JP3944783B2 - Heat transfer enhancement device for natural convection boundary layer - Google Patents

Heat transfer enhancement device for natural convection boundary layer Download PDF

Info

Publication number
JP3944783B2
JP3944783B2 JP2003334310A JP2003334310A JP3944783B2 JP 3944783 B2 JP3944783 B2 JP 3944783B2 JP 2003334310 A JP2003334310 A JP 2003334310A JP 2003334310 A JP2003334310 A JP 2003334310A JP 3944783 B2 JP3944783 B2 JP 3944783B2
Authority
JP
Japan
Prior art keywords
heat transfer
flow
heat
radiating surface
promoting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003334310A
Other languages
Japanese (ja)
Other versions
JP2005069661A (en
Inventor
俊博 辻
剛 梶谷
Original Assignee
俊博 辻
剛 梶谷
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 俊博 辻, 剛 梶谷 filed Critical 俊博 辻
Priority to JP2003334310A priority Critical patent/JP3944783B2/en
Publication of JP2005069661A publication Critical patent/JP2005069661A/en
Application granted granted Critical
Publication of JP3944783B2 publication Critical patent/JP3944783B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Description

発明の詳細な説明Detailed Description of the Invention

本発明は,電力施設などの大型構造物(建造物)や原子力発電における使用済燃料の貯蔵容器などを自然対流乱流熱伝達によって除熱する際に極めて有用な伝熱促進装置である。  The present invention is a heat transfer promotion device that is extremely useful when heat is removed from a large structure (building) such as a power facility or a spent fuel storage container in nuclear power generation by natural convection turbulent heat transfer.

放熱面(伝熱面を含む)に沿って,加熱された流体の密度が小さくなり,浮力を生じることによって,下から上に流れる周辺流体(空気,水等)が形成される。この流れを自然対流境界層と呼ぶが,その伝熱促進には,強制対流と同様にこれまでは,放熱面上にフィン(拡大放熱面)を直接設置する方法が採用されている。この場合,自然対流乱流境界層については,その乱流特性からフィン高さを境界層厚さ(約20〜30cm)以上に突出させなければ,効果的な伝熱促進を図ることができない。また,フィンの材質としては放熱面と同じものか,熱伝導率の高いものを選択する必要がある。これではフィンの加工に手間とコストがかかり,放熱面自体のコンパクト化も困難になる。また,放熱面にフィン加工を施すことが困難な場合がある。したがって,フィンに代わる伝熱促進法で,より効果があり,製作・コストの面でも有利な方法が望まれていた。これを解決する手段として,板等を放熱面から離して境界層に挿入することことにより,周辺流体の流れを偏向させて伝熱を促進することが行われている。図1で示すような板1(以下,流れ偏向板という)を重力加速度gの向きに対して一定の角度で支持材2および3で支持して自然対流境界層内に挿入すると,流れ偏向板を迂回して境界層流れが放熱面4に対して外向きに偏向し,矢印で示すような大きな渦(以下,横渦という)を生じる。この横渦により境界層外縁の低温の周囲流体が流れ偏向板の下流において,放熱面近傍に運ばれるため冷却が顕著になる。  Along the heat radiating surface (including the heat transfer surface), the density of the heated fluid decreases and buoyancy is generated, thereby forming a peripheral fluid (air, water, etc.) that flows from the bottom to the top. This flow is called the natural convection boundary layer. To promote heat transfer, a method of directly installing fins (enlarged heat radiating surface) on the heat radiating surface has been adopted so far, as with forced convection. In this case, for the natural convection turbulent boundary layer, effective heat transfer cannot be promoted unless the fin height protrudes beyond the boundary layer thickness (about 20 to 30 cm) due to its turbulent characteristics. In addition, it is necessary to select the same fin material as that of the heat radiating surface or one having high thermal conductivity. This requires labor and cost to process the fins, and makes it difficult to make the heat dissipation surface compact. Also, it may be difficult to fin the heat dissipation surface. Therefore, a heat transfer acceleration method that replaces fins is more effective, and a method that is advantageous in terms of production and cost has been desired. As a means for solving this problem, by inserting a plate or the like into the boundary layer away from the heat radiating surface, the flow of the surrounding fluid is deflected to promote heat transfer. When a plate 1 (hereinafter referred to as a flow deflection plate) as shown in FIG. 1 is supported by support members 2 and 3 at a fixed angle with respect to the direction of gravitational acceleration g and inserted into a natural convection boundary layer, a flow deflection plate is obtained. The boundary layer flow is deflected outward with respect to the heat radiating surface 4 by detouring, and a large vortex (hereinafter referred to as a horizontal vortex) as shown by an arrow is generated. This transverse vortex causes the low-temperature ambient fluid at the outer edge of the boundary layer to flow to the vicinity of the heat radiating surface downstream of the deflecting plate, so that cooling becomes significant.

発明が解決しようとする課題Problems to be solved by the invention

図1に示すように,放熱面幅方向に長い単一の流れ偏向板によって横渦を発生させると,周辺流体が流れ偏向板を越えた直後の領域では,確かに局所熱伝達率が向上するが,さらに下流(上方)になるとこの効果は薄れ,ひいては流れ偏向板を入れない場合よりも熱伝達率が小さくなってしまうという欠点がある。これは流れ偏向板を挿入したことにより,挿入位置より下流で対流自体が停滞し,放熱面近傍の流体が流れにくくなることが原因である。したがって,流れ偏向板から離れた領域でも熱伝達率が劣化することなく,広い有効流域をもたらす新たな伝熱促進装置が望まれていた。  As shown in Fig. 1, when a lateral vortex is generated by a single flow deflector that is long in the width direction of the heat dissipation surface, the local heat transfer rate is certainly improved in the region immediately after the surrounding fluid has passed the flow deflector. However, this effect is diminished further downstream (upward), with the disadvantage that the heat transfer coefficient becomes smaller than when the flow deflector is not inserted. This is due to the fact that the convection itself stagnates downstream from the insertion position due to the insertion of the flow deflection plate, making it difficult for the fluid near the heat dissipation surface to flow. Therefore, there has been a demand for a new heat transfer acceleration device that provides a wide effective flow area without deteriorating the heat transfer coefficient even in a region away from the flow deflector.

課題を解決するための手段Means for solving the problem

請求項1は,放熱面に沿って下から上に流れる周辺流体が形成する自然対流境界層に,上縁が放熱面に対して近く,下縁が放熱面に対して遠くなるように傾けた板を,放熱面から離して設置することにより周辺流体の流れを偏向させ,高温流体を放熱面から離れる方向に排出するとともに境界層外層の低温流体を巻き込んで,放熱面からの伝熱を促進させる伝熱促進装置であって,前記流れ偏向板は,放熱面の幅方向に間隙を設けて複数枚水平に並べられていることを特徴とする伝熱促進装置である。放熱面幅方向に間隙を設けた流れ偏向板を用いることによって,放熱面幅方向に長い単一の流れ偏向板を用いた場合より大幅な伝熱促進を図ることができる。しかも,流れ偏向板下流における対流の停滞がなく,熱伝達率の劣化も生じない。
請求項2は,流れ偏向板を放熱面の上下方向に間隙を設けて複数組平行に並べられていることを特徴とする請求項1の伝熱促進装置である。このような板列を放熱面高さ方向に一定間隔で複数段設置することで,周辺流体の広い流域にわたる放熱面の伝熱促進が可能になる。
請求項3は,放熱面に近い流れ偏向板の上縁と放熱面との距離が5mm〜10mmである請求項1または請求項2の伝熱促進装置である。流れ偏向板を放熱面の近くに設置し,放熱面に近い流れ偏向板の上縁と放熱面との距離Cを変化させて流れ偏向板直後の伝熱量の変化を調べ,図2に示した。伝熱量の変化は,あるCの値における熱伝達率(伝熱量と温度差の比)hを,Cの値を変化させた範囲における最大値hmaxで規格化して表した。図2に示すように,放熱面に近い流れ偏向板の上縁と放熱面との距離が5mm〜10mmのとき,伝熱量が最も増加することが確認された。
請求項4は,流れ偏向板の角度が,下方向を0°として30°〜60°の範囲にある請求項1または請求項2の伝熱促進装置である。下方向を0°として,流れ偏向板の角度φを変化させて流れ偏向板直後の伝熱量の変化を調べ,図2に示した。伝熱量の変化は,あるφの値における熱伝達率hを,φの値を変化させた範囲における最大値hmaxで規格化して表した。図2に示すように,流れ偏向板の角度が30°〜60°のとき,流れ偏向板近傍において,境界層流れが外向きに偏向し,大規模な横渦を形成するとともに,境界層外縁の低温流体が流れ偏向板下流の放熱面近傍に運ばれ,伝熱量が最も増加することが確認された。
請求項5は,流れ偏向板の縦の長さが,50mm〜150mmの範囲にある請求項1または請求項2の伝熱促進装置である。流れ偏向板の縦の長さHを変化させて流れ偏向板直後の伝熱量の変化を調べ,図2に示した。伝熱量の変化は,あるHの値における熱伝達率hを,Hの値を変化させた範囲における最大値hmaxで規格化してある。図2に示すように,その長さが50mm〜150mmのとき,伝熱量が最も増加することが確認された。
請求項6は,流れ偏向板の横幅と間隙の比が2:1から1:2の範囲にある請求項1または請求項2の伝熱促進装置である。放熱面幅方向の流れ偏向板に間隙を設けることによって,流れ偏向板下流で停滞する対流と間隙を通る対流を混合させ一層の伝熱促進を図ることができる。しかも,縦渦の運動によって流れ偏向板下流における対流の停滞が減少し,熱伝達率の劣化も生じない。流れ偏向板の横幅と間隙の比を変化させて伝熱量の変化を調べたところ,流れ偏向板の横幅と間隙の比を2:1から1:2とするとき,伝熱量が最も増加することが確認された。
請求項7は,流れ偏向板の上下の間隙と各流れ偏向板の縦の長さの比が,5:1から8:1の範囲にある請求項2の伝熱促進装置である。流れ偏向板の上下の間隙と各流れ偏向板の縦の長さの比を変化させて,放熱面全体の伝熱量の変化を比較したところ,流れ偏向板の上下の間隙と各流れ偏向板の縦の長さの比が5:1から8:1とするとき,放熱面の広範な流れ領域で伝熱量が増加することが確認された。
Claim 1 tilts the natural convection boundary layer formed by the peripheral fluid flowing from the bottom to the top along the heat dissipation surface so that the upper edge is close to the heat dissipation surface and the lower edge is far from the heat dissipation surface Placing the plate away from the heat radiating surface deflects the flow of the surrounding fluid, discharges the high temperature fluid away from the heat radiating surface, and entrains the low temperature fluid in the outer boundary layer to promote heat transfer from the heat radiating surface In the heat transfer promoting device, a plurality of the flow deflection plates are arranged horizontally with a gap in the width direction of the heat radiating surface. By using a flow deflecting plate having a gap in the heat radiating surface width direction, heat transfer can be promoted significantly more than when a single flow deflecting plate long in the heat radiating surface width direction is used. Moreover, there is no stagnation of convection downstream of the flow deflection plate, and heat transfer coefficient does not deteriorate.
A second aspect of the present invention is the heat transfer promoting device according to the first aspect, wherein a plurality of sets of flow deflecting plates are arranged in parallel with a gap in the vertical direction of the heat radiating surface. By installing a plurality of such rows of plates at regular intervals in the height direction of the heat dissipation surface, it is possible to promote heat transfer on the heat dissipation surface over a wide basin of the surrounding fluid.
According to a third aspect of the present invention, the distance between the upper edge of the flow deflector near the heat radiating surface and the heat radiating surface is 5 mm to 10 mm. Fig. 2 shows the change in the amount of heat transfer immediately after the flow deflector by installing a flow deflector near the heat dissipating surface and changing the distance C between the upper edge of the flow deflector close to the heat dissipating surface and the heat dissipating surface. . The change in the heat transfer amount was expressed by normalizing the heat transfer coefficient (ratio of heat transfer amount and temperature difference) h at a certain C value with the maximum value h max in the range in which the C value was changed. As shown in FIG. 2, it was confirmed that the amount of heat transfer increased most when the distance between the upper edge of the flow deflector near the heat radiating surface and the heat radiating surface was 5 mm to 10 mm.
A fourth aspect of the present invention is the heat transfer promoting device according to the first or second aspect, wherein the angle of the flow deflection plate is in the range of 30 ° to 60 ° with 0 ° in the downward direction. The change in the amount of heat transfer immediately after the flow deflection plate was investigated by changing the angle φ of the flow deflection plate with the downward direction being 0 °, and is shown in FIG. The change in the amount of heat transfer was expressed by normalizing the heat transfer coefficient h at a certain φ value with the maximum value h max in the range in which the φ value was changed. As shown in FIG. 2, when the angle of the flow deflector is 30 ° to 60 °, the boundary layer flow is deflected outward in the vicinity of the flow deflector to form a large lateral vortex, and the boundary layer outer edge It was confirmed that the low-temperature fluid flowed and was carried to the vicinity of the heat radiating surface downstream of the deflection plate, and the amount of heat transfer increased most.
A fifth aspect of the present invention is the heat transfer promoting device according to the first or second aspect, wherein the vertical length of the flow deflection plate is in the range of 50 mm to 150 mm. The change in the amount of heat transfer immediately after the flow deflection plate was examined by changing the vertical length H of the flow deflection plate, and is shown in FIG. The change in the amount of heat transfer is standardized by the maximum value h max in the range in which the value of H is changed with respect to the heat transfer coefficient h at a certain value of H. As shown in FIG. 2, it was confirmed that the heat transfer amount increased most when the length was 50 mm to 150 mm.
A sixth aspect of the present invention is the heat transfer promoting device according to the first or second aspect, wherein the ratio of the lateral width and the gap of the flow deflection plate is in the range of 2: 1 to 1: 2. By providing a gap in the flow deflection plate in the width direction of the heat radiating surface, the convection stagnating downstream of the flow deflection plate and the convection passing through the gap can be mixed to further promote heat transfer. In addition, the movement of the longitudinal vortex reduces stagnation of the convection downstream of the flow deflector and does not cause deterioration of the heat transfer coefficient. When the ratio of the horizontal width and gap of the flow deflection plate was changed and the change in the heat transfer amount was examined, the amount of heat transfer increased most when the ratio of the horizontal width and gap of the flow deflection plate was changed from 2: 1 to 1: 2. Was confirmed.
A seventh aspect of the present invention is the heat transfer promoting device according to the second aspect, wherein the ratio of the upper and lower gaps of the flow deflection plates to the vertical length of each flow deflection plate is in the range of 5: 1 to 8: 1. The ratio of the vertical gap of each flow deflection plate and the vertical length of each flow deflection plate was changed, and the change in heat transfer across the heat radiating surface was compared. It was confirmed that the amount of heat transfer increased in a wide flow region on the heat radiating surface when the ratio of vertical length was 5: 1 to 8: 1.

図3から6により,本発明に係る伝熱促進装置の第1の形態を説明する。  A first embodiment of the heat transfer promoting device according to the present invention will be described with reference to FIGS.

図3は複数枚の流れ偏向板1を支持材2および3で支持して,放熱面4の幅方向に並べて構成した伝熱促進装置の斜視図であり,図4は正面図,図5は側面図である。図6は本発明に係る伝熱促進装置を設置することで形成される流れ場の概念図である。  FIG. 3 is a perspective view of a heat transfer facilitating device configured by supporting a plurality of flow deflecting plates 1 with support members 2 and 3 and arranging them in the width direction of the heat radiating surface 4, FIG. 4 is a front view, and FIG. It is a side view. FIG. 6 is a conceptual diagram of a flow field formed by installing the heat transfer promoting device according to the present invention.

図3,4に示すように,上縁が放熱面4に対して近く,下縁が遠くなるように傾けた複数枚の流れ偏向板1を放熱面4の幅方向に間隙を設けて支持材2に取り付け,伝熱促進装置を構成する。縦の長さ50mm〜150mmの流れ偏向板1と放熱面4との距離を5mm〜10mmとし,放熱面の大きさに応じて複数枚の流れ偏向板を取り付ける。流れ偏向板の横幅と間隙長さの比は1:1が望ましいが,2:1から1:2の範囲であればよい。流れ偏向板の長さは横幅の0.8〜2.0倍の範囲とする。流れ偏向板の傾きは放熱面の下方向(重力加速度gの方向)を0°として,45°が望ましいが,30°〜60°の範囲であればよい。そして,図5に示すように伝熱促進装置の支持材3を用いて,伝熱促進装置を境界層外から放熱面4近くに固定する。  As shown in FIGS. 3 and 4, a plurality of flow deflecting plates 1 inclined so that the upper edge is close to the heat radiating surface 4 and the lower edge is far away are provided with a gap in the width direction of the heat radiating surface 4. 2 is installed and the heat transfer promotion device is constructed. The distance between the flow deflection plate 1 having a vertical length of 50 mm to 150 mm and the heat radiation surface 4 is set to 5 mm to 10 mm, and a plurality of flow deflection plates are attached according to the size of the heat radiation surface. The ratio of the lateral width of the flow deflector and the gap length is preferably 1: 1, but may be in the range of 2: 1 to 1: 2. The length of the flow deflection plate is in the range of 0.8 to 2.0 times the lateral width. The inclination of the flow deflection plate is preferably 45 °, with the downward direction of the heat radiating surface (the direction of gravitational acceleration g) being 0 °, but may be in the range of 30 ° to 60 °. Then, as shown in FIG. 5, the heat transfer promoting device is fixed near the heat radiating surface 4 from the outside of the boundary layer by using the support material 3 of the heat transfer promoting device.

図7により,本発明に係る伝熱促進装置の第2の形態を説明する。  With reference to FIG. 7, a second embodiment of the heat transfer promoting device according to the present invention will be described.

図7は複数枚の流れ偏向板1を支持材2および3で支持して,放熱面4の幅方向に並べて構成した伝熱促進装置(発明の実施の第1の形態)を放熱面高さ方向に複数段設置した斜視図である。上下に並べた流れ偏向板の各組の間隙と各流れ偏向板の縦の長さの比は,5:1から8:1の範囲が望ましい。  FIG. 7 shows a heat transfer promoting device (first embodiment of the invention) in which a plurality of flow deflecting plates 1 are supported by supporting members 2 and 3 and arranged in the width direction of the heat radiating surface 4. It is the perspective view which installed the multistage in the direction. The ratio of the gap between each pair of flow deflection plates arranged vertically and the vertical length of each flow deflection plate is preferably in the range of 5: 1 to 8: 1.

発明の効果The invention's effect

本発明に係る伝熱促進装置を自然対流乱流境界層内に挿入することで,流れ偏向板近傍において,境界層流れが外向きに偏向し,大規模な横渦を形成するとともに,境界層外縁の低温流体が伝熱促進装置下流の放熱面近傍に運ばれる(図6の破線と矢印で示した流れ)。一方,放熱面幅方向に並べた流れ偏向板の間隙部を通過した流れが放熱面幅方向に偏向し,縦渦を形成する。これら一連の流体運動によって,境界層外縁の低温流体が流れ偏向板の存在する領域で放熱面近傍に運ばれるとともに,放熱面近傍の高温流体が流れ偏向板の間隙部において,縦渦の運動によって放熱面から離れる方向に向かう(図6の実線と矢印で示した流れ)。その結果として,放熱面幅方向に長い単一の流れ偏向板を用いた場合より大幅な伝熱促進を図ることができる。しかも,縦渦の運動によって流れ偏向板下流における対流の停滞が減少することによる熱伝達率の劣化も生じない。さらに,このような板列を図7に示すように放熱面高さ方向に一定間隔で複数段設置すれば,周辺流体の広い流域にわたる放熱面の伝熱促進が可能になる。  By inserting the heat transfer facilitating device according to the present invention into the natural convection turbulent boundary layer, the boundary layer flow is deflected outward in the vicinity of the flow deflector plate to form a large-scale transverse vortex, and the boundary layer The low-temperature fluid at the outer edge is carried to the vicinity of the heat radiating surface downstream of the heat transfer promoting device (flow indicated by broken lines and arrows in FIG. 6). On the other hand, the flow that has passed through the gaps of the flow deflectors arranged in the width direction of the heat radiating surface is deflected in the width direction of the heat radiating surface, forming a vertical vortex. Through this series of fluid movements, the low temperature fluid at the outer edge of the boundary layer is carried to the vicinity of the heat radiating surface in the region where the flow deflector exists, and the high temperature fluid near the heat radiating surface flows along the gap of the deflecting plate due to the movement of the vertical vortex Heading away from the heat dissipation surface (flow indicated by solid line and arrow in FIG. 6). As a result, the heat transfer can be greatly accelerated compared with the case where a single flow deflector plate that is long in the width direction of the heat radiating surface is used. Moreover, there is no deterioration in the heat transfer coefficient due to the decrease in convection stagnation downstream of the flow deflection plate due to the movement of the vertical vortex. Further, if such a plate array is installed in a plurality of stages at regular intervals in the heat radiation surface height direction as shown in FIG. 7, it is possible to promote heat transfer on the heat radiation surface over a wide flow area of the surrounding fluid.

図8に,本発明に係る第1の形態の伝熱促進装置を原子力発電における使用済燃料の円筒貯蔵容器(キャスク,高さ約5m,直径約1.5m)に対して用いた例を示す。貯蔵容器(放熱面)4の周囲に,流れ偏向板1を円形の支持材2に複数枚取り付け,それを支持材3と支柱5によって設置する。流れ偏向板は金属であることが望ましいが,表面が平滑で耐熱性,耐久性があれば他の材料でもよい。流れ偏向板1枚の横幅および放熱面幅方向の間隙を約100mm,流れ偏向板と放熱面との距離を約5mm,流れ偏向板の傾きを約45°に設置した場合の伝熱量の変化を図9に示した。図9は,放熱面のある高さxを実験に用いた放熱面高さL(=4m)で規格化したx/Lにおいて,熱伝達率hが流れ偏向板を設置しない場合の自然対流の熱伝達率hに対してどのように変化するかを示した実験データである。なお,図中の一点鎖線は流れ偏向板の設置位置を示す。図9に示したように,放熱面幅方向に間隙を設けた流れ偏向板を用いることで,放熱面幅方向に長い単一の流れ偏向板を用いた場合より大幅な伝熱促進を図ることができる。しかも,流れ偏向板下流における熱伝達率の劣化も生じない。FIG. 8 shows an example in which the heat transfer promoting device of the first embodiment according to the present invention is used for a cylindrical storage container (cask, height of about 5 m, diameter of about 1.5 m) of spent fuel in nuclear power generation. . Around the storage container (heat radiating surface) 4, a plurality of flow deflecting plates 1 are attached to a circular support member 2, and are installed by the support member 3 and the column 5. The flow deflector plate is preferably made of metal, but other materials may be used as long as the surface is smooth, heat resistant and durable. Change in heat transfer when the width of one flow deflection plate and the gap in the width direction of the heat dissipation surface is about 100 mm, the distance between the flow deflection plate and the heat dissipation surface is about 5 mm, and the inclination of the flow deflection plate is about 45 ° It is shown in FIG. FIG. 9 shows the natural convection in the case where the heat transfer rate h flows and the deflection plate is not installed at x / L, where the height x with the heat radiating surface is normalized by the heat radiating surface height L (= 4 m) used in the experiment. experimental data showing how the changes with respect to the heat transfer coefficient h 0. In addition, the dashed-dotted line in a figure shows the installation position of a flow deflection plate. As shown in FIG. 9, by using a flow deflector with a gap in the heat radiating surface width direction, heat transfer can be promoted significantly more than when a single flow deflector plate long in the heat radiating surface width direction is used. Can do. Moreover, there is no deterioration of the heat transfer coefficient downstream of the flow deflection plate.

図10に,本発明に係る第2の形態の伝熱促進装置を原子力発電における使用済燃料の円筒貯蔵容器(キャスク,高さ約5m,直径約1.5m)に対して用いた例を示す。貯蔵容器(放熱面)4の周囲に,流れ偏向板1を円形の支持材2に複数枚取り付けたもの(実施例1における形態)を放熱面高さ方向に一定間隔で支持材3と支柱5によって複数段設置する。この発明の実施の第2の形態について,500mmの間隔で2段設置した場合の伝熱量の変化を図11に示した。図11は,放熱面のある高さxを実験に用いた放熱面高さL(=4m)で規格化したx/Lにおいて,熱伝達率hが流れ偏向板を設置しない場合の自然対流の熱伝達率hに対してどのように変化するかを示した実験データである。図中の一点鎖線は流れ偏向板の設置位置を示す。図11に示したように,放熱面幅方向に間隙を設けた流れ偏向板を放熱面高さ方向に2段設置することで,1段設置した場合に比べて,放熱面高さ方向のより広範な領域で伝熱促進を図ることができる。FIG. 10 shows an example in which the heat transfer promoting device according to the second embodiment of the present invention is used for a cylindrical storage container (cask, height of about 5 m, diameter of about 1.5 m) of spent fuel in nuclear power generation. . Around the storage container (heat dissipating surface) 4, a plurality of flow deflecting plates 1 attached to a circular support member 2 (form in the first embodiment) and the support member 3 and the column 5 at regular intervals in the heat dissipating surface height direction. By installing multiple stages. With respect to the second embodiment of the present invention, the change in heat transfer when two stages are installed at intervals of 500 mm is shown in FIG. FIG. 11 shows the natural convection in the case where the heat transfer rate h flows and the deflection plate is not installed at x / L where the height x having the heat dissipation surface is normalized by the heat dissipation surface height L (= 4 m) used in the experiment. experimental data showing how the changes with respect to the heat transfer coefficient h 0. A one-dot chain line in the figure indicates an installation position of the flow deflector. As shown in FIG. 11, by installing two stages of flow deflectors with a gap in the width direction of the heat radiating surface in the height direction of the heat radiating surface, compared to the case of installing one stage, Heat transfer can be promoted in a wide area.

放熱面幅方向に長い単一の流れ偏向板によって生じる横渦を説明する図である。It is a figure explaining the transverse vortex produced by the single flow deflection | deviation plate long in a thermal radiation surface width direction. 流れ偏向板上縁と放熱面の距離,流れ偏向板と放熱面のなす角および流れ偏向板の縦の長さを変化させた場合の伝熱量の変化を示した図である。It is the figure which showed the change of the amount of heat transfer when changing the distance of the upper edge of a flow deflection plate and a heat radiating surface, the angle | corner which a flow deflection plate and a heat radiating surface make, and the vertical length of a flow deflection plate. 本発明に係る第1の形態の伝熱促進装置で,流れ偏向板と放熱面の位置を示した斜視図である。It is the perspective view which showed the position of the flow deflection plate and the heat radiating surface with the heat transfer promotion apparatus of the 1st form which concerns on this invention. 本発明に係る第1の形態の伝熱促進装置で,流れ偏向板と放熱面の位置を示した正面図である。It is the heat transfer promotion apparatus of the 1st form which concerns on this invention, and is the front view which showed the position of the flow deflection plate and the heat radiating surface. 本発明に係る第1の形態の伝熱促進装置で,流れ偏向板と放熱面の位置を示した側面図である。It is the side view which showed the position of the flow deflection plate and the heat radiating surface in the heat transfer promotion apparatus of the 1st form which concerns on this invention. 本発明に係る流れ偏向板によって生じる横渦と縦渦を説明する図である。It is a figure explaining the horizontal vortex and vertical vortex which arise with the flow deflection | deviation plate which concerns on this invention. 本発明に係る第2の形態の伝熱促進装置であり,流れ偏向板を放熱面高さ方向に複数段設置した場合の斜視図である。It is a heat transfer promotion apparatus of the 2nd form which concerns on this invention, and is a perspective view at the time of installing the flow deflection plate in multiple steps | paragraphs in the heat sink surface height direction. 本発明に係る第1の形態の伝熱促進装置を原子力発電における使用済燃料の貯蔵容器(キャスク)に対して用いた場合の実施例を示す図である。It is a figure which shows the Example at the time of using the heat transfer promotion apparatus of the 1st form which concerns on this invention with respect to the storage container (cask) of the spent fuel in nuclear power generation. 本発明に係る第1の形態の伝熱促進装置の効果を説明する図である。It is a figure explaining the effect of the heat transfer promotion apparatus of the 1st form concerning the present invention. 本発明に係る第2の形態の伝熱促進装置を原子力発電における使用済燃料の貯蔵容器(キャスク)に対して用いた場合の実施例を示す図である。It is a figure which shows the Example at the time of using the heat-transfer promotion apparatus of the 2nd form which concerns on this invention with respect to the storage container (cask) of the spent fuel in nuclear power generation. 本発明に係る第2の形態の伝熱促進装置の効果を説明する図である。It is a figure explaining the effect of the heat-transfer promotion apparatus of the 2nd form which concerns on this invention.

符号の説明Explanation of symbols

1 流れ偏向板
2 流れ偏向板の支持材
3 伝熱促進装置の支持材
4 放熱面(使用済燃料の円筒貯蔵容器についてはその表面)
5 伝熱促進装置の取り付け支柱
DESCRIPTION OF SYMBOLS 1 Flow deflection plate 2 Flow deflection plate support material 3 Heat transfer promotion device support material 4 Heat radiation surface (surface of a spent fuel cylindrical storage container)
5 Mounting posts for heat transfer promotion device

Claims (7)

放熱面に沿って下から上に流れる周辺流体が形成する自然対流境界層に,上縁が放熱面に対して近く,下縁が放熱面に対して遠くなるように傾けて周辺流体の流れを偏向させる流れ偏向板を,放熱面から離して設置することにより周辺流体の流れを偏向させ,高温流体を放熱面から離れる方向に排出するとともに境界層外層の低温流体を巻き込んで,放熱面からの伝熱を促進させる伝熱促進装置であって,前記流れ偏向板は,放熱面の幅方向に間隙を設けて複数枚水平に並べられていることを特徴とする伝熱促進装置。Tilt the natural convection boundary layer formed by the surrounding fluid flowing from bottom to top along the heat dissipation surface so that the upper edge is closer to the heat dissipation surface and the lower edge is farther from the heat dissipation surface. The flow deflecting plate to be deflected is placed away from the heat dissipation surface to deflect the flow of the surrounding fluid, discharge the high temperature fluid away from the heat dissipation surface, and entrain the low temperature fluid in the outer boundary layer, A heat transfer promoting device for promoting heat transfer, wherein a plurality of the flow deflection plates are arranged horizontally with a gap in the width direction of the heat radiating surface. 流れ偏向板は,放熱面の上下方向に間隙を設けて複数組平行に並べられていることを特徴とする請求項1の伝熱促進装置。2. The heat transfer promoting device according to claim 1, wherein a plurality of sets of the flow deflecting plates are arranged in parallel with a gap in the vertical direction of the heat radiating surface. 放熱面に近い流れ偏向板の上縁と放熱面との距離が5〜10mmである請求項1または請求項2の伝熱促進装置。The heat transfer promoting device according to claim 1 or 2, wherein the distance between the upper edge of the flow deflector plate close to the heat radiating surface and the heat radiating surface is 5 to 10 mm. 流れ偏向板の角度が,下方向を0°として30°〜60°の範囲にある請求項1または請求項2の伝熱促進装置。The heat transfer promoting device according to claim 1 or 2, wherein an angle of the flow deflecting plate is in a range of 30 ° to 60 ° with 0 ° in the downward direction. 流れ偏向板の縦の長さが,50mm〜150mmの範囲にある請求項1または請求項2の伝熱促進装置。The heat transfer promoting device according to claim 1 or 2, wherein the vertical length of the flow deflection plate is in the range of 50 mm to 150 mm. 流れ偏向板の横幅と間隙の比が2:1から1:2の範囲にある請求項1または請求項2の伝熱促進装置。The heat transfer promoting device according to claim 1 or 2, wherein the ratio of the lateral width and the gap of the flow deflecting plate is in the range of 2: 1 to 1: 2. 流れ偏向板の上下の間隙と各流れ偏向板の縦の長さの比が,5:1から8:1の範囲にある請求項2の伝熱促進装置。The heat transfer promoting device according to claim 2, wherein the ratio of the vertical gap of the flow deflection plates to the vertical length of each flow deflection plate is in the range of 5: 1 to 8: 1.
JP2003334310A 2003-08-20 2003-08-20 Heat transfer enhancement device for natural convection boundary layer Expired - Fee Related JP3944783B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003334310A JP3944783B2 (en) 2003-08-20 2003-08-20 Heat transfer enhancement device for natural convection boundary layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003334310A JP3944783B2 (en) 2003-08-20 2003-08-20 Heat transfer enhancement device for natural convection boundary layer

Publications (2)

Publication Number Publication Date
JP2005069661A JP2005069661A (en) 2005-03-17
JP3944783B2 true JP3944783B2 (en) 2007-07-18

Family

ID=34419037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003334310A Expired - Fee Related JP3944783B2 (en) 2003-08-20 2003-08-20 Heat transfer enhancement device for natural convection boundary layer

Country Status (1)

Country Link
JP (1) JP3944783B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5006241B2 (en) * 2008-03-31 2012-08-22 日本原子力発電株式会社 Spent fuel containment
CN107064209B (en) * 2017-03-21 2019-07-09 湘潭大学 A kind of high-efficiency high-accuracy electronic equipment measurement experiment device

Also Published As

Publication number Publication date
JP2005069661A (en) 2005-03-17

Similar Documents

Publication Publication Date Title
JP2566071B2 (en) Fluid cooling circuit package
US7213636B2 (en) Cooling assembly with impingement cooled heat sink
CN100384311C (en) Heat radiation construction for electronic devices
JP2007208116A (en) Air-cooled cooler
CN101803011A (en) Cooling apparatus
CN101605443B (en) Heat dissipation device and heat dissipater thereof
US7850150B2 (en) Support grid apparatus and method
JP3944783B2 (en) Heat transfer enhancement device for natural convection boundary layer
CN1310318C (en) Radiating fin structure
JP2009176881A (en) Cooling apparatus
US20120138284A1 (en) Heat dissipating device
JP2007080989A (en) Heat sink
JP6132869B2 (en) heatsink
CN208256654U (en) A kind of electrical device radiator
JP3992953B2 (en) heatsink
JP2005079349A (en) Heatsink having louver
KR200490230Y1 (en) Cooling tower water distribution unit
JP3449605B2 (en) Heat dissipation housing for electronic equipment
CN101621906B (en) Radiating device
WO2024080937A1 (en) An apparatus, system, and method for heat exchange
TWI844831B (en) Nucleate boiling apparatus and computing system
TW202329800A (en) Thermal wake suppressor, thermal wake suppression system, and suppressor
JP2008275303A (en) Heat exchanger
JPH07103675A (en) Heat pipe type radiator
JP7229059B2 (en) static induction electric machine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070320

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070328

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees