JP3881526B2 - Flexible endoscope device - Google Patents

Flexible endoscope device Download PDF

Info

Publication number
JP3881526B2
JP3881526B2 JP2001151768A JP2001151768A JP3881526B2 JP 3881526 B2 JP3881526 B2 JP 3881526B2 JP 2001151768 A JP2001151768 A JP 2001151768A JP 2001151768 A JP2001151768 A JP 2001151768A JP 3881526 B2 JP3881526 B2 JP 3881526B2
Authority
JP
Japan
Prior art keywords
insertion portion
bending
flexible tube
flexible
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001151768A
Other languages
Japanese (ja)
Other versions
JP2002345730A (en
Inventor
直樹 鈴木
和毅 炭山
章 杉山
俊之 橋山
素子 川村
哲也 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jikei University School of Medicine
Original Assignee
Jikei University School of Medicine
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jikei University School of Medicine filed Critical Jikei University School of Medicine
Priority to JP2001151768A priority Critical patent/JP3881526B2/en
Priority to US10/150,927 priority patent/US6846286B2/en
Publication of JP2002345730A publication Critical patent/JP2002345730A/en
Application granted granted Critical
Publication of JP3881526B2 publication Critical patent/JP3881526B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00043Operational features of endoscopes provided with output arrangements
    • A61B1/00045Display arrangement
    • A61B1/0005Display arrangement combining images e.g. side-by-side, superimposed or tiled
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/005Flexible endoscopes
    • A61B1/009Flexible endoscopes with bending or curvature detection of the insertion part

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Endoscopes (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、胃腸内等を観察するための可撓性内視鏡装置に関する。
【0002】
【従来の技術】
胃腸内等に挿入される可撓性内視鏡装置は、胃腸等の内壁に沿って自由に屈曲するフレキシブルな挿入部可撓管を有しており、挿入部可撓管の屈曲状態を体外から把握するのは困難である。
【0003】
そのため、挿入部可撓管が胃腸に対してどのような挿入状態にあるのか判断がつかなくなったり、次の挿脱操作をどのようにすればよいか判断できなくなってしまう場合がある。
【0004】
そこで、X線透視を行えば挿入部可撓管の屈曲状態を透視することができるが、X線照射は厚い鉛壁等で囲まれた特別の室内で行う必要があるだけでなく、連続的なX線透視は放射線被爆の問題があり、人体に非常に悪い影響を与える恐れがある。
【0005】
そこで、内視鏡の挿入部の先端に磁界発生部材を取り付け、その磁界発生部材の位置を人体外に配置された磁気センサーにより検出して、体内にある挿入部の先端の位置をモニター画面に表示するようにしたものがある(特許第2959723号)。
【0006】
【発明が解決しようとする課題】
しかし、上述のように挿入部の先端に取り付けられた磁界発生部材の位置を検出する装置では、挿入部先端の位置が分かるだけで挿入部可撓管の屈曲状態は分からず、しかもそのような装置では外来ノイズの影響を受け易く、良好な状態で位置検出を継続できない場合が少なくない。
【0007】
そこで本発明は、体内に挿入された挿入部可撓管の屈曲状態とその変化を、放射線被爆なしに継続的に検出、表示することができる可撓性内視鏡装置を提供することを目的とする。
【0008】
【課題を解決するための手段】
上記の目的を達成するため、本発明の可撓性内視鏡装置は、フレキシブルな挿入部可撓管を有する可撓性内視鏡装置において、曲げられた角度の大きさに対応して光の伝達量が変化する曲がり検出部を有する複数のフレキシブルな曲がり検出用光ファイバーを、それらの曲がり検出部が挿入部可撓管の軸線方向に位置をずらして配列されるように挿入部可撓管の管壁に埋設し、各曲がり検出用光ファイバーの光伝達量から各曲がり検出部が位置する部分における挿入部可撓管の屈曲状態を検出して、それを挿入部可撓管の屈曲状態としてモニター画面に表示するようにしたものである。
【0009】
なお、曲がり検出部は、曲がり検出用光ファイバーの途中に光吸収部が所定の方向にだけ形成されたものであってもよく、曲がり検出用光ファイバーが埋設された挿入部可撓管の管壁が押出成形によって形成されていてもよい。
【0010】
また、複数の曲がり検出用光ファイバーがフレキシブルな帯状部材に固着されていて、その帯状部材が挿入部可撓管に埋設されていてもよく、帯状部材が、挿入部可撓管の軸線周りに90°又は180°回転した位置関係で複数配置されていてもよい。
【0011】
【発明の実施の形態】
図面を参照して本発明の実施例を説明する。
図2は可撓性内視鏡装置の全体構成を示しており、操作部2の下端に挿入部可撓管1の基端が連結され、挿入部可撓管1の先端付近の部分は、操作部2に配置された操作ノブ3を回転操作することによって任意の方向に屈曲する湾曲部1aになっている。
【0012】
挿入部可撓管1の先端には、図示されていない観察窓等が配置された先端部本体4が連結されており、先端部本体4に内蔵された固体撮像素子(図示せず)で撮像された内視鏡観察像の映像信号が、操作部2から延出する映像信号線6により外部のビデオプロセッサ7に送られ、内視鏡観察画像が観察画像用モニター8に表示される。
【0013】
挿入部可撓管1には、操作部2の前面と後面の延長方向(即ち、観察画面における上方向と下方向)の位置に、後述する複数の曲がり検出用光ファイバーが配置されたフレキシブルな合成樹脂製の帯状部材20が埋設されていて、その基端部が光信号入出力装置30に接続されている。
【0014】
また、光信号入出力装置30の信号出力線がコンピュータ40に接続され、そのコンピュータ40には、ブラウン管又は液晶等を用いて画像表示を行う挿入状態表示用モニター41が接続されている。
【0015】
図1は、挿入部可撓管1の先端付近を示しており、帯状部材20は二つのうちの一方だけが図示されている。また、図3と図4は、挿入部可撓管1の正面断面図(図1におけるIII−III断面)と側面半断面図であり、挿入部可撓管1内に挿通配置されている各種内蔵物の図示は省略されている。
【0016】
挿入部可撓管1は、ステンレス鋼帯材等の金属製の螺旋管11に金属細線製の網状管12を被覆して、さらにその外周に可撓性合成樹脂材の外皮13を被覆して形成されている。
【0017】
帯状部材20は、挿入部可撓管1の表面に露出しないように外皮13中に埋設されており、挿入部可撓管1の軸線周りに180°回転した位置関係の「上方向」と「下方向」の位置に、挿入部可撓管1の軸線と平行に埋設されている。
【0018】
図1に戻って、各帯状部材20には、複数の曲がり検出用光ファイバー21が順に位置を変えて滑らかなU字状に後方に曲げ戻された状態に配置されている。そして、各曲がり検出用光ファイバー21の曲げ戻し部の近傍に曲がり検出部22が形成されている。
【0019】
曲がり検出部22は、挿入部可撓管1の軸線方向に例えば数センチメートル程度の間隔をあけて、挿入部可撓管1の全長にわたって例えば5〜30個程度配置されている。
【0020】
曲がり検出部22は、透明性の高いコアにクラッドが被覆された曲がり検出用光ファイバー21の途中の部分に、光吸収部分が所定の方向(例えば上方向又は下方向)にだけ形成されたものであり、曲がり検出部22が曲げられた程度に対応して光の伝達量が変化するので、それを検出することによって曲がり検出部22が配置された部分の曲がり角度を検出することができる。
【0021】
その原理については米国特許第5633494号等に記載されている通りであるが、以下に簡単に説明をする。
図5において、21aと21bは、一本の曲がり検出用光ファイバー21のコアとクラッドであり、曲がり検出部22には、コア21a内を通過してきた光をコア21a内に全反射せずに吸収してしまう光吸収部22aが、クラッド21bの特定方向(ここでは「下方向」)の部分に形成されている。
【0022】
すると、図6に示されるように、曲がり検出用光ファイバー21が上方向に曲げられると、コア21a内を通る光のうち光吸収部22aにあたる光の量(面積)が増えるので、曲がり検出用光ファイバー21の光伝達量が減少する。
【0023】
逆に、図7に示されるように、曲がり検出用光ファイバー21が下方向に曲げられると、コア21a内を通る光のうち光吸収部22aにあたる光の量(面積)が減少するので、曲がり検出用光ファイバー21の光伝達量が増加する。
【0024】
このような、光吸収部22aにおける曲がり検出用光ファイバー21の曲がり量と光伝達量とは一定の関係(例えば一次関数的関係)になるので、曲がり検出用光ファイバー21の光伝達量を検出することにより、光吸収部22aが形成されている曲がり検出部22部分の曲がり角度を検出することができる。
【0025】
したがって、挿入部可撓管1の軸線方向に間隔をあけて複数の曲がり検出部22が配列されている場合には、各曲がり検出部22間の間隔と検出された各曲がり検出部22の曲がり角度から、挿入部可撓管1全体の上下方向の屈曲状態を検出することができる。
【0026】
そして、図8に略示されるように、上述のような曲がり検出部22に対して並列にさらに第2の曲がり検出部22′を配置して、横に並んだ二つの曲がり検出部22,22′の光伝達量を比較すれば、左右方向に捩れがない場合には双方の光伝達量に差がなく、左右方向の捩じれ量に応じて双方の光伝達量の差が大きくなる。
【0027】
したがって、各曲がり検出部22,22′の光伝達量を計測してその計測値を比較することにより、曲がり検出部22,22′が配置された部分の左右方向の捩れ量を検出することができる。この原理は、米国特許第6127672号等に記載されている通りである。
【0028】
したがって、複数の曲がり検出部22を挿入部可撓管1の軸線方向に所定の間隔で配置すると共に、軸線周りに位置をずらして第2の複数の曲がり検出部22′を配置し、各曲がり検出部22,22′における光伝達量を検出、比較することにより挿入部可撓管1全体の三次元の屈曲状態を検出することができる。
【0029】
図9は、光信号入出力装置30を示しており、一つの発光ダイオード31からの射出光が全部の曲がり検出用光ファイバー21に入射される。32は、発光ダイオード31の駆動回路である。
【0030】
そして、各曲がり検出用光ファイバー21の射出端毎に、光の強度レベルを電圧レベルに変換して出力するフォトダイオード33が配置されていて、各フォトダイオード33からの出力が、アンプ34で増幅されてからアナログ/デジタル変換器35によりデジタル信号化されてコンピュータ40に送られる。
【0031】
このように構成された可撓性内視鏡装置の挿入部可撓管1が体内に挿入される際には、図10に示されるように、挿入部案内部材50が体内への入口部分(例えば口又は肛門)に取り付けられて、挿入部可撓管1はその挿入部案内部材50内を通される。
【0032】
そこで、挿入部案内部材50に挿入部可撓管1の挿入長(即ち、挿入部案内部材50に対する通過長)Lを検出するためのエンコーダ60等が設けられていて、エンコーダ60からの出力信号がコンピュータ40に送られるようになっている。
【0033】
図11は、そのような挿入部案内部材50の一例を示しており、圧縮コイルスプリング52によって付勢された複数の回転自在な球状部材51が、挿入部可撓管1を周囲から挟み付ける状態に配置されている。
【0034】
したがって、各球状部材51は挿入部可撓管1の挿入長Lに比例して回転し、球状部材51のうちの一つに、挿入部可撓管1の挿入長Lに比例する数のパルスを出力するエンコーダ60が連結されている。
【0035】
ただし、挿入部案内部材50における挿入部可撓管1の挿入長Lの検出は、例えば特開昭56−97429号や特開昭60−217326号等に記載されているように、挿入部可撓管1の表面からの光反射等を利用してもよく、その他の手段によっても差し支えない。
【0036】
このようにして、図10に示されるように、コンピュータ40には光信号入出力装置30とエンコーダ60から挿入部可撓管1の屈曲状態検出信号と挿入長検出信号が入力し、挿入部案内部材50の画像50′と、挿入部可撓管1の屈曲状態を示す画像1′が挿入状態表示用モニター41に表示される。
【0037】
このとき、挿入部案内部材50の画像50′の表示位置を挿入状態表示用モニター41上において固定し、それより前方に挿入された部分の挿入部可撓管1の屈曲状態を示す画像1′を、挿入部可撓管1の変化に合わせてリアルタイムで変化させることにより、体内における挿入部可撓管1の状態を容易に把握することができる。
【0038】
図12は、そのような画像を挿入状態表示用モニター41に表示させるためのコンピュータ40のソフトウェアの内容の概略を示すフロー図であり、図中のSはステップを示す。
【0039】
挿入状態表示用モニター41に正確な屈曲状態を表示させるためには、まず挿入部可撓管1を体内に挿入する前に、実際に用いられる内視鏡の挿入部可撓管1の屈曲角度と曲がり検出用光ファイバー21から得られる検出信号とを対比させるキャリブレーションを行っておくことが好ましい(S1)。
【0040】
そして、挿入部可撓管1を体内に挿入したら、エンコーダ60から挿入部の挿入長Lの検出信号を入力して(S2)、挿入部案内部材50が挿入部可撓管1のどの位置にあるかを算出する(S3)。
【0041】
次いで、各曲がり検出用光ファイバー21からの検出信号V1 …を入力して(S4)、その検出信号V1 …をキャリブレーションデータに基づいて曲がり角度に変換し(S5)、各曲がり検出部22部分の曲がり角度から、三次元座標上における各曲がり検出部22の位置を算出する(S6)。
【0042】
そして、挿入状態表示用モニター41において挿入部案内部材50の像50′の位置を動かさないようにして、各曲がり検出部22の位置を滑らかに結んで表示することにより挿入部可撓管1の屈曲状態が表示され(S7)、S2へ戻ってS2〜S7を繰り返す。
【0043】
このような表示を行う際、挿入状態表示用モニター41における表示は二次元画像であるが、各曲がり検出部22の位置についての三次元データが得られているので、「上方向」だけでなく任意の回転方向における挿入部可撓管1の屈曲状態を表示させることができる。
【0044】
なお、挿入部案内部材50の球状部材51から挿入部可撓管1の軸線周りの回転方向を検出して、挿入部可撓管1の軸線周りの回転量に対応して挿入状態表示用モニター41の表示像を回転させれば、挿入状態表示用モニター41に患者の身体の向きが固定されたかのごとく画像表示させることができる。
【0045】
図13は、曲がり検出用光ファイバー21を挿入部可撓管1に埋設する製造工程の一例を示しており、螺旋管11と網状管12とからなる芯材に押出成形によって外皮13を被覆する際に、曲がり検出用光ファイバー21が設けられた帯状部材20を芯材上に仮止めしておき、その外側に溶融した外皮13を押し出して帯状部材20を埋設している。
【0046】
その場合に、外皮13を内層13aと外層13bの二層構造にして、内層13aには帯状部材20に対して密着性のよい軟性の樹脂を用い、外層13bには耐薬品性のよい樹脂を用いるとよい。
【0047】
なお、このような押出成形時には曲がり検出用光ファイバー21に200℃程度の熱がかかるので、曲がり検出用光ファイバー21を例えば石英ガラス等のような耐熱性のある材料によって形成するとよい。
【0048】
なお、本発明は上記実施例に限定されるものではなく、例えば図14に示される第2の実施例のように曲がり検出用光ファイバー21が設けられた二つの帯状部材20を挿入部可撓管1の軸線周りに90°位置をずらして配置してもよい。
【0049】
また、図15に示される第3の実施例のように、帯状部材20を一つだけにして、例えば帯状部材20の表裏両面に曲がり検出用光ファイバー21を設ける等しても三次元の曲がり状態検出を行うことができる。
【0050】
【発明の効果】
本発明によれば、複数のフレキシブルな曲がり検出用光ファイバーに形成された曲がり検出部において曲げられた角度の大きさに対応して光の伝達量が変化し、各曲がり検出用光ファイバーの光伝達量から各曲がり検出部が位置する部分における挿入部可撓管の屈曲状態が検出されて表示されるので、体内に挿入された内視鏡挿入部の屈曲状態を放射線被爆なしに継続的に検出、表示することができ、曲がり検出用光ファイバーが挿入部可撓管の管壁に埋設されているので、曲がり検出用光ファイバーが破損し難くて内視鏡の挿入性の障害にもならない。
【図面の簡単な説明】
【図1】本発明の実施例の可撓性内視鏡装置の挿入部可撓管の先端付近の斜視図である。
【図2】本発明の実施例の可撓性内視鏡装置の全体構成(挿入部案内部材を除く)の略示図である。
【図3】本発明の実施例の挿入部可撓管の軸線に垂直な断面における断面図(図1におけるIII−III断面図である。
【図4】本発明の実施例の挿入部可撓管の側面半断面図である。
【図5】本発明の実施例に用いられる曲がり検出用光ファイバーの曲がり検出部の略示断面図である。
【図6】本発明の実施例に用いられる曲がり検出用光ファイバーの曲がり検出部が屈曲した状態の略示断面図である。
【図7】本発明の実施例に用いられる曲がり検出用光ファイバーの曲がり検出部が逆方向に屈曲した状態の略示断面図である。
【図8】本発明の実施例に用いられる曲がり検出用光ファイバーによる三次元の屈曲状態検出の原理を説明するための略示図である。
【図9】本発明の実施例の光信号入出力装置の回路図である。
【図10】本発明の実施例の可撓性内視鏡装置の使用状態の全体構成を示す略示図である。
【図11】本発明の実施例の挿入部案内部材の正面断面図である。
【図12】本発明の実施例のコンピュータのソフトウェアの内容を略示するフロー図である。
【図13】本発明の実施例の挿入部可撓管の製造工程の一例の略示図である。
【図14】本発明の第2の実施例の挿入部可撓管の軸線に垂直な断面における断面図である。
【図15】本発明の第3の実施例の挿入部可撓管の軸線に垂直な断面における断面図である。
【符号の説明】
1 挿入部可撓管
1′ 挿入部可撓管の屈曲状態の画像
11 螺旋管
12 網状管
13 外皮(管壁)
20 帯状部材
21 曲がり検出用光ファイバー
22 曲がり検出部
30 光信号入出力装置
40 コンピュータ
41 挿入状態表示用モニター(モニター画面)
50 挿入部案内部材
50′ 挿入部案内部材の画像
60 エンコーダ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a flexible endoscope apparatus for observing the inside of a gastrointestinal tract or the like.
[0002]
[Prior art]
A flexible endoscope apparatus that is inserted into the gastrointestinal tract or the like has a flexible insertion section flexible tube that bends freely along the inner wall of the gastrointestinal tract or the like. It is difficult to grasp from.
[0003]
For this reason, it may not be possible to determine the insertion state of the insertion portion flexible tube with respect to the gastrointestinal tract, or it may not be possible to determine how to perform the next insertion / removal operation.
[0004]
Therefore, if X-ray fluoroscopy is performed, the bending state of the insertion portion flexible tube can be seen through. However, X-ray irradiation not only needs to be performed in a special room surrounded by a thick lead wall but also continuously. Such fluoroscopy has a problem of radiation exposure and may have a very bad influence on the human body.
[0005]
Therefore, a magnetic field generating member is attached to the distal end of the insertion portion of the endoscope, the position of the magnetic field generating member is detected by a magnetic sensor arranged outside the human body, and the position of the distal end of the insertion portion inside the body is displayed on the monitor screen. There is a display (Japanese Patent No. 2959723).
[0006]
[Problems to be solved by the invention]
However, in the apparatus for detecting the position of the magnetic field generating member attached to the distal end of the insertion portion as described above, the bending state of the insertion portion flexible tube is not known only by knowing the position of the distal end of the insertion portion. In many cases, the apparatus is easily affected by external noise and position detection cannot be continued in a good state.
[0007]
Accordingly, an object of the present invention is to provide a flexible endoscope apparatus capable of continuously detecting and displaying the bending state of the insertion portion flexible tube inserted into the body and the change thereof without radiation exposure. And
[0008]
[Means for Solving the Problems]
In order to achieve the above object, a flexible endoscope apparatus according to the present invention is a flexible endoscope apparatus having a flexible insertion portion flexible tube. A plurality of flexible bending detection optical fibers each having a bending detection unit in which the amount of transmission of the bending portion is arranged such that the bending detection units are arranged with their positions shifted in the axial direction of the insertion unit flexible tube. The bending state of the insertion portion flexible tube is detected at the portion where each bending detection portion is located from the light transmission amount of each bending detection optical fiber, and this is set as the bending state of the insertion portion flexible tube. It is displayed on the monitor screen.
[0009]
The bend detection unit may be a light detection unit formed only in a predetermined direction in the middle of the bend detection optical fiber, and the wall of the insertion portion flexible tube in which the bend detection optical fiber is embedded is provided. It may be formed by extrusion.
[0010]
Further, a plurality of bending detection optical fibers may be fixed to a flexible belt-like member, and the belt-like member may be embedded in the insertion portion flexible tube, and the belt-like member is 90 around the axis of the insertion portion flexible tube. A plurality of positions may be arranged in a positional relationship rotated by 180 ° or 180 °.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described with reference to the drawings.
FIG. 2 shows the overall configuration of the flexible endoscope apparatus. The base end of the insertion portion flexible tube 1 is connected to the lower end of the operation portion 2, and the portion near the distal end of the insertion portion flexible tube 1 is A bending portion 1a that bends in an arbitrary direction by rotating the operation knob 3 disposed in the operation portion 2 is formed.
[0012]
A distal end main body 4 in which an observation window or the like (not shown) is arranged is connected to the distal end of the insertion section flexible tube 1 and is imaged by a solid-state imaging device (not shown) built in the distal end main body 4. The video signal of the endoscopic observation image is sent to the external video processor 7 through the video signal line 6 extending from the operation unit 2, and the endoscopic observation image is displayed on the observation image monitor 8.
[0013]
The insertion portion flexible tube 1 is a flexible composite in which a plurality of bending detection optical fibers, which will be described later, are arranged at positions extending in the front and rear surfaces of the operation portion 2 (that is, upward and downward in the observation screen). A resin band member 20 is embedded, and a base end portion thereof is connected to the optical signal input / output device 30.
[0014]
A signal output line of the optical signal input / output device 30 is connected to a computer 40, and an insertion state display monitor 41 for displaying an image using a cathode ray tube or a liquid crystal is connected to the computer 40.
[0015]
FIG. 1 shows the vicinity of the distal end of the insertion portion flexible tube 1, and only one of the two belt-like members 20 is shown. 3 and 4 are a front sectional view (III-III cross section in FIG. 1) and a side half sectional view of the insertion portion flexible tube 1, and various types inserted and arranged in the insertion portion flexible tube 1. The illustration of the built-in object is omitted.
[0016]
The insertion portion flexible tube 1 is formed by coating a metal spiral tube 11 such as a stainless steel strip with a metal thin wire mesh tube 12 and further covering a sheath 13 of a flexible synthetic resin material on the outer periphery thereof. Is formed.
[0017]
The band-shaped member 20 is embedded in the outer skin 13 so as not to be exposed on the surface of the insertion portion flexible tube 1, and the “upward” and “position” of the positional relationship rotated by 180 ° around the axis of the insertion portion flexible tube 1. It is embedded in the position of “downward” in parallel with the axis of the insertion portion flexible tube 1.
[0018]
Returning to FIG. 1, a plurality of bending detection optical fibers 21 are arranged in each band-like member 20 in a state where the positions are sequentially changed and bent back in a smooth U shape. A bend detector 22 is formed in the vicinity of the bent back portion of each bend detection optical fiber 21.
[0019]
For example, about 5 to 30 bending detectors 22 are arranged over the entire length of the insertion section flexible tube 1 with an interval of, for example, several centimeters in the axial direction of the insertion section flexible tube 1.
[0020]
The bending detection unit 22 is formed by forming a light absorption part only in a predetermined direction (for example, upward or downward direction) in the middle part of the optical fiber 21 for bending detection in which a highly transparent core is coated with a clad. There is a change in the amount of light transmission corresponding to the degree to which the bend detection unit 22 is bent, and by detecting this, the bend angle of the portion where the bend detection unit 22 is arranged can be detected.
[0021]
The principle is as described in US Pat. No. 5,633,494, but will be briefly described below.
In FIG. 5, reference numerals 21a and 21b denote a core and a clad of one bending detection optical fiber 21, and the bending detection unit 22 absorbs light that has passed through the core 21a without being totally reflected into the core 21a. The light absorbing portion 22a is formed in a specific direction (here, “downward”) of the clad 21b.
[0022]
Then, as shown in FIG. 6, when the bending detection optical fiber 21 is bent upward, the amount (area) of the light that hits the light absorbing portion 22a out of the light passing through the core 21a increases. 21 light transmission amount decreases.
[0023]
On the contrary, as shown in FIG. 7, when the bending detection optical fiber 21 is bent downward, the amount (area) of the light that hits the light absorbing portion 22a out of the light passing through the core 21a is decreased. The light transmission amount of the optical fiber 21 for use increases.
[0024]
Since the bending amount of the bending detection optical fiber 21 and the light transmission amount in the light absorption unit 22a are in a certain relationship (for example, a linear function relationship), the light transmission amount of the bending detection optical fiber 21 is detected. By this, it is possible to detect the bend angle of the bend detection unit 22 portion where the light absorption unit 22a is formed.
[0025]
Therefore, when a plurality of bending detection units 22 are arranged at intervals in the axial direction of the insertion portion flexible tube 1, the intervals between the bending detection units 22 and the detected bending angles of the respective bending detection units 22. Therefore, the bending state in the vertical direction of the entire insertion portion flexible tube 1 can be detected.
[0026]
Then, as schematically shown in FIG. 8, a second bend detection unit 22 ′ is further arranged in parallel with the bend detection unit 22 as described above, and two bend detection units 22, 22 arranged side by side. Comparing the light transmission amounts of ′, when there is no twist in the left-right direction, there is no difference between the light transmission amounts of both, and the difference between the light transmission amounts of both increases according to the twist amount in the left-right direction.
[0027]
Therefore, by measuring the light transmission amount of each bending detection unit 22, 22 'and comparing the measured values, it is possible to detect the amount of twist in the left-right direction of the portion where the bending detection unit 22, 22' is arranged. it can. This principle is as described in US Pat. No. 6,127,672.
[0028]
Accordingly, the plurality of bending detection units 22 are arranged at predetermined intervals in the axial direction of the insertion portion flexible tube 1, and the second plurality of bending detection units 22 'are arranged by shifting the positions around the axis, and each bending is arranged. The three-dimensional bending state of the entire insertion portion flexible tube 1 can be detected by detecting and comparing the light transmission amount in the detection portions 22 and 22 '.
[0029]
FIG. 9 shows an optical signal input / output device 30, and light emitted from one light emitting diode 31 enters all the bending detection optical fibers 21. Reference numeral 32 denotes a drive circuit for the light emitting diode 31.
[0030]
A photodiode 33 for converting the light intensity level into a voltage level and outputting it is arranged for each exit end of each bending detection optical fiber 21, and the output from each photodiode 33 is amplified by an amplifier 34. Thereafter, the signal is converted into a digital signal by the analog / digital converter 35 and sent to the computer 40.
[0031]
When the insertion tube flexible tube 1 of the thus configured flexible endoscope apparatus is inserted into the body, as shown in FIG. For example, the insertion portion flexible tube 1 is passed through the insertion portion guide member 50.
[0032]
Therefore, the insertion portion guide member 50 is provided with an encoder 60 for detecting the insertion length L of the insertion portion flexible tube 1 (that is, the passage length with respect to the insertion portion guide member 50) L, and an output signal from the encoder 60 is provided. Is sent to the computer 40.
[0033]
FIG. 11 shows an example of such an insertion portion guide member 50, in which a plurality of rotatable spherical members 51 urged by a compression coil spring 52 sandwich the insertion portion flexible tube 1 from the periphery. Is arranged.
[0034]
Accordingly, each spherical member 51 rotates in proportion to the insertion length L of the insertion portion flexible tube 1, and one of the spherical members 51 has a number of pulses proportional to the insertion length L of the insertion portion flexible tube 1. Are connected to each other.
[0035]
However, the insertion length L of the insertion portion flexible tube 1 in the insertion portion guide member 50 can be detected as described in, for example, JP-A-56-97429 and JP-A-60-217326. Light reflection from the surface of the flexible tube 1 may be used, and other means may be used.
[0036]
In this way, as shown in FIG. 10, the computer 40 receives the bending state detection signal and the insertion length detection signal of the insertion portion flexible tube 1 from the optical signal input / output device 30 and the encoder 60, and guides the insertion portion. An image 50 ′ of the member 50 and an image 1 ′ showing the bending state of the insertion portion flexible tube 1 are displayed on the insertion state display monitor 41.
[0037]
At this time, the display position of the image 50 ′ of the insertion portion guide member 50 is fixed on the insertion state display monitor 41, and the image 1 ′ showing the bent state of the insertion portion flexible tube 1 at the portion inserted in front of it. Is changed in real time in accordance with the change of the insertion portion flexible tube 1, the state of the insertion portion flexible tube 1 in the body can be easily grasped.
[0038]
FIG. 12 is a flowchart showing an outline of the contents of software of the computer 40 for displaying such an image on the insertion state display monitor 41, and S in the figure indicates a step.
[0039]
In order to display an accurate bending state on the insertion state display monitor 41, first, before inserting the insertion portion flexible tube 1 into the body, the bending angle of the insertion portion flexible tube 1 of the endoscope actually used. It is preferable to perform calibration for comparing the detection signal obtained from the bending detection optical fiber 21 (S1).
[0040]
When the insertion portion flexible tube 1 is inserted into the body, a detection signal of the insertion length L of the insertion portion is input from the encoder 60 (S2), and the insertion portion guide member 50 is positioned at which position of the insertion portion flexible tube 1. Whether it exists is calculated (S3).
[0041]
Next, detection signals V 1 ... From the respective bending detection optical fibers 21 are input (S 4), the detection signals V 1 ... Are converted into bending angles based on the calibration data (S 5), and the respective bending detection units 22. From the bending angle of the portion, the position of each bending detection unit 22 on the three-dimensional coordinates is calculated (S6).
[0042]
The insertion state display monitor 41 does not move the position of the image 50 ′ of the insertion portion guide member 50, and smoothly displays the positions of the respective bending detection portions 22 to display the insertion portion flexible tube 1. The bent state is displayed (S7), and the process returns to S2 to repeat S2 to S7.
[0043]
When such display is performed, the display on the insertion state display monitor 41 is a two-dimensional image, but since three-dimensional data about the position of each bending detection unit 22 is obtained, not only “upward” but also “upward” The bending state of the insertion portion flexible tube 1 in an arbitrary rotation direction can be displayed.
[0044]
An insertion state display monitor corresponding to the amount of rotation around the axis of the insertion portion flexible tube 1 is detected from the spherical member 51 of the insertion portion guide member 50 and the rotation direction around the axis of the insertion portion flexible tube 1 is detected. If the display image 41 is rotated, the image can be displayed on the insertion state display monitor 41 as if the orientation of the patient's body is fixed.
[0045]
FIG. 13 shows an example of a manufacturing process in which the bending detection optical fiber 21 is embedded in the insertion portion flexible tube 1, and the core 13 made of the spiral tube 11 and the mesh tube 12 is coated with the outer skin 13 by extrusion molding. In addition, the belt-like member 20 provided with the bending detection optical fiber 21 is temporarily fixed on the core, and the melted outer skin 13 is pushed out to embed the belt-like member 20.
[0046]
In that case, the outer skin 13 has a two-layer structure of an inner layer 13a and an outer layer 13b, a soft resin having good adhesion to the belt-like member 20 is used for the inner layer 13a, and a resin with good chemical resistance is used for the outer layer 13b. Use it.
[0047]
In addition, since heat of about 200 ° C. is applied to the bending detection optical fiber 21 during such extrusion molding, the bending detection optical fiber 21 may be formed of a heat-resistant material such as quartz glass.
[0048]
The present invention is not limited to the above-described embodiment. For example, as in the second embodiment shown in FIG. 14, the two strip-shaped members 20 provided with the bending detection optical fibers 21 are inserted into the flexible tube. The position may be shifted by 90 ° around one axis.
[0049]
In addition, as in the third embodiment shown in FIG. 15, even if only one belt-like member 20 is provided and, for example, the optical fibers 21 for bending detection are provided on both the front and back surfaces of the belt-like member 20, a three-dimensional bent state is obtained. Detection can be performed.
[0050]
【The invention's effect】
According to the present invention, the amount of transmitted light changes in accordance with the angle of the angle bent at the bend detection unit formed on the plurality of flexible bend detection optical fibers, and the amount of light transmitted by each bend detection optical fiber. Since the bending state of the insertion tube flexible tube at the portion where each bending detection unit is located is detected and displayed, the bending state of the endoscope insertion portion inserted into the body is continuously detected without radiation exposure. Since the bending detection optical fiber is embedded in the tube wall of the insertion portion flexible tube, the bending detection optical fiber is not easily damaged and does not hinder the insertion property of the endoscope.
[Brief description of the drawings]
FIG. 1 is a perspective view of the vicinity of a distal end of a flexible tube of an insertion portion of a flexible endoscope apparatus according to an embodiment of the present invention.
FIG. 2 is a schematic view of an overall configuration (excluding an insertion portion guide member) of a flexible endoscope apparatus according to an embodiment of the present invention.
3 is a cross-sectional view (cross-sectional view taken along line III-III in FIG. 1) in a cross section perpendicular to the axis of the insertion portion flexible tube of the embodiment of the present invention.
FIG. 4 is a side half sectional view of an insertion portion flexible tube according to an embodiment of the present invention.
FIG. 5 is a schematic cross-sectional view of a bending detection unit of a bending detection optical fiber used in an embodiment of the present invention.
FIG. 6 is a schematic cross-sectional view showing a bent state of a bending detection portion of a bending detection optical fiber used in the embodiment of the present invention.
FIG. 7 is a schematic cross-sectional view showing a state in which a bend detection portion of a bend detection optical fiber used in an embodiment of the present invention is bent in a reverse direction.
FIG. 8 is a schematic diagram for explaining the principle of three-dimensional bending state detection by a bending detection optical fiber used in an embodiment of the present invention.
FIG. 9 is a circuit diagram of an optical signal input / output device according to an embodiment of the present invention.
FIG. 10 is a schematic diagram showing the overall configuration of the usage state of the flexible endoscope apparatus according to the embodiment of the present invention.
FIG. 11 is a front sectional view of the insertion portion guide member according to the embodiment of the present invention.
FIG. 12 is a flowchart schematically showing the contents of software of a computer according to an embodiment of the present invention.
FIG. 13 is a schematic view of an example of a manufacturing process of the insertion portion flexible tube according to the embodiment of the present invention.
FIG. 14 is a cross-sectional view in a cross section perpendicular to the axis of the insertion portion flexible tube of the second embodiment of the present invention.
FIG. 15 is a cross-sectional view in a cross section perpendicular to the axis of an insertion portion flexible tube of a third embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Insertion part flexible tube 1 'Bending state image of insertion part flexible tube 11 Spiral tube 12 Reticulated tube 13 Outer skin (tube wall)
20 Band-shaped member 21 Optical fiber for bending detection 22 Bending detection unit 30 Optical signal input / output device 40 Computer 41 Insertion state display monitor (monitor screen)
50 Inserting portion guide member 50 ′ Inserting portion guide member image 60 Encoder

Claims (4)

フレキシブルな挿入部可撓管を有、曲げられた角度の大きさに対応して光の伝達量が変化する曲がり検出部を有する複数のフレキシブルな曲がり検出用光ファイバーを、それらの曲がり検出部が上記挿入部可撓管の軸線方向に位置をずらして配列されるように上記挿入部可撓管の管壁に埋設し、上記各曲がり検出用光ファイバーの光伝達量から各曲がり検出部が位置する部分における上記挿入部可撓管の屈曲状態を検出して、それを上記挿入部可撓管の屈曲状態としてモニター画面に表示するようにした可撓性内視鏡装置において、
上記複数の曲がり検出用光ファイバーがフレキシブルな帯状部材に固着されていて、その帯状部材が上記挿入部可撓管に埋設されていることを特徴とする可撓性内視鏡装置。
Have a flexible flexible tube, a plurality of flexible bending detection optical fiber in response to the magnitude of the bent angle having a detector bending changes the amount of transmission of light, their bending detection section The bending portion is embedded in the tube wall of the insertion portion flexible tube so as to be shifted in the axial direction of the insertion portion flexible tube, and each bending detection portion is positioned from the light transmission amount of each bending detection optical fiber. In a flexible endoscope apparatus that detects a bending state of the insertion portion flexible tube in a portion and displays it on a monitor screen as a bending state of the insertion portion flexible tube ,
The flexible endoscope apparatus, wherein the plurality of bending detection optical fibers are fixed to a flexible belt-like member, and the belt-like member is embedded in the insertion portion flexible tube .
上記曲がり検出部は、上記曲がり検出用光ファイバーの途中に光吸収部が所定の方向にだけ形成されたものである請求項1記載の可撓性内視鏡装置。The flexible endoscope apparatus according to claim 1, wherein the bend detection unit is configured such that a light absorption unit is formed only in a predetermined direction in the middle of the bend detection optical fiber. 上記曲がり検出用光ファイバーが埋設された上記挿入部可撓管の管壁が押出成形によって形成されている請求項1又は2記載の可撓性内視鏡装置。The flexible endoscope apparatus according to claim 1 or 2, wherein a tube wall of the insertion portion flexible tube in which the bending detection optical fiber is embedded is formed by extrusion molding. 上記帯状部材が、上記挿入部可撓管の軸線周りに90°又は180°回転した位置関係で複数配置されている請求項1、2又は3記載の可撓性内視鏡装置。The flexible endoscope apparatus according to claim 1, 2, or 3 , wherein a plurality of the band-like members are arranged in a positional relationship rotated by 90 ° or 180 ° around an axis of the insertion portion flexible tube.
JP2001151768A 2001-05-22 2001-05-22 Flexible endoscope device Expired - Fee Related JP3881526B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2001151768A JP3881526B2 (en) 2001-05-22 2001-05-22 Flexible endoscope device
US10/150,927 US6846286B2 (en) 2001-05-22 2002-05-21 Endoscope system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001151768A JP3881526B2 (en) 2001-05-22 2001-05-22 Flexible endoscope device

Publications (2)

Publication Number Publication Date
JP2002345730A JP2002345730A (en) 2002-12-03
JP3881526B2 true JP3881526B2 (en) 2007-02-14

Family

ID=18996549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001151768A Expired - Fee Related JP3881526B2 (en) 2001-05-22 2001-05-22 Flexible endoscope device

Country Status (1)

Country Link
JP (1) JP3881526B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9766059B2 (en) 2012-06-20 2017-09-19 Olympus Corporation Curve sensor

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4756258B2 (en) * 2004-10-07 2011-08-24 学校法人慶應義塾 Capillary tube that bends over by light
JP5136747B2 (en) * 2007-02-01 2013-02-06 国立大学法人 名古屋工業大学 Bending degree detecting device and bending degree detecting method using the same
JP6128735B2 (en) * 2012-02-10 2017-05-17 オリンパス株式会社 Optical sensor
WO2017009906A1 (en) 2015-07-10 2017-01-19 オリンパス株式会社 Shape-detecting insertion device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9766059B2 (en) 2012-06-20 2017-09-19 Olympus Corporation Curve sensor

Also Published As

Publication number Publication date
JP2002345730A (en) 2002-12-03

Similar Documents

Publication Publication Date Title
JP4005318B2 (en) Flexible endoscope device
US6846286B2 (en) Endoscope system
AU2002332330B2 (en) Radiation detector
JPS60217326A (en) Endoscope
JP3917391B2 (en) Flexible endoscope device
JP3881526B2 (en) Flexible endoscope device
JP2003093326A (en) Flexible electronic endoscope device
JP4017877B2 (en) Flexible endoscope monitor device
JP3881525B2 (en) Flexible endoscope device
JP4864249B2 (en) Flexible endoscope device
JP2003102677A (en) Flexible endoscope apparatus
JP6150579B2 (en) Insertion device
JP3920603B2 (en) Flexible endoscope device
JP4864248B2 (en) Flexible endoscope device
JP3943355B2 (en) Flexible endoscope device
US8401611B2 (en) Apparatus and method for imaging tissue
JP3898910B2 (en) Flexible endoscope device
JP3911139B2 (en) Flexible endoscope device
JP4694062B2 (en) Flexible electronic endoscope device
JP3845270B2 (en) Flexible ultrasonic endoscope device
JP2003070718A (en) Flexible endoscope
JP6273475B2 (en) Dosimeter
JP3943353B2 (en) Flexible ultrasound endoscope device
JP2003065734A (en) Flexible endoscopic device
JP2003088492A (en) Flexible electronic endoscope instrument

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061110

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3881526

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091117

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091117

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091117

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091117

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091117

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101117

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101117

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111117

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111117

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121117

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131117

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees