JP2004176626A - Offshore wind power generation facility - Google Patents

Offshore wind power generation facility Download PDF

Info

Publication number
JP2004176626A
JP2004176626A JP2002343709A JP2002343709A JP2004176626A JP 2004176626 A JP2004176626 A JP 2004176626A JP 2002343709 A JP2002343709 A JP 2002343709A JP 2002343709 A JP2002343709 A JP 2002343709A JP 2004176626 A JP2004176626 A JP 2004176626A
Authority
JP
Japan
Prior art keywords
power generation
wind power
generation facility
mooring
offshore wind
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002343709A
Other languages
Japanese (ja)
Other versions
JP3944445B2 (en
Inventor
Mitsuo Takada
美津雄 高田
Mitsunori Murakami
光功 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP2002343709A priority Critical patent/JP3944445B2/en
Publication of JP2004176626A publication Critical patent/JP2004176626A/en
Application granted granted Critical
Publication of JP3944445B2 publication Critical patent/JP3944445B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B21/00Tying-up; Shifting, towing, or pushing equipment; Anchoring
    • B63B21/50Anchoring arrangements or methods for special vessels, e.g. for floating drilling platforms or dredgers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B21/00Tying-up; Shifting, towing, or pushing equipment; Anchoring
    • B63B21/50Anchoring arrangements or methods for special vessels, e.g. for floating drilling platforms or dredgers
    • B63B2021/505Methods for installation or mooring of floating offshore platforms on site
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/44Floating buildings, stores, drilling platforms, or workshops, e.g. carrying water-oil separating devices
    • B63B2035/4433Floating structures carrying electric power plants
    • B63B2035/446Floating structures carrying electric power plants for converting wind energy into electric energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/727Offshore wind turbines

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Wind Motors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an offshore wind power generation facility which can be placed on the ocean easily even in a deep sea area, which keeps respective floating bodies moderately apart from one another even under severe weather and ocean conditions, and which prevents the power generating capacity from being reduced when the relative positional relationship between wind power generation equipments is changed. <P>SOLUTION: A plurality of floating bodies 2 which respectively support the wind power generation equipments 1 or the floating body 2' which supports a control equipment 3 are connected to one another by means of mooring chains 5a each having an intermediate sinker 4a in the middle of the chain. The floating bodies 2 positioned at the outermost location are further connected to mooring anchors 6 at their one ends by means of mooring chains 5b each having an intermediate sinker 4b in the middle of the chain. The floating bodies 2 and 2' or the floating bodies 2 and the mooring anchors 6 are arranged to connect a plurality of element structures of plan view equilateral triangles. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、海底地形を全く問題にしない洋上風力発電設備に関するものである。
【0002】
【従来の技術】
自然エネルギーの効果的利用が図られている昨今、風力発電は特に採算性のある試みであるとして我国においても目覚ましい勢いで普及している。
特に欧州においては、陸上だけでなく、近年は洋上風力発電施設の建設が進んでいる。洋上での風力発電は、陸上での風力発電とは異なり、安定的な風量が期待できるばかりか、騒音や電波他市民生活に支障となる公害の原因とならないので、今後、大幅な普及が期待されている。
【0003】
しかしながら、これまで、欧州で実際に稼動している洋上風力発電施設は、何れもケーソン式(図5(a)参照)、モノパイル式(図5(b)参照)、ドルフィン式(図5(c)参照)といった海底に設置する形式であることから、水深が増すにつれて建設作業が困難になって施工費用も急激に増加する。加えて、海底地質の影響を大きく受けることになり、水深が20m程度までの遠浅の水域では建設が可能であるものの、それ以上の水深の海域での建設は殆ど不可能である。なお、図5中の1は風力発電施設であり、タワー1aの頂端部に発電機を内蔵したナセル1bを固定し、このナセル1bの先端にブレード1cを回転が自在なように放射状に取付けた構成である。
【0004】
そこで、欧州と異なり遠浅の海底地形を備えた地域がわずかである我国では、欧州と同様の海底に建設する形式の基礎構造を採用し難いことから、洋上に風力発電施設を建設しようとする傾向が窺える(例えば特許文献1〜3参照。)。
【0005】
【特許文献1】
特許第2770449号公報(第1頁、図1)
【特許文献2】
特開2001−165032号公報(第2頁、図4〜6)
【特許文献3】
特開2001−241374号公報(第2〜3頁、図1、図6)
【0006】
【発明が解決しようとする課題】
しかしながら、上記の各公報に記載された洋上風力発電設備は、洋上に浮かせた風力発電施設同士が波によって流されて衝突したり、風力発電施設同士の相対位置関係が変化して発電能力が低下する等を考慮し、何れも複数の風力発電施設をリジッド(rigid )な状態に配置した構成であることから、以下に列挙するような問題がある。
【0007】
▲1▼ 風力発電施設の配置に柔軟性がない。
▲2▼ 浮体が大きくなることから、波浪による影響を受けやすい。
▲3▼ 地上で完成させた風力発電設備を洋上の設置位置まで搬送しなければならず、その搬送に大きな労力を要する。
【0008】
加えて、上記の風力発電設備の洋上での固定は、単に、係留索によって行うもの(特許文献1)や、垂錐を吊り下げるだけ(特許文献3)であり、洋上での設置位置を良好に保つことはできなかった。
【0009】
本発明は、上記した問題点に鑑みてなされたものであり、複数の風力発電施設の配置をリジッドな状態に行わないことで上記の問題点を解決し、しかも、洋上に浮かせた風力発電施設同士が波によって流されて衝突したり、風力発電施設同士の相対位置関係が変化して発電能力を低下させることのない洋上風力発電設備を提供することを目的としている。
【0010】
【課題を解決するための手段】
上記の目的を達成するために、本発明に係る洋上風力発電設備は、洋上において夫々の風力発電施設を立設支持する複数の浮体同士を、途中に中間シンカーを設けた係留チェーンで連結すると共に、適宜の浮体には、更に、一方端に係留アンカーを、途中に中間シンカーを設けた係留チェーンを繋いだこととしている。そして、このようにすることで、深い海域においても洋上での設置が容易に行え、しかも、洋上の風力発電施設が波によって流されて衝突したり、風力発電施設同士の相対位置関係が変化して発電能力を低下させることもない。
【0011】
【発明の実施の形態】
本発明に係る洋上風力発電設備は、洋上において夫々の風力発電施設を立設支持する複数の浮体同士を、途中に中間シンカーを設けた係留チェーンで連結すると共に、適宜の浮体には、更に、一方端に係留アンカーを、途中に中間シンカーを設けた係留チェーンを繋いだものである。
【0012】
複数の風力発電施設を設置する場合、相互干渉による発電効率の低下が問題となる。一般には、ロータ径の10倍程度の距離を保つ必要があるとされているが、本発明に係る洋上風力発電設備は、複数の風力発電施設をリジッドな状態に配置するのではなく、係留チェーンで連結する柔な構成であるので、係留チェーンの長さを調整することで、浮体間の距離を自由に設定することができる。
【0013】
また、本発明に係る洋上風力発電設備では、設置位置までの搬送は各浮体ごとに容易に行え、また、洋上での固定も係留チェーンに繋いだ係留アンカーによるので、1000mを超えるような海域においても、基本的な概念を変更することなく、洋上風力発電設備の設置が容易に行える。
【0014】
そして、その係留チェーンの途中には、海底に接することなく係留チェーンにより懸垂された状態に中間シンカーを設けているので、係留チェーンには常に張力が付与され、各浮体は厳しい気象海象条件のもとにおいても適度な間隔を保ち、かつ、自由な運動が可能になる。
【0015】
上記の本発明に係る洋上風力発電設備において、前記浮体の一つが立設支持する風力発電施設を、管理施設に替えた場合には、他の複数の風力発電施設により発電された電力を集約して、一括して陸上に送電することができるようになるのみならず、非常時には防災センターとしても機能させることができるようになる。
【0016】
また、上記の本発明に係る洋上風力発電設備において、風力発電施設を洋上において夫々立設支持する複数の浮体の配置は特に限定するものではないが、例えば、卓越風向が統計的に既知の海域、例えば、海岸線に比較的近い位置での洋上に設置する場合には、例えば連結した浮体間の距離を短くして直線状に配置し、風の主方向に対して直角に位置させることにより、狭い設置スペースで効率の良い発電が可能になる。この場合、風力発電に加えて波エネルギーによる発電装置を装着すれば、より効果的な発電システムとなる。
【0017】
一方、設置位置が上記のような海岸線に比較的近い位置ではない場合には、浮体と係留アンカー、又は、浮体同士が平面視正三角形の頂点に位置するように配置、若しくは、前記平面視正三角形の要素構造を複数個連結するように配置することで、洋上に浮かべた際のバランスが取りやすくなり、また、設置面積に応じて最適広さのものを容易に得ることができる。
【0018】
また、上記の本発明に係る洋上風力発電設備において、係留アンカーを備えた係留チェーンを、最外周に位置する浮体の外周側に繋いだ場合には、洋上風力発電設備の設置位置での固定が効果的に行なえるようになる。
【0019】
上記の本発明に係る洋上風力発電設備において、風力発電施設や管理施設の仕様やこれらの施設を立設支持する浮体の構造や数は特に限定されるものでないことは言うまでもない。
【0020】
【実施例】
以下、本発明に係る洋上風力発電設備を図1〜図4に示す実施例に基づいて説明する。
図1及び図2は本発明に係る洋上風力発電設備の一例を説明する図、図3は本発明に係る洋上風力発電設備の他の例を示す図、図4は本発明に係る洋上風力発電設備を構成する風力発電施設を立設支持する浮体の一例を示す図である。
【0021】
図1及び図2において、1は例えば正六角形の各頂点に配置された浮体2に立設支持された風力発電施設、3は同じく正六角形の中心位置に配置された浮体2’に立設支持された管理施設であり、これら風力発電施設1、管理施設3を立設支持した隣合う浮体2又2’は同士を、途中に中間シンカー4aを設けた係留チェーン5aで連結している。
【0022】
6は途中に中間シンカー4bを設けた係留チェーン5bの一方端に繋がれた係留アンカーであり、両端に風力発電施設1を繋いだ前記正六角形の一辺をその一辺として形成する正三角形の他の頂点となる位置、すなわち、最外周に位置する浮体2の更に外周側に配置されている。
【0023】
すなわち、図1及び図2に示した例は、風力発電施設1或いは管理施設3を立設支持する浮体2或いは2’と係留アンカー6、又は、前記浮体2或いは2’同士が平面視正三角形の頂点に位置するように配置した平面視正三角形の要素構造を6個で正六角形を形成し、この正六角形の外周に更に6個の正三角形を配した洋上風力発電設備を示している。
【0024】
この図1及び図2に示したような構成の本発明に係る洋上風力発電設備では、海洋での設置面積に応じて最適広さのものを容易に得ることができ、また、係留チェーン5a,5bにより海底に接することなく懸垂された中間シンカー4a,4bの作用で、各浮体2及び2’は厳しい気象海象条件のもとにおいても適度な間隔を保持できるようになる。
【0025】
一方、図3に示した例は、風力発電施設1を立設保持した浮体2を例えば8基直線状に配置したもので、隣合う浮体2同士を、図1及び図2に示した例と同様、途中に中間シンカー4aを設けた係留チェーン5aで連結している。そして、一方端に係留アンカー6を繋ぎ、その途中に中間シンカー4bを設けた係留チェーン5bを、図3(b)に示すように、前記隣合う浮体2同士を連結する係留チェーン5aと直交する方向に繋いでいる。
【0026】
この図3に示したような構成の本発明に係る洋上風力発電設備では、海岸線に比較的近い位置での洋上において、風の主方向に対して直角に位置させることにより、狭い設置スペースで効率の良い発電が可能になる。
【0027】
本発明に係る洋上風力発電設備においては、風力発電施設1や管理施設3の仕様や数、及び、これらの施設を立設支持する浮体2或いは2’の構造は特に限定されるものではないが、例えばタワー1aの頂端部に固定されたナセル1bの先端に回転が自在なように取付けられたブレード1cを備えた風力発電施設1を立設支持する浮体2の構造としては、例えば図4に示したものが適している。
【0028】
11は前記風力発電施設1を洋上に立設支持する軸方向に長い円筒状の主浮体であり、波浪による水平動と傾斜(回転)の抑制に優れた効果を発揮させるべく、その中心軸が鉛直となるように、例えば前記タワー1aと同軸心に取り付けられている。
【0029】
12は前記主浮体11の浮力を補うと共に、波浪による回転及び傾斜に対する復元力を抑制させるために、その上方部分が海上に位置すべく設けられた例えば8個の従浮体であり、例えば前記主浮体11を中心とする同一半径上の等角度位置に、主浮体11を囲繞するようにトラス13によって主浮体11と一体的に取り付けられている。
【0030】
このような構成要素からなる浮体2は、従浮体12とで風力発電施設1を立設支持した状態の主浮体11の下方部分が海中に水没するように、主浮体11と従浮体12の合算浮力を決定することで、重心を低くして風力発電施設1が洋上で転倒しないように復元力を確保すると共に、波浪や風による変動浮力や動揺を抑制する構造となされている。
【0031】
図4に示した浮体2は、上記の主浮体11、従浮体12の他に、更に以下に説明する第1の動揺制止板14、第2の動揺制止板15、大傾斜制御機構16、動揺制止翼17を取り付けたものを示している。
【0032】
14は主浮体11の横断面より大径の円盤状をなす第1の動揺制止板であり、主浮体11の喫水線以下の喫水部分、例えば底面に水平状に設置されている。そして、この第1の動揺制止板14により、波浪による上下動や傾斜(回転)に対する抑制効果を更に向上させることができるようになる。
【0033】
15は従浮体12の例えば喫水線位置に付設したリング状の第2の動揺制止板であり、前記喫水線位置における従浮体12に例えば外嵌状に取付けられている。この第2の動揺制止板15を付設することで、波浪による傾斜(回転)をより一層抑制できるようになる。
【0034】
16は浮体2の喫水線より上方位置に、移動が可能なように設置した例えば2基の傾斜抑制部材からなる大傾斜制御機構であり、無風状態の際には、例えば図4(a)に示したように円周上の対向位置に位置せしめ、洋上に立設保持した風力発電施設1のバランスをとる。
【0035】
そして、この状態で例えば北から南に向けて風が吹いた場合には、前記した状態のままでは風力発電施設1は南に向かって傾くことになるので、大傾斜制御機構16の傾斜抑制部材を北側に移動させてバランスをとる。この際、2基の傾斜抑制部材が共に真北の位置にくるまで移動させる必要はなく、東西を結ぶ線より北側に、傾きを防ぐ位置まで移動させればよい。
【0036】
17は例えば浮体2を構成する全ての従浮体12の喫水線位置における外周部(第2の動揺制止板15の外周部)に設置した動揺制止翼であり、浮体2が動揺した時には海水が自由に通過できるように、夫々が適当な間隔を存して設けられている。
【0037】
本発明に係る浮体式風力発電設備は上記した実施例に限るものではなく、各請求項に係る発明にのみ該当するものであっても、各請求項に係る発明の構成相応の作用効果を奏することは言うまでもない。また、各請求項に係る発明の技術的範囲内であれば、適宜の変更は任意である。
【0038】
【発明の効果】
以上説明したように、本発明に係る洋上風力発電設備によれば、複数の風力発電施設をリジッドな状態に配置するのではなく、係留チェーンで連結する柔な構成であり、また、洋上での固定も係留チェーンに繋いだ係留アンカーにより、その係留チェーンの途中には中間シンカーを設けているので、深い海域においても洋上での設置が容易に行え、しかも、各浮体は厳しい気象海象条件のもとにおいても適度な間隔を保ち、風力発電施設同士の相対位置関係が変化して発電能力を低下させることもない。
【図面の簡単な説明】
【図1】本発明に係る洋上風力発電設備の平面から見た図である。
【図2】(a)は図1のA−A部を側面から見た図、(b)は図1のB−B部を側面から見た図である。
【図3】本発明に係る洋上風力発電設備の他の例を示す図で、(a)は側面から見た図、(b)は平面から見た図である。
【図4】(a)は本発明に係る洋上風力発電設備を構成する風力発電施設を立設支持する浮体を平面から見た概略説明図、(b)は側面から見た概略説明図である。
【図5】海底設置形式における洋上風力発電装置の基礎構造物の説明図で、(a)はケーソン式、(b)はモノパイル式、(c)はドルフィン式を示す図である。
【符号の説明】
1 風力発電施設
2 浮体
2’ 浮体
3 管理施設
4a 中間シンカー
4b 中間シンカー
5a 係留チェーン
5b 係留チェーン
6 係留アンカー
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an offshore wind power generation facility that does not make the seabed topography a problem at all.
[0002]
[Prior art]
Nowadays, effective use of renewable energy is being pursued, and wind power generation has been spreading remarkably in Japan as a particularly profitable attempt.
Especially in Europe, construction of offshore wind power generation facilities is progressing in recent years, not only on land. Unlike wind power generation on land, offshore wind power generation is not only expected to have a stable air volume, but also does not cause noise or radio waves and other pollution that hinders the lives of citizens. Have been.
[0003]
However, the offshore wind power generation facilities actually operating in Europe have been caisson type (see FIG. 5A), monopile type (see FIG. 5B), and dolphin type (see FIG. 5C). )), The construction work becomes difficult as the water depth increases, and the construction cost increases sharply. In addition, it is greatly affected by the seafloor geology, and construction is possible in a shallow water area with a water depth up to about 20 m, but construction in a sea area with a water depth higher than that is almost impossible. In FIG. 5, reference numeral 1 denotes a wind power generation facility, in which a nacelle 1b having a built-in generator is fixed to the top end of the tower 1a, and a blade 1c is radially attached to the tip of the nacelle 1b so as to be freely rotatable. Configuration.
[0004]
Therefore, unlike Europe, where there are only a few areas with shallow seafloor topography, it is difficult to adopt a foundation structure that is constructed on the seabed similar to Europe, so there is a tendency to build wind power facilities offshore (See, for example, Patent Documents 1 to 3).
[0005]
[Patent Document 1]
Japanese Patent No. 2770449 (page 1, FIG. 1)
[Patent Document 2]
JP 2001-165032 A (Page 2, FIGS. 4 to 6)
[Patent Document 3]
JP-A-2001-241374 (pages 2-3, FIGS. 1 and 6)
[0006]
[Problems to be solved by the invention]
However, in the offshore wind power generation facilities described in each of the above publications, the wind power generation facilities floating on the ocean are hit by waves and collide with each other, or the relative positional relationship between the wind power generation facilities is changed, and the power generation capacity is reduced. In view of the above, all have a configuration in which a plurality of wind power generation facilities are arranged in a rigid state, and thus have the following problems.
[0007]
(1) There is no flexibility in the arrangement of wind power generation facilities.
(2) Since the floating body is large, it is easily affected by waves.
(3) The wind power generation facilities completed on the ground must be transported to the offshore installation location, which requires a great deal of labor.
[0008]
In addition, the above-mentioned fixing of the wind power generation facilities at sea is simply performed by mooring ropes (Patent Literature 1) or hanging a pyramid (Patent Literature 3). Couldn't keep up.
[0009]
The present invention has been made in view of the above-mentioned problems, and solves the above-mentioned problems by not arranging a plurality of wind power generation facilities in a rigid state, and furthermore, a wind power generation facility floating on the ocean An object of the present invention is to provide an offshore wind power generation facility that does not collide with each other due to waves and does not reduce the power generation capacity due to a change in the relative positional relationship between the wind power generation facilities.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, an offshore wind turbine according to the present invention connects a plurality of floating bodies standing and supporting respective wind turbines on the sea with a mooring chain provided with an intermediate sinker in the middle. An appropriate floating body is further connected to a mooring chain provided with a mooring anchor at one end and an intermediate sinker in the middle. In this way, installation on the ocean can be easily performed even in deep sea areas, and the offshore wind power generation facilities are swept away by waves and collide, and the relative positional relationship between the wind power generation facilities changes. It does not lower the power generation capacity.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
The offshore wind power generation equipment according to the present invention, while connecting a plurality of floating bodies standing and supporting each wind power generation facility on the sea with a mooring chain provided with an intermediate sinker in the middle, the appropriate floating body further, The mooring anchor is connected at one end to a mooring chain provided with an intermediate sinker in the middle.
[0012]
When installing a plurality of wind power generation facilities, there is a problem that power generation efficiency is reduced due to mutual interference. Generally, it is necessary to maintain a distance of about 10 times the rotor diameter. However, the offshore wind power generation facility according to the present invention does not dispose a plurality of wind power generation facilities in a rigid state, but instead uses a mooring chain. , The distance between the floating bodies can be freely set by adjusting the length of the mooring chain.
[0013]
Further, in the offshore wind power generation equipment according to the present invention, the transportation to the installation position can be easily performed for each floating body, and since the anchoring on the ocean is also performed by the mooring anchor connected to the mooring chain, in the sea area exceeding 1000 m. However, installation of offshore wind power generation facilities can be easily performed without changing the basic concept.
[0014]
And, in the middle of the mooring chain, an intermediate sinker is provided in a state suspended by the mooring chain without touching the seabed, so tension is always applied to the mooring chain, and each floating body is subject to severe weather and sea conditions. In this case, an appropriate interval can be maintained and free movement can be performed.
[0015]
In the above-mentioned offshore wind power generation facility according to the present invention, when the wind power generation facility that one of the floating bodies supports upright is replaced with a management facility, the power generated by the other plurality of wind power generation facilities is aggregated. As a result, not only can power be transmitted to land collectively, but also it can function as a disaster prevention center in an emergency.
[0016]
Further, in the above-described offshore wind power generation facility according to the present invention, the arrangement of the plurality of floating bodies that respectively support the wind power generation facility standing offshore is not particularly limited, but, for example, in a sea area where the prevailing wind direction is statistically known. For example, when installed on the sea at a position relatively close to the coastline, for example, by shortening the distance between the connected floating bodies, linearly arranging them, and positioning them at right angles to the main direction of the wind, Efficient power generation is possible in a small installation space. In this case, if a power generation device using wave energy is installed in addition to the wind power generation, a more effective power generation system is obtained.
[0017]
On the other hand, when the installation position is not a position relatively close to the coastline as described above, the floating body and the mooring anchor, or the floating bodies are arranged such that they are located at the apexes of the triangle in plan view, or By arranging a plurality of triangular element structures so as to be connected, it is easy to maintain a balance when floating on the sea, and it is possible to easily obtain a structure having an optimum size according to the installation area.
[0018]
Further, in the above-described offshore wind power generation facility according to the present invention, when the mooring chain provided with the mooring anchor is connected to the outer peripheral side of the floating body located at the outermost circumference, fixing at the installation position of the offshore wind power generation facility is not required. Be able to do it effectively.
[0019]
In the above-mentioned offshore wind power generation equipment according to the present invention, it goes without saying that the specifications of the wind power generation facilities and the management facilities and the structure and number of floating bodies that support and stand these facilities are not particularly limited.
[0020]
【Example】
Hereinafter, an offshore wind power generation facility according to the present invention will be described based on an embodiment shown in FIGS.
1 and 2 are diagrams illustrating an example of an offshore wind turbine according to the present invention, FIG. 3 is a diagram illustrating another example of an offshore wind turbine according to the present invention, and FIG. 4 is an offshore wind turbine according to the present invention. It is a figure which shows an example of the floating body which erects and supports the wind power generation facility which comprises an installation.
[0021]
1 and 2, reference numeral 1 denotes a wind power generation facility which is erected and supported on a floating body 2 disposed at each vertex of a regular hexagon, for example, and 3 denotes an erected and supported body on a floating body 2 ′ which is also arranged at the center position of the regular hexagon. The adjacent floating bodies 2 or 2 ′ that support and stand the wind power generation facility 1 and the management facility 3 are connected to each other by a mooring chain 5 a provided with an intermediate sinker 4 a in the middle.
[0022]
Reference numeral 6 denotes a mooring anchor connected to one end of a mooring chain 5b provided with an intermediate sinker 4b in the middle, and another of the equilateral triangle forming one side of the regular hexagon connected to the wind power generation facility 1 at both ends as one side thereof. It is arranged on the position that becomes the top, that is, further on the outer circumference side of the floating body 2 located on the outermost circumference.
[0023]
That is, in the example shown in FIGS. 1 and 2, the floating body 2 or 2 ′ and the mooring anchor 6 that support and support the wind power generation facility 1 or the management facility 3, or the floating bodies 2 or 2 ′ are equilateral triangles in plan view. The figure shows an offshore wind power generation facility in which a regular hexagon is formed by six elementary structures of an equilateral triangle arranged in such a manner as to be positioned at the apex, and six more equilateral triangles are arranged on the outer periphery of the equilateral hexagon.
[0024]
In the offshore wind power generation equipment according to the present invention having the configuration shown in FIGS. 1 and 2, an offshore wind power generation facility having an optimum size according to the installation area in the ocean can be easily obtained, and the mooring chains 5 a, By the action of the intermediate sinkers 4a, 4b suspended without touching the seabed by the 5b, the floating bodies 2 and 2 'can maintain an appropriate interval even under severe weather and sea conditions.
[0025]
On the other hand, the example shown in FIG. 3 is one in which eight floating bodies 2 holding the wind power generation facility 1 are erected and arranged in a straight line, for example, and eight floating bodies 2 are adjacent to each other, as shown in FIGS. Similarly, they are connected by a mooring chain 5a provided with an intermediate sinker 4a in the middle. The mooring chain 5b having one end connected to the mooring anchor 6 and the intermediate sinker 4b provided in the middle thereof is orthogonal to the mooring chain 5a connecting the adjacent floating bodies 2 as shown in FIG. 3 (b). Connected in the direction.
[0026]
In the offshore wind power generation equipment according to the present invention having a configuration as shown in FIG. 3, on the offshore at a position relatively close to the shoreline, by being positioned at right angles to the main direction of the wind, efficiency is reduced in a narrow installation space. Good power generation becomes possible.
[0027]
In the offshore wind power generation facility according to the present invention, the specifications and number of the wind power generation facility 1 and the management facility 3 and the structure of the floating body 2 or 2 ′ that supports these facilities are not particularly limited. For example, as a structure of a floating body 2 that erects and supports a wind power generation facility 1 having a blade 1c rotatably attached to a tip of a nacelle 1b fixed to a top end of a tower 1a, for example, as shown in FIG. The ones shown are suitable.
[0028]
Reference numeral 11 denotes an axially long cylindrical main floating body that stands and supports the wind power generation facility 1 on the sea. The central axis of the main floating body 11 is excellent in suppressing horizontal movement and inclination (rotation) due to waves. It is mounted, for example, coaxially with the tower 1a so as to be vertical.
[0029]
Reference numeral 12 denotes, for example, eight sub-floating bodies whose upper portions are provided to be located on the sea in order to supplement the buoyancy of the main floating body 11 and suppress the restoring force against rotation and inclination due to waves. It is integrally attached to the main floating body 11 by a truss 13 so as to surround the main floating body 11 at equal angular positions on the same radius around the floating body 11.
[0030]
The floating body 2 composed of such components is a combination of the main floating body 11 and the sub floating body 12 such that the lower part of the main floating body 11 in a state where the wind power generation facility 1 is erected and supported by the sub floating body 12 is submerged in the sea. By determining the buoyancy, the center of gravity is lowered to secure the restoring force so that the wind power generation facility 1 does not fall on the sea, and the structure is configured to suppress the fluctuating buoyancy and sway due to waves and wind.
[0031]
The floating body 2 shown in FIG. 4 includes, in addition to the main floating body 11 and the subordinate floating body 12, a first sway stop plate 14, a second sway stop plate 15, a large tilt control mechanism 16, and a sway described below. The figure shows a state in which the stopping wings 17 are attached.
[0032]
Reference numeral 14 denotes a first rocking stop plate having a disk shape larger in diameter than the cross section of the main floating body 11, and is installed horizontally on a draft portion below the water line of the main floating body 11, for example, on the bottom surface. Further, the effect of suppressing the vertical movement and the inclination (rotation) due to the waves can be further improved by the first fluctuation stopping plate 14.
[0033]
Reference numeral 15 denotes a ring-shaped second swinging stop plate attached to, for example, a waterline position of the sub-floating body 12, and is attached to the sub-floating body 12 at the waterline position, for example, in an outer fitting shape. By providing the second rocking stop plate 15, the inclination (rotation) due to the waves can be further suppressed.
[0034]
Reference numeral 16 denotes a large tilt control mechanism including, for example, two tilt suppression members movably installed at a position above the waterline of the floating body 2, and shown in, for example, FIG. As described above, the wind turbine generator 1 is positioned at the opposing position on the circumference, and balances the wind power generation facility 1 standing and held offshore.
[0035]
In this state, for example, when the wind blows from north to south, the wind power generation facility 1 is tilted to the south in the above-mentioned state. To the north to balance. At this time, it is not necessary to move the two inclination suppressing members until they are both at the position of true north, but it is sufficient to move the two members to the position north of the line connecting east and west to the position where the inclination is prevented.
[0036]
Reference numeral 17 denotes a sway-stopping wing installed on the outer peripheral portion (outer-peripheral portion of the second sway-stop plate 15) of the waterline position of all the sub-floats 12 constituting the floating body 2, for example. When the floating body 2 is swayed, seawater is free. Each is provided at an appropriate interval so that it can pass through.
[0037]
The floating wind power generation equipment according to the present invention is not limited to the above-described embodiment, and even if it is applicable only to the invention according to each claim, it exhibits the function and effect corresponding to the configuration of the invention according to each claim. Needless to say. Appropriate changes are optional within the technical scope of the claimed invention.
[0038]
【The invention's effect】
As described above, according to the offshore wind power generation facility of the present invention, a plurality of wind power generation facilities are not arranged in a rigid state, but have a flexible configuration in which they are connected by a mooring chain. The anchor is also connected to the mooring chain, and an intermediate sinker is provided in the middle of the mooring chain, so that it can be easily installed on the ocean even in deep sea areas, and each floating body can be used under severe weather and sea conditions. In this case, an appropriate interval is maintained, and the relative positional relationship between the wind power generation facilities does not change and the power generation capacity does not decrease.
[Brief description of the drawings]
FIG. 1 is a plan view of an offshore wind turbine according to the present invention.
2 (a) is a diagram of the AA portion of FIG. 1 viewed from the side, and FIG. 2 (b) is a diagram of the BB portion of FIG. 1 viewed from the side.
3A and 3B are diagrams illustrating another example of the offshore wind power generation facility according to the present invention, wherein FIG. 3A is a diagram viewed from a side, and FIG. 3B is a diagram viewed from a plane.
FIG. 4 (a) is a schematic explanatory view of a floating body that stands and supports a wind power generation facility that constitutes an offshore wind power generation facility according to the present invention, as viewed from a plane, and FIG. 4 (b) is a schematic explanatory view as viewed from a side. .
5A and 5B are explanatory diagrams of a substructure of an offshore wind turbine in a seabed installation type, in which FIG. 5A shows a caisson type, FIG. 5B shows a monopile type, and FIG. 5C shows a dolphin type.
[Explanation of symbols]
Reference Signs List 1 wind power generation facility 2 floating body 2 'floating body 3 management facility 4a intermediate sinker 4b intermediate sinker 5a mooring chain 5b mooring chain 6 mooring anchor

Claims (5)

洋上において夫々の風力発電施設を立設支持する複数の浮体同士を、途中に中間シンカーを設けた係留チェーンで連結すると共に、適宜の浮体には、更に、一方端に係留アンカーを、途中に中間シンカーを設けた係留チェーンを繋いだことを特徴とする洋上風力発電設備。A plurality of floating bodies standing and supporting each wind power generation facility at sea are connected by a mooring chain provided with an intermediate sinker in the middle, and an appropriate floating body is further provided with a mooring anchor at one end and a middle in the middle. Offshore wind power generation facilities that are connected to mooring chains with sinkers. 前記浮体の一つが立設支持する風力発電施設を、管理施設に替えたことを特徴とする請求項1記載の洋上風力発電設備。2. The offshore wind power generation facility according to claim 1, wherein the wind power generation facility that one of the floating bodies stands and supports is replaced with a management facility. 連結した浮体を直線状に配置したことを特徴とする請求項1又は2記載の洋上風力発電設備。The offshore wind power generation facility according to claim 1 or 2, wherein the connected floating bodies are linearly arranged. 浮体と係留アンカー、又は、浮体同士が平面視正三角形の頂点に位置するように配置、若しくは、前記平面視正三角形の要素構造を複数個連結するように配置したことを特徴とする請求項1又は2記載の洋上風力発電設備。The floating body and the mooring anchor, or the floating bodies are arranged so as to be located at the vertices of an equilateral triangle in plan view, or arranged so as to connect a plurality of element structures of the equilateral triangle in plan view. Or the offshore wind power generation facility according to 2. 一方端に係留アンカーを備えた係留チェーンは、最外周に位置する浮体の外周側に繋がれていることを特徴とする請求項1〜4の何れか記載の洋上風力発電設備。The offshore wind power generation facility according to any one of claims 1 to 4, wherein the mooring chain having a mooring anchor at one end is connected to an outer peripheral side of a floating body located at the outermost periphery.
JP2002343709A 2002-11-27 2002-11-27 Offshore wind power generation facilities Expired - Fee Related JP3944445B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002343709A JP3944445B2 (en) 2002-11-27 2002-11-27 Offshore wind power generation facilities

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002343709A JP3944445B2 (en) 2002-11-27 2002-11-27 Offshore wind power generation facilities

Publications (2)

Publication Number Publication Date
JP2004176626A true JP2004176626A (en) 2004-06-24
JP3944445B2 JP3944445B2 (en) 2007-07-11

Family

ID=32705435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002343709A Expired - Fee Related JP3944445B2 (en) 2002-11-27 2002-11-27 Offshore wind power generation facilities

Country Status (1)

Country Link
JP (1) JP3944445B2 (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006206006A (en) * 2005-01-31 2006-08-10 Univ Of Ryukyus Floating body mooring method
JP2007518912A (en) * 2003-10-23 2007-07-12 オーシャン ウィンド テクノロジー, エルエルシー Power generation assembly
EP1993901A2 (en) * 2006-02-27 2008-11-26 Ocean Power Technologies, Inc. Mooring of arrays of buoy-like wecs
WO2010048560A2 (en) * 2008-10-24 2010-04-29 Lew Holdings, Llc Offshore wind turbines and deployment methods therefor
WO2010104565A2 (en) * 2009-03-09 2010-09-16 Natural Power Concepts, Inc. System and method for generating electricity using grid of wind and water energy capture devices
JP2010216273A (en) * 2009-03-13 2010-09-30 Penta Ocean Construction Co Ltd Substructure of floating type ocean wind turbine generator
EP2267297A2 (en) 2009-06-24 2010-12-29 Fuji Jukogyo Kabushiki Kaisha Floating offshore wind turbine
CN102060088A (en) * 2010-12-01 2011-05-18 山东长星风电科技有限公司 Special technology for offshore combined floating wind power generation
JP2011521820A (en) * 2008-04-23 2011-07-28 プリンシプル・パワー・インコーポレーテツド Column-stabilized offshore platform with water entrapment plate and asymmetric mooring system for offshore wind turbine support
JP2011245879A (en) * 2010-05-21 2011-12-08 National Maritime Research Institute Mooring device of floating body
US8096116B2 (en) * 2008-01-22 2012-01-17 Ocean Power Technologies, Inc. Mooring of multiple arrays of buoy-like WECs
KR101302382B1 (en) 2012-04-17 2013-09-02 주식회사에스티엑스종합기술원 Mooring apparatus for wind turbine and offshore wind turbine farm having the same
DE102012222756A1 (en) * 2012-12-11 2014-06-12 Gicon Windpower Ip Gmbh Floating in the open sea and connected by anchoring means anchoring structure for wind turbines, service stations or converter stations
JP2014219012A (en) * 2011-05-23 2014-11-20 永田 龍彦 Buoyancy structure system and floating type ocean wind generator system
JP5685670B1 (en) * 2014-07-08 2015-03-18 三井海洋開発株式会社 Offshore structure group mooring system and offshore structure group mooring method
DE102015121371A1 (en) * 2015-12-08 2017-06-08 Aerodyn Engineering Gmbh Offshore wind farm
US9810204B2 (en) 2010-10-15 2017-11-07 Principle Power, Inc. Floating wind turbine platform structure with optimized transfer of wave and wind loads
US9879654B2 (en) 2013-05-20 2018-01-30 Principle Power, Inc. System and method for controlling offshore floating wind turbine platforms
WO2018026930A1 (en) 2016-08-03 2018-02-08 Sheldon Coulson Garth Alexander Mooring system for drifting energy converters
JP2019089554A (en) * 2019-02-28 2019-06-13 株式会社環境資源開発コンサルタント On-water installation photovoltaic power generation device
WO2019155883A1 (en) * 2018-02-07 2019-08-15 キョーラク株式会社 Float assembly
JP2019137383A (en) * 2018-02-07 2019-08-22 キョーラク株式会社 Float cluster
US10421524B2 (en) 2014-10-27 2019-09-24 Principle Power, Inc. Connection system for array cables of disconnectable offshore energy devices
NO20191273A1 (en) * 2019-10-25 2021-04-26 Subsea 7 Norway As Generation of electrical power offshore
GB2588453A (en) * 2019-10-25 2021-04-28 Subsea 7 Norway As Generation of electrical power offshore
US11225945B2 (en) 2019-05-30 2022-01-18 Principle Power, Inc. Floating wind turbine platform controlled to optimize power production and reduce loading
WO2023040245A1 (en) * 2021-09-18 2023-03-23 夏尔特拉(上海)新能源科技有限公司 Mooring system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102390495A (en) * 2011-09-30 2012-03-28 山东长星风电科技有限公司 Offshore combined floating wind power generation platform

Cited By (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007518912A (en) * 2003-10-23 2007-07-12 オーシャン ウィンド テクノロジー, エルエルシー Power generation assembly
JP4717825B2 (en) * 2003-10-23 2011-07-06 オーシャン ウィンド テクノロジー, エルエルシー Power generation assembly
JP2006206006A (en) * 2005-01-31 2006-08-10 Univ Of Ryukyus Floating body mooring method
US7886680B2 (en) * 2006-02-27 2011-02-15 Ocean Power Technologies, Inc Mooring of arrays of buoy-like WECs
EP1993901A2 (en) * 2006-02-27 2008-11-26 Ocean Power Technologies, Inc. Mooring of arrays of buoy-like wecs
EP1993901A4 (en) * 2006-02-27 2012-10-24 Ocean Power Technologies Inc Mooring of arrays of buoy-like wecs
EP2268917A4 (en) * 2008-01-22 2016-10-19 Ocean Power Technologies Inc Mooring of multiple arrays of buoy-like wecs
US8096116B2 (en) * 2008-01-22 2012-01-17 Ocean Power Technologies, Inc. Mooring of multiple arrays of buoy-like WECs
JP2015037935A (en) * 2008-04-23 2015-02-26 プリンシプル・パワー・インコーポレーテツド Column-stabilized offshore platform with water-entrapment plates and asymmetric mooring system for support of offshore wind turbines
US9446822B2 (en) 2008-04-23 2016-09-20 Principle Power, Inc. Floating wind turbine platform with ballast control and water entrapment plate systems
JP2015016860A (en) * 2008-04-23 2015-01-29 プリンシプル・パワー・インコーポレーテツド Column-stabilized offshore platform with water-entrapment plates and asymmetric mooring system for support of offshore wind turbines
JP2011521820A (en) * 2008-04-23 2011-07-28 プリンシプル・パワー・インコーポレーテツド Column-stabilized offshore platform with water entrapment plate and asymmetric mooring system for offshore wind turbine support
US8740543B2 (en) 2008-10-24 2014-06-03 Lloyd E. Weaver Offshore wind turbines and deployment methods therefor
WO2010048560A3 (en) * 2008-10-24 2010-08-19 Lew Holdings, Llc Offshore wind turbines and deployment methods therefor
WO2010048560A2 (en) * 2008-10-24 2010-04-29 Lew Holdings, Llc Offshore wind turbines and deployment methods therefor
WO2010104565A2 (en) * 2009-03-09 2010-09-16 Natural Power Concepts, Inc. System and method for generating electricity using grid of wind and water energy capture devices
WO2010104565A3 (en) * 2009-03-09 2011-04-07 Natural Power Concepts, Inc. System and method for generating electricity using grid of wind and water energy capture devices
US8803346B2 (en) 2009-03-09 2014-08-12 Natural Power Concepts, Inc. System and method for generating electricity using grid of wind and water energy capture devices
JP2010216273A (en) * 2009-03-13 2010-09-30 Penta Ocean Construction Co Ltd Substructure of floating type ocean wind turbine generator
JP2011007085A (en) * 2009-06-24 2011-01-13 Fuji Heavy Ind Ltd Floating offshore wind turbine
EP2267297A2 (en) 2009-06-24 2010-12-29 Fuji Jukogyo Kabushiki Kaisha Floating offshore wind turbine
JP2011245879A (en) * 2010-05-21 2011-12-08 National Maritime Research Institute Mooring device of floating body
US9810204B2 (en) 2010-10-15 2017-11-07 Principle Power, Inc. Floating wind turbine platform structure with optimized transfer of wave and wind loads
CN102060088A (en) * 2010-12-01 2011-05-18 山东长星风电科技有限公司 Special technology for offshore combined floating wind power generation
JP2014219012A (en) * 2011-05-23 2014-11-20 永田 龍彦 Buoyancy structure system and floating type ocean wind generator system
KR101302382B1 (en) 2012-04-17 2013-09-02 주식회사에스티엑스종합기술원 Mooring apparatus for wind turbine and offshore wind turbine farm having the same
DE102012222756A1 (en) * 2012-12-11 2014-06-12 Gicon Windpower Ip Gmbh Floating in the open sea and connected by anchoring means anchoring structure for wind turbines, service stations or converter stations
DE102012222756B4 (en) * 2012-12-11 2017-03-23 Gicon Windpower Ip Gmbh Floating in the open sea and connected by anchoring means anchoring structure for wind turbines, service stations or converter stations
US10267293B2 (en) 2013-05-20 2019-04-23 Principle Power, Inc. Methods for controlling floating wind turbine platforms
US9879654B2 (en) 2013-05-20 2018-01-30 Principle Power, Inc. System and method for controlling offshore floating wind turbine platforms
KR20160149268A (en) * 2014-07-08 2016-12-27 모덱, 아이엔씨. System for mooring offshore structure group and method for mooring offshore structure group
KR101885606B1 (en) 2014-07-08 2018-09-06 모덱, 아이엔씨. System for mooring offshore structure group and method for mooring offshore structure group
CN106687366A (en) * 2014-07-08 2017-05-17 三井海洋开发株式会社 System for mooring offshore structure group and method for mooring offshore structure group
US10351211B2 (en) 2014-07-08 2019-07-16 Modec, Inc. System for mooring offshore structure group and method for mooring offshore structure group
JP2016016750A (en) * 2014-07-08 2016-02-01 三井海洋開発株式会社 Mooring system of offshore structure group and mooring method of offshore structure group
WO2016006126A1 (en) * 2014-07-08 2016-01-14 三井海洋開発株式会社 System for mooring offshore structure group and method for mooring offshore structure group
JP5685670B1 (en) * 2014-07-08 2015-03-18 三井海洋開発株式会社 Offshore structure group mooring system and offshore structure group mooring method
US10858075B2 (en) 2014-10-27 2020-12-08 Principle Power, Inc. Floating electrical connection system for offshore energy devices
US10421524B2 (en) 2014-10-27 2019-09-24 Principle Power, Inc. Connection system for array cables of disconnectable offshore energy devices
KR20180063107A (en) 2015-12-08 2018-06-11 에어로딘 컨설팅 싱가포르 피티이 엘티디 Offshore wind farm
CN108431407A (en) * 2015-12-08 2018-08-21 艾罗丁咨询新加坡私人有限公司 Marine wind electric field
DE102015121371B4 (en) * 2015-12-08 2018-11-15 Aerodyn Consulting Singapore Pte Ltd Offshore wind farm
WO2017097286A1 (en) 2015-12-08 2017-06-15 Aerodyn Engineering Gmbh Offshore wind farm
CN108431407B (en) * 2015-12-08 2021-04-20 艾罗丁咨询新加坡私人有限公司 Offshore wind farm
DE102015121371A1 (en) * 2015-12-08 2017-06-08 Aerodyn Engineering Gmbh Offshore wind farm
US10487803B2 (en) 2015-12-08 2019-11-26 Aerodyn Consulting Singapore Pte Ltd Offshore wind farm
WO2018026930A1 (en) 2016-08-03 2018-02-08 Sheldon Coulson Garth Alexander Mooring system for drifting energy converters
AU2017306409B2 (en) * 2016-08-03 2023-10-19 Lone Gull Holdings, Ltd. Mooring system for drifting energy converters
EP3494304A4 (en) * 2016-08-03 2020-04-01 Sheldon-Coulson, Garth Alexander Mooring system for drifting energy converters
JP2019137383A (en) * 2018-02-07 2019-08-22 キョーラク株式会社 Float cluster
WO2019155883A1 (en) * 2018-02-07 2019-08-15 キョーラク株式会社 Float assembly
US11407480B2 (en) 2018-02-07 2022-08-09 Kyoraku Co., Ltd. Float assembly
JP7181450B2 (en) 2018-02-07 2022-12-01 キョーラク株式会社 float assembly
JP2019089554A (en) * 2019-02-28 2019-06-13 株式会社環境資源開発コンサルタント On-water installation photovoltaic power generation device
US11225945B2 (en) 2019-05-30 2022-01-18 Principle Power, Inc. Floating wind turbine platform controlled to optimize power production and reduce loading
NO20191273A1 (en) * 2019-10-25 2021-04-26 Subsea 7 Norway As Generation of electrical power offshore
GB2588453A (en) * 2019-10-25 2021-04-28 Subsea 7 Norway As Generation of electrical power offshore
NO345792B1 (en) * 2019-10-25 2021-08-09 Subsea 7 Norway As Generation of electrical power offshore
GB2588453B (en) * 2019-10-25 2022-04-06 Subsea 7 Norway As Generation of electrical power offshore
WO2023040245A1 (en) * 2021-09-18 2023-03-23 夏尔特拉(上海)新能源科技有限公司 Mooring system

Also Published As

Publication number Publication date
JP3944445B2 (en) 2007-07-11

Similar Documents

Publication Publication Date Title
JP3944445B2 (en) Offshore wind power generation facilities
JP4123936B2 (en) Floating offshore wind power generation facility
ES2772950A2 (en) Self-aligning to wind facing floating platform supporting multi-wind turbines and solar for wind and solar power generation and the construction method thereon
JP7417000B2 (en) Floating wind power platform with tension leg device
WO2016004739A1 (en) Wind tracing, rotational, semi-submerged raft for wind power generation and a construction method thereof
CA2608233C (en) Anchoring arrangement for floating wind turbine installations
WO2003072428A1 (en) Float type base structure for wind power generation on the ocean
US9340265B2 (en) Arrangement of floating platforms
US8937395B2 (en) Ocean floor mounting of wave energy converters
JP2003229593A (en) Solar battery power generating apparatus to be installed above water surface
JP2013508609A (en) Floating vertical axis wind turbine module system and method
US8439641B2 (en) Flow driven engine
US20140322012A1 (en) Flow Driven Engine
EP2889478B1 (en) Offshore wind turbine
KR20160044241A (en) Underlying Structure of Floating Wind Turbine Generator
JP7313212B2 (en) Floating structures for offshore facilities and their installation structures
KR102389699B1 (en) Floating platform having floating unit
KR102093240B1 (en) Multi-column structured and self weather vaning type offshore wind turbine support ship
CN210047606U (en) Offshore platform framework
JP2024514061A (en) Mooring configuration for tension moored platforms
WO2020089776A1 (en) System for transmitting wave energy absorbed by one or more floating bodies to an energy conversion system located on the coast, and method for transmitting energy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070306

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070409

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120413

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140413

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees