JP3943355B2 - Flexible endoscope device - Google Patents

Flexible endoscope device Download PDF

Info

Publication number
JP3943355B2
JP3943355B2 JP2001247530A JP2001247530A JP3943355B2 JP 3943355 B2 JP3943355 B2 JP 3943355B2 JP 2001247530 A JP2001247530 A JP 2001247530A JP 2001247530 A JP2001247530 A JP 2001247530A JP 3943355 B2 JP3943355 B2 JP 3943355B2
Authority
JP
Japan
Prior art keywords
flexible tube
optical fiber
bending detection
bending
insertion portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001247530A
Other languages
Japanese (ja)
Other versions
JP2003052612A (en
Inventor
直樹 鈴木
和毅 炭山
哲也 樽本
素子 川村
貴之 榎本
実 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jikei University School of Medicine
Original Assignee
Jikei University School of Medicine
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jikei University School of Medicine filed Critical Jikei University School of Medicine
Priority to JP2001247530A priority Critical patent/JP3943355B2/en
Priority to US10/150,927 priority patent/US6846286B2/en
Publication of JP2003052612A publication Critical patent/JP2003052612A/en
Application granted granted Critical
Publication of JP3943355B2 publication Critical patent/JP3943355B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00043Operational features of endoscopes provided with output arrangements
    • A61B1/00045Display arrangement
    • A61B1/0005Display arrangement combining images e.g. side-by-side, superimposed or tiled
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/005Flexible endoscopes
    • A61B1/009Flexible endoscopes with bending or curvature detection of the insertion part

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Endoscopes (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、胃腸内等を観察するための可撓性内視鏡装置に関する。
【0002】
【従来の技術】
胃腸内等に挿入される可撓性内視鏡装置は、胃腸等の内壁に沿って自由に屈曲するフレキシブルな挿入部可撓管を有しており、挿入部可撓管の屈曲状態を体外から把握するのは困難である。
【0003】
そのため、挿入部可撓管が胃腸に対してどのような挿入状態にあるのか判断がつかなくなったり、次の挿脱操作をどのようにすればよいか判断できなくなってしまう場合がある。
【0004】
そこで、X線透視を行えば挿入部可撓管の屈曲状態を透視することができるが、X線照射は厚い鉛壁等で囲まれた特別の室内で行う必要があるだけでなく、連続的なX線透視は放射線被爆の問題があり、人体に非常に悪い影響を与える恐れがある。
【0005】
そこで、内視鏡の挿入部の先端に磁界発生部材を取り付け、その磁界発生部材の位置を人体外に配置された磁気センサーにより検出して、体内にある挿入部の先端の位置をモニター画面に表示するようにしたものがある(特許第2959723号)。
【0006】
【発明が解決しようとする課題】
しかし、上述のように挿入部の先端に取り付けられた磁界発生部材の位置を検出する装置では、挿入部先端の位置が分かるだけで挿入部可撓管の屈曲状態は分からず、しかもそのような装置では外来ノイズの影響を受け易く、良好な状態で位置検出を継続できない場合が少なくない。
【0007】
そこで、本発明の発明者等は、曲げられた角度の大きさに対応して光の伝達量が変化する曲がり検出部を有する複数のフレキシブルな曲がり検出用光ファイバーを挿入部可撓管に取り付け、各曲がり検出用光ファイバーの光伝達量から各曲がり検出部が位置する部分における挿入部可撓管の屈曲状態を検出して、その屈曲状態をモニター画面に表示するようにした可撓性内視鏡装置を発明して先に特許出願してある(特願2001−53715)。
【0008】
本発明はその改良発明であり、繰り返しの内視鏡使用によっても曲がり検出用光ファイバーが破損し難い、耐久性の優れた可撓性内視鏡装置を提供することを目的とする。
【0009】
【課題を解決するための手段】
上記の目的を達成するため、本発明の可撓性内視鏡装置は、フレキシブルな挿入部可撓管を有する可撓性内視鏡装置であって、曲げられた角度の大きさに対応して光の伝達量が変化する曲がり検出部を有する複数のフレキシブルな曲がり検出用光ファイバーが、可撓性の帯状部材に取り付けられて挿入部可撓管内にほぼ全長にわたって挿通配置され、各曲がり検出用光ファイバーの光伝達量から各曲がり検出部が位置する部分における挿入部可撓管の屈曲状態を検出して、その屈曲状態をモニター画面に表示するようにした可撓性内視鏡装置において、帯状部材の基端が挿入部可撓管の基端から延出配置されていて、その帯状部材の基端から各曲がり検出用光ファイバーが固定されずに緩く波打って延出しているものである。
【0010】
なお、帯状部材の先端が挿入部可撓管の先端近傍内に配置されていて、その帯状部材の先端において各曲がり検出用光ファイバーが固定されずに緩く曲げ戻されていてもよい。
【0011】
【発明の実施の形態】
図面を参照して本発明の実施例を説明する。
図2は可撓性内視鏡装置の全体構成を示しており、操作部2の下端の連結部5に挿入部可撓管1の基端が連結され、挿入部可撓管1の先端付近の部分は、操作部2に配置された操作ノブ3を回転操作することによって任意の方向に屈曲する湾曲部1aになっている。
【0012】
挿入部可撓管1の先端には、観察窓等が配置された先端部本体4が連結されており、先端部本体4に内蔵された固体撮像素子(図示せず)で撮像された内視鏡観察像の映像信号が、操作部2から延出する映像信号線6により外部のビデオプロセッサ7に送られ、内視鏡観察画像が観察画像用モニター8に表示される。
【0013】
挿入部可撓管1内には、後述する複数の曲がり検出用光ファイバー21が取り付けられたフレキシブルな合成樹脂製の帯状部材20が全長にわたって挿通配置されていて、曲がり検出用光ファイバー21の両端部が外部の光信号入出力装置30に接続されている。
【0014】
そして、光信号入出力装置30の信号出力線がコンピュータ40に接続され、そのコンピュータ40には、ブラウン管又は液晶等を用いて画像表示を行う挿入状態表示用モニター41が接続されている。
【0015】
図3は、挿入部可撓管1の先端付近を示しており、先端部本体4の先端面に観察窓11、照明窓12、処置具突出口13等が配置され、照明窓12から放射された照明光により照明された被写体が、観察窓11内に配置された対物光学系(図示せず)により固体撮像素子の撮像面に結像する。
【0016】
帯状部材20は、面を例えば挿入部可撓管1の上下方向(即ち、観察画面の上下方向であって、操作部2の前後面の延長方向)に向けて、挿入部可撓管1の軸線と平行方向に配置されている。
【0017】
図3に示されるように、複数の曲がり検出用光ファイバー21は順に位置を変えて滑らかなU字状に後方に曲げ戻されている。そして、各曲がり検出用光ファイバー21の曲げ戻し部の近傍に曲がり検出部22が形成されている。
【0018】
曲がり検出部22は、挿入部可撓管1の軸線方向に例えば数センチメートル程度の間隔をあけて、挿入部可撓管1の全長にわたって例えば5〜30個程度配置されている。
【0019】
曲がり検出部22は、プラスチック製のコアにクラッドが被覆された曲がり検出用光ファイバー21の途中の部分に、光吸収部分が所定の方向(例えば上方向又は下方向)にだけ形成されたものであり、曲がり検出部22が曲げられた程度に対応して光の伝達量が変化するので、それを検出することによって曲がり検出部22が配置された部分の曲がり角度を検出することができる。
【0020】
その原理については米国特許第5633494号等に記載されている通りであるが、以下に簡単に説明をする。
図4において、21aと21bは、一本の曲がり検出用光ファイバー21のコアとクラッドであり、曲がり検出部22には、コア21a内を通過してきた光をコア21a内に全反射せずに吸収してしまう光吸収部22aが、クラッド21bの特定方向(ここでは「下方向」)の部分に形成されている。
【0021】
すると、図5に示されるように、曲がり検出用光ファイバー21が上方向に曲げられると、コア21a内を通る光のうち光吸収部22aにあたる光の量(面積)が増えるので、曲がり検出用光ファイバー21の光伝達量が減少する。
【0022】
逆に、図6に示されるように、曲がり検出用光ファイバー21が下方向に曲げられると、コア21a内を通る光のうち光吸収部22aにあたる光の量(面積)が減少するので、曲がり検出用光ファイバー21の光伝達量が増加する。
【0023】
このような、光吸収部22aにおける曲がり検出用光ファイバー21の曲がり量と光伝達量とは一定の関係(例えば一次関数的関係)になるので、曲がり検出用光ファイバー21の光伝達量を検出することにより、光吸収部22aが形成されている曲がり検出部22部分の曲がり角度を検出することができる。
【0024】
したがって、挿入部可撓管1の軸線方向に間隔をあけて複数の曲がり検出部22が配列されている場合には、各曲がり検出部22間の間隔と検出された各曲がり検出部22の曲がり角度から、挿入部可撓管1全体の上下方向の屈曲状態を検出することができる。
【0025】
そして、図7に略示されるように、上述のような曲がり検出部22と並列にさらに第2の曲がり検出部22′を配置して、横に並んだ二つの曲がり検出部22,22′の光伝達量を比較すれば、左右方向に捩れがない場合には双方の光伝達量に差がなく、左右方向の捩れ量に応じて双方の光伝達量の差が大きくなる。
【0026】
したがって、各曲がり検出部22,22′の光伝達量を計測してその計測値を比較することにより、曲がり検出部22,22′が配置された部分の左右方向の捩れ量を検出することができる。この原理は、米国特許第6127672号等に記載されている通りである。
【0027】
したがって、複数の曲がり検出部22を挿入部可撓管1の軸線方向に所定の間隔で配置すると共に、それと並列に第2の複数の曲がり検出部22′を配置して、各曲がり検出部22,22′における光伝達量を検出、比較することにより挿入部可撓管1全体の三次元の屈曲状態を検出することができる。
【0028】
そこで本実施例の可撓性内視鏡装置においては、図8に示されるように、帯状部材20の長手方向に一定の間隔で曲がり検出部22が位置するように、複数の曲がり検出用光ファイバー21を帯状部材20の表面側に取り付けると共に、表側の各曲がり検出部22の横に第2の曲がり検出部22′が並ぶように、帯状部材20の裏面側に第2の複数の曲がり検出用光ファイバー21′が取り付けられている。
【0029】
なお、各曲がり検出用光ファイバー21,21′は、曲がり検出部22,22′の近傍においては帯状部材20に固着されており、その他の部分においては、帯状部材20に長手方向に形成された溝内に軸線方向に可動に緩く嵌められて、脱落防止用のカバー(図示せず)で押さえられている。なお、その溝内にはチッ化ホウ素等の潤滑剤を入れるとよい。
【0030】
また、光吸収部22aが形成されていないシンプルなリファレンス用光ファイバー21Rを少なくとも一本配置して、各曲がり検出用光ファイバー21の光伝達量をリファレンス用光ファイバー21Rの光伝達量と比較することにより、曲がり検出用光ファイバー21の光伝達量に対する温度や経時劣化等の影響を除くことができる。
【0031】
帯状部材20の基端は、図1に示されるように、連結部5(挿入部可撓管1と操作部2との連結部)のハウジング内において、挿入部可撓管1の基端から例えば数センチメートル程度の長さ延出している。
【0032】
そして、帯状部材20の基端から延出する曲がり検出用光ファイバー21は、固定されずに緩く波打った状態で可撓性の保護チューブ29内に挿通配置されている。
【0033】
なお、図1においては、曲がり検出用光ファイバー21が2本だけ図示されているが、図示が省略されている全ての曲がり検出用光ファイバー21も、同様に固定されずに緩く波打った状態で保護チューブ29内に挿通配置されている。
【0034】
したがって、内視鏡が使用されて挿入部可撓管1が繰り返し屈曲され、内挿された帯状部材20がそれによって長手方向に移動しても、曲がり検出用光ファイバー21は波打った部分が伸縮することにより大きなテンションがかからないので折損しない。
【0035】
図9は、光信号入出力装置30を示しており、一つの発光ダイオード31からの射出光が全部の光ファイバー21,21′,21Rに入射される。32は、発光ダイオード31の駆動回路である。
【0036】
そして、各光ファイバー21,21′,21Rの射出端毎に、光の強度レベルを電圧レベルに変換して出力するフォトダイオード33が配置されていて、各フォトダイオード33からの出力が、アンプ34で増幅されてからアナログ/デジタル変換器35によりデジタル信号化されてコンピュータ40に送られる。
【0037】
このように構成された可撓性内視鏡装置の挿入部可撓管1が体内に挿入される際には、図10に示されるように、挿入部案内部材50が体内への入口部分(例えば口又は肛門)に取り付けられて、挿入部可撓管1はその挿入部案内部材50内を通される。
【0038】
そこで、挿入部案内部材50に挿入部可撓管1の挿入長(即ち、挿入部案内部材50に対する通過長)Lを検出するためのエンコーダ60等が設けられていて、エンコーダ60からの出力信号がコンピュータ40に送られるようになっている。
【0039】
図11は、そのような挿入部案内部材50の一例を示しており、圧縮コイルスプリング52によって付勢された複数の回転自在な球状部材51が、挿入部可撓管1を周囲から挟み付ける状態に配置されている。
【0040】
したがって、各球状部材51は挿入部可撓管1の挿入長Lに比例して回転し、球状部材51のうちの一つに、挿入部可撓管1の挿入長Lに比例する数のパルスを出力するエンコーダ60が連結されている。
【0041】
ただし、挿入部案内部材50における挿入部可撓管1の挿入長Lの検出は、例えば特開昭56−97429号や特開昭60−217326号等に記載されているように、挿入部可撓管1の表面からの光反射等を利用してもよく、その他の手段によっても差し支えない。
【0042】
このようにして、図10に示されるように、コンピュータ40には光信号入出力装置30とエンコーダ60から挿入部可撓管1の屈曲状態検出信号と挿入長検出信号が入力し、挿入部案内部材50の画像50′と、挿入部可撓管1の屈曲状態を示す画像1′が挿入状態表示用モニター41に表示される。
【0043】
このとき、挿入部案内部材50の画像50′の表示位置を挿入状態表示用モニター41上において固定し、それより前方に挿入された部分の挿入部可撓管1の屈曲状態を示す画像1′を、挿入部可撓管1の変化に合わせてリアルタイムで変化させることにより、体内における挿入部可撓管1の状態を容易に把握することができる。
【0044】
図12は、そのような画像を挿入状態表示用モニター41に表示させるためのコンピュータ40のソフトウェアの内容の概略を示すフロー図であり、図中のSはステップを示す。
【0045】
挿入状態表示用モニター41に正確な屈曲状態を表示させるためには、まず挿入部可撓管1を体内に挿入する前に、実際に用いられる内視鏡の挿入部可撓管1の屈曲角度と曲がり検出用光ファイバー21から得られる検出信号とを対比させるキャリブレーションを行っておくことが好ましい(S1)。
【0046】
そして、挿入部可撓管1を体内に挿入したら、エンコーダ60から挿入部1の挿入長Lの検出信号を入力して(S2)、挿入部案内部材50が挿入部可撓管1のどの位置にあるかを算出する(S3)。
【0047】
次いで、各曲がり検出用光ファイバー21からの検出信号V1 …を入力して(S4)、その検出信号V1 …をキャリブレーションデータに基づいて曲がり角度に変換し(S5)、各曲がり検出部22部分の曲がり角度から、三次元座標上における各曲がり検出部22の位置を算出する(S6)。
【0048】
そして、挿入状態表示用モニター41において挿入部案内部材50の像50′の位置を動かさないようにして、各曲がり検出部22の位置を滑らかに結んで表示することにより挿入部可撓管1の屈曲状態が表示され(S7)、S2へ戻ってS2〜S7を繰り返す。
【0049】
このような表示を行う際、挿入状態表示用モニター41における表示は二次元画像であるが、各曲がり検出部22の位置についての三次元データが得られているので、「上方向」だけでなく任意の回転方向における挿入部可撓管1の屈曲状態を表示させることができる。
【0050】
なお、挿入部案内部材50の球状部材51から挿入部可撓管1の軸線周りの回転方向を検出して、挿入部可撓管1の軸線周りの回転量に対応して挿入状態表示用モニター41の表示像を回転させれば、挿入状態表示用モニター41に患者の身体の向きが固定されたかのごとく画像表示させることができる。
【0051】
なお、本発明は上記実施例に限定されるものではなく、例えば図13に示されるように、各曲がり検出用光ファイバー21を、各曲がり検出部22の部分で曲げ戻さずに帯状部材20の先端の前方まで延出させ、その延出部分で緩く曲げ戻してもよい。
【0052】
図14は、そのような帯状部材20の先端部分が挿入部可撓管1の先端内に配置された状態を示しており、曲がり検出用光ファイバー21にかかるテンションが先端側でも吸収されて曲がり検出用光ファイバー21の折損が防止される。
【0053】
【発明の効果】
本発明によれば、各曲がり検出用光ファイバーの帯状部材から延出する部分を固定せずに緩く波打たせたことにより、繰り返しの内視鏡使用によっても曲がり検出用光ファイバーが破損し難く、優れた耐久性を得ることができる。
【図面の簡単な説明】
【図1】本発明の第1の実施例の可撓性内視鏡装置の挿入部可撓管と操作部との連結部の縦断面図である。
【図2】本発明の第1の実施例の可撓性内視鏡装置の全体構成(挿入部案内部材を除く)の略示図である。
【図3】本発明の第1の実施例の可撓性内視鏡装置の挿入部可撓管の先端付近の斜視図である。
【図4】本発明の第1の実施例に用いられる曲がり検出用光ファイバーの曲がり検出部の略示断面図である。
【図5】本発明の第1の実施例に用いられる曲がり検出用光ファイバーの曲がり検出部が屈曲した状態の略示断面図である。
【図6】本発明の第1の実施例に用いられる曲がり検出用光ファイバーの曲がり検出部が逆方向に屈曲した状態の略示断面図である。
【図7】本発明の第1の実施例に用いられる曲がり検出用光ファイバーによる三次元の屈曲状態検出の原理を説明するための略示図である。
【図8】本発明の第1の実施例の曲がり検出用光ファイバーが取り付けられた帯状部材の平面図である。
【図9】本発明の第1の実施例の光信号入出力装置の回路図である。
【図10】本発明の第1の実施例の可撓性内視鏡装置の使用状態の全体構成を示す略示図である。
【図11】本発明の第1の実施例の挿入部案内部材の正面断面図である。
【図12】本発明の第1の実施例のコンピュータのソフトウェアの内容を略示するフロー図である。
【図13】本発明の第2の実施例の曲がり検出用光ファイバーが取り付けられた帯状部材の平面図である。
【図14】本発明の第2の実施例の挿入部可撓管の先端部分の内部配置図である。
【符号の説明】
1 挿入部可撓管
1′ 挿入部可撓管の屈曲状態の画像
5 連結部
20 帯状部材
21,21′ 曲がり検出用光ファイバー
22,22′ 曲がり検出部
29 保護チューブ
30 光信号入出力装置
40 コンピュータ
41 挿入状態表示用モニター
50 挿入部案内部材
50′ 挿入部案内部材の画像
60 エンコーダ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a flexible endoscope apparatus for observing the inside of a gastrointestinal tract or the like.
[0002]
[Prior art]
A flexible endoscope apparatus that is inserted into the gastrointestinal tract or the like has a flexible insertion section flexible tube that bends freely along the inner wall of the gastrointestinal tract or the like. It is difficult to grasp from.
[0003]
For this reason, it may not be possible to determine the insertion state of the insertion portion flexible tube with respect to the gastrointestinal tract, or it may not be possible to determine how to perform the next insertion / removal operation.
[0004]
Therefore, if X-ray fluoroscopy is performed, the bending state of the insertion portion flexible tube can be seen through. However, X-ray irradiation not only needs to be performed in a special room surrounded by a thick lead wall but also continuously. Such fluoroscopy has a problem of radiation exposure and may have a very bad influence on the human body.
[0005]
Therefore, a magnetic field generating member is attached to the distal end of the insertion portion of the endoscope, the position of the magnetic field generating member is detected by a magnetic sensor arranged outside the human body, and the position of the distal end of the insertion portion inside the body is displayed on the monitor screen. There is a display (Japanese Patent No. 2959723).
[0006]
[Problems to be solved by the invention]
However, in the apparatus for detecting the position of the magnetic field generating member attached to the distal end of the insertion portion as described above, the bending state of the insertion portion flexible tube is not known only by knowing the position of the distal end of the insertion portion. In many cases, the apparatus is easily affected by external noise and position detection cannot be continued in a good state.
[0007]
Therefore, the inventors of the present invention attach a plurality of flexible bending detection optical fibers to the insertion portion flexible tube having a bending detection portion in which the amount of transmitted light changes according to the angle of the bent angle, A flexible endoscope that detects the bending state of the insertion portion flexible tube in the portion where each bending detection portion is located from the light transmission amount of each bending detection optical fiber, and displays the bending state on the monitor screen. The device was invented and a patent application was filed earlier (Japanese Patent Application No. 2001-53715).
[0008]
The present invention is an improved invention, and an object of the present invention is to provide a flexible endoscope apparatus having excellent durability in which the bending detection optical fiber is hardly damaged even by repeated use of the endoscope.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, a flexible endoscope apparatus according to the present invention is a flexible endoscope apparatus having a flexible insertion portion flexible tube, and corresponds to a bent angle. A plurality of flexible bending detection optical fibers each having a bending detection unit that changes the amount of transmitted light are attached to a flexible belt-like member and inserted through the insertion unit flexible tube over almost the entire length. In a flexible endoscope apparatus in which a bending state of an insertion portion flexible tube in a portion where each bending detection portion is located is detected from a light transmission amount of an optical fiber, and the bending state is displayed on a monitor screen. The base end of the member extends from the base end of the insertion portion flexible tube, and each bending detection optical fiber is loosely extended from the base end of the band-shaped member without being fixed.
[0010]
The tip of the band-shaped member may be disposed in the vicinity of the tip of the insertion portion flexible tube, and each bending detection optical fiber may be loosely bent back at the tip of the band-shaped member without being fixed.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described with reference to the drawings.
FIG. 2 shows the overall configuration of the flexible endoscope apparatus. The proximal end of the insertion portion flexible tube 1 is connected to the connection portion 5 at the lower end of the operation portion 2, and the vicinity of the distal end of the insertion portion flexible tube 1. This portion is a curved portion 1a that is bent in an arbitrary direction by rotating the operation knob 3 disposed in the operation portion 2.
[0012]
A distal end main body 4 in which an observation window or the like is arranged is connected to the distal end of the insertion portion flexible tube 1, and an internal image captured by a solid-state imaging device (not shown) built in the distal end main body 4. The video signal of the mirror observation image is sent to the external video processor 7 through the video signal line 6 extending from the operation unit 2, and the endoscopic observation image is displayed on the observation image monitor 8.
[0013]
A flexible synthetic resin belt-like member 20 to which a plurality of bending detection optical fibers 21 to be described later are attached is inserted and arranged in the insertion portion flexible tube 1 over the entire length, and both ends of the bending detection optical fibers 21 are provided. It is connected to an external optical signal input / output device 30.
[0014]
A signal output line of the optical signal input / output device 30 is connected to a computer 40, and an insertion state display monitor 41 for displaying an image using a cathode ray tube or a liquid crystal is connected to the computer 40.
[0015]
FIG. 3 shows the vicinity of the distal end of the insertion portion flexible tube 1. An observation window 11, an illumination window 12, a treatment instrument protruding port 13, and the like are disposed on the distal end surface of the distal end portion body 4, and are emitted from the illumination window 12. The subject illuminated by the illumination light forms an image on the imaging surface of the solid-state imaging device by an objective optical system (not shown) arranged in the observation window 11.
[0016]
The band-shaped member 20 faces the surface of the insertion portion flexible tube 1 with the surface facing, for example, the vertical direction of the insertion portion flexible tube 1 (that is, the vertical direction of the observation screen and the extending direction of the front and rear surfaces of the operation portion 2). It is arranged in a direction parallel to the axis.
[0017]
As shown in FIG. 3, the plurality of bending detecting optical fibers 21 are bent back in a smooth U shape by changing their positions in order. A bend detector 22 is formed in the vicinity of the bent back portion of each bend detection optical fiber 21.
[0018]
For example, about 5 to 30 bending detectors 22 are arranged over the entire length of the insertion section flexible tube 1 with an interval of, for example, several centimeters in the axial direction of the insertion section flexible tube 1.
[0019]
The bending detection unit 22 is formed by forming a light absorption part only in a predetermined direction (for example, upward or downward) in a middle part of the optical fiber 21 for bending detection in which a plastic core is covered with a clad. Since the amount of transmitted light changes corresponding to the degree to which the bending detection unit 22 is bent, the bending angle of the portion where the bending detection unit 22 is arranged can be detected by detecting this.
[0020]
The principle is as described in US Pat. No. 5,633,494, but will be briefly described below.
In FIG. 4, reference numerals 21a and 21b denote the core and clad of one bending detection optical fiber 21, and the bending detection unit 22 absorbs light that has passed through the core 21a without being totally reflected into the core 21a. The light absorbing portion 22a is formed in a specific direction (here, “downward”) of the clad 21b.
[0021]
Then, as shown in FIG. 5, when the bending detection optical fiber 21 is bent upward, the amount (area) of light that hits the light absorbing portion 22a out of the light passing through the core 21a increases. 21 light transmission amount decreases.
[0022]
On the contrary, as shown in FIG. 6, when the bending detection optical fiber 21 is bent downward, the amount (area) of light that hits the light absorbing portion 22a out of the light that passes through the core 21a decreases, so that bending detection is performed. The light transmission amount of the optical fiber 21 for use increases.
[0023]
Since the bending amount of the bending detection optical fiber 21 and the light transmission amount in the light absorption unit 22a are in a certain relationship (for example, a linear function relationship), the light transmission amount of the bending detection optical fiber 21 is detected. By this, it is possible to detect the bend angle of the bend detection unit 22 portion where the light absorption unit 22a is formed.
[0024]
Therefore, when a plurality of bending detection units 22 are arranged at intervals in the axial direction of the insertion portion flexible tube 1, the intervals between the bending detection units 22 and the detected bending angles of the respective bending detection units 22. Therefore, the bending state in the vertical direction of the entire insertion portion flexible tube 1 can be detected.
[0025]
Then, as schematically shown in FIG. 7, a second bend detector 22 'is arranged in parallel with the bend detector 22 as described above, and the two bend detectors 22 and 22' arranged side by side are arranged. Comparing the amount of light transmission, when there is no twist in the left-right direction, there is no difference in the amount of light transmission between the two, and the difference in the amount of light transmission between both increases according to the amount of twist in the left-right direction.
[0026]
Therefore, by measuring the light transmission amount of each bending detection unit 22, 22 'and comparing the measured values, it is possible to detect the amount of twist in the left-right direction of the portion where the bending detection unit 22, 22' is arranged. it can. This principle is as described in US Pat. No. 6,127,672.
[0027]
Accordingly, the plurality of bending detection units 22 are arranged at predetermined intervals in the axial direction of the insertion portion flexible tube 1, and the second plurality of bending detection units 22 ′ are arranged in parallel therewith, and each bending detection unit 22 is arranged. , 22 ′ can detect and compare the light transmission amount, and the three-dimensional bending state of the entire insertion portion flexible tube 1 can be detected.
[0028]
Therefore, in the flexible endoscope apparatus of the present embodiment, as shown in FIG. 8, a plurality of bending detection optical fibers are arranged so that the bending detection units 22 are positioned at a constant interval in the longitudinal direction of the belt-like member 20. 21 is attached to the front surface side of the band-shaped member 20, and a second plurality of bending detections are provided on the back surface side of the band-shaped member 20 so that the second bending detection unit 22 ′ is arranged beside each bending detection unit 22 on the front side. An optical fiber 21 'is attached.
[0029]
Each of the bending detection optical fibers 21 and 21 ′ is fixed to the band-shaped member 20 in the vicinity of the bending detection portions 22 and 22 ′, and in the other portions, grooves formed in the longitudinal direction in the band-shaped member 20. It is loosely movably fitted in the axial direction and is held down by a cover (not shown) for preventing the dropout. Note that a lubricant such as boron nitride may be placed in the groove.
[0030]
Further, by arranging at least one simple reference optical fiber 21R in which the light absorbing portion 22a is not formed and comparing the light transmission amount of each bending detection optical fiber 21 with the light transmission amount of the reference optical fiber 21R, The influence of temperature, deterioration with time, etc., on the light transmission amount of the bending detection optical fiber 21 can be eliminated.
[0031]
As shown in FIG. 1, the base end of the band-shaped member 20 is located from the base end of the insertion portion flexible tube 1 in the housing of the connection portion 5 (connection portion between the insertion portion flexible tube 1 and the operation portion 2). For example, the length extends about several centimeters.
[0032]
Then, the bending detection optical fiber 21 extending from the base end of the belt-like member 20 is inserted and arranged in the flexible protective tube 29 in a state of being gently waved without being fixed.
[0033]
In FIG. 1, only two bending detection optical fibers 21 are illustrated, but all the bending detection optical fibers 21 that are not illustrated are similarly protected and protected in a loosely waved state. The tube 29 is inserted and arranged.
[0034]
Therefore, even when the endoscope is used and the insertion portion flexible tube 1 is repeatedly bent, and the inserted belt-like member 20 is moved in the longitudinal direction, the bent optical fiber 21 is expanded and contracted. By doing so, it won't break because it doesn't take a big tension.
[0035]
FIG. 9 shows an optical signal input / output device 30, and the light emitted from one light emitting diode 31 is incident on all the optical fibers 21, 21 ′, 21 R. Reference numeral 32 denotes a drive circuit for the light emitting diode 31.
[0036]
A photodiode 33 for converting the light intensity level into a voltage level and outputting it is arranged for each emission end of each of the optical fibers 21, 21 ′, 21 R, and the output from each photodiode 33 is output by an amplifier 34. After being amplified, it is converted into a digital signal by the analog / digital converter 35 and sent to the computer 40.
[0037]
When the insertion tube flexible tube 1 of the thus configured flexible endoscope apparatus is inserted into the body, as shown in FIG. For example, the insertion portion flexible tube 1 is passed through the insertion portion guide member 50.
[0038]
Therefore, the insertion portion guide member 50 is provided with an encoder 60 for detecting the insertion length L of the insertion portion flexible tube 1 (that is, the passage length with respect to the insertion portion guide member 50) L, and an output signal from the encoder 60 is provided. Is sent to the computer 40.
[0039]
FIG. 11 shows an example of such an insertion portion guide member 50, in which a plurality of rotatable spherical members 51 urged by a compression coil spring 52 sandwich the insertion portion flexible tube 1 from the periphery. Is arranged.
[0040]
Accordingly, each spherical member 51 rotates in proportion to the insertion length L of the insertion portion flexible tube 1, and one of the spherical members 51 has a number of pulses proportional to the insertion length L of the insertion portion flexible tube 1. Are connected to each other.
[0041]
However, the insertion length L of the insertion portion flexible tube 1 in the insertion portion guide member 50 can be detected as described in, for example, JP-A-56-97429 and JP-A-60-217326. Light reflection from the surface of the flexible tube 1 may be used, and other means may be used.
[0042]
In this way, as shown in FIG. 10, the computer 40 receives the bending state detection signal and the insertion length detection signal of the insertion portion flexible tube 1 from the optical signal input / output device 30 and the encoder 60, and guides the insertion portion. An image 50 ′ of the member 50 and an image 1 ′ showing the bending state of the insertion portion flexible tube 1 are displayed on the insertion state display monitor 41.
[0043]
At this time, the display position of the image 50 ′ of the insertion portion guide member 50 is fixed on the insertion state display monitor 41, and the image 1 ′ showing the bent state of the insertion portion flexible tube 1 at the portion inserted in front of it. Is changed in real time in accordance with the change of the insertion portion flexible tube 1, the state of the insertion portion flexible tube 1 in the body can be easily grasped.
[0044]
FIG. 12 is a flowchart showing an outline of the contents of software of the computer 40 for displaying such an image on the insertion state display monitor 41, and S in the figure indicates a step.
[0045]
In order to display an accurate bending state on the insertion state display monitor 41, first, before inserting the insertion portion flexible tube 1 into the body, the bending angle of the insertion portion flexible tube 1 of the endoscope actually used. It is preferable to perform calibration for comparing the detection signal obtained from the bending detection optical fiber 21 (S1).
[0046]
When the insertion portion flexible tube 1 is inserted into the body, a detection signal of the insertion length L of the insertion portion 1 is input from the encoder 60 (S2), and the insertion portion guide member 50 is positioned at which position of the insertion portion flexible tube 1. (S3).
[0047]
Next, detection signals V 1 ... From the respective bending detection optical fibers 21 are input (S 4), the detection signals V 1 ... Are converted into bending angles based on the calibration data (S 5), and the respective bending detection units 22. From the bending angle of the portion, the position of each bending detection unit 22 on the three-dimensional coordinates is calculated (S6).
[0048]
The insertion state display monitor 41 does not move the position of the image 50 ′ of the insertion portion guide member 50, and smoothly displays the positions of the respective bending detection portions 22 to display the insertion portion flexible tube 1. The bent state is displayed (S7), and the process returns to S2 to repeat S2 to S7.
[0049]
When such display is performed, the display on the insertion state display monitor 41 is a two-dimensional image, but since three-dimensional data about the position of each bending detection unit 22 is obtained, not only “upward” but also “upward” The bending state of the insertion portion flexible tube 1 in an arbitrary rotation direction can be displayed.
[0050]
An insertion state display monitor corresponding to the amount of rotation around the axis of the insertion portion flexible tube 1 is detected from the spherical member 51 of the insertion portion guide member 50 and the rotation direction around the axis of the insertion portion flexible tube 1 is detected. If the display image 41 is rotated, the image can be displayed on the insertion state display monitor 41 as if the orientation of the patient's body is fixed.
[0051]
The present invention is not limited to the above-described embodiment. For example, as shown in FIG. 13, the bending detection optical fibers 21 are not bent back at the respective bending detection portions 22, and the front ends of the band-shaped members 20. It may be extended to the front of and bent back loosely at the extended portion.
[0052]
FIG. 14 shows a state in which the distal end portion of such a belt-like member 20 is disposed in the distal end of the insertion portion flexible tube 1, and the tension applied to the bending detection optical fiber 21 is also absorbed on the distal end side to detect the bending. The optical fiber 21 is prevented from being broken.
[0053]
【The invention's effect】
According to the present invention, the bend detection optical fiber is not easily damaged even by repeated use of an endoscope because the portion extending from the belt-shaped member of each bend detection optical fiber is gently waved without being fixed. Durability can be obtained.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a connecting portion between an insertion portion flexible tube and an operation portion of a flexible endoscope apparatus according to a first embodiment of the present invention.
FIG. 2 is a schematic view of the overall configuration (excluding the insertion portion guide member) of the flexible endoscope apparatus according to the first embodiment of the present invention.
FIG. 3 is a perspective view of the vicinity of the distal end of the insertion portion flexible tube of the flexible endoscope apparatus according to the first embodiment of the present invention.
FIG. 4 is a schematic cross-sectional view of a bending detection unit of a bending detection optical fiber used in the first embodiment of the present invention.
FIG. 5 is a schematic cross-sectional view showing a state in which a bend detection portion of the bend detection optical fiber used in the first embodiment of the present invention is bent.
FIG. 6 is a schematic cross-sectional view showing a state in which a bend detection unit of the bend detection optical fiber used in the first embodiment of the present invention is bent in the reverse direction;
FIG. 7 is a schematic diagram for explaining the principle of detection of a three-dimensional bending state by a bending detection optical fiber used in the first embodiment of the present invention.
FIG. 8 is a plan view of a belt-like member to which a bending detection optical fiber according to the first embodiment of the present invention is attached.
FIG. 9 is a circuit diagram of the optical signal input / output device according to the first embodiment of the present invention;
FIG. 10 is a schematic diagram showing an overall configuration of the flexible endoscope apparatus in use according to the first embodiment of the present invention.
FIG. 11 is a front sectional view of the insertion portion guide member of the first embodiment of the present invention.
FIG. 12 is a flowchart schematically showing the contents of software of the computer according to the first embodiment of this invention.
FIG. 13 is a plan view of a belt-like member to which a bending detection optical fiber according to a second embodiment of the present invention is attached.
FIG. 14 is an internal arrangement view of a distal end portion of an insertion portion flexible tube according to a second embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Insertion part flexible tube 1 'Image of the bending state of an insertion part flexible tube 5 Connection part 20 Band-shaped member 21,21' Bend optical fiber 22,22 'Bend detection part 29 Protection tube 30 Optical signal input / output device 40 Computer 41 Insertion Status Display Monitor 50 Insertion Section Guide Member 50 ′ Insertion Section Guide Member Image 60 Encoder

Claims (1)

フレキシブルな挿入部可撓管を有する可撓性内視鏡装置であって、曲げられた角度の大きさに対応して光の伝達量が変化する曲がり検出部を有する複数のフレキシブルな曲がり検出用光ファイバーが、可撓性の帯状部材に取り付けられて上記挿入部可撓管内にほぼ全長にわたって挿通配置され、上記各曲がり検出用光ファイバーの光伝達量から上記各曲がり検出部が位置する部分における上記挿入部可撓管の屈曲状態を検出して、その屈曲状態をモニター画面に表示するようにした可撓性内視鏡装置において、
上記帯状部材の基端が上記挿入部可撓管の基端から延出配置されていて、その帯状部材の基端から延出した上記各曲がり検出用光ファイバーが可撓性の保護チューブ内に挿通配置されて上記曲がり検出用光ファイバーと他の部材との間が仕切られ、上記複数の曲がり検出用光ファイバーの全部が上記保護チューブ内において固定されずに緩く波打った状態にされると共に、上記各曲がり検出用光ファイバーの先端部分が、上記曲がり検出部で曲げ戻されずに上記帯状部材の先端の前方まで延出されて、その延出部分で緩く曲げ戻されていることを特徴とする可撓性内視鏡装置。
Flexible insertion device having a flexible tube, for detecting a plurality of flexible bends having a bend detection unit in which the amount of transmitted light changes according to the angle of the bent angle The optical fiber is attached to a flexible belt-like member and is inserted and arranged almost over the entire length of the insertion portion flexible tube, and the insertion at the portion where each bending detection portion is located from the light transmission amount of each bending detection optical fiber. In a flexible endoscope apparatus that detects a bent state of a flexible tube and displays the bent state on a monitor screen,
The base end of the belt-like member extends from the base end of the insertion portion flexible tube, and each of the bending detection optical fibers extending from the base end of the belt-like member is inserted into a flexible protective tube. is arranged between the detection optical fiber and the other members bend said partitioned, with all of the plurality of bending detection optical fiber is loosely wavy state without being fixed within the protective tube, each The flexibility is characterized in that the distal end portion of the bending detection optical fiber is not bent back by the bending detection portion but is extended to the front of the front end of the belt-like member, and is bent back loosely at the extended portion. Endoscopic device.
JP2001247530A 2001-05-22 2001-08-17 Flexible endoscope device Expired - Fee Related JP3943355B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2001247530A JP3943355B2 (en) 2001-08-17 2001-08-17 Flexible endoscope device
US10/150,927 US6846286B2 (en) 2001-05-22 2002-05-21 Endoscope system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001247530A JP3943355B2 (en) 2001-08-17 2001-08-17 Flexible endoscope device

Publications (2)

Publication Number Publication Date
JP2003052612A JP2003052612A (en) 2003-02-25
JP3943355B2 true JP3943355B2 (en) 2007-07-11

Family

ID=19076848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001247530A Expired - Fee Related JP3943355B2 (en) 2001-05-22 2001-08-17 Flexible endoscope device

Country Status (1)

Country Link
JP (1) JP3943355B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6188564B2 (en) 2013-12-19 2017-08-30 オリンパス株式会社 Insertion device
JP6461343B2 (en) 2015-07-10 2019-01-30 オリンパス株式会社 Shape detection device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0612155B2 (en) * 1989-05-31 1994-02-16 東海ゴム工業株式会社 Optical fiber built-in hose
JPH0591972A (en) * 1991-10-02 1993-04-16 Toshiba Corp Curve displaying apparatus
JPH0655601U (en) * 1993-01-13 1994-08-02 オリンパス光学工業株式会社 Flexible tube for endoscope
JP4203975B2 (en) * 1999-07-30 2009-01-07 Hoya株式会社 Optical fiber cable manufacturing method and apparatus
JP2001174744A (en) * 1999-10-06 2001-06-29 Olympus Optical Co Ltd Optical scanning probe device
JP2001218730A (en) * 2000-02-10 2001-08-14 Mitsubishi Cable Ind Ltd Head swinging scope with tactile sensor

Also Published As

Publication number Publication date
JP2003052612A (en) 2003-02-25

Similar Documents

Publication Publication Date Title
JP4005318B2 (en) Flexible endoscope device
US6846286B2 (en) Endoscope system
US7476197B2 (en) Scanned beam imagers and endoscopes utilizing multiple light collectors
JP2001169998A (en) Endoscope insertion shape detector
JP3917391B2 (en) Flexible endoscope device
JP2003093326A (en) Flexible electronic endoscope device
US8201997B1 (en) Imaging temperature sensing system
JP4864249B2 (en) Flexible endoscope device
JP4017877B2 (en) Flexible endoscope monitor device
JP2003102677A (en) Flexible endoscope apparatus
JP3943355B2 (en) Flexible endoscope device
JP3881525B2 (en) Flexible endoscope device
JP3881526B2 (en) Flexible endoscope device
JP3920603B2 (en) Flexible endoscope device
JP3911139B2 (en) Flexible endoscope device
JP4864248B2 (en) Flexible endoscope device
JP3898910B2 (en) Flexible endoscope device
JP4694062B2 (en) Flexible electronic endoscope device
JP3845270B2 (en) Flexible ultrasonic endoscope device
JP2003070718A (en) Flexible endoscope
JP3943353B2 (en) Flexible ultrasound endoscope device
JP2003088492A (en) Flexible electronic endoscope instrument
JP2003065734A (en) Flexible endoscopic device
JP2003088493A (en) Flexible electronic endoscope instrument
JP2003093327A (en) Endoscope device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070405

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100413

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100413

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100413

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100413

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100413

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120413

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120413

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees