structure, The number of arc-shaped wall portions 40 of the elastic intermediate tube 36 may be different from each other, and may be various numbers other than three.
[0031]
In the guide bush 10 having the above-described configuration, when an external force inward in the radial direction is applied to the three vertically divided pieces 24 of the outer cylinder portion 16, each vertically divided piece 24 is elastically deformed and at the same time, The outer surface 36a of the elastic intermediate cylinder 36 that contacts the inner surface 24b is loaded with an external force radially inward from each longitudinally split piece 24. As a result, as described above, the elastic intermediate cylinder 36 is elastically deformed and its substantial inner diameter Dimensions are reduced. Along with this, the outer surface 20a of the three inner cylinder piece members 20 contacting the inner surface 36b of the elastic intermediate cylinder 36 is loaded with an external force radially inward from the elastic intermediate cylinder 36, and as a result, as described above, Under the elastic deformation of the elastic connecting element 34, the inner diameter dimension of the bar support surface 18 formed by the inner surface 20b of the inner cylindrical piece member 20 decreases. At the same time, a pressing force is directly applied to the engaging surface 32a of the flange portion 32 formed on each inner cylinder piece member 20 from the locking surface 30a of the claw 30 formed on each vertical split piece 24 of the outer cylinder portion 16. The inner diameter dimension of the bar support surface 18 is also reduced by this pressing force.
[0032]
From this state, when the radial external force to the vertical split pieces 24 of the outer cylinder portion 16 is weakened, the vertical split pieces 24 are elastically restored, and accordingly, the elastic intermediate cylinder 36 and the elastic connecting element 34 are elastically restored, The inner diameter dimension of the bar support surface 18 increases (restores). While the inner diameter dimension of the bar support surface 18 decreases and increases, the three inner cylindrical piece members 20 have the center axis 18a of the bar support surface 18 aligned with the center axis 14a of the bar support portion 14. It is displaced in the radial direction while maintaining the state. As described above, in the guide bush 10, the bar support surface 18 formed by the three inner cylindrical piece members 20 is adjusted by adjusting the external force, that is, the pressing force applied to the bar support portion 14 radially inward. The inner diameter can be adjusted.
[0033]
In the guide bush 10, the inner diameter dimension of the bar material support surface 18 formed by the three inner cylinder piece members 20 is the outer diameter dimension of the bar material to be supported (processed) while the guide bush 10 is in an inactive state. Is set to be larger than Then, before starting the actual processing operation in which the guide bush 10 is put into the working state, the target bar is inserted into the bar support 14 and the inner diameter of the bar support surface 18 is set to the outside of the bar as described above. By finely adjusting according to the diameter, a desired fine gap of the order of μm is obtained between the bar support surface 18 and the bar outer peripheral surface. The guide bush 10 is capable of centering and supporting the bar so that it can be fed in the axial direction by securing such a fine gap in the operating state.
[0034]
Here, when a drawn material with a low outer dimensional accuracy that has been drawn to a predetermined diameter is used as it is as a support (machining) target bar, the above-mentioned fine gap is formed in the minimum outer diameter portion of the bar. As described above, the inner diameter dimension of the bar support surface 18 is finely adjusted. If the friction between the bar support surface 18 and the outer peripheral surface of the bar increases due to the increase in the outer diameter of the bar while the bar supported by the guide bush 10 is fed in the axial direction in this operating state, the outer cylinder portion Since each vertical split piece 24 of 16 is in a state in which it cannot be displaced radially outward, each arcuate wall portion 40 of the elastic intermediate cylinder 36 receives pressure between the outer cylinder portion 16 and the inner cylinder structure, and is described above. It is elastically deformed. As a result, under the elastic deformation of the elastic connecting element 34 having the inner cylinder structure, each inner cylinder piece member 20 is displaced radially outward, and the inner diameter dimension of the bar support surface 18 matches the outer diameter dimension of the bar. Expand passively. In this way, the guide bush 10 can center and support a bar made of a drawn material so that it can be fed in the axial direction. In addition, at this time, since each inner cylinder piece member 20 is formed of a hard material, the wear resistance of the bar support surface 18 is remarkably improved, and the wear of each inner cylinder piece member 20 due to friction with the bar material. Can be suppressed as much as possible.
[0035]
In the guide bush 10 having the above-described configuration, the inner cylinder structure and the elastic intermediate cylinder 36 can be removed from the outer cylinder portion 16 as necessary by a procedure reverse to the assembly procedure described above. When the inner diameter dimension of the bar support portion 14 is changed in response to the change in the diameter dimension, the inner diameter structure of the bar support surface 18 may be replaced with another inner cylinder structure. Therefore, when machining different types of bar materials (round bar, square bar) with various outer diameters on an automatic lathe equipped with the guide bush 10, various types of inner diameters corresponding to these different bar types are available. By preparing the inner cylinder structure and replacing the inner cylinder structure with the bush body consisting of the base 12 and the outer cylinder portion 16 mounted on an automatic lathe, high-precision machining of different types of bars can be performed sequentially. . Even when the inner surface 20b of each inner cylinder piece member 20 is worn due to a long working operation, only the inner cylinder structure may be replaced as appropriate without replacing the bushing body. Here, according to the guide bush 10, the replacement frequency of the inner cylinder structure including the inner cylinder piece member 20 can be reduced by improving the wear resistance of the bar support surface 18.
[0036]
Next, with reference to FIG. 5, the structure of the main part of the automatic lathe 50 equipped with the guide bush 10 having the above structure will be described. The guide bush 10 is rotatably installed in a column 60 on the machine table in the vicinity of a machining work position by a tool 58 set on the lathe machine table via a sleeve member 52, a bearing device 54, and a flange member 56. The
[0037]
The guide bush 10 is accommodated in the front end (left end in the drawing) region of the sleeve member 52 so as to be slidable in the axial direction and not relatively rotatable. At the front end of the inner peripheral surface of the sleeve member 52, a pressure load surface 62 that can contact a plurality of pressure receiving surfaces 28a provided on the outer peripheral surface of the bar support 14 of the guide bush 10 is formed. In the rear end (right end in the figure) region of the sleeve member 52, an adjusting nut 64 having an internal thread portion that engages with the external thread portion 12c (FIG. 1) provided on the base portion 12 of the guide bush 10 is fixed in the axial direction. And can be rotated. Accordingly, when the adjustment nut 64 rotates, the guide bush 10 moves in the axial direction within the sleeve member 52.
[0038]
A driven gear 68 is attached to the rear end region of the outer peripheral surface of the sleeve member 52 via a key 66. The driven gear 68 is coupled to a guide bush drive source (not shown) via a power transmission mechanism (not shown), and is driven to rotate at the same rotational speed as the main shaft 70 installed behind the column 60 by the guide bush drive source. Is done. As a result, the driven gear 68, the adjusting nut 64, the sleeve member 52, and the guide bush 10 are integrally rotated inside the flange member 56 at the same rotational speed as that of the main shaft 70.
[0039]
The flange member 56 is fixed to the column 60 by bolts 72, for example. As described above, the guide bush 10, the sleeve member 52, the flange member 56, the adjustment nut 64, and the driven gear 68 can be attached to a predetermined position of the column 60 of the automatic lathe 50 as a pre-assembled rotary guide bush device. When the guide bush 10 is used as a fixed guide bush device, the bearing device 54, the driven gear 68, the guide bush drive source, and the like are omitted.
[0040]
The spindle 70 holds the bar W to be turned and is rotationally driven by a spindle driving source (not shown). The main shaft 70 is installed behind the column 60 so as to be movable in the axial direction so that the rotation axis of the guide bush 10 and the rotation axis of the main shaft 70 coincide with each other. In the front end region of the main shaft 70, an openable / closable chuck 74 capable of gripping the bar W is accommodated. The chuck 74 is a so-called collet chuck having a slit at the tip. When a radially inward external force, that is, a pressing force is applied to the slit, the rod gripping hole 76 at the tip is reduced in diameter, and the chuck 74 is chucked. 74 closes and the bar W is firmly and securely held. When the radial external force applied to the slot is released, the slot is restored, the rod gripping hole 76 is expanded, the chuck 74 is opened, and the rod W is released.
[0041]
Further, a hollow cylindrical actuating member 78 is accommodated in the main shaft 70 so as to be movable in the axial direction. The actuating member 78 accommodates the chuck 74 in its front end region, and moves forward in the axial direction (leftward in the figure) by a chuck drive source (not shown), thereby pushing the chuck 74 into the slit inward in the radial direction. Pressure is applied and the chuck 74 is closed. If the operation member 78 is moved rearward in the axial direction (rightward in the figure) from this state, the chuck 74 is opened. The configuration of the main shaft 70 is not limited to the above. For example, as a chuck opening / closing operation mechanism, it is also possible to adopt a configuration in which an operation member connected to the rear end of the chuck is moved axially rearward together with the chuck to apply a pressing force radially inward to the slit portion of the chuck. it can.
[0042]
In the automatic lathe 50 having the above-described configuration, when performing the processing operation of the bar W, first, the nominal inner diameter dimension corresponding to the outer diameter dimension of the bar W to be processed is formed on the outer cylinder portion 16 of the guide bush 10. And an appropriate elastic intermediate cylinder 36 are selected and attached to the sleeve member 52 mounted on the column 60. Next, the bar W gripped by the main shaft 70 is inserted into the bar support portion 16 from behind the guide bush 10 by moving the main shaft 70 in the axial direction without applying an external force radially inward to the outer cylinder portion 16. To do. From this state, the adjustment nut 64 is turned to move the guide bush 10 rearward in the axial direction, and the pressure receiving surface 28 a of the outer cylinder portion 16 is pressed against the pressure load surface 62 of the sleeve member 52. Thereby, the three vertically split pieces 24 (FIG. 1) of the outer cylinder portion 16 are elastically deformed, and the three inner cylinder piece members 20 are radially moved under the elastic deformation of the elastic intermediate cylinder 36 and the elastic connecting element 34. By displacing inward, a desired minute gap of the order of μm is formed between the bar support surface 18 and the outer peripheral surface of the bar W. After adjusting the inner diameter of the bar support surface 18 of the guide bush 10 in this manner, the guide bush 10 performs turning with, for example, the tool 58 while centering and supporting the vicinity of the processed portion of the bar W. .
[0043]
By the way, in the above-described guide bush 10, each arc-shaped wall portion 40 of the elastic intermediate tube 36 is connected to the outer tube portion 16 when the outer diameter of the rod is locally increased while the rod is fed in the axial direction. By being compressed between each inner cylinder piece member 20 and elastically deforming, the plurality of inner cylinder piece members 20 are displaced radially outward, and the inner diameter dimension of the bar support surface 18 is the outer diameter of the bar. It is designed to expand passively to fit the dimensions. If such an action of the elastic intermediate cylinder 36 is used, a fine gap of the order of μm is formed between the bar support surface 18 and the bar outer peripheral surface when adjusting the inner diameter of the bar support surface 18 described above. At least, it is possible to center and support the bar so that it can be fed in the axial direction by simply bringing the bar support surface 18 into contact with the outer peripheral surface of the bar.
[0044]
From such a viewpoint, the inner diameter dimension adjusting mechanism of the bar support surface of the guide bush can be omitted. FIG. 6 shows a guide bush 80 according to a second embodiment of the present invention having such a simplified configuration. The guide bush 80 has substantially the same configuration as that of the above-described guide bush 10 except for the configuration of the outer cylinder portion of the bar support portion. Omitted.
[0045]
The bar support portion 82 of the guide bush 80 includes an outer cylinder portion 84 integrally connected to the base portion 12, a plurality (three) of inner cylinder piece members 20 installed inside the outer cylinder portion 84, and And an elastic member 22 that elastically holds the inner cylinder piece member 20 at a position where the bar support surface 18 is formed inside the outer cylinder portion 84. The bar support part 82 has a center axis 82a that matches the center axis of the bar to be supported, and supports the bar centeringly. The outer cylinder portion 84 has a configuration in which the slit 26 in the outer cylinder portion 16 of the guide bush 10 described above is omitted, and has a cylindrical inner shape that defines a central axis line that matches the central axis line 82a of the bar support portion 82. A peripheral surface 84a is provided (FIG. 7). Therefore, the outer cylinder portion 84 cannot substantially elastically deform in the radial direction, and the inner diameter dimension of the inner peripheral surface 84a cannot be changed.
[0046]
The elastic intermediate cylinder 36 constituting the elastic member 22 has an outer surface 36a (FIG. 4) in contact with an inner peripheral surface 84a of the outer cylinder portion 84, and an inner surface 36b (FIG. 4) having three inner cylinder pieces. Abutting on the outer surface 20a of the member 20, it is disposed between the outer cylinder portion 84 and the inner cylinder piece member 20, and supports each inner cylinder piece member 20 from the outside in this state. The bar support part 82 having such a configuration cannot positively adjust the inner diameter dimension of the bar support surface 18 formed by the three inner cylinder piece members 20. On the other hand, in the bar support portion 82, when an external force radially outward is applied to the bar support surface 18, each arcuate wall portion 40 (FIG. 4) of the elastic intermediate tube 36 is connected to the outer tube portion 84. By compressing between each inner cylinder piece member 20 and elastically deforming, the inner cylinder piece member 20 is displaced radially outward, and the inner diameter dimension of the bar material support surface 18 is passively expanded. Can do.
[0047]
Therefore, when the guide bush 80 having the above-described configuration is mounted on the automatic lathe 50 described above, a bar having an outer diameter corresponding to the inner diameter of the bar support surface 18 is used as the bar bushing. In the state of being in contact with the outer peripheral surface of the material, it can be centered and supported so that it can be fed in the axial direction. Here, even when a drawn material having a low external dimensional accuracy is used as a bar, the inner diameter of the bar support surface 18 is passively set within the elastically deformable range of each arcuate wall portion 40 of the elastic intermediate cylinder 36. The bar can be centered and supported so that it can be fed in the axial direction.
[0048]
The guide bushes 10 and 80 described above have a configuration in which the plurality of inner cylinder piece members 20 installed on the bar material support portions 14 and 82 are connected to each other via the elastic connection element 34 so as to be relatively displaceable. . However, the guide bush which concerns on this invention can also have a bar | burr material support part arrange | positioned inside an outer cylinder part in the state which the some inner cylinder piece member isolate | separated mutually. FIG. 8 shows a guide bush 90 having such a configuration according to a third embodiment of the present invention. The guide bush 90 has substantially the same configuration as the above-described guide bush 10 except for the configuration of the inner cylinder piece member and the elastic member of the bar support portion, and therefore, corresponding components are denoted by common reference numerals. The description is omitted.
[0049]
The bar support portion 92 of the guide bush 90 is installed on the inner side of the outer cylinder portion 16 that is elastically deformable in the radial direction and is integrally connected to the base portion 12, and is formed of a hard material. And a plurality of (three) inner cylinder piece members 96 that cooperate with each other to form a substantially cylindrical rod material support surface 94, and the inner cylinder piece members 96 are arranged on the inner side of the outer cylinder portion 16. And an elastic member 98 that is elastically held at a position where the support surface 94 is formed. The bar support portion 92 has a center axis 92a that matches the center axis of the bar to be supported, and supports the bar centeringly.
[0050]
As shown in FIG. 9, each inner cylinder piece member 96 of the guide bush 90 has an arcuate outer surface 96 a that faces the inner surface 24 b (FIG. 2) of the corresponding vertical split piece 24 of the outer cylinder portion 16 via a gap. And an arcuate inner surface 96b opposite to the outer surface 96a, and a pair of side surfaces 96c extending between the outer surface 96a and the inner surface 96b. The three inner cylinder piece members 96 have their inner surfaces 96b substantially located on a common cylindrical surface, and their one side surfaces 96c are opposed to each other with a gap therebetween. Housed inside. In this state, the inner surface 96b of the inner cylindrical piece member 96 cooperates with each other to form a substantially cylindrical bar support surface 94 (having a central axis 94a) for centering and supporting the bar so that it can be axially fed. Form.
[0051]
Each inner cylinder piece member 96 has a flange portion 100 that protrudes radially outward, adjacent to one axial end surface 96d thereof. The flange portion 100 of each inner cylinder piece member 96 is formed with an engagement surface 100a extending in a taper shape toward one axial end surface 96d, and a groove 100b extending in the axial direction along its radially outer end surface. Engraved. Further, each inner cylinder piece member 96 is formed with an edge groove 102 having an acute cross section in a boundary region between the inner surface 96b thereof, the axial one end surface 96d and the axial other end surface 96e.
[0052]
Examples of the hard material that can be suitably used for each inner cylinder piece member 96 include engineering ceramics. In this case, it is advantageous to produce at least a portion including the inner surface 96b forming the rod support surface 94 from zirconia ceramics excellent in wear resistance, impact strength, and surface smoothness. According to such a configuration, the durability of the bar support surface 94 can be significantly improved.
[0053]
The elastic member 98 is interposed between the outer cylinder portion 16 and each of the three inner cylinder piece members 96, and the elastic intermediate cylinder 36 that elastically supports the inner cylinder piece members 96 from the outside, and three pieces. And a pair of elastic support elements 104 that are engaged with the inner cylinder piece member 96 and elastically support the inner cylinder piece member 96 from the inside. The elastic intermediate cylinder 36 is in contact with the inner surface 24b of the three vertical split pieces 24 of the outer cylinder portion 16 at its outer surface 36a (FIG. 4), and at the inner surface 36b (FIG. 4), It abuts on the outer surface 96 a of the tube piece member 96. The elastic intermediate cylinder 36 applies the radially inward pressing force applied to each vertical split piece 24 of the outer cylindrical portion 16 to the corresponding inner cylindrical piece member 96 located inside the vertical split piece 24 in the radial direction. Acts to ensure transmission. The elastic intermediate cylinder 36 supports the plurality of inner cylinder piece members 96 from the outside in the radial direction, thereby elastically holding the inner cylinder piece members 96 at a position where the cylindrical bar support surface 94 is formed. . Further, the elastic intermediate cylinder 36 receives pressure from both of the three vertically split pieces 24 and the three inner cylinder piece members 96 of the outer cylinder portion 16, and is adjacent to the arcuate wall portion 40 (FIG. 4). ) Until they come into contact with each other, each arcuate wall portion 40 itself is flexible enough to be compressed and elastically deformed.
[0054]
As shown in FIG. 10, each of the pair of elastic support elements 104 is formed of an annular spring formed by bending a spring wire into a C-ring shape. These elastic support elements 104 are each received by the pair of edge grooves 102 of each inner cylinder piece member 96 in a length region obtained by dividing the overall length into approximately three equal parts. It is elastically biased outward. Thereby, the elastic support elements 104 cooperate with each other to elastically hold the three inner cylinder piece members 96 at positions where the cylindrical bar support surfaces 94 are formed. Although each elastic support element 104 does not have a mechanical interconnection function between the inner cylindrical piece members 96, the outer surface 96a of the three inner cylindrical piece members 96 is loaded with a radially inward pressing force. In some cases, the elastic supporting element 104 is elastically deformed so as to reduce the radial dimension thereof. Accordingly, the three inner cylinder piece members 96 are displaced inward in the radial direction within a range until the opposing side faces 96c come into contact with each other, and as a result, a bar formed by the inner surfaces 96b of the inner cylinder piece members 96 The inner diameter dimension of the support surface 94 is reduced. When the pressing force to the outer surface 96 a of each inner cylinder piece member 96 is released, each inner cylinder piece member 96 returns to the initial position under the elastic restoring force of both elastic support elements 104, and the bar material support surface 94. The inner diameter of the is restored.
[0055]
The guide bush 90 is manufactured by separately assembling the various components described above and then assembling as follows. First, similarly to the assembly process of the guide bush 10 described above, the elastic intermediate cylinder 36 is assembled to the bush main body integrally including the base portion 12 and the outer cylinder portion 16 of the bar support portion 92. At this time, the rotation stopper 46 installed on one vertical split piece 24 of the outer cylinder portion 16 is inserted into the groove 44 (FIG. 4) of the elastic intermediate cylinder 36, thereby rotating the elastic intermediate cylinder 36 with respect to the outer cylinder portion 16. Stop. In addition, as shown in FIG. 11, the second detent 48 which protrudes from the inner surface 24b is installed in all the vertical split pieces 24 of the outer cylinder part 16. As shown in FIG.
[0056]
On the other hand, a pair of elastic support elements 104 are assembled as described above to the three inner cylinder piece members 96 each molded from a hard material such as zirconia ceramics to produce a substantially cylindrical inner cylinder structure. This inner cylinder structure is formed so that the outer surface 96a of each inner cylinder piece member 96 is in close contact with the inner surface 36b of the elastic intermediate cylinder 36 fitted into the outer cylinder portion 16, and the inner cylinder structure ( While at least one of the elastic support element 104) is elastically deformed, it is fitted inside the outer cylinder portion 16 and the elastic intermediate cylinder 36. At this time, each vertical split piece 24 and each arcuate wall portion 40 of the elastic intermediate cylinder 36 and each internal cylindrical piece member 96 of the inner cylindrical structure are aligned with each other and protruded from the inner surface 24b of each vertical split piece 24. The second detent 48 is inserted into the groove 100 b formed in the flange portion 100 of the corresponding inner cylinder piece member 96. As a result, the inner cylinder structure has the outer cylinder part 16 and the inner cylinder part 16 and the elastic intermediate cylinder 36 at predetermined positions inside the outer cylinder part 16 and the elastic intermediate cylinder 36 in a state where all the inner cylinder piece members 96 are prevented from rotating with respect to the outer cylinder part 16. At least one of the elastic intermediate cylinder 36 and the inner cylinder structure (elastic support element 104) is held under an elastic restoring force generated. Preferably, in this state, each elastic support element 104 is fixedly received and held in the edge groove 102 of the three inner cylindrical piece members 96 by its own elastic restoring force.
[0057]
When the guide bush 90 is properly assembled in this way, the three inner cylinder piece members 96 of the inner cylinder structure are such that the central axis 94a of the bar support surface 94 formed by them is the central axis of the bar support 92. It is held in a state that matches 92a. Further, the engagement surface 100a of the flange portion 100 formed on each inner cylinder piece member 96 of the inner cylinder structure is connected to the locking surface 30a (FIG. 11) of the claw 30 formed on each vertical split piece 24 of the outer cylinder portion 16. Each inner cylinder piece is in close contact Material 96 axial end faces 96d are disposed on substantially the same plane adjacent to the opening end face 16a (FIG. 11) of the outer cylinder portion 16. In this state, the inner cylinder structure is prevented from unintentionally protruding outward from the outer cylinder part 16 from a predetermined position inside the outer cylinder part 16. Further, the elastic intermediate cylinder 36 is disposed so as to be substantially shielded by the flange portion 100 of each inner cylinder piece member 96 at a position away from the opening end surface 16 a of the outer cylinder portion 16. As a result, the elastic intermediate cylinder 36 made of a relatively soft material is isolated from the chips scattered during the turning process, so that the damage is prevented.
[0058]
In the guide bush 90, the vertical split pieces 24 of the outer cylindrical portion 16, the inner cylindrical piece members 96 of the inner cylindrical structure, and the arc-shaped wall portions 40 of the elastic intermediate cylinder 36 are arranged so as to be shifted from each other in the circumferential direction. Also good. Moreover, on the precondition that the outer cylinder portion 16, the inner cylinder structure, and the elastic intermediate cylinder 36 can cause the desired elastic deformation, the vertical split piece 24 of the outer cylinder portion 16, the inner cylinder piece member 96 of the inner cylinder structure, The number of arc-shaped wall portions 40 of the elastic intermediate tube 36 may be different from each other, and may be various numbers other than three.
[0059]
The guide bush 90 having the above configuration operates in the same manner as the guide bush 10 described above. That is, when an external force inward in the radial direction is applied to the three vertical split pieces 24 of the outer cylinder portion 16, each vertical split piece 24 is elastically deformed, and at the same time, an elastic intermediate that contacts the inner surface 24 b of each vertical split piece 24. An external force radially inward from each vertical split piece 24 is applied to the outer surface 36a of the cylinder 36, whereby the elastic intermediate cylinder 36 is elastically deformed and its substantial inner diameter is reduced as described above. Along with this, the outer surface 96a of the three inner cylinder piece members 96 that contact the inner surface 36b of the elastic intermediate cylinder 36 is loaded with an external force radially inward from the elastic intermediate cylinder 36. As a result, as described above, Under the elastic deformation of the pair of elastic support elements 104, the inner diameter dimension of the bar support surface 94 formed by the inner surface 96b of the inner cylindrical piece member 96 decreases.
[0060]
From this state, when the radial external force applied to each vertical split piece 24 of the outer cylinder portion 16 is weakened, each vertical split piece 24 is elastically restored, and accordingly, the elastic intermediate cylinder 36 and both elastic support elements 104 are elastically restored. The inner diameter of the bar support surface 94 increases (restores). While the inner diameter dimension of the bar support surface 94 decreases and increases, the three inner cylindrical piece members 96 cause the center axis 94a of the bar support surface 94 to coincide with the center axis 92a of the bar support portion 92. It is displaced in the radial direction while maintaining the state. As described above, in the guide bush 90, the bar support surface 94 formed by the three inner cylinder piece members 96 is adjusted by adjusting the external force, that is, the pressing force applied to the bar support portion 92 in the radially inward direction. The inner diameter can be adjusted.
[0061]
In the guide bush 90, the inner diameter dimension of the bar support surface 94 formed by the three inner cylinder piece members 96 is the outer diameter dimension of the bar material to be supported (processed) while the guide bush 90 is in an inactive state. Is set to be larger than Then, before starting the actual processing operation in which the guide bush 90 is put into the working state, the target bar is inserted into the bar support 92, and the inner diameter of the bar support surface 94 is set to the outside of the bar as described above. By fine-tuning according to the diameter, a desired fine gap of the order of μm is obtained between the bar support surface 94 and the bar outer peripheral surface. The guide bush 90 can center and support the bar so that it can be fed in the axial direction by securing such a fine gap in the operating state.
[0062]
Here, when a drawn material with a low outer dimensional accuracy that has been drawn to a predetermined diameter is used as it is as a support (machining) target bar, the above-mentioned fine gap is formed in the minimum outer diameter portion of the bar. As described above, the inner diameter dimension of the bar support surface 94 is finely adjusted. If the friction between the bar support surface 94 and the bar outer peripheral surface increases due to an increase in the outer diameter of the bar while the bar supported by the guide bush 90 is fed in the axial direction in this action state, the outer cylinder portion Since each vertical split piece 24 of 16 is in a state in which it cannot be displaced radially outward, each arcuate wall portion 40 of the elastic intermediate cylinder 36 receives pressure between the outer cylinder portion 16 and the inner cylinder structure, and is described above. It is elastically deformed. As a result, each inner cylinder piece member 96 is displaced radially outward, and the inner diameter dimension of the bar support surface 94 is passively expanded in accordance with the outer diameter dimension of the bar. In this way, the guide bush 90 can center and support a bar made of a drawn material so that it can be fed in the axial direction. In addition, at this time, since each inner cylinder piece member 96 is formed of a hard material, the wear resistance of the bar support surface 94 is remarkably improved, and the wear of each inner cylinder piece member 96 due to friction with the bar material. Can be suppressed as much as possible.
[0063]
The elastic support element 104 incorporated in the guide bush 90 can be incorporated in the above-described guide bush 10 having the elastic coupling element 34. According to such a configuration, since the elastic action of the elastic member 22 in the guide bush 10 can be strengthened, the responsiveness of the radial displacement operation of the inner cylinder piece member 20 is improved, and the bar support portion 14 is more highly accurate. The centering support characteristic can be acquired. Further, when the plurality of inner cylinder piece members 20 are combined into a cylindrical shape by using the elastic connecting element 34 made of a liquid gasket, the elastic support element 104 is used even if the position accuracy of each inner cylinder piece member 20 is combined to be somewhat low. As a result, the positional accuracy of each inner cylinder piece member 20 can be obtained by the supporting action. Thereby, the manufacturing process of the guide bush 10 is simplified, and the work cost is reduced when the inner cylinder piece member 20 is replaced.
[0064]
【The invention's effect】
As is apparent from the above description, according to the present invention, the guide bush installed in the automatic lathe is provided with a multi-layered bar support portion, thereby changing the outer diameter of the bar to be processed and the bar. Not only can the wear of the material support surface be dealt with quickly, but also the wear resistance of the bar support surface can be significantly improved. Therefore, according to the present invention, it is possible to reduce as much as possible the influence of the wear of the guide bush, particularly the bar support surface, on the processing accuracy and manufacturing cost of the product in the automatic lathe, and when using a bar made of a drawn material. It will also be possible to produce high quality products.
[Brief description of the drawings]
FIGS. 1A and 1B are a cross-sectional view taken along line II of a guide bush according to a first embodiment of the present invention, and FIG.
2A is a cross-sectional view taken along line II-II, and FIG. 2B is an end view in the axial direction, of the base and the outer cylinder portion of the guide bush in FIG. 1;
3A is a cross-sectional view taken along line III-III, and FIG. 3B is an end view in the axial direction of the inner cylinder structure of the guide bush in FIG. 1;
4A is a cross-sectional view taken along line IV-IV of the elastic intermediate cylinder in the guide bush of FIG. 1, and FIG. 4B is an end view in the axial direction.
FIG. 5 is a cross-sectional view showing a main part of an automatic lathe equipped with the guide bush of FIG. 1;
6A is a cross-sectional view taken along line VI-VI and FIG. 6B is an end view in the axial direction of a guide bush according to a second embodiment of the present invention.
7A is a cross-sectional view taken along line VII-VII and FIG. 7B is an end view in the axial direction of the base portion and the outer cylinder portion of the guide bush shown in FIG. 6;
8A is a cross-sectional view taken along line VIII-VIII, and FIG. 8B is an axial end view of a guide bush according to a third embodiment of the present invention.
9A is a cross-sectional view taken along line IX-IX, and FIG. 9B is an end view in the axial direction, of a plurality of inner cylinder piece members in the guide bush in FIG. 8;
10 is a front view of an elastic support element in the guide bush of FIG. 8;
11A is a cross-sectional view taken along line XI-XI, and FIG. 11B is a cross-sectional view taken along line BB, of the base portion and the outer cylinder portion of the guide bush in FIG. 8;
[Explanation of symbols]
10, 80, 90 ... guide bush
12 ... Base
14, 82, 92 ... bar support
16, 84 ... outer cylinder part
18, 94 ... Bar support surface
20, 96 ... inner cylinder piece member
22, 98 ... elastic member
24 ... Vertical pieces
30 ... nail
34. Elastic connecting element
36 ... Elastic intermediate tube
50 ... Automatic lathe
70 ... Spindle
104. Elastic support element

Claims (10)

中空筒状の基部と、該基部の軸線方向一端に隣接して設けられる中空筒状の棒材支持部とを具備するガイドブッシュにおいて、
前記棒材支持部は、
前記基部に一体的に連結される外筒部分と、
前記外筒部分の内側に設置され、各々が硬質材料から形成されるとともに互いに協働して筒状の棒材支持面を形成する複数の内筒片部材と、
前記複数の内筒片部材を、前記外筒部分の内側で前記棒材支持面を形成する位置に、該外筒部分から独立して変位可能に、弾性的に保持する弾性部材とを具備すること、
を特徴とするガイドブッシュ。
In a guide bush comprising a hollow cylindrical base and a hollow cylindrical bar support provided adjacent to one axial end of the base,
The bar support part is
An outer cylinder part integrally connected to the base part;
A plurality of inner cylinder piece members that are installed inside the outer cylinder portion and are each formed of a hard material and cooperate with each other to form a cylindrical bar support surface;
An elastic member that elastically holds the plurality of inner cylinder piece members at a position where the bar support surface is formed inside the outer cylinder part so as to be independently displaceable from the outer cylinder part ; thing,
Guide bush characterized by
前記弾性部材は、隣り合う前記内筒片部材の間に介在してそれら内筒片部材を相互に弾性的に連結する弾性連結要素を備える請求項1に記載のガイドブッシュ。2. The guide bush according to claim 1, wherein the elastic member includes an elastic connecting element that is interposed between the adjacent inner cylinder piece members and elastically connects the inner cylinder piece members to each other. 前記弾性連結要素が液状ガスケットから形成される請求項2に記載のガイドブッシュ。The guide bush according to claim 2, wherein the elastic connecting element is formed of a liquid gasket. 前記弾性部材は、前記外筒部分と前記複数の内筒片部材の各々との間に介在してそれら内筒片部材を外側から弾性的に支持する弾性中間筒を備える請求項1〜3のいずれか1項に記載のガイドブッシュ。The said elastic member is provided between the said outer cylinder part and each of these inner cylinder piece members, and is provided with the elastic intermediate cylinder which elastically supports these inner cylinder piece members from the outside. The guide bush according to any one of claims. 前記弾性中間筒が、前記外筒部分と前記複数の内筒片部材との間で圧縮されて弾性変形可能な軟質材料から形成される請求項4に記載のガイドブッシュ。The guide bush according to claim 4, wherein the elastic intermediate cylinder is formed of a soft material that is compressed and elastically deformed by being compressed between the outer cylinder portion and the plurality of inner cylinder piece members. 前記弾性部材は、前記複数の内筒片部材に係合してそれら内筒片部材を内側から弾性的に支持する弾性支持要素を備える請求項1〜5のいずれか1項に記載のガイドブッシュ。The guide bush according to claim 1, wherein the elastic member includes an elastic support element that engages with the plurality of inner cylinder piece members and elastically supports the inner cylinder piece members from the inside. . 前記弾性支持要素が、前記複数の内筒片部材を径方向外方へ弾性的に付勢するばねから形成される請求項6に記載のガイドブッシュ。The guide bush according to claim 6, wherein the elastic support element is formed of a spring that elastically biases the plurality of inner cylinder piece members radially outward. 前記複数の内筒片部材の各々は、少なくとも前記棒材支持面を形成する部分がセラミックスから作製される請求項1〜7のいずれか1項に記載のガイドブッシュ。The guide bush according to any one of claims 1 to 7, wherein each of the plurality of inner cylindrical piece members is made of ceramics at least at a portion forming the bar support surface. 前記棒材支持部の前記外筒部分が径方向へ弾性変形でき、該外筒部分の弾性変形に伴って、前記複数の内筒片部材が形成する前記棒材支持面の内径寸法が変化する請求項1〜8のいずれか1項に記載のガイドブッシュ。The outer cylinder part of the bar support part can be elastically deformed in the radial direction, and the inner diameter dimension of the bar support surface formed by the plurality of inner cylinder piece members changes with the elastic deformation of the outer cylinder part. The guide bush according to any one of claims 1 to 8. 請求項1〜9のいずれか1項に記載のガイドブッシュを、棒材の加工作業位置近傍に設置してなる自動旋盤。An automatic lathe in which the guide bush according to any one of claims 1 to 9 is installed in the vicinity of a bar processing position.
JP2002006458A 2002-01-15 2002-01-15 guide bush Expired - Fee Related JP3945752B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002006458A JP3945752B2 (en) 2002-01-15 2002-01-15 guide bush
PCT/JP2003/000217 WO2003059558A1 (en) 2002-01-15 2003-01-14 Guide bush
CNB038000644A CN1298467C (en) 2002-01-15 2003-01-14 Guide bush

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002006458A JP3945752B2 (en) 2002-01-15 2002-01-15 guide bush

Publications (2)

Publication Number Publication Date
JP2003211303A JP2003211303A (en) 2003-07-29
JP3945752B2 true JP3945752B2 (en) 2007-07-18

Family

ID=19191234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002006458A Expired - Fee Related JP3945752B2 (en) 2002-01-15 2002-01-15 guide bush

Country Status (3)

Country Link
JP (1) JP3945752B2 (en)
CN (1) CN1298467C (en)
WO (1) WO2003059558A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005095033A1 (en) * 2004-03-31 2005-10-13 Citizen Watch Co., Ltd. Material guide device and automatic lathe
WO2010043058A1 (en) * 2008-10-15 2010-04-22 Duenner Daniel Flexible jig bushing for machine tool
JP5340773B2 (en) * 2009-03-16 2013-11-13 シチズンホールディングス株式会社 Guide bush and guide bush device
CN101693364B (en) * 2009-09-30 2013-01-09 江苏中泰桥梁钢构股份有限公司 Accurate hole matching method of centering punch
US9156093B2 (en) * 2012-06-05 2015-10-13 Robert Bosch Gmbh Collet positioning mechanism for a rotary tool
CN104827060A (en) * 2015-06-04 2015-08-12 浙江日创机电科技有限公司 Guide device of main shaft
KR102144752B1 (en) * 2018-10-22 2020-08-14 주식회사 모션퀘스트 Fixing zig for bearing materal and metod thereof
CN113784812A (en) * 2019-04-25 2021-12-10 育良精机株式会社 Bar feeding device
US20210054874A1 (en) * 2019-08-20 2021-02-25 Rapid Race Cars, Inc. Bushing assembly
CN111098164B (en) * 2020-01-03 2024-06-07 龙口市亨嘉智能装备有限公司 Positioning and guiding device for polygonal processing material
CN111364134B (en) * 2020-04-30 2022-05-10 宁国金诺制衣有限公司 Weaving equipment with clean function

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4413539A (en) * 1979-10-31 1983-11-08 Citizen Watch Company Limited Numerically controlled lathe
JPH07224944A (en) * 1994-02-15 1995-08-22 Toyota Motor Corp Seal structure of joining surface in dissimilar metal member
KR100261534B1 (en) * 1995-03-09 2000-08-01 하루타 히로시 Guide bush and method for forming a hard carbon film on an interal circumferential surface of said bush
JP3090430B2 (en) * 1996-07-08 2000-09-18 シチズン時計株式会社 Method of forming film on guide bush
US6056443A (en) * 1996-07-08 2000-05-02 Citizen Watch Co., Ltd. Guide bush and method of forming film over guide bush
JP2000246522A (en) * 1999-03-01 2000-09-12 Citizen Watch Co Ltd Chuck, bar stock holding device and automatic lathe
JP4458590B2 (en) * 1999-11-10 2010-04-28 シチズンホールディングス株式会社 guide bush
JP4471450B2 (en) * 2000-05-12 2010-06-02 シチズンホールディングス株式会社 Bar gripping device and automatic lathe

Also Published As

Publication number Publication date
CN1298467C (en) 2007-02-07
JP2003211303A (en) 2003-07-29
CN1496293A (en) 2004-05-12
WO2003059558A1 (en) 2003-07-24

Similar Documents

Publication Publication Date Title
JP3945752B2 (en) guide bush
US5286042A (en) Tool holder with centering adjustment
JPS6062434A (en) Rotary cutting tool holder
US6902361B2 (en) Fixation device for a portable orbital drilling unit
US4215605A (en) Floating work driver chuck
US20190084056A1 (en) Axially and radially compliant deburring tool
JP2000505005A (en) Inflatable chuck
KR20010093805A (en) Method and device for grinding workpieces with centers which comprise form variations
JPH1110418A (en) Retaining tool
US6779953B2 (en) Apparatus for positioning a cutter of a tool relative to the spindle of a machine tool
US3815930A (en) Collet
JP3597220B2 (en) Workpiece mounting jig
JP5460369B2 (en) Chuck device and lathe equipped with the same
DE19982223D2 (en) Spanneinrichtung eines maschinenspindels
JP4921782B2 (en) Collet chuck device for lathe
JP4330277B2 (en) Rotating guide bush
JP4458590B2 (en) guide bush
US5649795A (en) Machine tool
JP4290422B2 (en) Material gripping device and automatic lathe
JP3747443B2 (en) Spindle clamp mechanism for milling head
JP2003103404A (en) Rolling center with center drill
JPH10193202A (en) Tail stock
US4000907A (en) Chucks for machine tools, such as lathes and grinding machines
CN213135067U (en) Tailstock center device with fine adjustment function
CN111644639A (en) Tailstock center device with fine adjustment function

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070406

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120420

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140420

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees