JP3945114B2 - Impact tightening tool - Google Patents

Impact tightening tool Download PDF

Info

Publication number
JP3945114B2
JP3945114B2 JP2000059492A JP2000059492A JP3945114B2 JP 3945114 B2 JP3945114 B2 JP 3945114B2 JP 2000059492 A JP2000059492 A JP 2000059492A JP 2000059492 A JP2000059492 A JP 2000059492A JP 3945114 B2 JP3945114 B2 JP 3945114B2
Authority
JP
Japan
Prior art keywords
hit
rotation angle
detection
hammer
impact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000059492A
Other languages
Japanese (ja)
Other versions
JP2001246573A (en
Inventor
昌幸 天野
智弘 細川
多津彦 ▲松▼本
稔 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2000059492A priority Critical patent/JP3945114B2/en
Publication of JP2001246573A publication Critical patent/JP2001246573A/en
Application granted granted Critical
Publication of JP3945114B2 publication Critical patent/JP3945114B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、インパクトドライバ、インパクトレンチ等の、インパクト締め付け工具の改良に関する
【0002】
【従来の技術】
インパクト締め付け工具であるインパクトドライバは、モータの回転をハンマの打撃に変換し、その強い衝撃カで締め付けを行う工具であり、高速回転・高トルクという作業性の良さから、建築現場、組み立て工場などで幅広く使われている。
【0003】
そして、本出願人はインパクトドライバの締め付けトルク制御方法として、モータの回転速度、打撃間のモータ回転から締め付けトルクを推定する方法を提案している。
【0004】
この締め付けトルク推定方法は、一打撃毎の運動エネルギーの収支から導き出したものであり、ハンマの打撃により出力軸の基部に設けたアンビルに与えられるエネルギと締め付けで消費されたエネルギとが略等しいという関係から締め付けトルクを推定する方法である。
【0005】
その例として、部材によって決定される着座後のネジの回転角度θと締め付けトルクTの関係が図8の様な関数T=τ(θ)で表せるとし、ハンマによる打撃が、それぞれアンビル回転角θ1…θNの地点で発生したものとする。関数τを区間[θ1,θ2]で積分した値E1は締め付け作業に消費されたエネルギであり、θ1地点で発生したハンマ打撃によりアンビルに与えられたエネルギに等しい。よって、区間[θn,θn+1]における平均トルク<Tn>はEnとΘn=(θn+1−θn)により、
<Tn>=En/Θn …(1)
と求まる。締め付けトルク制御を行うには、この<T>が設定トルクTset以上となったときに、モータの駆動を停止させればよい。Enは打撃検出手段が検出した打撃発生時点での、回転速度検出手段の出力である回転速度ωn、既知のアンビルの慣性モーメントJaにより、
n=1/2×Ja×ωn 2 …(2)
と求めることができ、Θは回転角検出手段より容易に求めることが出来る。
【0006】
【発明が解決しようとする課題】
この式(1)で表される方法で締め付けトルクを求める時には、信頼性の高い打撃検出手段が必須となる。打撃を検出し損ねると、次の打撃検出時に算出される打撃間回転角Θが大きな値となり、式(1)は実際の締め付けトルクより小さな締め付けトルクを推定する。このことは、図8において、θ2の点での打撃を検出できなかった時、
<T2>がE2/(θ3−θ2)ではなく、E2/(θ3−θ1)と計算されることからも分かる。同様の理由により、実際には存在しない打撃を誤って検出した場合は、実際より大きな締め付けトルクを推定する。そして、誤った締め付けトルク推定の結果として、締め付け不足、過大な締め付けによる部材の損傷を引き起こす。
【0007】
本発明は、上述の問題点に鑑みて為されたもので、その目的とするところは打撃検出誤りによる影響を無くし、打撃検出精度を向上させたインパクト締め付け工具を提供することにある。
【0008】
【課題を解決するための手段】
上記目的を達成するために、請求項1の発明では、ハンマによって打撃され回転力が加えられる出力軸と、ハンマによる出力軸の打撃を検出する打撃検出手段とを備えているインパクト締め付け工具において、ハンマを駆動するモータの回転速度を検出する回転速度検出手段と、回転速度検出手段の検出した回転速度から打撃発生があり得ない期間を求め、該期間中における上記打撃検出手段による打撃検出を無視させる打撃無視期間設定手段とを備えたことを特徴とする。
【0009】
請求項2の発明では、ハンマによって打撃され回転力が加えられる出力軸と、ハンマによる出力軸の打撃を検出する打撃検出手段とを備えているインパクト締め付け工具において、上記打撃検出手段の打撃発生タイミングをもとに各打撃毎の出力軸の回転角を算出する打撃間回転角算出手段と、打撃間回転角算出手段から得られた打撃間回転角の値がある閾値以下の場合、誤った打撃検出を判定し無効な打撃と扱う打撃補正手段とを備えたことを特徴とする。
【0010】
請求項3の発明では、請求項2の発明において、上記打撃補正手段は、上記打撃間回転角算出手段から得られた前回の打撃間回転角と今回の打撃間回転角とを比較し、今回の値が大きい場合を打撃検出抜けと判断し、打撃間回転角を補正することを特徴とする。
【0011】
請求項4の発明では、請求項2の発明において、上記打撃検出手段は、検出した各打撃の周期を計測する打撃周期計測手段を持ち、上記打撃補正手段は、打撃周期計測手段からの打撃周期を基に、打撃の検出漏れ、誤った打撃検出を判定し打撃間回転角を補正することを特徴とする。
【0012】
【発明の実施の形態】
まず本発明の実施形態の説明に入る前に、本発明の基本な原理を説明する。
【0013】
本発明のインパクトドライバのようなインパクト締め付け工具はハンマとアンビル間に所定値以上のがかかったときに、該アンビルに対してハンマが自由回転し、ハンマが所定角α[rad](機構によって決まる定数)以上に自由回転した後に、ハンマがアンビルに衝突する構造になっている。つまり、ハンマが自由回転している期間t内に打撃はありえない。この期間ti[sec]はハンマ3の回転速度をω[rad/sec]とすると、ti=α/ωで求めることができる。
【0014】
また、ハンマが所定角α[rad]回転しないと、打撃が発生しないのだから、α[rad]未満の打撃間回転角時の打撃検出結果は当然無効なものである。そして、前回の打撃間回転角に比べて、過大な打撃間回転角を得たときは打撃を検出し損ねたとし、同様に、打撃周期が前回の打撃周期にくらべて非常に長くなった場合も打撃を検出し損ねたと考えられる。
【0015】
そこで無効な打撃検出結果や、打撃の検出し損ねに対して考慮して適正に打撃間回転角の分配処理を行うようにしたのが本発明である。
【0016】
以下本発明を実施形態により詳説する。
(実施形態1)
図1に本実施形態のインパクト締め付け工具の概略構成図を示す。このインパクト締め付け工具は、駆動手段たるモータ1と、モータ1の回転を所定の減速比で減速する伝達機構たる減速機2と、モータ1の回転が減速機2を介して伝達されるハンマ3と、ハンマ3によって打撃されるアンビル4を有しハンマ3がアンビル4を打撃することにより回転力が衝撃的に加えられる出力軸5と、ハンマ3によるアンビル4の打撃音を電気信号に変換するマイク6と、マイク6の出力電圧が所定のしきい値を上回ることからハンマ3によりアンビル4が打撃されたことを検出する打撃検出部(打撃検出手段)7と、モータ1に設けられ、モータ1の回転数に比例した周波数の信号を発生する回転角検出手段としての周波数ジェネレータ(FG)8と、周波数ジェネレータ8の発生した信号を波形整形し、出力軸5の回転角に応じたパルス数のパルス信号を出力する波形整形回路9と、打撃検出部7及び波形整形回路9の出力から締付トルクを算出し、締付トルクが規定値以上になるとモータ1を停止させる停止信号を発生する制御回路部10と、図示しない操作部の操作によって入力されるトリガ(速度指令)Stに応じてモータ1を回転させると共に、制御回路部10から入力される駆動停止指令に応じてモータ1の回転を停止させるモータ制御部11とで構成される。ここに、モータ1及び減速機2から回転駆動部が構成される。
【0017】
また、制御回路部10は、波形整形回路9から入力されるパルス信号のパルス数をカウントする回転角検出手段としてのカウンタ12と、一定の時間間隔で割込信号を発生するタイマ13と、一定時間毎に発生するタイマ13からの割込信号の間隔で割り込み間のカウンタ値の差分を割ることによって、出力軸5の回転速度を算出する回転速度検出部(回転速度検出手段)14と、打撃検出部7の検出信号Sによって外部割り込みがかかって、カウンタ12のカウント値より打撃検出部7が前回打撃を検出してから次に打撃を検出するまでの間の出力軸5の回転角を算出する打撃間回転角算出部(打撃間回転角算出手段)15と、打撃間回転角算出部15で算出される各打撃間の回転角と、出力軸5が打撃された時点で回転速度検出部14が検出した打撃発生直後の出力軸5の回転速度から上述の式(1)、(2)に基づいてトルクを推定し、可変抵抗器(図示せず)の操作で設定され、A/D変換部16によりAD変換された後取り込まれる設定トルクの値まで達したと判断すると、駆動停止命令をI/O部17を介してモータ制御部11に通知しモータ1を停止させるトルク推定部18と、打撃間回転角算出部15からの呼び出しに応じ、回転速度検出部14の算出(検出)した回転速度から打撃発生があり得ない期間を求めて、打撃検出をその期間無視させる打撃無視期間設定部19と、上記期間をカウントするタイマ20と、で構成される。尚制御回路部10は実際的には例えば1チップのマイクロコンピュータにより構成される。
【0018】
次に、本実施形態の主要部である打撃無視期間設定部19の動作を図2,図3のフローチャートに基づいて詳説する。
【0019】
まず打撃間回転角算出部15は打撃検出部7の検出信号Sによって外部割り込みと言う形で起動されるが、打撃無視期間設定部19は打撃間回転角算出部15の起動に併せて打撃間回転角算出部15から呼び出される形で動作する。この打撃無視期間設定部19での処理では、回転速度検出部14からモータ1の回転速度ω[rad/sec]を得て、その回転速度でハンマ3がπ[rad]回転するのに要する時間π/ω[sec]に相当するカウント値より少し小さい値K/ωをタイマ20のレジスタに設定するとともに、タイマ20に対して割り込みを許可してカウントをスタートさせる。つまり無視期間を算出してその期間をタイマ20でカウントさせるである。同時に打撃検出部7の検出信号Sによる外部割り込みによって起動しないように外部割り込みを禁止するように打撃間回転角算出部15に指示する。そして設定されたカウント値のカウントが終了するとタイマ20は割込信号を打撃無視期間設定部19に出力して割り込みをかける。打撃無視期間設定部19はこの割り込みによる処理内で打撃検出部7の検出信号Sによる外部割込みを許可する。一方タイマ20は上記割込信号を出力した後、それ以後の割込信号出力を自ら禁止する。
【0020】
このように本実施形態では打撃検出部7が、打撃検出すると、その打撃検出後から、設定された打撃無視期間の間は外部割り込みが禁止され、この期間中に打撃検出があっても打撃間回転角算出部15は無視することになる。
【0021】
ここで上記の打撃無視期間は回転速度が大きいときには短く、小さいときは長くというように回転速度に応じて適した期間に設定される。
【0022】
而して本実施形態は、打撃検出直後の間違った打撃検出を無視することで、間違った打撃検出による打撃間回転角算出が無くなり、そのため打撃検出精度が向上し、打撃間回転角の精度も向上する。さらに、打撃検出による割り込みが頻繁に行われなくなるため、処理能力が低い低価格のマイクロコンピュータで制御回路部10を構築することができるようになる。
(実施形態2)
上記実施形態1は打撃無視期間を設定することで打撃検出直後の間違った打撃検出の影響を排除するものであったが、本実施形態は、図4に示すように打撃補正部は打撃間回転角算出部15とトルク推定部18との間に打撃補正部21を設け、打撃間回転角算出部15からの出力値を補正し、トルク推定部18に伝達する点に特徴がある。
【0023】
尚実施形態1と同じ構成要素には同じ符号を付し、説明は省略する。
【0024】
次に本実施形態の主要な構成である打撃補正部21の動作に付いて図5のフローチャートに基づいて説明する。
【0025】
まず打撃検出部7の検出信号Sによる外部割り込みにより打撃間回転角算出部15で打撃間回転角θの算出が行われ、この算出された打撃間回転角θの値が打撃補正部21に取り込まれる。
【0026】
打撃補正部21はこの打撃間回転角θの値が、所定の閾値たるθL以下の時はトルク推定処理を行わずに割り込み処理を終了する。
【0027】
このθLは打撃時のハンマ8の自由回転角πに相当する周波数ジェネレータ8のカウント値である。
【0028】
一方上記の打撃間回転角θの値がθを越えると打撃回数Niに1を加えた後、打撃間回転角θが1.5×θold(=前回の打撃検出時の打撃回転)を超過しているか否かを反転し、超過しているきには打撃回数Niに更に1を加える(打撃数を2回数える)とともに打撃間回転角θを半分にする。そしてθoldの値を打撃間回転角θの値とする。このθoldは前回の打撃検出時の打撃間回転として制御回路部10において保存される。
【0029】
このように打撃間回転角θの値が1.5×θoldを超過したときは打撃補正部21の処理によって打撃間回転角θの値が半分に補正され、この補正された値がトルク推定部18に与えられてトルク推定が行われることになる。
【0030】
一方1.5×θoldを超過しない場合には補正は行なわれずθoldの値を打撃間回転角θの値とした後、打撃間回転角θの値がトルク推定部18に与えられてトルク推定が行われることになる。
【0031】
従って、本実施形態によれば、打撃間回転角θの下限と、その値の推移から、間違って検出した打撃、検出し損ねた打撃を判別でき、それに基づいて打撃間回転角θを適正に補正でき、その結果打撃間回転角θの精度が向上し、トルク推定精度の向上をもたらすことになる。
(実施形態3)
本実施形態は、図6に示すように実施形態2の構成に加えて打撃周期計測手段たるタイマ20’を設け、このタイマ20’を利用して打撃周期をも取り込んでいる点が異なる。尚実施形態1,2と同じ構成要素には同じ符号を付し、説明を省略する。
【0032】
次に本実施形態の主要構成である打撃補正部21とタイマ20’の動作を図7のフローチャートに基づいて説明する。
【0033】
まず打撃検出部7の検出信号Sによる外部割り込みにより打撃間回転角算出部15は打撃間回転角θの算出が行われ、この算出された打撃間回転角θの値が打撃補正部21に取り込まれる。
【0034】
打撃補正部21は打撃周期Tをタイマ20’から出力される一定周期の信号から算出するとともに、打撃間回転角θと所定の閾値たるθLとを比較してθL未満の時はトルク推定処理を行わずに割り込み処理を終了する。ここでθLは実施形態2の場合と同様に打撃時のハンマ自由回転角πに相当する周波数ジェネレータ8のカウント値である。
【0035】
打撃間回転角θがθL より大きいときには打撃回数Niに1を加えるとともに打撃周期T>1.5×Toldの判定を行い、否の場合には、打撃間回転角θ>1.5×θoldの判定を行う。ここで打撃周期T>1.5×Told若しくは打撃間回転角θ>1.5×θoldの判定が成り立つ場合には打撃回数Niに更に1を加える(打撃数を2回数える)とともに、打撃間回転角θを半分にする。そしてθoldの値を打撃間回転角θの値とするとともにToldの値を打撃周期Tの値とする。
【0036】
このθoldは前回の打撃検出時の打撃間回転、Toldは前の打撃検出時の打撃周期で、夫々制御回路部10において保存される。
【0037】
このように打撃周期T>1.5×Told若しくは打撃間回転角θ>1.5×θoldの判定が成り立つ場合には打撃間回転角θの値が半分に補正され、この補正された値がトルク推定部18に与えられてトルク推定が行われることになる。
【0038】
一方何れの判定も否の場合には、補正は行なわれずθoldの値を打撃間回転角θの値とするとともにToldの値を打撃周期Tの値とした後、打撃間回転角θの値がトルク推定部18に与えられてトルク推定が行われることになる。
【0039】
従って本実施形態では、打撃間回転角θの下限と、その値の推移に加えて打撃間隔の変化も同時に考慮するため、更に打撃間回転角θの精度が向上することになる。
【0040】
【発明の効果】
請求項1の発明は、ハンマによって打撃され回転力が加えられる出力軸と、ハンマによる出力軸の打撃を検出する打撃検出手段とを備えているインパクト締め付け工具において、ハンマを駆動するモータの回転速度を検出する回転速度検出手段と、回転速度検出手段の検出した回転速度から打撃発生があり得ない期間を求め、該期間中における上記打撃検出手段による打撃検出を無視させる打撃無視期間設定手段とを備えたので、打撃検出直後の間違った打撃検出を無視してその影響を無くすことができ、そのため間違った打撃検出による打撃間回転角算出が無くなり、打撃検出精度が向上するとともに、打撃間回転角の精度も向上し、その結果トルク推定精度の向上をもたらし、しかも打撃検出割り込みが頻繁に呼び出されることが無くなるため、能力が低くより低価格のマイクロコンピュータで回路を構築することができるという効果がある。
【0041】
請求項2の発明は、ハンマによって打撃され回転力が加えられる出力軸と、ハンマによる出力軸の打撃を検出する打撃検出手段とを備えているインパクト締め付け工具において、上記打撃検出手段の打撃発生タイミングをもとに各打撃毎の出力軸の回転角を算出する打撃間回転角算出手段と、打撃間回転角算出手段から得られた打撃間回転角の値がある閾値以下の場合、誤った打撃検出を判定し無効な打撃と扱う打撃補正手段とを備えたので、間違って検出した打撃、検出し損ねた打撃を判別でき、それにより打撃間回転角を適正に補正することが可能となり、結果打撃間回転角の精度が向上し、その結果トルク推定精度の向上をもたらすという効果がある。
【0042】
請求項3の発明は、請求項2の発明において、上記打撃補正手段が、上記打撃間回転角算出手段から得られた前回の打撃間回転角と今回の打撃間回転角とを比較し、今回の値が大きい場合を打撃検出抜けと判断し、打撃間回転角を補正するので、打撃間回転角の値の推移から、間違って検出した打撃、検出し損ねた打撃を判別でき、それに基づいて打撃間回転角を適正に補正することが可能となるため、打撃間回転角の精度が向上し、トルク推定精度の向上をもたらすという効果がある。
【0043】
請求項4の発明は、請求項2の発明において、上記打撃検出手段が、検出した各打撃の周期を計測する打撃周期計測手段を持ち、上記打撃補正手段は、打撃周期計測手段からの打撃周期を基に、打撃の検出漏れ、誤った打撃検出を判定し打撃間回転角を補正するので、打撃間回転角の下限と、その値の推移に加えて打撃間隔の変化も同時に考慮することができ、そのため更に打撃間回転角の精度が向上し、トルク推定精度の更なる向上をもたらすという効果がある。
【図面の簡単な説明】
【図1】本発明は実施形態1の構成図である。
【図2】同上に用いる打撃無視期間設定部の動作説明用タイミングチャートである。
【図3】同上に用いるタイマの動作説明用タイミングチャートである。
【図4】本発明は実施形態2の構成図である。
【図5】同上に用いる打撃補正部の動作説明用タイミングチャートである。
【図6】本発明は実施形態3の構成図である。
【図7】同上に用いる打撃補正部の動作説明用タイミングチャートである。
【図8】従来例の課題の説明図である。
【符号の説明】
1 モータ
2 減速機
3 ハンマ
4 アンビル
5 出力軸
6 マイク
7 打撃検出器
8 周波数ジェネレータ
9 波形整形回路
10 制御回路部
11 モータ制御部
12 カウンタ
13 タイマ
14 回転速度検出部
15 打撃間回転角算出部
16 A/D変換部
17 I/O部
18 トルク推定部
19 打撃無視期間設定部
20 タイマ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to improvement of impact tightening tools such as impact drivers and impact wrenches.
[Prior art]
The impact driver, which is an impact tightening tool, is a tool that converts the rotation of the motor into a hammer hitting and tightening with its strong impact force. Due to its high workability of high speed rotation and high torque, it is a construction site, assembly factory, etc. Widely used in
[0003]
The present applicant has proposed a method for estimating the tightening torque from the rotational speed of the motor and the rotation of the motor between impacts as a method for controlling the tightening torque of the impact driver.
[0004]
This tightening torque estimation method is derived from the balance of kinetic energy for each impact, and the energy given to the anvil provided at the base of the output shaft by hammering is approximately equal to the energy consumed by tightening. This is a method for estimating the tightening torque from the relationship.
[0005]
As an example, it is assumed that the relationship between the screw rotation angle θ after seating determined by the member and the tightening torque T can be expressed by a function T = τ (θ) as shown in FIG. 1 … It is assumed that it occurred at the point of θ N. The value E 1 obtained by integrating the function τ in the interval [θ 1 , θ 2 ] is the energy consumed for the tightening work, and is equal to the energy given to the anvil due to the hammer hit generated at the θ 1 point. Therefore, the average torque <T n > in the interval [θ n , θ n + 1 ] is E n and Θ n = (θ n + 1 −θ n ),
<T n > = E n / Θ n (1)
It is obtained. In order to perform the tightening torque control, the driving of the motor may be stopped when this <T> becomes equal to or greater than the set torque Tset. E n is the rotation speed ω n , which is the output of the rotation speed detection means, and the known moment of inertia Ja of the anvil at the time of occurrence of the hit detected by the hit detection means.
E n = 1/2 × Ja × ω n 2 (2)
Θ can be easily obtained from the rotation angle detecting means.
[0006]
[Problems to be solved by the invention]
When obtaining the tightening torque by the method represented by the equation (1), a highly reliable impact detection means is essential. If the hit is missed, the rotation angle Θ between hits calculated at the next hit detection becomes a large value, and Equation (1) estimates a tightening torque smaller than the actual tightening torque. This means that in FIG. 8, when a hit at point θ 2 cannot be detected,
It can also be seen from the fact that <T 2 > is calculated not as E 2 / (θ 3 −θ 2 ) but as E 2 / (θ 3 −θ 1 ). For the same reason, when a hit that does not actually exist is detected by mistake, a tightening torque larger than the actual is estimated. As a result of erroneous tightening torque estimation, the member is damaged due to insufficient tightening or excessive tightening.
[0007]
The present invention has been made in view of the above-described problems, and an object of the present invention is to provide an impact tightening tool that eliminates the influence of a hit detection error and improves the hit detection accuracy.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, in the invention of claim 1, in an impact tightening tool comprising an output shaft that is struck by a hammer and to which a rotational force is applied, and an impact detection means that detects the impact of the output shaft by the hammer , Rotation speed detection means for detecting the rotation speed of the motor that drives the hammer, and a period during which no hit can occur is obtained from the rotation speed detected by the rotation speed detection means, and the detection of hitting by the hit detection means during the period is ignored. And a striking ignore period setting means.
[0009]
According to a second aspect of the present invention, in an impact tightening tool comprising an output shaft that is struck by a hammer and to which a rotational force is applied, and a impact detection means that detects the impact of the output shaft by the hammer, the impact generation timing of the impact detection means Based on the above, the rotation angle calculation means for calculating the rotation angle of the output shaft for each hit, and the rotation angle value between the hits obtained from the rotation angle calculation means between hits is below a certain threshold value It is characterized by comprising a hit correction means for determining detection and handling invalid hits.
[0010]
In the invention of claim 3, in the invention of claim 2, the hitting correction means compares the rotation angle between previous hits obtained from the rotation angle calculation means between hits with the current rotation angle between hits, When the value is large, it is determined that the hit detection is missing, and the rotation angle between hits is corrected .
[0011]
According to a fourth aspect of the present invention, in the second aspect of the invention, the hit detection means has a hit period measuring means for measuring the detected hit period, and the hit correction means is an hit period from the hit period measuring means. based on the detection omission of shot and correcting the rotational angle interval of the strikes by determining false hit detection.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
First, before entering the description of the embodiments of the present invention, the basic principle of the present invention will be described.
[0013]
When an impact tightening tool such as the impact driver of the present invention is applied with a force of a predetermined value or more between the hammer and the anvil, the hammer freely rotates with respect to the anvil, and the hammer has a predetermined angle α [rad] (depending on the mechanism). The hammer collides with the anvil after it rotates freely more than the fixed constant). In other words, there can be no impact within the period t during which the hammer rotates freely. This period ti [sec] can be obtained by ti = α / ω, assuming that the rotation speed of the hammer 3 is ω [rad / sec].
[0014]
In addition, if the hammer does not rotate by a predetermined angle α [rad], the hit does not occur. Therefore , the hit detection result at the rotation angle between hits less than α [rad] is naturally invalid. And, when the excessive rotation angle between hits is obtained compared to the previous rotation angle, it is assumed that the hit is missed. Similarly, when the hitting cycle becomes very long compared to the previous hitting cycle. It is thought that he failed to detect the blow.
[0015]
In view of this, the present invention appropriately performs the distribution processing of the rotation angle between hits in consideration of invalid hit detection results and missed hit detection.
[0016]
Hereinafter, the present invention will be described in detail with reference to embodiments.
(Embodiment 1)
FIG. 1 shows a schematic configuration diagram of an impact tightening tool of the present embodiment. The impact tightening tool includes a motor 1 as a driving means, a speed reducer 2 as a transmission mechanism that reduces the rotation of the motor 1 at a predetermined reduction ratio, and a hammer 3 through which the rotation of the motor 1 is transmitted via the speed reducer 2. , An output shaft 5 having an anvil 4 struck by the hammer 3, and a hammer 3 hitting the anvil 4 to which a rotational force is applied impactively, and a microphone for converting an impact sound of the anvil 4 by the hammer 3 into an electric signal 6, an impact detection unit (striking detection means) 7 for detecting that the anvil 4 is struck by the hammer 3 because the output voltage of the microphone 6 exceeds a predetermined threshold, and the motor 1. A frequency generator (FG) 8 as a rotation angle detection means for generating a signal having a frequency proportional to the number of rotations, and a waveform shaping of the signal generated by the frequency generator 8, Tightening torque is calculated from the output of the waveform shaping circuit 9 that outputs a pulse signal having the number of pulses corresponding to the turning angle, and the hit detection unit 7 and the waveform shaping circuit 9, and the motor 1 is turned on when the tightening torque exceeds a specified value. A control circuit unit 10 that generates a stop signal to be stopped and a drive stop command input from the control circuit unit 10 while rotating the motor 1 in response to a trigger (speed command) St input by an operation of an operation unit (not shown). And a motor control unit 11 for stopping the rotation of the motor 1 according to the above. Here, the motor 1 and the speed reducer 2 constitute a rotational drive unit.
[0017]
The control circuit unit 10 includes a counter 12 as a rotation angle detection unit that counts the number of pulses of the pulse signal input from the waveform shaping circuit 9, a timer 13 that generates an interrupt signal at a constant time interval, and a constant A rotation speed detector (rotation speed detection means) 14 for calculating the rotation speed of the output shaft 5 by dividing the difference in counter value between interrupts by the interval of the interrupt signal from the timer 13 generated every time, and the impact An external interrupt is generated by the detection signal S of the detection unit 7, and the rotation angle of the output shaft 5 is calculated from the count value of the counter 12 until the hit detection is detected after the hit detection unit 7 detects the previous hit. Inter-blow rotation angle calculation unit (inter-blow rotation angle calculation means) 15, the rotation angle between the hits calculated by the inter-blow rotation angle calculation unit 15, and the rotation speed detection unit when the output shaft 5 is hit 14 is A torque is estimated from the rotational speed of the output shaft 5 immediately after the occurrence of the hitting, based on the above formulas (1) and (2), set by operation of a variable resistor (not shown), and an A / D converter When it is determined that the value of the set torque to be taken in after AD conversion by 16 is reached, a torque estimation unit 18 that notifies the motor control unit 11 of a drive stop command via the I / O unit 17 and stops the motor 1; In accordance with a call from the rotation angle calculation unit 15 between hits, a hit disregard period setting unit that obtains a period during which no hit can occur from the rotation speed calculated (detected) by the rotation speed detection unit 14 and ignores the hit detection for that period. 19 and a timer 20 that counts the period. The control circuit unit 10 is actually constituted by a one-chip microcomputer, for example.
[0018]
Next, the operation of the hit disregard period setting unit 19 which is a main part of the present embodiment will be described in detail based on the flowcharts of FIGS.
[0019]
First, the rotation angle calculation unit 15 between strikes is activated in the form of an external interrupt in response to the detection signal S from the strike detection unit 7, but the impact ignore period setting unit 19 is activated in response to the activation of the rotation angle calculation unit 15 between strikes. It operates in a form called from the rotation angle calculation unit 15. In the process in the impact ignoring period setting unit 19, the time required for the rotation speed ω [rad / sec] of the motor 1 to be obtained from the rotation speed detection unit 14 and the hammer 3 to rotate π [rad] at the rotation speed. A value K / ω that is slightly smaller than the count value corresponding to π / ω [sec] is set in the register of the timer 20 , and the timer 20 is allowed to be interrupted to start counting. That the period is cause counted by the timer 20 calculates the ignore time. At the same time, the rotation angle calculation unit 15 is instructed to prohibit the external interruption so as not to be activated by the external interruption by the detection signal S of the hit detection unit 7. When the count of the set count value is completed, the timer 20 outputs an interrupt signal to the strike disregard period setting unit 19 to generate an interrupt. The hit ignoring period setting unit 19 permits an external interrupt by the detection signal S of the hit detection unit 7 within the processing by this interrupt. On the other hand, after outputting the interrupt signal, the timer 20 prohibits the output of the interrupt signal thereafter.
[0020]
As described above, in this embodiment, when the hit detection unit 7 detects a hit, after the hit is detected, external interruption is prohibited during the set ignore period , and even if hit detection is detected during this period, The rotation angle calculation unit 15 is ignored.
[0021]
Here, the hit disregard period is set to a period suitable for the rotation speed, such as short when the rotation speed is high and long when the rotation speed is low.
[0022]
Thus, in this embodiment, by ignoring the wrong hit detection immediately after hit detection, the calculation of the rotation angle between hits due to the wrong hit detection is eliminated, so that the hit detection accuracy is improved and the accuracy of the rotation angle between hits is also improved. improves. Furthermore, since interruption due to hit detection is not frequently performed, the control circuit unit 10 can be constructed with a low-cost microcomputer with low processing capability.
(Embodiment 2)
In the first embodiment, the influence of wrong hit detection immediately after hit detection is eliminated by setting the hit ignore period. In the present embodiment, the hit correction unit rotates between hits as shown in FIG. There is a feature in that a hitting correction unit 21 is provided between the angle calculation unit 15 and the torque estimation unit 18 to correct an output value from the rotation angle calculation unit 15 between hits and transmit it to the torque estimation unit 18.
[0023]
In addition, the same code | symbol is attached | subjected to the same component as Embodiment 1, and description is abbreviate | omitted.
[0024]
Next, the operation of the batting correction unit 21 which is the main configuration of the present embodiment will be described based on the flowchart of FIG.
[0025]
First, the rotation angle calculation unit 15 calculates the rotation angle θ between hits by an external interruption based on the detection signal S of the hit detection unit 7, and the calculated value of the rotation angle θ between hits is taken into the hitting correction unit 21. It is.
[0026]
The hit correction unit 21 ends the interrupt process without performing the torque estimation process when the value of the rotation angle θ between hits is equal to or less than the predetermined threshold value θ L.
[0027]
This θ L is a count value of the frequency generator 8 corresponding to the free rotation angle π of the hammer 8 at the time of impact.
[0028]
On the other hand, when the value of the rotation angle between hits θ exceeds θ L , after adding 1 to the number of hits Ni, the rotation angle between hits θ is 1.5 × θ old (= the hitting rotation angle at the time of the previous hit detection) the inverted whether exceeded, the excess in which the coming to add further 1 to hit number Ni is (obtain the number of striking 2 times) to halve the rotation angle θ between the striking together. The value of θ old is taken as the value of the rotation angle θ between hits. This θ old is stored in the control circuit unit 10 as the rotation angle between hits at the time of the previous hit detection.
[0029]
In this way, when the value of the rotation angle θ between hits exceeds 1.5 × θ old , the value of the rotation angle θ between hits is corrected to half by the processing of the hitting correction unit 21, and this corrected value is the torque estimation. The torque is estimated by being given to the unit 18.
[0030]
On the other hand, when 1.5 × θ old is not exceeded, correction is not performed and the value of θ old is set to the value of the rotation angle θ between hits, and then the value of the rotation angle θ between hits is given to the torque estimation unit 18 to An estimation will be made.
[0031]
Therefore, according to the present embodiment, it is possible to discriminate hits that have been mistakenly detected and hits that have been missed from the lower limit of the rotation angle θ between hits and the transition of the values, and appropriately set the rotation angle θ between hits accordingly. As a result, the accuracy of the rotation angle θ between hits is improved, and the torque estimation accuracy is improved.
(Embodiment 3)
As shown in FIG. 6, the present embodiment is different from the configuration of the second embodiment in that a timer 20 ′, which is a striking cycle measuring means, is provided and the striking cycle is taken in using the timer 20 ′. In addition, the same code | symbol is attached | subjected to the same component as Embodiment 1, 2, and description is abbreviate | omitted.
[0032]
Next, operations of the batting correction unit 21 and the timer 20 ′, which are main components of the present embodiment, will be described based on the flowchart of FIG.
[0033]
First, the external rotation angle calculation unit 15 calculates an inter-between rotation angle θ by an external interruption based on the detection signal S of the batting detection unit 7, and the calculated value of the inter-battery rotation angle θ is taken into the batting correction unit 21. It is.
[0034]
With striking correcting unit 21 calculates from the signal of a constant period outputted blow period T from the timer 20 ', the torque estimation when less than to theta L compares the rotation angle theta between striking with a predetermined threshold serving theta L Interrupt processing is terminated without processing. Here, θ L is the count value of the frequency generator 8 corresponding to the hammer free rotation angle π at the time of impact, as in the case of the second embodiment.
[0035]
When the rotation angle θ between hits is larger than θ L , 1 is added to the number of hits Ni and a determination is made that the hit period T> 1.5 × T old . If not, the rotation angle θ between hits> 1.5 × Determine θ old . Here, when the determination of hitting period T> 1.5 × T old or rotation angle between hits θ> 1.5 × θ old is satisfied, 1 is further added to the hit count Ni (the hit count is counted twice), The rotation angle θ between hits is halved. The value of θ old is set as the value of the rotation angle θ between hits, and the value of T old is set as the value of the hit period T.
[0036]
The theta old batting between the rotating angle of the previous strike detection, T old is hitting the period of time before the striking detection, Ru stored in the respective control circuit 10.
[0037]
As described above, when the determination of the striking cycle T> 1.5 × T old or the striking rotation angle θ> 1.5 × θ old is satisfied, the value of the striking rotation angle θ is corrected to half, and this correction is made. A value is given to the torque estimation unit 18 to perform torque estimation.
[0038]
On the other hand, if any determination is negative, correction is not performed and the value of θ old is set as the value of the rotation angle θ between hits and the value of T old is set as the value of the hit period T, and then the rotation angle θ between hits is changed. A value is given to the torque estimation unit 18 to perform torque estimation.
[0039]
Therefore, in the present embodiment, since the lower limit of the rotation angle θ between hits and the change of the hitting interval are considered in addition to the change in the value, the accuracy of the rotation angle θ between hits is further improved.
[0040]
【The invention's effect】
The invention according to claim 1 is an impact fastening tool comprising an output shaft that is struck by a hammer and to which a rotational force is applied, and an impact detection means that detects the impact of the output shaft by the hammer, and the rotational speed of the motor that drives the hammer A rotation speed detection means for detecting the stroke, and a hit ignore period setting means for determining a period during which no hit can occur from the rotation speed detected by the rotation speed detection means, and for ignoring hit detection by the hit detection means during the period. Because it is equipped, it is possible to ignore the wrong impact detection immediately after hit detection and eliminate the effect, so there is no calculation of the rotation angle between hits due to incorrect hit detection, and the accuracy of hit detection is improved, and the rotation angle between hits As a result, the torque estimation accuracy is improved and the hit detection interrupt is not called frequently. Therefore, there is an effect that it is possible ability to build a circuit from low-cost microcomputer low.
[0041]
According to a second aspect of the present invention, there is provided an impact tightening tool comprising an output shaft that is struck by a hammer and to which a rotational force is applied, and a impact detection means that detects the impact of the output shaft by the hammer. Based on the above, the rotation angle calculation means for calculating the rotation angle of the output shaft for each hit, and the rotation angle value between the hits obtained from the rotation angle calculation means between hits is below a certain threshold value It is equipped with a batting correction means that determines the detection and treats it as an invalid batting, so that it is possible to discriminate the batting that has been detected in error and the batting that has failed to be detected, thereby making it possible to properly correct the rotation angle between batting. The accuracy of the rotation angle between hits is improved, and as a result, the torque estimation accuracy is improved.
[0042]
According to a third aspect of the present invention, in the invention of the second aspect, the hit correction means compares the previous rotation angle between hits obtained from the rotation angle calculation means between the hits and the current rotation angle between hits. If the value is large, it is determined that the hit detection is missing, and the rotation angle between hits is corrected. Therefore, it is possible to discriminate hits that were mistakenly detected and hits that were missed from the transition of the rotation angle value between hits. Since it is possible to appropriately correct the rotation angle between hits, the accuracy of the rotation angle between hits is improved, and the torque estimation accuracy is improved.
[0043]
According to a fourth aspect of the present invention, in the second aspect of the present invention, the hit detection means includes a hit period measuring means for measuring the detected hit period, and the hit correction means receives the hit period from the hit period measuring means. Based on the above, the detection of the detection of a hit and the incorrect detection of the hit are judged and the rotation angle between hits is corrected. Therefore, in addition to the lower limit of the rotation angle between hits and the change in the value, the change in the hit interval should be considered at the same time Therefore, there is an effect that the accuracy of the rotation angle between hits is further improved, and the torque estimation accuracy is further improved.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a first embodiment.
FIG. 2 is a timing chart for explaining the operation of an impact ignoring period setting unit used in the above.
FIG. 3 is a timing chart for explaining the operation of a timer used in the above.
FIG. 4 is a configuration diagram of a second embodiment.
FIG. 5 is a timing chart for explaining the operation of the hitting correction unit used in the above.
FIG. 6 is a configuration diagram of the third embodiment.
FIG. 7 is a timing chart for explaining the operation of the batting correction unit used in the above.
FIG. 8 is an explanatory diagram of a problem of a conventional example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Motor 2 Reduction gear 3 Hammer 4 Anvil 5 Output shaft 6 Microphone 7 Impact detector 8 Frequency generator 9 Waveform shaping circuit 10 Control circuit part 11 Motor control part 12 Counter 13 Timer 14 Rotational speed detection part 15 Inter-between rotation angle calculation part 16 A / D conversion unit 17 I / O unit 18 Torque estimation unit 19 Stroke ignore period setting unit 20 Timer

Claims (4)

ハンマによって打撃され回転力が加えられる出力軸と、ハンマによる出力軸の打撃を検出する打撃検出手段とを備えているインパクト締め付け工具において、ハンマを駆動するモータの回転速度を検出する回転速度検出手段と、回転速度検出手段の検出した回転速度から打撃発生があり得ない期間を求め、該期間中における上記打撃検出手段による打撃検出を無視させる打撃無視期間設定手段とを備えたことを特徴とするインパクト締め付け工具。Rotation speed detection means for detecting the rotation speed of a motor for driving a hammer in an impact tightening tool comprising an output shaft that is struck by a hammer and to which a rotational force is applied and an impact detection means that detects the impact of the hammer by the output shaft And a hit disregard period setting means for determining a period during which no hit can occur from the rotation speed detected by the rotation speed detecting means, and ignoring hit detection by the hit detecting means during the period. Impact tightening tool. ハンマによって打撃され回転力が加えられる出力軸と、ハンマによる出力軸の打撃を検出する打撃検出手段とを備えているインパクト締め付け工具において、上記打撃検出手段の打撃発生タイミングをもとに各打撃毎の出力軸の回転角を算出する打撃間回転角算出手段と、打撃間回転角算出手段から得られた打撃間回転角の値がある閾値以下の場合、誤った打撃検出を判定し無効な打撃と扱う打撃補正手段とを備えたことを特徴とするインパクト締め付け工具。In an impact tightening tool comprising an output shaft that is struck by a hammer and to which a rotational force is applied, and a hammer detection means that detects the hammer of the output shaft by the hammer, each impact is determined based on the timing of the strike of the hammer detection means. When the rotation angle calculation means for calculating the rotation angle of the output shaft and the rotation angle value between the hits obtained from the rotation angle calculation means between the hits is less than a certain threshold value, it is determined that an incorrect hit is detected and invalid Impact tightening tool characterized in that it comprises a batting correction means for handling. 上記打撃補正手段は、上記打撃間回転角算出手段から得られた前回の打撃間回転角と今回の打撃間回転角とを比較し、今回の値が大きい場合を打撃検出抜けと判断し、打撃間回転角を補正することを特徴とする請求項2記載のインパクト締め付け工具。The batting correction means compares the previous batting rotation angle obtained from the batting rotation angle calculating means with the current batting rotation angle, and determines that the hit detection is missing when the current value is large. The impact tightening tool according to claim 2, wherein an inter- rotation angle is corrected . 上記打撃検出手段は、検出した各打撃の周期を計測する打撃周期計測手段を持ち、上記打撃補正手段は、打撃周期計測手段からの打撃周期を基に、打撃の検出漏れ、誤った打撃検出を判定し打撃間回転角を補正することを特徴とする請求項2記載のインパクト締め付け工具。The hit detection means has a hit period measuring means for measuring the detected hit period, and the hit correction means detects hit detection omission and erroneous hit detection based on the hit period from the hit period measuring means. impact tightening tool according to claim 2, wherein the determination to correct the rotation angle between the blow.
JP2000059492A 2000-03-03 2000-03-03 Impact tightening tool Expired - Lifetime JP3945114B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000059492A JP3945114B2 (en) 2000-03-03 2000-03-03 Impact tightening tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000059492A JP3945114B2 (en) 2000-03-03 2000-03-03 Impact tightening tool

Publications (2)

Publication Number Publication Date
JP2001246573A JP2001246573A (en) 2001-09-11
JP3945114B2 true JP3945114B2 (en) 2007-07-18

Family

ID=18579934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000059492A Expired - Lifetime JP3945114B2 (en) 2000-03-03 2000-03-03 Impact tightening tool

Country Status (1)

Country Link
JP (1) JP3945114B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102029586A (en) * 2009-10-01 2011-04-27 日立工机株式会社 Rotary striking tool

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006015438A (en) * 2004-06-30 2006-01-19 Matsushita Electric Works Ltd Impact fastening tool
JP4211744B2 (en) 2005-02-23 2009-01-21 パナソニック電工株式会社 Impact tightening tool
FR2944464B1 (en) * 2009-04-17 2011-04-08 Renault Georges Ets METHOD FOR AUTOMATICALLY ADAPTING THE SPINDLE OF A TOOL OF SUCCESSIVE PALLETS TOOL AND CORRESPONDING TOOLS.
EP2305430A1 (en) 2009-09-30 2011-04-06 Hitachi Koki CO., LTD. Rotary striking tool
JP5366009B2 (en) * 2009-09-30 2013-12-11 日立工機株式会社 Rotating hammer tool
JP5540635B2 (en) * 2009-09-30 2014-07-02 日立工機株式会社 Rotating hammer tool
JP5784473B2 (en) * 2011-11-30 2015-09-24 株式会社マキタ Rotating hammer tool
JP6646858B2 (en) * 2016-11-30 2020-02-14 パナソニックIpマネジメント株式会社 Impact rotary tool

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56129194U (en) * 1980-02-29 1981-10-01
JPS5815678A (en) * 1981-07-17 1983-01-29 株式会社小松製作所 Clamping device
JPS63185585A (en) * 1987-01-28 1988-08-01 不二空機株式会社 Clamping controller for torque wrench
JP3073617B2 (en) * 1992-12-03 2000-08-07 株式会社マキタ Tightening tool
JP2677192B2 (en) * 1994-05-12 1997-11-17 日産自動車株式会社 Impact type screw tightening device
JPH09285974A (en) * 1996-04-18 1997-11-04 Yamazaki Haguruma Seisakusho:Kk Impact wrench fastening controlling method and device thereof
JPH10109277A (en) * 1996-10-03 1998-04-28 Nippon Electric Ind Co Ltd Method and device for fastening screw
JP3743188B2 (en) * 1999-01-22 2006-02-08 日立工機株式会社 Rotating hammer tool

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102029586A (en) * 2009-10-01 2011-04-27 日立工机株式会社 Rotary striking tool
CN102029586B (en) * 2009-10-01 2014-04-09 日立工机株式会社 Rotary striking tool

Also Published As

Publication number Publication date
JP2001246573A (en) 2001-09-11

Similar Documents

Publication Publication Date Title
JP3906606B2 (en) Impact rotary tool
JP4412377B2 (en) Impact rotary tool
EP3115154B1 (en) Impact rotary tool
US6968908B2 (en) Power tools
JP4211744B2 (en) Impact tightening tool
JP2005118910A (en) Impact rotary tool
JP4211676B2 (en) Impact rotary tool
JP3903976B2 (en) Tightening tool
EP2046535B1 (en) A method and apparatus for determining when a threaded fastener has been tightened to a predetermined tightness
JP3945114B2 (en) Impact tightening tool
JP3743188B2 (en) Rotating hammer tool
JP4936462B2 (en) Tightening tool
JP4293222B2 (en) Impact tools
JP2006015438A (en) Impact fastening tool
JP5053882B2 (en) Impact rotary tool
JP5144200B2 (en) Impact rotary tool
JP2019013990A (en) Impact rotary tool
JP2009083041A (en) Impact rotating tool
JP2013107165A (en) Impact rotary tool
JP5374093B2 (en) Impact rotary tool
JP2018089705A (en) Impact rotary tool
JPS62130184A (en) Controller for clamping force of impact wrench
JP2002321165A (en) Hand impact wrench
JP2017213619A (en) tool
JPH0536195B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060905

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070320

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070402

R151 Written notification of patent or utility model registration

Ref document number: 3945114

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100420

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100420

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100420

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110420

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130420

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130420

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140420

Year of fee payment: 7

EXPY Cancellation because of completion of term