JP3944445B2 - Offshore wind power generation facilities - Google Patents

Offshore wind power generation facilities Download PDF

Info

Publication number
JP3944445B2
JP3944445B2 JP2002343709A JP2002343709A JP3944445B2 JP 3944445 B2 JP3944445 B2 JP 3944445B2 JP 2002343709 A JP2002343709 A JP 2002343709A JP 2002343709 A JP2002343709 A JP 2002343709A JP 3944445 B2 JP3944445 B2 JP 3944445B2
Authority
JP
Japan
Prior art keywords
power generation
wind power
generation facility
offshore wind
floating body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002343709A
Other languages
Japanese (ja)
Other versions
JP2004176626A (en
Inventor
美津雄 高田
光功 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP2002343709A priority Critical patent/JP3944445B2/en
Publication of JP2004176626A publication Critical patent/JP2004176626A/en
Application granted granted Critical
Publication of JP3944445B2 publication Critical patent/JP3944445B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B21/00Tying-up; Shifting, towing, or pushing equipment; Anchoring
    • B63B21/50Anchoring arrangements or methods for special vessels, e.g. for floating drilling platforms or dredgers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B21/00Tying-up; Shifting, towing, or pushing equipment; Anchoring
    • B63B21/50Anchoring arrangements or methods for special vessels, e.g. for floating drilling platforms or dredgers
    • B63B2021/505Methods for installation or mooring of floating offshore platforms on site
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/44Floating buildings, stores, drilling platforms, or workshops, e.g. carrying water-oil separating devices
    • B63B2035/4433Floating structures carrying electric power plants
    • B63B2035/446Floating structures carrying electric power plants for converting wind energy into electric energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/727Offshore wind turbines

Description

【0001】
【発明の属する技術分野】
本発明は、海底地形を全く問題にしない洋上風力発電設備に関するものである。
【0002】
【従来の技術】
自然エネルギーの効果的利用が図られている昨今、風力発電は特に採算性のある試みであるとして我国においても目覚ましい勢いで普及している。
特に欧州においては、陸上だけでなく、近年は洋上風力発電施設の建設が進んでいる。洋上での風力発電は、陸上での風力発電とは異なり、安定的な風量が期待できるばかりか、騒音や電波他市民生活に支障となる公害の原因とならないので、今後、大幅な普及が期待されている。
【0003】
しかしながら、これまで、欧州で実際に稼動している洋上風力発電施設は、何れもケーソン式(図5(a)参照)、モノパイル式(図5(b)参照)、ドルフィン式(図5(c)参照)といった海底に設置する形式であることから、水深が増すにつれて建設作業が困難になって施工費用も急激に増加する。加えて、海底地質の影響を大きく受けることになり、水深が20m程度までの遠浅の水域では建設が可能であるものの、それ以上の水深の海域での建設は殆ど不可能である。なお、図5中の1は風力発電施設であり、タワー1aの頂端部に発電機を内蔵したナセル1bを固定し、このナセル1bの先端にブレード1cを回転が自在なように放射状に取付けた構成である。
【0004】
そこで、欧州と異なり遠浅の海底地形を備えた地域がわずかである我国では、欧州と同様の海底に建設する形式の基礎構造を採用し難いことから、洋上に風力発電施設を建設しようとする傾向が窺える(例えば特許文献1〜3参照。)。
【0005】
【特許文献1】
特許第2770449号公報(第1頁、図1)
【特許文献2】
特開2001−165032号公報(第2頁、図4〜6)
【特許文献3】
特開2001−241374号公報(第2〜3頁、図1、図6)
【0006】
【発明が解決しようとする課題】
しかしながら、上記の各公報に記載された洋上風力発電設備は、洋上に浮かせた風力発電施設同士が波によって流されて衝突したり、風力発電施設同士の相対位置関係が変化して発電能力が低下する等を考慮し、何れも複数の風力発電施設をリジッド(rigid )な状態に配置した構成であることから、以下に列挙するような問題がある。
【0007】
▲1▼ 風力発電施設の配置に柔軟性がない。
▲2▼ 浮体が大きくなることから、波浪による影響を受けやすい。
▲3▼ 地上で完成させた風力発電設備を洋上の設置位置まで搬送しなければならず、その搬送に大きな労力を要する。
【0008】
加えて、上記の風力発電設備の洋上での固定は、単に、係留索によって行うもの(特許文献1)や、垂錐を吊り下げるだけ(特許文献3)であり、洋上での設置位置を良好に保つことはできなかった。
【0009】
本発明は、上記した問題点に鑑みてなされたものであり、複数の風力発電施設の配置をリジッドな状態に行わないことで上記の問題点を解決し、しかも、洋上に浮かせた風力発電施設同士が波によって流されて衝突したり、風力発電施設同士の相対位置関係が変化して発電能力を低下させることのない洋上風力発電設備を提供することを目的としている。
【0010】
【課題を解決するための手段】
上記の目的を達成するために、本発明に係る洋上風力発電設備は、洋上において夫々の風力発電施設を立設支持する複数の浮体同士を、途中に中間シンカーを設けた係留チェーンで連結すると共に、適宜の浮体には、更に、一方端に係留アンカーを、途中に中間シンカーを設けた係留チェーンを繋いだこととしている。そして、このようにすることで、深い海域においても洋上での設置が容易に行え、しかも、洋上の風力発電施設が波によって流されて衝突したり、風力発電施設同士の相対位置関係が変化して発電能力を低下させることもない。
【0011】
【発明の実施の形態】
本発明に係る洋上風力発電設備は、洋上において夫々の風力発電施設を立設支持する複数の浮体同士を、途中に中間シンカーを設けた係留チェーンで連結すると共に、適宜の浮体には、更に、一方端に係留アンカーを、途中に中間シンカーを設けた係留チェーンを繋いだものである。
【0012】
複数の風力発電施設を設置する場合、相互干渉による発電効率の低下が問題となる。一般には、ロータ径の10倍程度の距離を保つ必要があるとされているが、本発明に係る洋上風力発電設備は、複数の風力発電施設をリジッドな状態に配置するのではなく、係留チェーンで連結する柔な構成であるので、係留チェーンの長さを調整することで、浮体間の距離を自由に設定することができる。
【0013】
また、本発明に係る洋上風力発電設備では、設置位置までの搬送は各浮体ごとに容易に行え、また、洋上での固定も係留チェーンに繋いだ係留アンカーによるので、1000mを超えるような海域においても、基本的な概念を変更することなく、洋上風力発電設備の設置が容易に行える。
【0014】
そして、その係留チェーンの途中には、海底に接することなく係留チェーンにより懸垂された状態に中間シンカーを設けているので、係留チェーンには常に張力が付与され、各浮体は厳しい気象海象条件のもとにおいても適度な間隔を保ち、かつ、自由な運動が可能になる。
【0015】
上記の本発明に係る洋上風力発電設備において、前記浮体の一つが立設支持する風力発電施設を、管理施設に替えた場合には、他の複数の風力発電施設により発電された電力を集約して、一括して陸上に送電することができるようになるのみならず、非常時には防災センターとしても機能させることができるようになる。
【0016】
また、上記の本発明に係る洋上風力発電設備において、風力発電施設を洋上において夫々立設支持する複数の浮体の配置は特に限定するものではないが、例えば、卓越風向が統計的に既知の海域、例えば、海岸線に比較的近い位置での洋上に設置する場合には、例えば連結した浮体間の距離を短くして直線状に配置し、風の主方向に対して直角に位置させることにより、狭い設置スペースで効率の良い発電が可能になる。この場合、風力発電に加えて波エネルギーによる発電装置を装着すれば、より効果的な発電システムとなる。
【0017】
一方、設置位置が上記のような海岸線に比較的近い位置ではない場合には、浮体と係留アンカー、又は、浮体同士が平面視正三角形の頂点に位置するように配置、若しくは、前記平面視正三角形の要素構造を複数個連結するように配置することで、洋上に浮かべた際のバランスが取りやすくなり、また、設置面積に応じて最適広さのものを容易に得ることができる。
【0018】
また、上記の本発明に係る洋上風力発電設備において、係留アンカーを備えた係留チェーンを、最外周に位置する浮体の外周側に繋いだ場合には、洋上風力発電設備の設置位置での固定が効果的に行なえるようになる。
【0019】
上記の本発明に係る洋上風力発電設備において、風力発電施設や管理施設の仕様やこれらの施設を立設支持する浮体の構造や数は特に限定されるものでないことは言うまでもない。
【0020】
【実施例】
以下、本発明に係る洋上風力発電設備を図1〜図4に示す実施例に基づいて説明する。
図1及び図2は本発明に係る洋上風力発電設備の一例を説明する図、図3は本発明に係る洋上風力発電設備の他の例を示す図、図4は本発明に係る洋上風力発電設備を構成する風力発電施設を立設支持する浮体の一例を示す図である。
【0021】
図1及び図2において、1は例えば正六角形の各頂点に配置された浮体2に立設支持された風力発電施設、3は同じく正六角形の中心位置に配置された浮体2’に立設支持された管理施設であり、これら風力発電施設1、管理施設3を立設支持した隣合う浮体2又2’は同士を、途中に中間シンカー4aを設けた係留チェーン5aで連結している。
【0022】
6は途中に中間シンカー4bを設けた係留チェーン5bの一方端に繋がれた係留アンカーであり、両端に風力発電施設1を繋いだ前記正六角形の一辺をその一辺として形成する正三角形の他の頂点となる位置、すなわち、最外周に位置する浮体2の更に外周側に配置されている。
【0023】
すなわち、図1及び図2に示した例は、風力発電施設1或いは管理施設3を立設支持する浮体2或いは2’と係留アンカー6、又は、前記浮体2或いは2’同士が平面視正三角形の頂点に位置するように配置した平面視正三角形の要素構造を6個で正六角形を形成し、この正六角形の外周に更に6個の正三角形を配した洋上風力発電設備を示している。
【0024】
この図1及び図2に示したような構成の本発明に係る洋上風力発電設備では、海洋での設置面積に応じて最適広さのものを容易に得ることができ、また、係留チェーン5a,5bにより海底に接することなく懸垂された中間シンカー4a,4bの作用で、各浮体2及び2’は厳しい気象海象条件のもとにおいても適度な間隔を保持できるようになる。
【0025】
一方、図3に示した例は、風力発電施設1を立設保持した浮体2を例えば8基直線状に配置したもので、隣合う浮体2同士を、図1及び図2に示した例と同様、途中に中間シンカー4aを設けた係留チェーン5aで連結している。そして、一方端に係留アンカー6を繋ぎ、その途中に中間シンカー4bを設けた係留チェーン5bを、図3(b)に示すように、前記隣合う浮体2同士を連結する係留チェーン5aと直交する方向に繋いでいる。
【0026】
この図3に示したような構成の本発明に係る洋上風力発電設備では、海岸線に比較的近い位置での洋上において、風の主方向に対して直角に位置させることにより、狭い設置スペースで効率の良い発電が可能になる。
【0027】
本発明に係る洋上風力発電設備においては、風力発電施設1や管理施設3の仕様や数、及び、これらの施設を立設支持する浮体2或いは2’の構造は特に限定されるものではないが、例えばタワー1aの頂端部に固定されたナセル1bの先端に回転が自在なように取付けられたブレード1cを備えた風力発電施設1を立設支持する浮体2の構造としては、例えば図4に示したものが適している。
【0028】
11は前記風力発電施設1を洋上に立設支持する軸方向に長い円筒状の主浮体であり、波浪による水平動と傾斜(回転)の抑制に優れた効果を発揮させるべく、その中心軸が鉛直となるように、例えば前記タワー1aと同軸心に取り付けられている。
【0029】
12は前記主浮体11の浮力を補うと共に、波浪による回転及び傾斜に対する復元力を抑制させるために、その上方部分が海上に位置すべく設けられた例えば8個の従浮体であり、例えば前記主浮体11を中心とする同一半径上の等角度位置に、主浮体11を囲繞するようにトラス13によって主浮体11と一体的に取り付けられている。
【0030】
このような構成要素からなる浮体2は、従浮体12とで風力発電施設1を立設支持した状態の主浮体11の下方部分が海中に水没するように、主浮体11と従浮体12の合算浮力を決定することで、重心を低くして風力発電施設1が洋上で転倒しないように復元力を確保すると共に、波浪や風による変動浮力や動揺を抑制する構造となされている。
【0031】
図4に示した浮体2は、上記の主浮体11、従浮体12の他に、更に以下に説明する第1の動揺制止板14、第2の動揺制止板15、大傾斜制御機構16、動揺制止翼17を取り付けたものを示している。
【0032】
14は主浮体11の横断面より大径の円盤状をなす第1の動揺制止板であり、主浮体11の喫水線以下の喫水部分、例えば底面に水平状に設置されている。そして、この第1の動揺制止板14により、波浪による上下動や傾斜(回転)に対する抑制効果を更に向上させることができるようになる。
【0033】
15は従浮体12の例えば喫水線位置に付設したリング状の第2の動揺制止板であり、前記喫水線位置における従浮体12に例えば外嵌状に取付けられている。この第2の動揺制止板15を付設することで、波浪による傾斜(回転)をより一層抑制できるようになる。
【0034】
16は浮体2の喫水線より上方位置に、移動が可能なように設置した例えば2基の傾斜抑制部材からなる大傾斜制御機構であり、無風状態の際には、例えば図4(a)に示したように円周上の対向位置に位置せしめ、洋上に立設保持した風力発電施設1のバランスをとる。
【0035】
そして、この状態で例えば北から南に向けて風が吹いた場合には、前記した状態のままでは風力発電施設1は南に向かって傾くことになるので、大傾斜制御機構16の傾斜抑制部材を北側に移動させてバランスをとる。この際、2基の傾斜抑制部材が共に真北の位置にくるまで移動させる必要はなく、東西を結ぶ線より北側に、傾きを防ぐ位置まで移動させればよい。
【0036】
17は例えば浮体2を構成する全ての従浮体12の喫水線位置における外周部(第2の動揺制止板15の外周部)に設置した動揺制止翼であり、浮体2が動揺した時には海水が自由に通過できるように、夫々が適当な間隔を存して設けられている。
【0037】
本発明に係る浮体式風力発電設備は上記した実施例に限るものではなく、各請求項に係る発明にのみ該当するものであっても、各請求項に係る発明の構成相応の作用効果を奏することは言うまでもない。また、各請求項に係る発明の技術的範囲内であれば、適宜の変更は任意である。
【0038】
【発明の効果】
以上説明したように、本発明に係る洋上風力発電設備によれば、複数の風力発電施設をリジッドな状態に配置するのではなく、係留チェーンで連結する柔な構成であり、また、洋上での固定も係留チェーンに繋いだ係留アンカーにより、その係留チェーンの途中には中間シンカーを設けているので、深い海域においても洋上での設置が容易に行え、しかも、各浮体は厳しい気象海象条件のもとにおいても適度な間隔を保ち、風力発電施設同士の相対位置関係が変化して発電能力を低下させることもない。
【図面の簡単な説明】
【図1】本発明に係る洋上風力発電設備の平面から見た図である。
【図2】(a)は図1のA−A部を側面から見た図、(b)は図1のB−B部を側面から見た図である。
【図3】本発明に係る洋上風力発電設備の他の例を示す図で、(a)は側面から見た図、(b)は平面から見た図である。
【図4】(a)は本発明に係る洋上風力発電設備を構成する風力発電施設を立設支持する浮体を平面から見た概略説明図、(b)は側面から見た概略説明図である。
【図5】海底設置形式における洋上風力発電装置の基礎構造物の説明図で、(a)はケーソン式、(b)はモノパイル式、(c)はドルフィン式を示す図である。
【符号の説明】
1 風力発電施設
2 浮体
2’ 浮体
3 管理施設
4a 中間シンカー
4b 中間シンカー
5a 係留チェーン
5b 係留チェーン
6 係留アンカー
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an offshore wind power generation facility that does not have any problem with seabed topography.
[0002]
[Prior art]
In recent years when natural energy has been used effectively, wind power generation is spreading at a remarkable rate in Japan as a particularly profitable attempt.
Especially in Europe, construction of offshore wind power generation facilities is progressing not only on land but in recent years. Offshore wind power generation, unlike onshore wind power generation, can be expected not only to produce a stable air volume, but also to cause noise, radio waves and other pollution that hinders citizens' lives. Has been.
[0003]
However, up to now, the offshore wind power generation facilities actually operating in Europe are all caisson type (see FIG. 5A), monopile type (see FIG. 5B), and dolphin type (see FIG. 5C). ))), The construction work becomes difficult and the construction cost increases rapidly as the water depth increases. In addition, it will be greatly affected by seafloor geology, and construction is possible in shallow waters up to about 20m in depth, but construction in deeper waters is almost impossible. In addition, 1 in FIG. 5 is a wind power generation facility, the nacelle 1b which incorporated the generator was fixed to the top end part of the tower 1a, and the braid | blade 1c was radially attached to the front-end | tip of this nacelle 1b so that rotation was possible. It is a configuration.
[0004]
Therefore, in Japan, where there are only a few areas with shallow seafloor topography, unlike in Europe, it is difficult to adopt a foundation structure that is constructed on the seabed as in Europe, so there is a tendency to construct wind power generation facilities on the ocean. (For example, refer to Patent Documents 1 to 3).
[0005]
[Patent Document 1]
Japanese Patent No. 2770449 (first page, FIG. 1)
[Patent Document 2]
JP 2001-165032 A (second page, FIGS. 4 to 6)
[Patent Document 3]
JP 2001-241374 A (pages 2 and 3, FIGS. 1 and 6)
[0006]
[Problems to be solved by the invention]
However, the offshore wind power generation facilities described in each of the above publications are affected by the collision of wind power generation facilities floating on the ocean, or the relative positional relationship between the wind power generation facilities changes, resulting in a decrease in power generation capacity. In view of the above, since all of the wind power generation facilities are arranged in a rigid state, there are problems as listed below.
[0007]
(1) There is no flexibility in the layout of wind power generation facilities.
(2) Since the floating body becomes large, it is easily affected by waves.
(3) The wind power generation equipment completed on the ground has to be transported to the installation position on the ocean, which requires a lot of labor.
[0008]
In addition, the above-described wind power generation equipment is fixed on the ocean simply by a mooring line (Patent Document 1) or only by hanging a hanging cone (Patent Document 3), and the installation position on the ocean is good. Couldn't keep up.
[0009]
The present invention has been made in view of the above problems, and solves the above problems by not arranging a plurality of wind power generation facilities in a rigid state, and further wind power generation facilities floating on the ocean The object is to provide an offshore wind power generation facility that does not collide by being swept by waves or changing the relative positional relationship between wind power generation facilities and reducing the power generation capacity.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, an offshore wind power generation facility according to the present invention connects a plurality of floating bodies that stand up and support each wind power generation facility on the ocean with a mooring chain provided with an intermediate sinker in the middle. The appropriate floating body is further connected with a mooring anchor having an anchor at one end and an intermediate sinker in the middle. In this way, installation in the ocean can be easily performed even in deep water, and the wind power generation facilities on the ocean collide by being swept by waves, or the relative positional relationship between the wind power generation facilities changes. Power generation capacity is not reduced.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The offshore wind power generation facility according to the present invention connects a plurality of floating bodies standing and supporting each wind power generation facility on the ocean with a mooring chain provided with an intermediate sinker in the middle, and an appropriate floating body, A mooring anchor with an anchor at one end and an intermediate sinker in the middle is connected.
[0012]
When installing a plurality of wind power generation facilities, a decrease in power generation efficiency due to mutual interference becomes a problem. Generally, it is said that it is necessary to keep a distance of about 10 times the rotor diameter, but the offshore wind power generation facility according to the present invention does not arrange a plurality of wind power generation facilities in a rigid state, but a mooring chain. Therefore, the distance between the floating bodies can be set freely by adjusting the length of the mooring chain.
[0013]
In addition, in the offshore wind power generation facility according to the present invention, transportation to the installation position can be easily performed for each floating body, and since the anchoring on the ocean is by a mooring anchor connected to the mooring chain, in the sea area exceeding 1000 m However, it is easy to install offshore wind power generation facilities without changing the basic concept.
[0014]
In the middle of the mooring chain, an intermediate sinker is provided in a state of being suspended by the mooring chain without touching the seabed. Therefore, tension is always applied to the mooring chain, and each floating body is subjected to severe weather conditions. In this case, it is possible to keep a proper interval and move freely.
[0015]
In the above-described offshore wind power generation facility according to the present invention, when the wind power generation facility supported by one of the floating bodies is replaced with a management facility, the power generated by the plurality of other wind power generation facilities is aggregated. In addition to being able to transmit power to the land at once, it can also function as a disaster prevention center in an emergency.
[0016]
Further, in the offshore wind power generation facility according to the present invention described above, the arrangement of the plurality of floating bodies that respectively stand and support the wind power generation facility on the ocean is not particularly limited, but for example, the sea area where the prevailing wind direction is statistically known For example, when installing on the ocean at a position relatively close to the coastline, for example, by arranging the distance between the connected floating bodies in a straight line and positioning it at right angles to the main wind direction, Efficient power generation is possible in a small installation space. In this case, if a power generation device using wave energy is installed in addition to wind power generation, a more effective power generation system can be obtained.
[0017]
On the other hand, when the installation position is not relatively close to the coastline as described above, the floating body and the mooring anchor, or the floating bodies are arranged so that they are positioned at the vertices of the planar regular triangle, or the planar viewing normal By arranging a plurality of triangular element structures so as to be connected to each other, it becomes easy to achieve a balance when floating on the ocean, and it is possible to easily obtain an optimum width according to the installation area.
[0018]
Further, in the offshore wind power generation facility according to the present invention described above, when the mooring chain provided with the mooring anchor is connected to the outer peripheral side of the floating body located on the outermost periphery, the fixing at the installation position of the offshore wind power generation facility is You can do it effectively.
[0019]
In the offshore wind power generation facility according to the present invention described above, it goes without saying that the specifications of the wind power generation facility and the management facility and the structure and number of the floating bodies that stand and support these facilities are not particularly limited.
[0020]
【Example】
Hereinafter, the offshore wind power generation facility according to the present invention will be described based on the embodiments shown in FIGS.
1 and 2 are diagrams for explaining an example of an offshore wind power generation facility according to the present invention, FIG. 3 is a diagram illustrating another example of an offshore wind power generation facility according to the present invention, and FIG. 4 is an offshore wind power generation according to the present invention. It is a figure which shows an example of the floating body which standingly supports the wind power generation facility which comprises an installation.
[0021]
1 and 2, for example, 1 is a wind power generation facility that is erected and supported by a floating body 2 arranged at each vertex of a regular hexagon, and 3 is erected and supported by a floating body 2 'that is also arranged at the center of the regular hexagon. The adjacent floating bodies 2 or 2 ′ that support the wind power generation facility 1 and the management facility 3 are connected to each other by a mooring chain 5 a provided with an intermediate sinker 4 a in the middle.
[0022]
Reference numeral 6 denotes a mooring anchor connected to one end of a mooring chain 5b provided with an intermediate sinker 4b in the middle. Other than the equilateral triangle that forms one side of the regular hexagon that connects the wind power generation facility 1 to both ends It arrange | positions in the outer peripheral side of the position used as the vertex, ie, the floating body 2 located in the outermost periphery.
[0023]
That is, in the example shown in FIG. 1 and FIG. 2, the floating body 2 or 2 ′ and the mooring anchor 6 that vertically support the wind power generation facility 1 or the management facility 3, or the floating bodies 2 or 2 ′ are a regular triangle in plan view. 6 shows an offshore wind power generation facility in which a regular hexagonal shape is formed by six element structures of a regular triangle in plan view arranged so as to be positioned at the apex, and further six regular triangles are arranged on the outer periphery of the regular hexagon.
[0024]
In the offshore wind power generation facility according to the present invention having the configuration as shown in FIGS. 1 and 2, it is possible to easily obtain an optimum width according to the installation area in the ocean, and the mooring chain 5a, Due to the action of the intermediate sinkers 4a and 4b suspended without contacting the sea floor by 5b, the floating bodies 2 and 2 'can maintain an appropriate distance even under severe weather conditions.
[0025]
On the other hand, in the example shown in FIG. 3, for example, eight floating bodies 2 in which the wind power generation facility 1 is erected and held are arranged in a straight line, and adjacent floating bodies 2 are connected to the examples shown in FIGS. 1 and 2. Similarly, they are connected by a mooring chain 5a provided with an intermediate sinker 4a in the middle. And the mooring chain 5b which connected the mooring anchor 6 to the one end and provided the intermediate sinker 4b in the middle is orthogonal to the mooring chain 5a which connects the said adjacent floating bodies 2 as shown in FIG.3 (b). Connected in the direction.
[0026]
In the offshore wind power generation facility according to the present invention having the configuration as shown in FIG. 3, it is efficient in a narrow installation space by being positioned at right angles to the main wind direction on the ocean relatively close to the coastline. Power generation is possible.
[0027]
In the offshore wind power generation facility according to the present invention, the specifications and number of the wind power generation facility 1 and the management facility 3, and the structure of the floating body 2 or 2 'for standingly supporting these facilities are not particularly limited. For example, as a structure of the floating body 2 for standingly supporting the wind power generation facility 1 provided with the blade 1c rotatably attached to the tip of the nacelle 1b fixed to the top end of the tower 1a, for example, as shown in FIG. The ones shown are suitable.
[0028]
Reference numeral 11 denotes a cylindrical main floating body that is long in the axial direction for standingly supporting the wind power generation facility 1 on the ocean, and its central axis is used to exert an excellent effect in suppressing horizontal movement and inclination (rotation) due to waves. For example, it is attached coaxially with the tower 1a so as to be vertical.
[0029]
Reference numeral 12 denotes, for example, eight sub-floating bodies provided so that the upper portion thereof is positioned on the sea in order to compensate for the buoyancy of the main floating body 11 and to suppress the restoring force against rotation and inclination caused by waves. A truss 13 is integrally attached to the main floating body 11 so as to surround the main floating body 11 at equal angular positions on the same radius with the floating body 11 as the center.
[0030]
The floating body 2 composed of such components is a combination of the main floating body 11 and the sub-floating body 12 so that the lower part of the main floating body 11 in a state where the wind power generation facility 1 is supported upright with the sub-floating body 12 is submerged in the sea. By determining the buoyancy, the center of gravity is lowered to ensure the restoring force so that the wind power generation facility 1 does not fall over the ocean, and the structure is configured to suppress fluctuating buoyancy and shaking caused by waves and wind.
[0031]
In addition to the main floating body 11 and the secondary floating body 12 described above, the floating body 2 shown in FIG. 4 further includes a first vibration suppression plate 14, a second vibration suppression plate 15, a large inclination control mechanism 16, and a vibration described below. The thing to which the control wing | blade 17 was attached is shown.
[0032]
Reference numeral 14 denotes a first anti-vibration stop plate having a disk shape larger in diameter than the cross section of the main floating body 11, and is installed horizontally on the draft portion below the draft line of the main floating body 11, for example, the bottom surface. And the suppression effect with respect to the vertical motion and inclination (rotation) by a wave can be further improved by this 1st anti-vibration stop plate 14. FIG.
[0033]
Reference numeral 15 denotes a ring-shaped second vibration restraining plate attached to, for example, the draft line position of the sub-floating body 12, and is attached to the sub-floating body 12 at the draft line position, for example, in an external fitting shape. By providing the second anti-sway plate 15, it is possible to further suppress the inclination (rotation) caused by the waves.
[0034]
Reference numeral 16 denotes a large inclination control mechanism composed of, for example, two inclination suppressing members installed so as to be movable at a position above the draft line of the floating body 2, and shown in FIG. As described above, the wind power generation facility 1 that is positioned on the circumference and held upright on the ocean is balanced.
[0035]
In this state, for example, when the wind blows from north to south, the wind power generation facility 1 is inclined toward the south in the above-described state. Therefore, the inclination suppressing member of the large inclination control mechanism 16 Move to the north to balance. At this time, it is not necessary to move the two tilt suppression members until they are both located at the true north position, and they may be moved to the north side from the line connecting the east and west to the position where the tilt is prevented.
[0036]
Reference numeral 17 denotes, for example, an anti-swaying blade installed on the outer peripheral part (the outer peripheral part of the second anti-sway stop plate 15) at the draft line position of all the sub-floating bodies 12 constituting the floating body 2. When the floating body 2 is shaken, seawater is freely Each is provided at an appropriate interval so that it can pass through.
[0037]
The floating-type wind power generation facility according to the present invention is not limited to the above-described embodiments, and even if it corresponds only to the invention according to each claim, there is an effect corresponding to the configuration of the invention according to each claim. Needless to say. Further, appropriate modifications are optional within the technical scope of the invention according to each claim.
[0038]
【The invention's effect】
As described above, according to the offshore wind power generation facility according to the present invention, a plurality of wind power generation facilities are not arranged in a rigid state, but are connected with a mooring chain. The anchor is connected to the mooring chain, and an intermediate sinker is provided in the middle of the mooring chain, so that it can be easily installed offshore in deep waters, and each floating body has severe weather conditions. In this case, an appropriate interval is maintained, and the relative positional relationship between the wind power generation facilities does not change to reduce the power generation capacity.
[Brief description of the drawings]
FIG. 1 is a plan view of an offshore wind power generation facility according to the present invention.
2A is a view of the AA portion of FIG. 1 viewed from the side, and FIG. 2B is a view of the BB portion of FIG. 1 viewed from the side.
FIGS. 3A and 3B are diagrams showing another example of an offshore wind power generation facility according to the present invention, where FIG. 3A is a diagram viewed from a side surface, and FIG. 3B is a diagram viewed from a plane.
4A is a schematic explanatory view of a floating body that stands and supports a wind power generation facility that constitutes an offshore wind power generation facility according to the present invention, and FIG. 4B is a schematic explanatory view viewed from the side. .
FIGS. 5A and 5B are explanatory diagrams of a foundation structure of an offshore wind power generation apparatus in a submarine installation type, where FIG. 5A is a caisson type, FIG. 5B is a monopile type, and FIG. 5C is a view showing a dolphin type.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Wind power generation facility 2 Floating body 2 'Floating body 3 Management facility 4a Intermediate sinker 4b Intermediate sinker 5a Mooring chain 5b Mooring chain 6 Mooring anchor

Claims (5)

洋上において夫々の風力発電施設を立設支持する複数の浮体同士を、途中に中間シンカーを設けた係留チェーンで連結すると共に、適宜の浮体には、更に、一方端に係留アンカーを、途中に中間シンカーを設けた係留チェーンを繋いだことを特徴とする洋上風力発電設備。A number of floating bodies that support each wind power generation facility on the ocean are connected by a mooring chain with an intermediate sinker in the middle, and a mooring anchor at one end and an intermediate anchor in the middle. Offshore wind power generation facility characterized by connecting mooring chains with sinkers. 前記浮体の一つが立設支持する風力発電施設を、管理施設に替えたことを特徴とする請求項1記載の洋上風力発電設備。The offshore wind power generation facility according to claim 1, wherein the wind power generation facility supported by one of the floating bodies is replaced with a management facility. 連結した浮体を直線状に配置したことを特徴とする請求項1又は2記載の洋上風力発電設備。The offshore wind power generation facility according to claim 1 or 2, wherein the connected floating bodies are arranged linearly. 浮体と係留アンカー、又は、浮体同士が平面視正三角形の頂点に位置するように配置、若しくは、前記平面視正三角形の要素構造を複数個連結するように配置したことを特徴とする請求項1又は2記載の洋上風力発電設備。2. The floating body and a mooring anchor, or the floating bodies are arranged so as to be positioned at the apexes of the regular triangle in plan view, or arranged so as to connect a plurality of element structures of the regular triangle in plan view. Or the offshore wind power generation facility of 2 description. 一方端に係留アンカーを備えた係留チェーンは、最外周に位置する浮体の外周側に繋がれていることを特徴とする請求項1〜4の何れか記載の洋上風力発電設備。The offshore wind power generation facility according to any one of claims 1 to 4, wherein a mooring chain having a mooring anchor at one end is connected to an outer peripheral side of a floating body located on the outermost periphery.
JP2002343709A 2002-11-27 2002-11-27 Offshore wind power generation facilities Expired - Fee Related JP3944445B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002343709A JP3944445B2 (en) 2002-11-27 2002-11-27 Offshore wind power generation facilities

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002343709A JP3944445B2 (en) 2002-11-27 2002-11-27 Offshore wind power generation facilities

Publications (2)

Publication Number Publication Date
JP2004176626A JP2004176626A (en) 2004-06-24
JP3944445B2 true JP3944445B2 (en) 2007-07-11

Family

ID=32705435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002343709A Expired - Fee Related JP3944445B2 (en) 2002-11-27 2002-11-27 Offshore wind power generation facilities

Country Status (1)

Country Link
JP (1) JP3944445B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102390495A (en) * 2011-09-30 2012-03-28 山东长星风电科技有限公司 Offshore combined floating wind power generation platform
WO2021078899A1 (en) 2019-10-25 2021-04-29 Subsea 7 Norway As Generation of electrical power offshore

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7293960B2 (en) * 2003-10-23 2007-11-13 Shigeyuki Yamamoto Power generation assemblies, and apparatus for use therewith
JP2006206006A (en) * 2005-01-31 2006-08-10 Univ Of Ryukyus Floating body mooring method
EP1993901B1 (en) * 2006-02-27 2013-11-20 Ocean Power Technologies, Inc. Mooring of arrays of buoy-like wecs
US8096116B2 (en) * 2008-01-22 2012-01-17 Ocean Power Technologies, Inc. Mooring of multiple arrays of buoy-like WECs
JP2011521820A (en) 2008-04-23 2011-07-28 プリンシプル・パワー・インコーポレーテツド Column-stabilized offshore platform with water entrapment plate and asymmetric mooring system for offshore wind turbine support
WO2010048560A2 (en) * 2008-10-24 2010-04-29 Lew Holdings, Llc Offshore wind turbines and deployment methods therefor
CN102414443A (en) * 2009-03-09 2012-04-11 自然动力概念公司 System and method for generating electricity using grid of wind and water energy capture devices
JP5412148B2 (en) * 2009-03-13 2014-02-12 五洋建設株式会社 Basic structure of floating offshore wind turbine generator
JP5410172B2 (en) * 2009-06-24 2014-02-05 株式会社日立製作所 Floating offshore windmill
JP2011245879A (en) * 2010-05-21 2011-12-08 National Maritime Research Institute Mooring device of floating body
CN102060088A (en) * 2010-12-01 2011-05-18 山东长星风电科技有限公司 Special technology for offshore combined floating wind power generation
JP5682041B2 (en) * 2011-05-23 2015-03-11 永田 龍彦 Self-stabilizing vertical axis wind turbine, floating offshore wind power generation system and buoyancy structure system
KR101302382B1 (en) 2012-04-17 2013-09-02 주식회사에스티엑스종합기술원 Mooring apparatus for wind turbine and offshore wind turbine farm having the same
DE102012222756B4 (en) * 2012-12-11 2017-03-23 Gicon Windpower Ip Gmbh Floating in the open sea and connected by anchoring means anchoring structure for wind turbines, service stations or converter stations
US9879654B2 (en) 2013-05-20 2018-01-30 Principle Power, Inc. System and method for controlling offshore floating wind turbine platforms
JP5685670B1 (en) 2014-07-08 2015-03-18 三井海洋開発株式会社 Offshore structure group mooring system and offshore structure group mooring method
PT3566941T (en) 2014-10-27 2021-09-27 Principle Power Inc Connection system for array cables of disconnectable offshore energy devices
WO2016205746A1 (en) 2015-06-19 2016-12-22 Principle Power, Inc Floating wind turbine platform structure with optimized transfer of wave and wind loads
DE102015121371B4 (en) 2015-12-08 2018-11-15 Aerodyn Consulting Singapore Pte Ltd Offshore wind farm
US10723415B2 (en) 2016-08-03 2020-07-28 Mangrove Deep LLC Mooring system for drifting energy converters
JP7181450B2 (en) * 2018-02-07 2022-12-01 キョーラク株式会社 float assembly
WO2019155883A1 (en) * 2018-02-07 2019-08-15 キョーラク株式会社 Float assembly
JP6743215B2 (en) * 2019-02-28 2020-08-19 株式会社環境資源開発コンサルタント Water-based solar power generator
US11225945B2 (en) 2019-05-30 2022-01-18 Principle Power, Inc. Floating wind turbine platform controlled to optimize power production and reduce loading
NO345792B1 (en) * 2019-10-25 2021-08-09 Subsea 7 Norway As Generation of electrical power offshore
WO2023040245A1 (en) * 2021-09-18 2023-03-23 夏尔特拉(上海)新能源科技有限公司 Mooring system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102390495A (en) * 2011-09-30 2012-03-28 山东长星风电科技有限公司 Offshore combined floating wind power generation platform
WO2021078899A1 (en) 2019-10-25 2021-04-29 Subsea 7 Norway As Generation of electrical power offshore

Also Published As

Publication number Publication date
JP2004176626A (en) 2004-06-24

Similar Documents

Publication Publication Date Title
JP3944445B2 (en) Offshore wind power generation facilities
JP4123936B2 (en) Floating offshore wind power generation facility
ES2772950A2 (en) Self-aligning to wind facing floating platform supporting multi-wind turbines and solar for wind and solar power generation and the construction method thereon
JP7417000B2 (en) Floating wind power platform with tension leg device
CA2608233C (en) Anchoring arrangement for floating wind turbine installations
JP2003252288A (en) Floating body type base structure for marine wind power generation
JP2003229593A (en) Solar battery power generating apparatus to be installed above water surface
JP2013508609A (en) Floating vertical axis wind turbine module system and method
RU2675349C1 (en) Floating platform for use of wind energy
US8439641B2 (en) Flow driven engine
JP2002285951A (en) Floating type foundation structure for marine wind power generation
CN110654510A (en) Offshore wind power platform group with shared mooring
JP5809069B2 (en) Spar type floating structure
CN210653580U (en) Offshore wind power platform group with shared mooring
JP2011245879A (en) Mooring device of floating body
US20140322012A1 (en) Flow Driven Engine
KR101201476B1 (en) Floating offshore wind power generation plant
KR20160044241A (en) Underlying Structure of Floating Wind Turbine Generator
JP7313212B2 (en) Floating structures for offshore facilities and their installation structures
KR102566866B1 (en) Floating offshore structures and floating offshore power plant having the same
US20240034439A1 (en) Mooring arrangement for a tension leg platform
EP4238862A1 (en) Floating offshore structure and floating offshore power generation apparatus having same
KR102093240B1 (en) Multi-column structured and self weather vaning type offshore wind turbine support ship
TW202300404A (en) Semi-submersible rig wherein the deep-draft central column is connected to the peripheral columns that are shallower in draft by the support arm disposed above the peripheral column and the float disposed below the peripheral column to form an integral structure
KR20220135335A (en) Sea wind power generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070306

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070409

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120413

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140413

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees