JP3943991B2 - Fuel heating device, fuel heating method, gas turbine power generation facility, and combined power generation facility - Google Patents

Fuel heating device, fuel heating method, gas turbine power generation facility, and combined power generation facility Download PDF

Info

Publication number
JP3943991B2
JP3943991B2 JP2002148680A JP2002148680A JP3943991B2 JP 3943991 B2 JP3943991 B2 JP 3943991B2 JP 2002148680 A JP2002148680 A JP 2002148680A JP 2002148680 A JP2002148680 A JP 2002148680A JP 3943991 B2 JP3943991 B2 JP 3943991B2
Authority
JP
Japan
Prior art keywords
pressure
fuel
fluid
power generation
difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002148680A
Other languages
Japanese (ja)
Other versions
JP2003343283A (en
Inventor
秀和 山下
一也 東
承一 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2002148680A priority Critical patent/JP3943991B2/en
Publication of JP2003343283A publication Critical patent/JP2003343283A/en
Application granted granted Critical
Publication of JP3943991B2 publication Critical patent/JP3943991B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、流体との熱交換により燃料を加熱する燃料加熱装置及び燃料加熱方法に関する。
【0002】
また、本発明は、圧縮機及び燃焼器及びタービンからなるガスタービン発電設備に関する。
【0003】
また、本発明は、ガスタービン発電設備と蒸気タービン発電設備を組み合わせた複合発電設備に関する。
【0004】
【従来の技術】
エネルギー資源の有効利用と経済性の観点から、発電設備では様々な高効率化が図られている。ガスタービンと蒸気タービンを組み合わせたタービン発電設備(複合発電設備)もその一つである。複合発電設備では、ガスタービンからの高温の排気ガスが排熱回収ボイラに送られ、排熱回収ボイラ内で加熱ユニットを介して蒸気を発生させ、発生した蒸気を蒸気タービンに送って蒸気タービンで仕事をするようになっている。
【0005】
近年、ガスタービンの燃焼温度を高くして効率を向上させるようになってきており、燃焼温度を高くするために、燃焼器に供給される燃料の温度を増加させることが行われている。ガスタービンと蒸気タービンを組み合わせた複合発電プラントでは、燃焼器に供給される燃料が排熱回収ボイラの給水により燃料加熱装置で加熱されるようになっている。燃料加熱装置では、燃料の圧力よりも給水の圧力が高く保たれて燃料ガスの給水への漏れがないようにされている。
【0006】
【発明が解決しようとする課題】
複合発電設備では、通常の運転中は給水の圧力は給水ポンプの駆動により所定圧力に維持されているので、燃料の圧力よりも給水の圧力が高く保たれる。しかし、設備を停止させた場合には給水ポンプの駆動も停止し、給水の圧力を所定圧力に維持できなくなる虞があった。特に、起動と停止を頻繁に繰り返す設備にあっては、設備を停止させる度に給水の圧力を所定圧力に維持できなくなる虞が生じているのが現状であった。
【0007】
本発明は上記状況に鑑みてなされたもので、給水の圧力と燃料の圧力との差が所定圧力よりも小さくなっても給水の圧力が燃料の圧力よりも低くなることがない燃料加熱装置及び燃料加熱方法を提供することを目的とする。
【0008】
また、本発明は上記状況に鑑みてなされたもので、給水の圧力と燃料の圧力との差が所定圧力よりも小さくなっても給水の圧力が燃料の圧力よりも低くなることがない燃料加熱装置を備えたガスタービン発電設備を提供することを目的とする。
【0009】
また、本発明は上記状況に鑑みてなされたもので、給水の圧力と燃料の圧力との差が所定圧力よりも小さくなっても給水の圧力が燃料の圧力よりも低くなることがない燃料加熱装置を備えた複合発電設備を提供することを目的とする。
【0010】
【課題を解決するための手段】
上記目的を達成するための本発明の燃料加熱装置は、流体との熱交換により燃料を加熱する燃料加熱装置において、燃料の圧力と流体の圧力の差を導出する差圧導出手段と、差圧導出手段により圧力の差が小さくなったことが導出された際に燃料の圧力よりも流体の圧力が低くならないようにする圧力差保持手段とを備えたことを特徴とする。
【0011】
そして、燃料の流入口と流出口を有する容器を備えると共に容器内に流体の流通通路を備え、差圧導出手段は、容器の内部の燃料圧力と流通通路を流通する流体圧力との差を導出する手段であることを特徴とする。
【0012】
また、差圧導出手段は、容器の内部の燃料圧力を検出する燃料圧力検出手段と、流通通路を流通する流体圧力を検出する流体圧力検出手段と、燃料圧力検出手段及び流体圧力検出手段の検出情報が入力され燃料圧力と流体圧力の差を導出する手段とからなることを特徴とする。
【0013】
また、差圧導出手段には、燃料圧力と流体圧力の差圧が所定圧力以下になった際に圧力差保持手段に燃料の圧力よりも流体の圧力が低くならないようにする指令を出力する機能が備えられていることを特徴とする。
【0014】
また、圧力差保持手段は、容器の内部から燃料を放出する手段であり、差圧導出手段には、燃料圧力と流体圧力の差圧が所定圧力以下になった際に容器の内部から燃料を放出する指令を出力する機能が備えられていることを特徴とする。
【0015】
また、圧力差保持手段は、流通通路を封止して流通通路の流体圧力を封止する封止手段であり、差圧導出手段には、燃料圧力と流体圧力の差圧が所定圧力以下になった際に流通通路を封止する指令を出力する機能が備えられていることを特徴とする。
【0016】
また、燃料はガスタービンの燃焼器に供給される燃料であり、流体は排熱回収ボイラの給水であることを特徴とする。
【0017】
上記目的を達成するための本発明の燃料加熱方法は、燃料と流体の熱交換により燃料を加熱する燃料加熱方法において、燃料の圧力と流体の圧力の差を導出し、導出された圧力の差に応じて燃料の圧力よりも流体の圧力が低くならないようにすることを特徴とする。
【0018】
上記目的を達成するための本発明のガスタービン発電設備は、圧縮機及び燃焼器及びタービンからなるガスタービン発電設備において、請求項7に記載の燃料加熱装置を備え、燃焼器には燃料加熱装置で加熱された燃料が供給されることを特徴とする。
【0019】
上記目的を達成するための本発明の複合発電設備は、圧縮機及び燃焼器及びタービンからなるガスタービン発電設と、タービンの排熱を回収して蒸気を発生させる排熱回収ボイラと、排熱回収ボイラで発生した蒸気を駆動源とする蒸気タービンと、蒸気タービンの排気蒸気を復水する復水器と、復水器の復水を排熱回収ボイラに給水する給水手段と、請求項7に記載の燃料加熱装置とを備え、燃焼器には燃料加熱装置で加熱された燃料が供給され、排熱回収ボイラの給水が燃料加熱装置で熱交換されることを特徴とする。
【0020】
【発明の実施の形態】
図1には本発明の一実施形態例に係る燃料加熱装置を備えた複合発電設備の全体を表す概略構成、図2には燃料加熱装置の概略構成を示してある。
【0021】
図1に示すように、圧縮機1及び燃焼器2及びタービン3を有するガスタービン4が備えられ、ガスタービン4には発電機5が同軸上に連結されている。ガスタービン4からの排気ガスGが排熱回収ボイラ6に送られるようになっており、排熱回収ボイラ6には圧力毎に図示しない加熱ユニットが備えられている。
【0022】
排熱回収ボイラ6内では加熱ユニットを介して蒸気を発生させ、発生した蒸気は蒸気タービン7に送られて蒸気タービン7で仕事をするようになっている。蒸気タービン7には発電機8が同軸上に連結されている。蒸気タービン7の排気蒸気は復水器9で復水され、復水は給水手段としての給水ポンプ10により排熱回収ボイラ6の加熱ユニットに給水される。
【0023】
ガスタービン4の燃焼器2には圧縮機1で圧縮された空気が送られると共に、燃料圧縮機11で圧縮されて燃料加熱装置12で加熱された燃料fが送られる。燃焼器2からの燃焼ガスはタービン3に送られ、タービン3が駆動される。燃料加熱装置12には排熱回収ボイラ6の給水の一部が送られ、排熱回収ボイラ6の給水により燃料fが加熱される。
【0024】
上記構成の複合発電設備では、圧縮機1で圧縮された空気及び燃料加熱装置12で加熱された燃料fが燃焼器2に送られ、燃焼器2からの燃焼ガスによりタービン3が駆動されて圧縮機1の動力及び発電機5の動力とされる(ガスタービン発電設備)。タービン3の排気ガスGが排熱回収ボイラ6に送られて蒸気を発生させ、発生した蒸気により蒸気タービン7が駆動されて発電機8の動力とされる。蒸気タービン7の排気蒸気は復水器9で復水され、復水は給水ポンプ10により排熱回収ボイラ6に給水される。
【0025】
複合発電設備の運転中は、給水ポンプ10により復水が供給されているため、燃料加熱装置12に送られる排熱回収ボイラ6の給水の圧力は燃料fの圧力よりも高く保持されている。このため、給水への燃料fの漏れが生じることがない。複合発電設備運転を停止した場合、給水ポンプ10の運転も停止するため、給水の圧力が低下して燃料fの圧力よりも低下することが考えられる。このため、上述した複合発電設備の燃料加熱装置12には、運転が停止しても自動的に給水の圧力が燃料の圧力よりも低くなることがないようにする圧力差保持手段が備えられている。
【0026】
燃料加熱装置12に給水の圧力が燃料の圧力よりも低くならないようにする圧力差保持手段を設けたことにより、複合発電設備運転を停止しても燃料fの圧力よりも給水の圧力が低くなることがなく給水への燃料fの漏れが生じることがなくなる。例えば、運転を1日毎に停止するような運用を行った場合でも、その都度給水の圧力を高く保持する手段を講じる必要がなく、運転員の負担を低減することができる。また、トリップ等不意に複合発電設備が停止した場合でも、給水の圧力が燃料fの圧力よりも低くなることがないようにすることができる。
【0027】
従って、給水の圧力と燃料fの圧力との差が所定圧力よりも小さくなっても給水の圧力が燃料fの圧力よりも低くすることがないようにすることができる燃料加熱装置12を備えたガスタービン発電設備とすることができる。また、給水の圧力と燃料fの圧力との差が所定圧力よりも小さくなっても給水の圧力が燃料fの圧力よりも低くなることがないようにすることができる燃料加熱装置12を備えた複合発電設備とすることができる。
【0028】
このため、ガスタービン発電設備及び複合発電設備の性能が設計通りに補償され、ガスタービン発電設備及び複合発電設備の信頼性を向上させることが可能になる。
【0029】
図2に基づいて燃料加熱装置12を説明する。
【0030】
図2に示すように、燃料加熱装置12の容器21の上部には燃料fの流入口22が設けられ、燃料fは通路23から容器21の内部に送られる。容器21には燃料fの流出口24が設けられ、加熱された燃料fは流出口24から燃料通路25を通って燃焼器2に送られる。容器21の内部には給水の流通通路(チューブ)26が設けられ、流通通路26(熱交換部)の一端(図中下側)には排熱回収ボイラ6からの導入路27が接続されると共に流通通路26の他端(図中上側)には排熱回収ボイラ6への戻り路28が接続されている。
【0031】
燃料圧縮機11で圧縮された燃料fは流入口22から通路23を通って容器21の内部に送られる。そして、流通通路26(熱交換部)を流通する給水により燃料fが加熱され、流出口24から燃料通路25を通って燃焼器2に送られる。流通通路26には導入路27から給水が送られ、熱交換された給水は戻り路28から排熱回収ボイラ6に戻される。
【0032】
圧力差保持手段を説明する。
【0033】
容器21の上部には内部の燃料fの圧力を検出する燃料圧力検出手段31が設けられ、導入路27には給水の圧力を検出する給水圧力検出手段32が設けられている。燃料圧力検出手段31及び給水圧力検出手段32の検出情報は差圧導出手段としての比較制御手段33に入力され、比較制御手段33では燃料fの圧力と給水の圧力の差圧が演算される。
【0034】
一方、容器21の上部には容器21の内部から燃料を放出する手段としてのベント弁34が設けられ、ベント弁34を開くことで容器21の内部から燃料fが大気に放出されて燃料fの圧力が低下される。比較制御手段33で燃料fの圧力と給水の圧力の差圧が小さくなったこと(差圧が所定値以下)が検出されると、即ち、運転停止時等に給水の圧力が低下したことが検出されると、比較制御手段33からはベント弁34に開動作指令が出力される。
【0035】
つまり、運転停止時等で給水の圧力が低下すると、ベント弁34が自動的に開動作されて容器21の内部の燃料fが大気に放出され、燃料fの圧力が低下して給水の圧力を燃料fの圧力よりも低くなることがないようにすることができる。尚、燃料fの圧力と給水の圧力の差圧を差圧検出手段によって直接検出することも可能であり、差圧が所定値以下になったときに機械的なスイッチを作動させてベント弁34を開動作させることも可能である。
【0036】
従って、複合発電設備運転を停止しても燃料fの圧力が高くなって給水への燃料fの漏れが生じることがなくなる。例えば、運転を1日毎に停止するような運用を行った場合でも、その都度給水の圧力を高く保持する手段を講じる必要がなく、運転員の負担を低減することができる。また、トリップ等不意に複合発電設備が停止した場合でも、給水の圧力が燃料fの圧力よりも低くならないようにすることができる。また、燃料fの圧力と給水の圧力の差圧が小さくなった後に燃料fを大気に放出して給水の圧力が燃料fの圧力よりも低くならないようにしているので、無駄な燃料fの放出がなくなり、最小限の放出で確実に給水の圧力が燃料fの圧力よりも低くならないようにすることができる。
【0037】
図中の符号で35はレベルスイッチであり、流通通路26から給水が漏れた際に給水の水位が一定水位を越えたことを検出するものである。
【0038】
圧力差保持手段の他の実施形態例を説明する。導入路27には給水の導入を遮断する遮断弁36が設けられ、戻り路28には給水の戻り側への流通を遮断する遮断弁37が設けられている。遮断弁36及び遮断弁37を閉じることにより流通通路26内に給水が封止され、燃料fが流通通路26内に漏れ込むことがない。運転停止時等で給水の圧力が低下したことが検出されると、比較制御手段33からは遮断弁36及び遮断弁37を閉じる指令が出力され、流通通路26内に給水を封止して給水の圧力が燃料fの圧力よりも低くなることがない状態にする。この時、ベント弁34による燃料fの大気への放出を実施してもしなくてもよい。
【0039】
また、図に点線に示すように、導入路27に給水ポンプ39を設け、給水の圧力が低下したときに積極的に給水の圧力を高くすることも可能である。
【0040】
【発明の効果】
上記目的を達成するための本発明の燃料加熱装置は、流体との熱交換により燃料を加熱する燃料加熱装置において、燃料の圧力と流体の圧力の差を導出する差圧導出手段と、差圧導出手段により圧力の差が小さくなったことが導出された際に燃料の圧力よりも流体の圧力が低くなるようにする圧力差保持手段とを備えたので、給水の圧力と燃料の圧力との差が所定圧力よりも小さくなっても給水の圧力が燃料の圧力よりも低くならないようにすることができる。
【0041】
そして、燃料の流入口と流出口を有する容器を備えると共に容器内に流体の流通通路を備え、差圧導出手段は、容器の内部の燃料圧力と流通通路を流通する流体圧力との差を導出する手段であるので、差圧の導出が容易に行える。
【0042】
また、差圧導出手段は、容器の内部の燃料圧力を検出する燃料圧力検出手段と、流通通路を流通する流体圧力を検出する流体圧力検出手段と、燃料圧力検出手段及び流体圧力検出手段の検出情報が入力され燃料圧力と流体圧力の差を導出する手段とからなるので、簡単な構成で差圧導出手段を構築することができる。
【0043】
また、差圧導出手段には、燃料圧力と流体圧力の差圧が所定圧力以下になった際に圧力差保持手段に燃料の圧力よりも流体の圧力が低くならないようにする指令を出力する機能が備えられているので、自動的に流体の圧力が燃料の圧力よりも低くならないようにすることができる。
【0044】
また、圧力差保持手段は、容器の内部から燃料を放出する手段であり、差圧導出手段には、燃料圧力と流体圧力の差圧が所定圧力以下になった際に容器の内部から燃料を放出する指令を出力する機能が備えられているので、最小限の量の燃料を放出して燃料の圧力を低下させることにより自動的に流体の圧力が燃料の圧力よりも低くならないようにすることができる。
【0045】
また、圧力差保持手段は、流通通路を封止して流通通路の流体圧力を封止する封止手段であり、差圧導出手段には、燃料圧力と流体圧力の差圧が所定圧力以下になった際に流通通路を封止する指令を出力する機能が備えられているので、流体圧力を維持した状態で自動的に流体の圧力が燃料の圧力よりも低くなることがないようにすることができる。
【0046】
また、燃料はガスタービンの燃焼器に供給される燃料であり、流体は排熱回収ボイラの給水であるので、ガスタービン発電設備への適用が容易となる。
【0047】
本発明の燃料加熱方法は、燃料と流体の熱交換により燃料を加熱する燃料加熱方法において、燃料の圧力と流体の圧力の差を導出し、導出された圧力の差に応じて燃料の圧力よりも流体の圧力が燃料の圧力よりも低くなることがないようにしたので、給水の圧力と燃料の圧力との差が所定圧力よりも小さくなっても給水の圧力が燃料の圧力よりも低くなることがないようにすることができる。
【0048】
本発明のガスタービン発電設備は、圧縮機及び燃焼器及びタービンからなるガスタービン発電設備において、請求項7に記載の燃料加熱装置を備え、燃焼器には燃料加熱装置で加熱された燃料が供給されるので、給水の圧力と燃料の圧力との差が所定圧力よりも小さくなっても給水の圧力が燃料の圧力よりも低くなることがないようにすることができる燃料加熱装置を備えたガスタービン発電設備とすることができる。
【0049】
本発明の複合発電設備は、圧縮機及び燃焼器及びタービンからなるガスタービン発電設と、タービンの排熱を回収して蒸気を発生させる排熱回収ボイラと、排熱回収ボイラで発生した蒸気を駆動源とする蒸気タービンと、蒸気タービンの排気蒸気を復水する復水器と、復水器の復水を排熱回収ボイラに給水する給水手段と、請求項7に記載の燃料加熱装置とを備え、燃焼器には燃料加熱装置で加熱された燃料が供給され、排熱回収ボイラの給水が燃料加熱装置で熱交換されるので、給水の圧力と燃料の圧力との差が所定圧力よりも小さくなっても給水の圧力が燃料の圧力よりも低くなることがないようにすることができる燃料加熱装置を備えた複合発電設備とすることができる。
【図面の簡単な説明】
【図1】本発明の一実施形態例に係る燃料加熱装置を備えた複合発電設備の全体を表す概略構成図。
【図2】燃料加熱装置の概略構成図。
【符号の説明】
1 圧縮機
2 燃焼器
3 タービン
4 ガスタービン
5 発電機
6 排熱回収ボイラ
7 蒸気タービン
8 発電機
9 復水器
10 給水ポンプ
11 燃料圧縮機
12 燃料加熱装置
21 容器
22 流入口
23 通路
24 流出口
25 燃料通路
26 流通通路
27 導入路
28 戻り路
31 燃料圧力検出装置
32 給水圧力検出装置
33 比較制御手段
34 ベント弁
35 レベルスイッチ
36,37 逆止弁
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a fuel heating apparatus and a fuel heating method for heating fuel by heat exchange with a fluid.
[0002]
The present invention also relates to a gas turbine power generation facility including a compressor, a combustor, and a turbine.
[0003]
The present invention also relates to a combined power generation facility that combines a gas turbine power generation facility and a steam turbine power generation facility.
[0004]
[Prior art]
From the viewpoint of effective use of energy resources and economic efficiency, various efficiency improvements have been made in power generation facilities. One example is a turbine power generation facility (combined power generation facility) that combines a gas turbine and a steam turbine. In the combined power generation facility, high-temperature exhaust gas from the gas turbine is sent to the exhaust heat recovery boiler, and steam is generated in the exhaust heat recovery boiler via the heating unit, and the generated steam is sent to the steam turbine to be generated by the steam turbine. I am going to work.
[0005]
In recent years, the combustion temperature of gas turbines has been increased to improve efficiency, and in order to increase the combustion temperature, the temperature of fuel supplied to the combustor has been increased. In a combined power plant in which a gas turbine and a steam turbine are combined, fuel supplied to a combustor is heated by a fuel heating device using water supplied from an exhaust heat recovery boiler. In the fuel heating device, the pressure of the feed water is kept higher than the pressure of the fuel so that the fuel gas does not leak into the feed water.
[0006]
[Problems to be solved by the invention]
In the combined power generation facility, during normal operation, the feed water pressure is maintained at a predetermined pressure by driving the feed water pump, so the feed water pressure is kept higher than the fuel pressure. However, when the facility is stopped, the driving of the water supply pump is also stopped, and there is a possibility that the pressure of the water supply cannot be maintained at a predetermined pressure. In particular, in facilities that frequently start and stop, there is a risk that the pressure of water supply cannot be maintained at a predetermined pressure every time the facilities are stopped.
[0007]
The present invention has been made in view of the above situation, and a fuel heating device in which the feed water pressure does not become lower than the fuel pressure even when the difference between the feed water pressure and the fuel pressure becomes smaller than a predetermined pressure, and An object is to provide a fuel heating method.
[0008]
Further, the present invention has been made in view of the above situation, and even when the difference between the pressure of the water supply and the pressure of the fuel becomes smaller than a predetermined pressure, the fuel heating does not cause the pressure of the water supply to become lower than the pressure of the fuel. It aims at providing the gas turbine power generation equipment provided with the apparatus.
[0009]
Further, the present invention has been made in view of the above situation, and even when the difference between the pressure of the water supply and the pressure of the fuel becomes smaller than a predetermined pressure, the fuel heating does not cause the pressure of the water supply to become lower than the pressure of the fuel. It aims at providing the combined power generation equipment provided with the apparatus.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, a fuel heating device of the present invention comprises a fuel heating device that heats fuel by heat exchange with a fluid, a differential pressure deriving unit that derives a difference between the pressure of the fuel and the pressure of the fluid, and a differential pressure And pressure difference holding means for preventing the fluid pressure from becoming lower than the fuel pressure when it is derived by the deriving means that the pressure difference is reduced.
[0011]
A container having a fuel inlet and outlet and a fluid circulation passage are provided in the container, and the differential pressure deriving means derives a difference between the fuel pressure inside the container and the fluid pressure flowing through the circulation passage. It is a means to do.
[0012]
The differential pressure deriving means includes a fuel pressure detecting means for detecting the fuel pressure inside the container, a fluid pressure detecting means for detecting the fluid pressure flowing through the flow passage, and detection by the fuel pressure detecting means and the fluid pressure detecting means. It is characterized by comprising means for inputting information and deriving the difference between the fuel pressure and the fluid pressure.
[0013]
Also, the differential pressure deriving means outputs a command for preventing the fluid pressure from becoming lower than the fuel pressure to the pressure difference holding means when the differential pressure between the fuel pressure and the fluid pressure falls below a predetermined pressure. Is provided.
[0014]
The pressure difference holding means is a means for discharging the fuel from the inside of the container, and the differential pressure deriving means is a means for discharging the fuel from the inside of the container when the differential pressure between the fuel pressure and the fluid pressure becomes a predetermined pressure or less. It is characterized by having a function of outputting a discharge command.
[0015]
The pressure difference holding means is a sealing means for sealing the flow passage and sealing the fluid pressure in the flow passage. The pressure difference deriving means has a pressure difference between the fuel pressure and the fluid pressure equal to or lower than a predetermined pressure. When it becomes, it has the function to output the instruction | command which seals a distribution channel, It is characterized by the above-mentioned.
[0016]
Further, the fuel is fuel supplied to the combustor of the gas turbine, and the fluid is feed water of the exhaust heat recovery boiler.
[0017]
In order to achieve the above object, a fuel heating method of the present invention is a fuel heating method in which fuel is heated by heat exchange between fuel and fluid, and the difference between the pressure of the fuel and the pressure of the fluid is derived. Accordingly, the pressure of the fluid does not become lower than the pressure of the fuel.
[0018]
In order to achieve the above object, a gas turbine power generation facility according to the present invention is a gas turbine power generation facility including a compressor, a combustor, and a turbine. The fuel heating device according to claim 7 is provided, and the combustor includes a fuel heating device. The fuel heated in (1) is supplied.
[0019]
In order to achieve the above object, the combined power generation facility of the present invention includes a gas turbine power generation system including a compressor, a combustor, and a turbine, a waste heat recovery boiler that recovers exhaust heat of the turbine and generates steam, and exhaust heat. 8. A steam turbine that uses steam generated in the recovery boiler as a drive source, a condenser that condenses exhaust steam from the steam turbine, and a water supply means that supplies the condensate of the condenser to the exhaust heat recovery boiler, And the fuel heated by the fuel heating device is supplied to the combustor, and the water supplied to the exhaust heat recovery boiler is heat-exchanged by the fuel heating device.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows a schematic configuration representing the whole of a combined power generation facility including a fuel heating device according to an embodiment of the present invention, and FIG. 2 shows a schematic configuration of the fuel heating device.
[0021]
As shown in FIG. 1, a gas turbine 4 having a compressor 1, a combustor 2, and a turbine 3 is provided, and a generator 5 is coaxially connected to the gas turbine 4. The exhaust gas G from the gas turbine 4 is sent to the exhaust heat recovery boiler 6, and the exhaust heat recovery boiler 6 is provided with a heating unit (not shown) for each pressure.
[0022]
In the exhaust heat recovery boiler 6, steam is generated through a heating unit, and the generated steam is sent to the steam turbine 7 to work on the steam turbine 7. A generator 8 is coaxially connected to the steam turbine 7. The exhaust steam from the steam turbine 7 is condensed by a condenser 9, and the condensed water is supplied to a heating unit of the exhaust heat recovery boiler 6 by a water supply pump 10 as a water supply means.
[0023]
The air 2 compressed by the compressor 1 is sent to the combustor 2 of the gas turbine 4, and the fuel f compressed by the fuel compressor 11 and heated by the fuel heating device 12 is sent. Combustion gas from the combustor 2 is sent to the turbine 3 to drive the turbine 3. A part of the water supply of the exhaust heat recovery boiler 6 is sent to the fuel heating device 12, and the fuel f is heated by the water supply of the exhaust heat recovery boiler 6.
[0024]
In the combined power generation facility configured as described above, the air compressed by the compressor 1 and the fuel f heated by the fuel heating device 12 are sent to the combustor 2, and the turbine 3 is driven by the combustion gas from the combustor 2 to compress it. The power of the machine 1 and the power of the generator 5 (gas turbine power generation equipment). The exhaust gas G of the turbine 3 is sent to the exhaust heat recovery boiler 6 to generate steam, and the steam turbine 7 is driven by the generated steam to be used as power for the generator 8. The exhaust steam from the steam turbine 7 is condensed by a condenser 9, and the condensed water is supplied to an exhaust heat recovery boiler 6 by a feed water pump 10.
[0025]
During operation of the combined power generation facility, the condensate is supplied by the feed water pump 10, so the pressure of the feed water in the exhaust heat recovery boiler 6 sent to the fuel heating device 12 is kept higher than the pressure of the fuel f. For this reason, the fuel f does not leak into the water supply. When the combined power generation facility operation is stopped, since the operation of the feed water pump 10 is also stopped, it is conceivable that the pressure of the feed water is reduced to be lower than the pressure of the fuel f. For this reason, the fuel heating device 12 of the above-mentioned combined power generation facility is provided with a pressure difference holding means that automatically prevents the pressure of the water supply from becoming lower than the fuel pressure even when the operation is stopped. Yes.
[0026]
By providing the fuel heating device 12 with a pressure difference holding means for preventing the pressure of the feed water from becoming lower than the pressure of the fuel, the pressure of the feed water becomes lower than the pressure of the fuel f even when the combined power generation facility operation is stopped. And no leakage of fuel f into the water supply occurs. For example, even when the operation is stopped every day, it is not necessary to take measures to keep the water supply pressure high each time, and the burden on the operator can be reduced. Further, even when the combined power generation facility is stopped unexpectedly, such as a trip, the pressure of the water supply can be prevented from becoming lower than the pressure of the fuel f.
[0027]
Accordingly, the fuel heating device 12 is provided that can prevent the pressure of the feed water from becoming lower than the pressure of the fuel f even if the difference between the pressure of the feed water and the pressure of the fuel f becomes smaller than a predetermined pressure. It can be a gas turbine power generation facility. Further, the fuel heating device 12 is provided that can prevent the pressure of the water supply from becoming lower than the pressure of the fuel f even if the difference between the pressure of the water supply and the pressure of the fuel f becomes smaller than a predetermined pressure. It can be a combined power generation facility.
[0028]
For this reason, the performances of the gas turbine power generation facility and the combined power generation facility are compensated as designed, and the reliability of the gas turbine power generation facility and the combined power generation facility can be improved.
[0029]
The fuel heating device 12 will be described with reference to FIG.
[0030]
As shown in FIG. 2, an inlet 22 for the fuel f is provided at the top of the container 21 of the fuel heating device 12, and the fuel f is sent from the passage 23 to the inside of the container 21. The container 21 is provided with an outlet 24 for the fuel f, and the heated fuel f is sent from the outlet 24 through the fuel passage 25 to the combustor 2. A supply water circulation passage (tube) 26 is provided inside the container 21, and an introduction passage 27 from the exhaust heat recovery boiler 6 is connected to one end (lower side in the figure) of the circulation passage 26 (heat exchange part). At the same time, a return path 28 to the exhaust heat recovery boiler 6 is connected to the other end (upper side in the figure) of the circulation passage 26.
[0031]
The fuel f compressed by the fuel compressor 11 is sent from the inlet 22 to the inside of the container 21 through the passage 23. Then, the fuel f is heated by the feed water flowing through the circulation passage 26 (heat exchange section), and is sent from the outlet 24 to the combustor 2 through the fuel passage 25. Feed water is sent from the introduction path 27 to the circulation passage 26, and the heat-exchanged water is returned to the exhaust heat recovery boiler 6 from the return path 28.
[0032]
The pressure difference holding means will be described.
[0033]
A fuel pressure detecting means 31 for detecting the pressure of the internal fuel f is provided at the upper part of the container 21, and a feed water pressure detecting means 32 for detecting the pressure of the feed water is provided in the introduction path 27. Detection information of the fuel pressure detection means 31 and the feed water pressure detection means 32 is input to a comparison control means 33 as a differential pressure deriving means, and the comparison control means 33 calculates a differential pressure between the pressure of the fuel f and the pressure of the feed water.
[0034]
On the other hand, a vent valve 34 as a means for releasing fuel from the inside of the container 21 is provided at the upper part of the container 21. By opening the vent valve 34, the fuel f is released from the inside of the container 21 to the atmosphere and the fuel f is discharged. The pressure is reduced. When the comparison control means 33 detects that the differential pressure between the pressure of the fuel f and the pressure of the feed water has become small (the differential pressure is not more than a predetermined value), that is, the pressure of the feed water has decreased when the operation is stopped. When detected, the comparison control means 33 outputs an opening operation command to the vent valve 34.
[0035]
That is, when the pressure of the water supply decreases when the operation is stopped, the vent valve 34 is automatically opened, the fuel f inside the container 21 is released to the atmosphere, and the pressure of the fuel f decreases to reduce the pressure of the water supply. The pressure of the fuel f can be prevented from becoming lower. It is also possible to directly detect the differential pressure between the pressure of the fuel f and the pressure of the feed water by the differential pressure detecting means. When the differential pressure becomes a predetermined value or less, the mechanical switch is operated to turn on the vent valve 34. Can be opened.
[0036]
Therefore, even if the combined power generation facility operation is stopped, the pressure of the fuel f becomes high and the fuel f does not leak into the feed water. For example, even when the operation is stopped every day, it is not necessary to take measures to keep the water supply pressure high each time, and the burden on the operator can be reduced. Further, even when the combined power generation facility is stopped unexpectedly, such as a trip, the pressure of the water supply can be prevented from becoming lower than the pressure of the fuel f. Further, since the fuel f is discharged to the atmosphere after the differential pressure between the pressure of the fuel f and the pressure of the feed water becomes small so that the pressure of the feed water does not become lower than the pressure of the fuel f, the wasteful fuel f is released. Therefore, it is possible to ensure that the pressure of the water supply does not become lower than the pressure of the fuel f with a minimum discharge.
[0037]
Reference numeral 35 in the figure denotes a level switch that detects that the water supply level has exceeded a certain level when the water supply leaks from the flow passage 26.
[0038]
Another embodiment of the pressure difference holding means will be described. The introduction path 27 is provided with a shut-off valve 36 that shuts off the introduction of water supply, and the return path 28 is provided with a shut-off valve 37 that shuts off the flow of water to the return side. By closing the shut-off valve 36 and the shut-off valve 37, the water supply is sealed in the flow passage 26, and the fuel f does not leak into the flow passage 26. When it is detected that the pressure of the water supply has decreased, such as when the operation is stopped, a command to close the shutoff valve 36 and the shutoff valve 37 is output from the comparison control means 33, and the water supply is sealed in the flow passage 26. The pressure of the fuel is not lowered below the pressure of the fuel f. At this time, the vent valve 34 may or may not release the fuel f to the atmosphere.
[0039]
Further, as shown by the dotted line in the figure, it is possible to provide a water supply pump 39 in the introduction path 27 and to increase the pressure of the water supply positively when the pressure of the water supply decreases.
[0040]
【The invention's effect】
In order to achieve the above object, a fuel heating device of the present invention comprises a fuel heating device that heats fuel by heat exchange with a fluid, a differential pressure deriving unit that derives a difference between the pressure of the fuel and the pressure of the fluid, and a differential pressure Pressure difference holding means that makes the pressure of the fluid lower than the pressure of the fuel when it is derived that the pressure difference is reduced by the derivation means. Even if the difference becomes smaller than the predetermined pressure, the pressure of the water supply can be prevented from becoming lower than the pressure of the fuel.
[0041]
A container having a fuel inlet and outlet and a fluid circulation passage are provided in the container, and the differential pressure deriving means derives a difference between the fuel pressure inside the container and the fluid pressure flowing through the circulation passage. Therefore, the differential pressure can be easily derived.
[0042]
The differential pressure deriving means includes a fuel pressure detecting means for detecting the fuel pressure inside the container, a fluid pressure detecting means for detecting the fluid pressure flowing through the flow passage, and detection by the fuel pressure detecting means and the fluid pressure detecting means. Since the information is input and the means for deriving the difference between the fuel pressure and the fluid pressure is included, the differential pressure deriving means can be constructed with a simple configuration.
[0043]
Also, the differential pressure deriving means outputs a command for preventing the fluid pressure from becoming lower than the fuel pressure to the pressure difference holding means when the differential pressure between the fuel pressure and the fluid pressure falls below a predetermined pressure. Therefore, it is possible to automatically prevent the fluid pressure from becoming lower than the fuel pressure.
[0044]
The pressure difference holding means is a means for discharging the fuel from the inside of the container, and the differential pressure deriving means is a means for discharging the fuel from the inside of the container when the differential pressure between the fuel pressure and the fluid pressure becomes a predetermined pressure or less. The function to output the command to release is provided, so that the pressure of the fluid does not automatically become lower than the pressure of the fuel by releasing the minimum amount of fuel and reducing the pressure of the fuel Can do.
[0045]
The pressure difference holding means is a sealing means for sealing the flow passage and sealing the fluid pressure in the flow passage. The pressure difference deriving means has a pressure difference between the fuel pressure and the fluid pressure equal to or lower than a predetermined pressure. Since it has a function to output a command to seal the flow passage when it becomes, the fluid pressure should not be automatically lower than the fuel pressure while maintaining the fluid pressure. Can do.
[0046]
In addition, since the fuel is fuel supplied to the combustor of the gas turbine and the fluid is feed water of the exhaust heat recovery boiler, application to the gas turbine power generation facility is facilitated.
[0047]
The fuel heating method of the present invention is a fuel heating method in which fuel is heated by heat exchange between fuel and fluid, and a difference between the pressure of the fuel and the pressure of the fluid is derived from the pressure of the fuel according to the difference in the derived pressure. Since the fluid pressure is not lower than the fuel pressure, the feed water pressure is lower than the fuel pressure even if the difference between the feed water pressure and the fuel pressure is smaller than the predetermined pressure. You can prevent it from happening.
[0048]
A gas turbine power generation facility according to the present invention is a gas turbine power generation facility including a compressor, a combustor, and a turbine. The fuel heating device according to claim 7 is provided, and the fuel heated by the fuel heating device is supplied to the combustor. Therefore, even if the difference between the pressure of the feed water and the pressure of the fuel is smaller than the predetermined pressure, the gas having the fuel heating device that can prevent the pressure of the feed water from becoming lower than the pressure of the fuel It can be a turbine power generation facility.
[0049]
The combined power generation facility of the present invention includes a gas turbine power generation facility including a compressor, a combustor, and a turbine, an exhaust heat recovery boiler that recovers exhaust heat of the turbine and generates steam, and steam generated by the exhaust heat recovery boiler. A steam turbine as a drive source, a condenser for condensing exhaust steam from the steam turbine, water supply means for supplying the condensate of the condenser to the exhaust heat recovery boiler, and the fuel heating device according to claim 7 The fuel heated by the fuel heating device is supplied to the combustor, and the feed water of the exhaust heat recovery boiler is heat-exchanged by the fuel heating device, so that the difference between the pressure of the feed water and the fuel pressure is greater than the predetermined pressure. Even if it becomes small, it can be set as the combined power generation equipment provided with the fuel heating apparatus which can keep the pressure of water supply from becoming lower than the pressure of fuel.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing an entire combined power generation facility including a fuel heating apparatus according to an embodiment of the present invention.
FIG. 2 is a schematic configuration diagram of a fuel heating device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Compressor 2 Combustor 3 Turbine 4 Gas turbine 5 Generator 6 Waste heat recovery boiler 7 Steam turbine 8 Generator 9 Condenser 10 Water supply pump 11 Fuel compressor 12 Fuel heating device 21 Container 22 Inlet 23 Passage 24 Outlet 25 fuel passage 26 distribution passage 27 introduction passage 28 return passage 31 fuel pressure detection device 32 water supply pressure detection device 33 comparison control means 34 vent valve 35 level switches 36 and 37 check valves

Claims (10)

流体との熱交換により燃料を加熱する燃料加熱装置において、燃料の圧力と流体の圧力の差を導出する差圧導出手段と、差圧導出手段により圧力の差が小さくなったことが導出された際に燃料の圧力よりも流体の圧力が低くなることがないようにする圧力差保持手段とを備えたことを特徴とする燃料加熱装置。In the fuel heating device that heats the fuel by heat exchange with the fluid, it was derived that the pressure difference was reduced by the differential pressure deriving means for deriving the difference between the fuel pressure and the fluid pressure, and the differential pressure deriving means. And a pressure difference holding means for preventing the fluid pressure from becoming lower than the fuel pressure. 請求項1において、
燃料の流入口と流出口を有する容器を備えると共に容器内に流体の流通通路を備え、
差圧導出手段は、容器の内部の燃料圧力と流通通路を流通する流体圧力との差を導出する手段である
ことを特徴とする燃料加熱装置。
In claim 1,
A container having a fuel inlet and outlet and a fluid flow passage in the container;
The differential pressure deriving means is a means for deriving a difference between the fuel pressure inside the container and the fluid pressure flowing through the flow passage.
請求項2において、
差圧導出手段は、
容器の内部の燃料圧力を検出する燃料圧力検出手段と、
流通通路を流通する流体圧力を検出する流体圧力検出手段と、
燃料圧力検出手段及び流体圧力検出手段の検出情報が入力され燃料圧力と流体圧力の差を導出する手段と
からなることを特徴とする燃料加熱装置。
In claim 2,
The differential pressure deriving means is
Fuel pressure detecting means for detecting the fuel pressure inside the container;
Fluid pressure detecting means for detecting the fluid pressure flowing through the flow passage;
A fuel heating apparatus comprising: fuel pressure detection means; and means for deriving a difference between fuel pressure and fluid pressure when detection information of the fluid pressure detection means is input.
請求項3において、
差圧導出手段には、燃料圧力と流体圧力の差圧が所定圧力以下になった際に圧力差保持手段に燃料の圧力よりも流体の圧力が低くならないようにする指令を出力する機能が備えられていることを特徴とする燃料加熱装置。
In claim 3,
The differential pressure deriving means has a function of outputting a command to prevent the pressure of the fluid from becoming lower than the pressure of the fuel to the pressure difference holding means when the differential pressure between the fuel pressure and the fluid pressure becomes a predetermined pressure or less. The fuel heating apparatus characterized by the above-mentioned.
請求項4において、
圧力差保持手段は、容器の内部から燃料を放出する手段であり、
差圧導出手段には、燃料圧力と流体圧力の差圧が所定圧力以下になった際に容器の内部から燃料を放出する指令を出力する機能が備えられていることを特徴とする燃料加熱装置。
In claim 4,
The pressure difference holding means is a means for discharging fuel from the inside of the container,
The differential pressure deriving means has a function of outputting a command to release fuel from the inside of the container when the differential pressure between the fuel pressure and the fluid pressure becomes a predetermined pressure or less. .
請求項4において、
圧力差保持手段は、流通通路を封止して流通通路の流体圧力を封止する封止手段であり、
差圧導出手段には、燃料圧力と流体圧力の差圧が所定圧力以下になった際に流通通路を封止する指令を出力する機能が備えられていることを特徴とする燃料加熱装置。
In claim 4,
The pressure difference holding means is a sealing means for sealing the flow passage and sealing the fluid pressure in the flow passage,
The fuel heating apparatus, wherein the differential pressure deriving means has a function of outputting a command for sealing the flow passage when the differential pressure between the fuel pressure and the fluid pressure becomes a predetermined pressure or less.
請求項1乃至請求項6のいずれか一項において、
燃料はガスタービンの燃焼器に供給される燃料であり、流体は排熱回収ボイラの給水であることを特徴とする燃料加熱装置。
In any one of Claims 1 thru | or 6,
A fuel heating apparatus, wherein the fuel is fuel supplied to a combustor of a gas turbine, and the fluid is feed water of an exhaust heat recovery boiler.
燃料と流体の熱交換により燃料を加熱する燃料加熱方法において、燃料の圧力と流体の圧力の差を導出し、導出された圧力の差に応じて燃料の圧力よりも流体の圧力が低くならないように保持することを特徴とする燃料加熱方法。In a fuel heating method in which fuel is heated by heat exchange between fuel and fluid, the difference between the pressure of the fuel and the pressure of the fluid is derived so that the pressure of the fluid does not become lower than the pressure of the fuel according to the difference of the derived pressure. The fuel heating method characterized by hold | maintaining. 圧縮機及び燃焼器及びタービンからなるガスタービン発電設備において、請求項7に記載の燃料加熱装置を備え、燃焼器には燃料加熱装置で加熱された燃料が供給されることを特徴とするガスタービン発電設備。A gas turbine power generation facility comprising a compressor, a combustor, and a turbine, comprising the fuel heating device according to claim 7, wherein the fuel heated by the fuel heating device is supplied to the combustor. Power generation equipment. 圧縮機及び燃焼器及びタービンからなるガスタービン発電設備と、タービンの排熱を回収して蒸気を発生させる排熱回収ボイラと、排熱回収ボイラで発生した蒸気を駆動源とする蒸気タービンと、蒸気タービンの排気蒸気を復水する復水器と、復水器の復水を排熱回収ボイラに給水する給水手段と、請求項7に記載の燃料加熱装置とを備え、燃焼器には燃料加熱装置で加熱された燃料が供給され、排熱回収ボイラの給水が燃料加熱装置で熱交換されることを特徴とする複合発電設備。A gas turbine power generation facility including a compressor, a combustor, and a turbine, an exhaust heat recovery boiler that recovers exhaust heat of the turbine to generate steam, a steam turbine that uses steam generated in the exhaust heat recovery boiler as a drive source, A condenser for condensing exhaust steam from a steam turbine, a water supply means for supplying the condensate from the condenser to an exhaust heat recovery boiler, and the fuel heating device according to claim 7, wherein the combustor includes a fuel A combined power generation facility characterized in that fuel heated by a heating device is supplied, and water supplied to the exhaust heat recovery boiler is heat-exchanged by the fuel heating device.
JP2002148680A 2002-05-23 2002-05-23 Fuel heating device, fuel heating method, gas turbine power generation facility, and combined power generation facility Expired - Fee Related JP3943991B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002148680A JP3943991B2 (en) 2002-05-23 2002-05-23 Fuel heating device, fuel heating method, gas turbine power generation facility, and combined power generation facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002148680A JP3943991B2 (en) 2002-05-23 2002-05-23 Fuel heating device, fuel heating method, gas turbine power generation facility, and combined power generation facility

Publications (2)

Publication Number Publication Date
JP2003343283A JP2003343283A (en) 2003-12-03
JP3943991B2 true JP3943991B2 (en) 2007-07-11

Family

ID=29767128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002148680A Expired - Fee Related JP3943991B2 (en) 2002-05-23 2002-05-23 Fuel heating device, fuel heating method, gas turbine power generation facility, and combined power generation facility

Country Status (1)

Country Link
JP (1) JP3943991B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9109513B2 (en) 2008-10-01 2015-08-18 Mitsubishi Hitachi Power Systems, Ltd. Combined cycle electric power generation plant and heat exchanger
JP2010091221A (en) * 2008-10-10 2010-04-22 Mitsubishi Heavy Ind Ltd Device and method for detecting breakage of tube in gas heater

Also Published As

Publication number Publication date
JP2003343283A (en) 2003-12-03

Similar Documents

Publication Publication Date Title
KR101958528B1 (en) Pipe damage detection method and device
KR20140138297A (en) Method for operating a power plant
JPH1037713A (en) Combined cycle power plant
JP3943991B2 (en) Fuel heating device, fuel heating method, gas turbine power generation facility, and combined power generation facility
WO2007066569A1 (en) Mechanism and method for removing steam remaining in steam cooling piping of gas turbine
JP2006284018A (en) Power generation facility and power generating method for refuse incinerator
JP3700075B2 (en) Pressurized fluidized bed combined power plant
CN213807769U (en) Waste heat utilization structure of steam turbine shaft seal system
JP2002129907A (en) Gland sealing steam system of steam turbine
JP4201959B2 (en) Turbine ground leakage steam recovery device
WO2020031715A1 (en) Combined cycle power plant
CN114382558B (en) Steam seal heater device capable of exhausting steam and control method thereof
JP3065794B2 (en) Feed water heating device
CN108730956A (en) A kind of air suspended type flash vessel steam discharge energy conservation and environmental protection processing system
CN220134039U (en) Shaft seal steam leakage bypass device applied to steam turbine generator unit flexibility transformation
JPH1181916A (en) Turbine gland sealing steam emergency discharge device
JP2014118887A (en) Piping leakage detection system
JP2001303974A (en) Combined-cycle generator set
JPH11159305A (en) Pressurized fluidized bed combined generating plant
JP2001248756A (en) Leak recovering device for control valve
JP2000345811A (en) Exhaust heat recovery boiler plant and operating method thereof
WO2020031716A1 (en) Combined cycle power plant
JP3625609B2 (en) Steam turbine equipment
JP2892953B2 (en) Steam supply structure
JP2021092368A (en) Heat using system and operation stopping method for the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070320

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070406

R151 Written notification of patent or utility model registration

Ref document number: 3943991

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100413

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140413

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees