JP3943304B2 - Laminated structure with excellent gas barrier properties - Google Patents

Laminated structure with excellent gas barrier properties Download PDF

Info

Publication number
JP3943304B2
JP3943304B2 JP2000001228A JP2000001228A JP3943304B2 JP 3943304 B2 JP3943304 B2 JP 3943304B2 JP 2000001228 A JP2000001228 A JP 2000001228A JP 2000001228 A JP2000001228 A JP 2000001228A JP 3943304 B2 JP3943304 B2 JP 3943304B2
Authority
JP
Japan
Prior art keywords
film
metal oxide
vapor
laminated
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000001228A
Other languages
Japanese (ja)
Other versions
JP2001191442A (en
Inventor
慎二 銅崎
重信 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Plastics Inc
Original Assignee
Mitsubishi Plastics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Plastics Inc filed Critical Mitsubishi Plastics Inc
Priority to JP2000001228A priority Critical patent/JP3943304B2/en
Publication of JP2001191442A publication Critical patent/JP2001191442A/en
Application granted granted Critical
Publication of JP3943304B2 publication Critical patent/JP3943304B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Non-Insulated Conductors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ガスバリア性に優れた積層構造体に関する。
【0002】
【従来の技術】
従来より、プラスチックフィルムを基材とし、その表面に酸化珪素、酸化アルミニウム、酸化マグネシウム等の金属酸化物の薄膜を形成したガスバリア性蒸着プラスチックフィルムは、水蒸気や酸素等の各種ガスの遮断を必要とする物品の包装、食品や工業用品及び医薬品等の変質を防止するため包装用途に広く利用されている(特公昭53−12953等)。また、このガスバリア性蒸着プラスチックフィルムは、包装用途以外にも、近年、液晶表示素子、太陽電池、電磁波シールド、タッチパネル、EL用基板、カラーフィルター等で使用する透明導電シートの一部などの新しい用途にも注目されている。
【0003】
そして、かかるガスバリア性蒸着プラスチックフィルムに関し、ガスバリア性の低下防止を目的とした種々の改良検討がなされており、各種ポリウレタン、各種ポリエステル、又は、ポリウレタンとポリエステルの混合物からなる塗布層を蒸着面に設ける方法が知られている(特開平2ー50837等)。また、蒸着面上に水溶性高分子と金属アルコキシドの混合物、塩化ビニリデン系共重合体、エチレンビニルアルコール共重合体(以下「EVOH」と言う)などのガスバリア性樹脂をコーティングしたガスバリア性積層フィルムが知られている(特開平8−267637、特開平7−80986等)。
【0004】
【発明が解決しようとする課題】
ガスバリア性積層フィルムが袋状で使用される場合には、ガスバリア性積層フィルムの内側にヒートシール性のポリオレフィン系樹脂等のシーラント層のフィルムを接着して使用されることがあるが、この際には十分な接着強度が必要となる。従来のガスバリア性積層フィルムでは、そのガスバリア性が高くても、シーラント層のフィルムとの接着強度が満足できなかったり、蒸着面に印刷を施すとガスバリア性能が低下するなどの問題がある。そこで、優れたガスバリアを有し、且つシーラント層フィルムとの接着強度を有し、さらには、蒸着面に印刷を施してもそれらの性能が低下することのない積層フィルムが必要とされている。
本発明は、上記実情に鑑みなされたものであり、その目的は、ガスバリア性に優れ、且つシーラント層フィルムとの高い接着強度を有し、さらには蒸着面に印刷を施してもそれらの性能が低下することのない積層構造体を提供することにある。
【0005】
【課題を解決するための手段】
本発明者らは、上記実状に鑑み、上記目的を解決するために鋭意検討を行った結果、蒸着フィルムの蒸着面に金属酸化物ゾルを均一に塗布することができれば、上記性能を満足する積層フィルムが得られることを見いだし、本発明を完成するに至った。即ち、本発明は、金属酸化物から成る薄膜を基材フィルムの少なくとも一方の面に形成した蒸着プラスチックフィルムの蒸着面上に、金属酸化物ゾルをコーティングしてなるコーテイング層を設け、該コーティング層上にシーラント層を積層してなることを特徴とするガスバリア性に優れた積層構造体に関する。
【0006】
【発明の実施の形態】
以下、本発明を詳細に説明する。本発明の積層構造体の基材プラスチックフィルム原料としては、一般ににフィルム用として利用されるような樹脂原料であれば特に制限はなく、ポリエステル、ポリアミド、ポリオレフィン等が用いられる。原料中には、公知の添加剤、例えば、帯電防止剤、光線遮断剤、紫外線吸収剤、可塑剤、滑剤、フィラー、着色剤、安定剤、潤滑剤、架橋剤、ブロッキング防止剤、酸化防止剤等を添加することができる。本発明のプラスチックフィルムは以上の原料を用いて成るもので、未延伸フィルムでもよいし延伸フィルムでもよい。また、複数の樹脂を積層してなるフィルムであってもよい。
【0007】
かかるプラスチックフィルムは、従来公知の一般的な方法により製造することができる。例えば、原料樹脂を押し出し機により溶融し、環状ダイやTダイにより押し出して、急冷することにより実質的に無定型で配向していない未延伸フィルムを製造することができる。この未延伸フィルムを一軸延伸、テンター式逐次二軸延伸、テンター式同時二軸延伸、チューブラー式同時二軸延伸などの従来公知の一般的な方法により、フィルムの流れ(縦軸)方向又はフィルムの流れ方向とそれに直角な(横軸)方向に延伸することにより、少なくとも一軸方向に延伸したフィルムを製造することができる。更に、該プラスチックフィルムには、コロナ放電処理、火炎処理、プラズマ処理、グロー放電処理、薬品処理などの従来公知の方法による表面処理などを行うこともできる。
【0008】
以上のプラスチックフィルムの厚さは、本発明の積層構造体の基材としての機械強度、可撓性、透明性等、用途に応じ、通常5〜500μm、好ましくは10〜200μmの範囲に選択される。また、フィルムの幅や長さは特に制限はなく、適宜用途に応じて選択することができる。なお、該プラスチックフィルムにおいては、その少なくとも片面にアンカーコート剤を塗布してもよい。アンカーコート剤としては、溶剤性又は水溶性のポリエステル樹脂、イソシアネート樹脂、ウレタン樹脂、アクリル樹脂、エチレンビニルアルコール樹脂、ビニル変性樹脂、エポキシ樹脂、オキサゾリン基含有樹脂、変性スチレン樹脂、変性シリコン樹脂及びアルキルチタネート等を単独、あるいは2種以上併せて使用することができる。
【0009】
本発明の積層構造体において、上記プラスチックフィルムに蒸着する金属酸化物としては、例えば、アルミニウム、珪素、マグネシウム、パラジウム、亜鉛、錫、ニッケル、銀、銅、金、インジウム、ステンレス鋼、クロム、チタン等の金属、これらの各金属の酸化物またはそれらの混合物が挙げられるが、好ましくは酸化珪素、酸化アルミニウムである。蒸着の方法は、一般には真空蒸着によるが、イオンプレーティング、スパッタリング、CVD等の方法によってもよい。蒸着膜の厚さは、蒸着フイルムの最終用途によって適宜選択されるが、通常50〜2000オングストロームが好ましい。50オングストローム未満では十分なガスバリア性が得られにくく、2000オングストロームを越えると蒸着膜に亀裂や剥離が発生しやすくなるのであまり好ましくない。
【0010】
本発明の積層構造体では、以上の金属酸化物から成る薄膜を基材フィルムの少なくとも一方の面に形成した蒸着プラスチックフィルムの蒸着面上に金属酸化物ゾルをコーティングすることによりコーテイング層を設けてなるガスバリアに優れた積層フィルムが主部となる。かかる積層フィルムとしては、水蒸気透過率が通常2.0g/m2・24h以下、好ましくは1.0g/m2・24h以下であり、酸素透過率が通常1.0cc/m2・24h・atm以下、好ましくは0.5cc/m2・24h・atm以下のものが要求される。
【0011】
ここでの金属酸化物ゾルとしては、シリカ、アンチモン、ジルコニウム、アルミニウム、セリウム、チタン等の金属酸化物またはそれらの混合物からなるゾルが挙げられるが、好ましくはシリカゾルである。金属酸化物の粒子径は限定しないが、4〜10nmが好ましく、粒径がこの範囲より大きくなるにつれて塗布しにくくなり、満足のいくガスバリア性能が得られない可能性がある。この金属酸化物ゾルは通常10〜90重量%水性液として使用されるが、コーテイング層の均一化、塗布の作業性改良、あるいはシーラント層との接着性改良のために、適宜、アルコール類のような水性溶媒、ポリビニルアルコール等の水溶性高分子類等で希釈して使用してもよい。
【0012】
金属酸化物ゾルを基材フイルムに塗布液を塗布する方法としては、リバースロールコーター、グラビアコーター、ロッドコーター、エアドクタコーターなど、一般に公知の方法が使用できる。金属酸化物の厚さは塗布液乾燥後の固形分厚さを意味するが、該厚さは、好ましくは0.01〜1.5μm、特に好ましくは0.05〜1.0μmの範囲である。厚さ0.01μm未満の場合は十分なガスバリア性が得られず、また、1.5μmを超える場合はガスバリア性は満足できるが、シーラント層フィルムとの密着強度が低下する場合があるので、あまり好ましくない。
【0013】
本発明の積層構造体は、上記のような、金属機酸化物から成る薄膜を基材フィルムの少なくとも一方の面に形成した蒸着プラスチックフィルムの蒸着面上に、金属酸化物ゾルをコーティングしてなるコーテイング層を設けてなる積層フィルムのコーティング層上に、シーラント層を積層して使用するのに好適である。シーラント層としては、ポリエチレン、ポリプロピレン、エチレン共重合体、飽和ポリエステル等のヒートシール性を有する樹脂であれば目的に応じて使用することができる。このシーラント層は、フィルム化した材料をラミネートして設けてもよいし、溶融した樹脂をアンカー剤からなる接着層を介して、押出しコーテイングによりラミネートしてもよい。また、ラミネートする場合に、コーテイング層とシーラント層との間を接着剤からなる接着層を介して行ってもよい。更には、コーテイング層とシーラント層との間を印刷層を積層してもよい。この印刷層を形成する印刷インキは特に限定されないが、ウレタン系樹脂をバインダーとしたものが好ましい。
【0014】
かかる本発明の積層構造体はガスバリアに優れており、好ましくは、水蒸気透過率が2.0g/m2・24h以下、酸素透過率が1.0cc/m2・24h・atm以下の性能を有する。また、後述する試験方法により測定される密着強度の値も良好であり、好ましくは、500g/15mm以上の性能を有する。
【0015】
【実施例】
以下、本発明を実施例により更に詳細に説明するが、本発明はその要旨を越えない限り以下の例に限定されるものではない。なお、以下の実施例におけるフィルムの評価方法は以下の通りである。
〈水蒸気透過率(g/m2・24h)〉
水蒸気透過率測定装置(モダンコントロール社製、Permatran−W1)を使用して、温度40℃、相対湿度90%の条件下で測定した。
〈酸素透過率(cc/m2・24h・atm)〉
ASTM−D3985に準処して、酸素透過率測定装置(モダンコントロール社製、OX−TRAN100)を使用し、温度25℃、相対湿度95%の条件下で測定した。
【0016】
〈密着強度〉
蒸着フィルムの蒸着面、あるいはその上にPVAが塗布された面、あるいはその上に印刷が施された面に接着剤として、東洋モートン(株)社製ウレタン系接着剤(AD−900:CAT−RT85=10:1.5の混合物)を塗布した。さらに、厚さ50μmのポリエチレンフィルム(東セロ(株)社製TUX−TC50μm)をドライラミネートし、40℃で3日間エージングした。次いでこの積層フィルムを、幅15mm、長さ100mmの短冊状に切り出して試験片とした。この試験片のポリエチレンフィルムと蒸着フィルムが含まれる積層フィルムとの界面の一端を予め50mm剥離させて、両剥離面をそれぞれオートグラフ(JIS K7127に準じる試験装置、島津製作所(株)社製のDSS−100)の固定つかみ具と可動つかみ具とに、つかみ具間距離100mmで取り付けて、可動つかみ具を引っ張り速度300mm/minで60mm移動させ、この間にひずみ計に記録させた引張荷重の波状曲線の中心線の値を求め、試験片3本における平均値を密着強度とした。まお、引っ張り最中に試験片が切れてしまった場合(これをフィルム破断という。)は、この際の引張荷重を密着強度とした。
【0017】
(実施例1)
肉厚が12μmのアンカーコートされた二軸延伸ポリエチレンテレフタレートフィルムに真空蒸着装置を使用して、SiOを高周波加熱方式で蒸発させ蒸着層厚みが約150オングストロームである無機酸化物から成る薄膜を形成した蒸着プラスチックフィルムを得た。この蒸着フィルムの蒸着面上に、シリカゾル(日産化学工業(株)社製スノーテックスXS、平均粒径4〜6nm、SiO2含有量20〜21wt%)にイソプロピルアルコールを20wt%含有させた水溶液を、固形分厚みが0.01μmになるようにコーティングし、80℃で1分乾燥した。この積層フィルムの水蒸気透過率と酸素透過率を測定した。また、このシリカゾルをコーティングした積層フィルム上に、上記密着強度測定方法に記載したようにして、ポリエチレンフィルムをドライラミネートした。このドライラミネートされた積層フィルムの密着強度、水蒸気透過率と酸素透過率を測定した。さらにシリカゾルをコーティングした積層フィルム上に白色インキ(東洋インキ製造(株)社製、NEWLPスーパーR631白:SL302溶剤C=1:1の混合物)を印刷し、その上に上記密着強度測定方法に記載したようにして、ポリエチレンフィルムをドライラミネートした。このドライラミネートされた積層フィルムの密着強度、水蒸気透過率と酸素透過率を測定した。各評価結果を表−1に示す。
【0018】
(実施例2)
実施例1において、固形分厚みを1.0μmにしたほかは、実施例1記載の手順でフィルムを製造し、密着強度、水蒸気透過率と酸素透過率を測定した。各評価結果を表−1に示す。
(実施例3)
実施例1において、シリカゾル(日産化学工業(株)社製スノーテックス40、平均粒径10〜20nm、SiO2含有量40〜41wt%)とし、固形分厚みを0.1μmにしたほかは、実施例1記載の手順でフィルムを製造し、密着強度、水蒸気透過率と酸素透過率を測定した。各評価結果を表−1に示す。
【0019】
(実施例4)
実施例1において、固形分厚みを0.1μmにし、固形分混合比がSiO2:PVA=8:2(重量比)になるように、シリカゾルをPVA(日本合成化学工業(株)社製ポバール、N−300)の水溶液で希釈したほかは、実施例1記載の手順でフィルムを製造し、密着強度、水蒸気透過率と酸素透過率を測定した。各評価結果を表−1に示す。
(実施例5)
実施例4において、固形分厚みを1.0μmにしたほかは、実施例1記載の手順でフィルムを製造し、密着強度、水蒸気透過率と酸素透過率を測定した。各評価結果を表−1に示す。
【0020】
(実施例6)
実施例4において、シリカゾルの希釈水溶液をEVOH(日本合成化学工業(株)社製ソアノール、16DX)の水溶液にし、水溶液中のイソプロピルアルコール含有率を50wt%にしたほかは、実施例1記載の手順でフィルムを製造し、密着強度、水蒸気透過率と酸素透過率を測定した。各評価結果を表−1に示す。
(実施例7)
実施例1において、固形分厚みを2.0μmにしたほかは、実施例1記載の手順でフィルムを製造し、密着強度、水蒸気透過率と酸素透過率を測定した。各評価結果を表−1に示す。
【0021】
(実施例8)
実施例4において、固形分混合比をSiO2:PVA=5:5(重量比)になるように、シリカゾルをPVA水溶液で希釈したほかは、実施例1記載の手順でフィルムを製造し、密着強度、水蒸気透過率と酸素透過率を測定した。各評価結果を表−1に示す。
(実施例9)
実施例1において、固形分厚みを0.005μmにしたほかは、実施例1記載の手順でフィルムを製造し、密着強度、水蒸気透過率と酸素透過率を測定した。各評価結果を表−1に示す。
【0022】
(比較例1)
実施例1において、シリカゾルのコーティング工程を省略したほかは、実施例1記載の手順でフィルムを製造し、密着強度、水蒸気透過率と酸素透過率を測定した。各評価結果を表−1に示す。
(比較例2)
実施例1において、シリカゾルをコーティングせずに、シリカゾルを含まないPVA(日本合成化学工業(株)社製ポバール、N−300)の水溶液を固形分厚みが0.1μmになるようにコーティングしたほかは、実施例1記載の手順でフィルムを製造し、密着強度、水蒸気透過率と酸素透過率を測定した。各評価結果を表−1に示す。
【0023】
(比較例3)
実施例1において、シリカゾルをコーティングせずに、シリカゾルを含まないEVOH(日本合成化学工業(株)社製ソアノール、16DX)水溶液を固形分厚みが0.01μmになるようにコーティングしたほかは、実施例1記載の手順でフィルムを製造し、密着強度、水蒸気透過率と酸素透過率を測定した。各評価結果を表−1に示す。
【0024】
【表1】

Figure 0003943304
【0025】
【発明の効果】
本発明の積層構造体は、十分なガスバリア性を有し、且つ、シーラント層との高い接着強度を有し、更には蒸着面に印刷を施してもそれらの性能が低下することない。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a laminated structure excellent in gas barrier properties.
[0002]
[Prior art]
Conventionally, gas barrier vapor-deposited plastic films that have a plastic film as a base material and a thin film of metal oxide such as silicon oxide, aluminum oxide, and magnesium oxide on the surface need to block various gases such as water vapor and oxygen. It is widely used for packaging purposes in order to prevent the deterioration of the packaging of foods, foods, industrial products and pharmaceuticals (Japanese Patent Publication No. Sho 53-12953). In addition to packaging applications, this gas barrier vapor-deposited plastic film has recently been used in new applications such as liquid crystal display elements, solar cells, electromagnetic wave shields, touch panels, EL substrates, and parts of transparent conductive sheets used in color filters. Has also attracted attention.
[0003]
Various improvement studies have been made on the gas barrier vapor-deposited plastic film for the purpose of preventing a decrease in gas barrier properties, and a coating layer made of various polyurethanes, various polyesters, or a mixture of polyurethane and polyester is provided on the vapor deposition surface. A method is known (JP-A-2-50837, etc.). In addition, a gas barrier laminated film in which a gas barrier resin such as a mixture of a water-soluble polymer and a metal alkoxide, a vinylidene chloride copolymer, an ethylene vinyl alcohol copolymer (hereinafter referred to as “EVOH”) is coated on the vapor deposition surface is provided. (Japanese Patent Laid-Open No. 8-267676, Japanese Patent Laid-Open No. 7-80986, etc.).
[0004]
[Problems to be solved by the invention]
When the gas barrier laminate film is used in a bag shape, a sealant layer film such as a heat-sealable polyolefin resin may be adhered to the inside of the gas barrier laminate film. Requires sufficient adhesive strength. The conventional gas barrier laminate film has problems that even if the gas barrier property is high, the adhesive strength with the film of the sealant layer cannot be satisfied, or if the vapor deposition surface is printed, the gas barrier performance is lowered. Therefore, there is a need for a laminated film that has an excellent gas barrier, has an adhesive strength with a sealant layer film, and does not deteriorate in performance even when printing is performed on a vapor deposition surface.
The present invention has been made in view of the above circumstances, and the purpose thereof is excellent in gas barrier properties, has high adhesive strength with a sealant layer film, and further, even if printing is performed on a vapor deposition surface, the performance thereof is achieved. An object of the present invention is to provide a laminated structure that does not deteriorate.
[0005]
[Means for Solving the Problems]
In view of the above situation, the present inventors have conducted intensive studies to solve the above-described object, and as a result, if the metal oxide sol can be uniformly applied to the vapor deposition surface of the vapor deposition film, the lamination satisfying the above performance is achieved. It has been found that a film can be obtained, and the present invention has been completed. That is, the present invention provides a coating layer formed by coating a metal oxide sol on a vapor-deposited surface of a vapor-deposited plastic film in which a thin film made of a metal oxide is formed on at least one surface of a base film. The present invention relates to a laminated structure excellent in gas barrier properties, wherein a sealant layer is laminated thereon.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail. The base plastic film raw material of the laminated structure of the present invention is not particularly limited as long as it is a resin raw material generally used for a film, and polyester, polyamide, polyolefin and the like are used. In the raw material, known additives such as antistatic agents, light blocking agents, ultraviolet absorbers, plasticizers, lubricants, fillers, colorants, stabilizers, lubricants, crosslinking agents, antiblocking agents, antioxidants. Etc. can be added. The plastic film of the present invention is formed using the above raw materials, and may be an unstretched film or a stretched film. Moreover, the film formed by laminating | stacking several resin may be sufficient.
[0007]
Such a plastic film can be produced by a conventionally known general method. For example, an unstretched film that is substantially amorphous and not oriented can be produced by melting a raw material resin with an extruder, extruding it with an annular die or a T die, and rapidly cooling it. The unstretched film is subjected to a film flow (vertical axis) direction or a film by a conventionally known general method such as uniaxial stretching, tenter sequential biaxial stretching, tenter simultaneous biaxial stretching, and tubular simultaneous biaxial stretching. A film stretched in at least a uniaxial direction can be produced by stretching in the direction perpendicular to the flow direction (horizontal axis). Further, the plastic film can be subjected to surface treatment by a conventionally known method such as corona discharge treatment, flame treatment, plasma treatment, glow discharge treatment, chemical treatment, and the like.
[0008]
The thickness of the above plastic film is usually selected in the range of 5 to 500 μm, preferably 10 to 200 μm, depending on the application, such as mechanical strength, flexibility and transparency as the base material of the laminated structure of the present invention. The Further, the width and length of the film are not particularly limited and can be appropriately selected according to the intended use. In addition, in this plastic film, you may apply | coat an anchor coating agent to the at least single side | surface. Examples of anchor coating agents include solvent-soluble or water-soluble polyester resins, isocyanate resins, urethane resins, acrylic resins, ethylene vinyl alcohol resins, vinyl-modified resins, epoxy resins, oxazoline group-containing resins, modified styrene resins, modified silicon resins, and alkyls. Titanate etc. can be used individually or in combination of 2 or more types.
[0009]
In the laminated structure of the present invention, examples of the metal oxide deposited on the plastic film include aluminum, silicon, magnesium, palladium, zinc, tin, nickel, silver, copper, gold, indium, stainless steel, chromium, and titanium. Examples thereof include oxides of these metals, oxides of these metals, or mixtures thereof, and silicon oxide and aluminum oxide are preferred. The deposition method is generally vacuum deposition, but may be ion plating, sputtering, CVD, or the like. Although the thickness of a vapor deposition film is suitably selected by the end use of a vapor deposition film, Usually, 50-2000 Angstrom is preferable. If it is less than 50 angstroms, it is difficult to obtain a sufficient gas barrier property, and if it exceeds 2000 angstroms, the deposited film tends to be cracked or peeled off.
[0010]
In the laminated structure of the present invention, a coating layer is provided by coating a metal oxide sol on a vapor-deposited surface of a vapor-deposited plastic film in which a thin film composed of the above metal oxide is formed on at least one surface of a base film. The laminated film having an excellent gas barrier is the main part. Such a laminated film has a water vapor transmission rate of usually 2.0 g / m 2 · 24 h or less, preferably 1.0 g / m 2 · 24 h or less, and an oxygen transmission rate of usually 1.0 cc / m 2 · 24 h · atm. In the following, preferably 0.5 cc / m 2 · 24 h · atm or less is required.
[0011]
Examples of the metal oxide sol include a sol made of a metal oxide such as silica, antimony, zirconium, aluminum, cerium, titanium, or a mixture thereof, and is preferably a silica sol. The particle diameter of the metal oxide is not limited, but is preferably 4 to 10 nm. As the particle diameter becomes larger than this range, it becomes difficult to apply, and there is a possibility that satisfactory gas barrier performance cannot be obtained. This metal oxide sol is usually used as an aqueous solution of 10 to 90% by weight. However, in order to make the coating layer uniform, improve the workability of the coating, or improve the adhesion to the sealant layer, it can be used appropriately as an alcohol. It may be diluted with a water-soluble polymer such as an aqueous solvent or polyvinyl alcohol.
[0012]
As a method of applying the coating solution of the metal oxide sol to the base film, generally known methods such as a reverse roll coater, a gravure coater, a rod coater, and an air doctor coater can be used. The thickness of the metal oxide means the solid content thickness after drying of the coating solution, and the thickness is preferably in the range of 0.01 to 1.5 μm, particularly preferably 0.05 to 1.0 μm. If the thickness is less than 0.01 μm, sufficient gas barrier properties cannot be obtained, and if it exceeds 1.5 μm, the gas barrier properties are satisfactory, but the adhesion strength with the sealant layer film may be reduced, so It is not preferable.
[0013]
The laminated structure of the present invention is formed by coating a metal oxide sol on the vapor-deposited surface of a vapor-deposited plastic film in which a thin film composed of a metal oxide as described above is formed on at least one surface of a base film. It is suitable for use by laminating a sealant layer on a coating layer of a laminated film provided with a coating layer. As the sealant layer, any resin having heat sealing properties such as polyethylene, polypropylene, ethylene copolymer, and saturated polyester can be used according to the purpose. This sealant layer may be provided by laminating a filmed material, or a melted resin may be laminated by extrusion coating through an adhesive layer made of an anchor agent. Further, when laminating, the coating layer and the sealant layer may be interposed through an adhesive layer made of an adhesive. Furthermore, a printing layer may be laminated between the coating layer and the sealant layer. Although the printing ink which forms this printing layer is not specifically limited, What used urethane type resin as the binder is preferable.
[0014]
Such a laminated structure of the present invention is excellent in gas barrier, and preferably has a water vapor permeability of 2.0 g / m 2 · 24 h or less and an oxygen permeability of 1.0 cc / m 2 · 24 h · atm or less. . Moreover, the value of the adhesive strength measured by the test method mentioned later is also favorable, and preferably has a performance of 500 g / 15 mm or more.
[0015]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to the following examples, unless the summary is exceeded. In addition, the evaluation method of the film in the following examples is as follows.
<Water vapor transmission rate (g / m 2 · 24h)>
Using a water vapor transmission rate measuring device (Permatran-W1 manufactured by Modern Control Co., Ltd.), the measurement was performed under conditions of a temperature of 40 ° C. and a relative humidity of 90%.
<Oxygen permeability (cc / m 2 · 24h · atm)>
The measurement was performed under conditions of a temperature of 25 ° C. and a relative humidity of 95% using an oxygen permeability measuring device (manufactured by Modern Control Co., Ltd., OX-TRAN100) in accordance with ASTM-D3985.
[0016]
<Adhesion strength>
Urethane adhesive (AD-900: CAT-) manufactured by Toyo Morton Co., Ltd. as an adhesive on the vapor deposition surface of the vapor deposition film, the surface coated with PVA, or the surface printed thereon. RT85 = 10: 1.5 mixture). Furthermore, a 50 μm-thick polyethylene film (TUX-TC 50 μm manufactured by Tosero Co., Ltd.) was dry laminated and aged at 40 ° C. for 3 days. Next, the laminated film was cut into a strip shape having a width of 15 mm and a length of 100 mm to obtain a test piece. One end of the interface between the polyethylene film of the test piece and the laminated film including the vapor deposition film was peeled off in advance by 50 mm, and both peeled surfaces were respectively made by autograph (Test equipment according to JIS K7127, DSS manufactured by Shimadzu Corporation). -100) fixed gripper and movable gripper at a distance of 100 mm between the grippers, moving the movable gripper at a pulling speed of 300 mm / min for 60 mm, and during this time the wavy curve of the tensile load recorded on the strain gauge The center line value was obtained, and the average value of the three test pieces was defined as the adhesion strength. Well, when the test piece was cut during the pulling (this is called film breakage), the tensile load at this time was defined as the adhesion strength.
[0017]
Example 1
A thin film made of an inorganic oxide having a deposited layer thickness of about 150 angstroms was formed by evaporating SiO by a high frequency heating method on an anchor-coated biaxially stretched polyethylene terephthalate film having a thickness of 12 μm using a vacuum deposition apparatus. A vapor-deposited plastic film was obtained. An aqueous solution containing 20 wt% of isopropyl alcohol in silica sol (Snowtex XS, manufactured by Nissan Chemical Industries, Ltd., average particle diameter of 4 to 6 nm, SiO 2 content of 20 to 21 wt%) is formed on the vapor deposition surface of the deposited film. The solid content was coated to a thickness of 0.01 μm and dried at 80 ° C. for 1 minute. The water vapor transmission rate and oxygen transmission rate of this laminated film were measured. Further, a polyethylene film was dry-laminated on the laminated film coated with this silica sol as described in the above adhesion strength measuring method. The adhesion strength, water vapor transmission rate, and oxygen transmission rate of this dry laminated film were measured. Further, white ink (manufactured by Toyo Ink Mfg. Co., Ltd., NEWLP Super R631 White: SL302 solvent C = 1: 1 mixture) is printed on the laminated film coated with silica sol, and the adhesive strength measurement method is described thereon. As described above, the polyethylene film was dry laminated. The adhesion strength, water vapor transmission rate, and oxygen transmission rate of this dry laminated film were measured. Each evaluation result is shown in Table-1.
[0018]
(Example 2)
In Example 1, except that the solid content thickness was 1.0 μm, a film was produced by the procedure described in Example 1, and the adhesion strength, water vapor transmission rate and oxygen transmission rate were measured. Each evaluation result is shown in Table-1.
(Example 3)
In Example 1, except that the silica sol (Snowtex 40 manufactured by Nissan Chemical Industries, Ltd., average particle size 10 to 20 nm, SiO 2 content 40 to 41 wt%) was used, and the solid content thickness was 0.1 μm. A film was produced according to the procedure described in Example 1, and the adhesion strength, water vapor transmission rate and oxygen transmission rate were measured. Each evaluation result is shown in Table-1.
[0019]
Example 4
In Example 1, the silica sol was made of PVA (Nippon Synthetic Chemical Co., Ltd. Poval) so that the solid content thickness was 0.1 μm and the solid content mixing ratio was SiO 2: PVA = 8: 2 (weight ratio). A film was produced according to the procedure described in Example 1 except that it was diluted with an aqueous solution of N-300), and adhesion strength, water vapor transmission rate, and oxygen transmission rate were measured. Each evaluation result is shown in Table-1.
(Example 5)
In Example 4, except that the solid content thickness was 1.0 μm, a film was produced according to the procedure described in Example 1, and the adhesion strength, water vapor transmission rate and oxygen transmission rate were measured. Each evaluation result is shown in Table-1.
[0020]
(Example 6)
The procedure described in Example 1 was performed except that the diluted aqueous solution of silica sol was an aqueous solution of EVOH (Soarnol, 16DX, manufactured by Nippon Synthetic Chemical Industry Co., Ltd.) and the isopropyl alcohol content in the aqueous solution was 50 wt%. The film was manufactured with, and the adhesion strength, water vapor transmission rate and oxygen transmission rate were measured. Each evaluation result is shown in Table-1.
(Example 7)
In Example 1, except that the solid content thickness was 2.0 μm, a film was produced by the procedure described in Example 1, and the adhesion strength, water vapor transmission rate and oxygen transmission rate were measured. Each evaluation result is shown in Table-1.
[0021]
(Example 8)
In Example 4, a film was produced according to the procedure described in Example 1 except that the silica sol was diluted with an aqueous PVA solution so that the solid content mixing ratio was SiO 2 : PVA = 5: 5 (weight ratio). The strength, water vapor transmission rate and oxygen transmission rate were measured. Each evaluation result is shown in Table-1.
Example 9
In Example 1, except that the solid content thickness was 0.005 μm, a film was produced by the procedure described in Example 1, and the adhesion strength, water vapor transmission rate and oxygen transmission rate were measured. Each evaluation result is shown in Table-1.
[0022]
(Comparative Example 1)
In Example 1, except that the silica sol coating step was omitted, a film was produced according to the procedure described in Example 1, and adhesion strength, water vapor transmission rate and oxygen transmission rate were measured. Each evaluation result is shown in Table-1.
(Comparative Example 2)
In Example 1, without coating the silica sol, an aqueous solution of PVA (Nippon Synthetic Chemical Industry Co., Ltd., Poval, N-300) containing no silica sol was coated to a solid content thickness of 0.1 μm. Manufactured a film by the procedure described in Example 1, and measured adhesion strength, water vapor transmission rate and oxygen transmission rate. Each evaluation result is shown in Table-1.
[0023]
(Comparative Example 3)
In Example 1, except that the silica sol was not coated and an aqueous solution of EVOH containing no silica sol (Soarnol, 16DX, manufactured by Nippon Synthetic Chemical Industry Co., Ltd.) was coated to a solid content thickness of 0.01 μm. A film was produced according to the procedure described in Example 1, and the adhesion strength, water vapor transmission rate and oxygen transmission rate were measured. Each evaluation result is shown in Table-1.
[0024]
[Table 1]
Figure 0003943304
[0025]
【The invention's effect】
The laminated structure of the present invention has a sufficient gas barrier property and a high adhesive strength with the sealant layer. Furthermore, even when printing is performed on the vapor deposition surface, the performance is not deteriorated.

Claims (8)

基材フィルムの少なくとも一方の面に金属酸化物から成る薄膜を形成して蒸着プラスチックフィルムを得た後、該フィルムの蒸着面上に、4〜20nmの平均粒径を有する金属酸化物を10〜90重量%含有する金属酸化物ゾルをコーティングして厚み0.01〜1.5μmのコーティング層を設け、次いで該コーティング層上にシーラント層を積層する、ガスバリア性に優れた積層構造体の製造方法。 After forming a thin film made of a metal oxide on at least one surface of the base film to obtain a vapor-deposited plastic film, a metal oxide having an average particle diameter of 4 to 20 nm is formed on the vapor-deposited surface of the film by 10 to 10 nm. A method for producing a laminated structure excellent in gas barrier properties, comprising coating a metal oxide sol containing 90% by weight to provide a coating layer having a thickness of 0.01 to 1.5 μm, and then laminating a sealant layer on the coating layer. . コーティング層とシーラント層との間に、印刷層を積層した請求項1の積層構造体の製造方法 The manufacturing method of the laminated structure of Claim 1 which laminated | stacked the printing layer between the coating layer and the sealant layer. 水蒸気透過率が2.0g/m2・24h以下、酸素透過率が1.0cc/m2・24h・atm以下である請求項1又は2の積層構造体の製造方法3. The method for producing a laminated structure according to claim 1, wherein the water vapor permeability is 2.0 g / m 2 · 24 h or less and the oxygen permeability is 1.0 cc / m 2 · 24 h · atm or less. 下記方法により測定した密着強度が500g/15mm以上である請求項1〜3のいずれかの積層構造体の製造方法
〈密着強度測定方法〉
積層フィルムを、幅15mm、長さ100mmの短冊状に切り出して試験片とした。この試験片のポリエチレンフィルムと蒸着フィルムが含まれる積層フィルムとの界面の一端を予め50mm剥離させて、両剥離面をそれぞれオートグラフ(JIS K7127に準じる試験装置)の固定つかみ具と可動つかみ具とに、つかみ具間距離100mmで取り付けて、可動つかみ具を引っ張り速度300mm/minで60mm移動させ、この間にひずみ計に記録させた引張荷重の波状曲線の中心線の値を求め、試験片3本における平均値を密着強度とした。なお、引っ張り最中に試験片が切れてしまった場合は、この時の引張荷重を密着強度とした。
The method for producing a laminated structure according to claim 1, wherein the adhesion strength measured by the following method is 500 g / 15 mm or more.
<Adhesion strength measurement method>
The laminated film was cut into a strip shape having a width of 15 mm and a length of 100 mm to obtain a test piece. One end of the interface between the polyethylene film of this test piece and the laminated film containing the vapor deposition film was peeled off in advance by 50 mm, and both peeled surfaces were respectively shown in an autograph (JIS Tensile load recorded on the strain gauge during the movement of the movable gripper at a pulling speed of 300 mm / min by attaching the gripper to the fixed gripper and the movable gripper of the test device according to K7127) at a distance of 100 mm. The value of the center line of the wavy curve was obtained, and the average value of the three test pieces was defined as the adhesion strength. In addition, when the test piece was cut during the pulling, the tensile load at this time was defined as the adhesion strength.
基材フィルムの少なくとも一方の面に金属酸化物から成る薄膜を形成して蒸着プラスチックフィルムを得た後、該フィルムの蒸着面上に、4〜20nmの平均粒径を有する金属酸化物を10〜90重量%含有する金属酸化物ゾルをコーティングして厚み0.01〜1.5μmのコーティング層を設ける、水蒸気透過率が2.0g/mAfter forming a thin film made of a metal oxide on at least one surface of the base film to obtain a vapor-deposited plastic film, a metal oxide having an average particle diameter of 4 to 20 nm is formed on the vapor-deposited surface of the film by 10 to 10 nm. A metal oxide sol containing 90% by weight is coated to provide a coating layer having a thickness of 0.01 to 1.5 μm. The water vapor transmission rate is 2.0 g / m. 22 24twenty four h以下、酸素透過率が1.0cc/mh or less, oxygen permeability is 1.0 cc / m 22 24twenty four h・h atmatm 以下であるガスバリア性に優れた積層用フィルムの製造方法。 The manufacturing method of the film for lamination excellent in the gas barrier property which is the following. 金属酸化物の平均粒径が4〜10nmである請求項5の積層用フィルムの製造方法。6. The method for producing a laminating film according to claim 5, wherein the average particle diameter of the metal oxide is 4 to 10 nm. 金属酸化物ゾルがシリカゾルである請求項5又は6の積層用フィルムの製造方法The method for producing a film for lamination according to claim 5 or 6, wherein the metal oxide sol is silica sol. 金属酸化物ゾルがポリビニルアルコールを含む水性液である請求項5〜7のいずれかの積層用フィルムの製造方法The method for producing a film for lamination according to any one of claims 5 to 7, wherein the metal oxide sol is an aqueous liquid containing polyvinyl alcohol.
JP2000001228A 2000-01-07 2000-01-07 Laminated structure with excellent gas barrier properties Expired - Lifetime JP3943304B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000001228A JP3943304B2 (en) 2000-01-07 2000-01-07 Laminated structure with excellent gas barrier properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000001228A JP3943304B2 (en) 2000-01-07 2000-01-07 Laminated structure with excellent gas barrier properties

Publications (2)

Publication Number Publication Date
JP2001191442A JP2001191442A (en) 2001-07-17
JP3943304B2 true JP3943304B2 (en) 2007-07-11

Family

ID=18530477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000001228A Expired - Lifetime JP3943304B2 (en) 2000-01-07 2000-01-07 Laminated structure with excellent gas barrier properties

Country Status (1)

Country Link
JP (1) JP3943304B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003326630A (en) * 2002-05-10 2003-11-19 Dainippon Printing Co Ltd Laminated material and packaging bag using the same
JP2003326633A (en) * 2002-05-10 2003-11-19 Dainippon Printing Co Ltd Laminated material and packaging bag using the same
JP4812552B2 (en) * 2006-08-02 2011-11-09 三菱樹脂株式会社 Gas barrier laminated film
JP4750651B2 (en) * 2005-08-31 2011-08-17 三菱樹脂株式会社 Gas barrier laminated film
JP4812382B2 (en) * 2005-09-20 2011-11-09 三菱樹脂株式会社 Gas barrier laminated film
WO2007123006A1 (en) * 2006-04-21 2007-11-01 Konica Minolta Holdings, Inc. Gas barrier film, resin base for organic electroluminescent device, organic electroluminescent device using the same, and method for producing gas barrier film
JP5432501B2 (en) * 2008-05-13 2014-03-05 日東電工株式会社 Transparent conductive film and method for producing the same
KR102053473B1 (en) * 2012-02-20 2019-12-06 주식회사 쿠라레 Polyvinyl alcohol vapor-deposited film

Also Published As

Publication number Publication date
JP2001191442A (en) 2001-07-17

Similar Documents

Publication Publication Date Title
JP5103184B2 (en) Gas barrier laminated film
JP4398265B2 (en) Gas barrier film and gas barrier laminate
JP3943304B2 (en) Laminated structure with excellent gas barrier properties
JP2007210262A (en) Transparent barrier film and its manufacturing method
WO2013018720A1 (en) Gas barrier laminate
JPH0892727A (en) Production of transparent gas barrier film
JP2004203023A (en) High performance barrier film
JP2009212424A (en) Protection sheet for solar cell
JP2000185375A (en) Gas barrier laminated film
JP5870962B2 (en) Gas barrier laminated film
JP5375015B2 (en) Gas barrier laminated film
JP2009023114A (en) Gas-barrir film
JP2005305801A (en) Antistatic gas-barrier laminate
JPH10244601A (en) Manufacture of base material plastic film for thin gas-barrier film
JP4626324B2 (en) Gas barrier film laminate and method for producing the same
JP5375014B2 (en) Gas barrier laminated film
JPH0976400A (en) Thin film with gas barrier property
JP3564919B2 (en) Thin gas barrier film
JP5375016B2 (en) Gas barrier laminated film
JP3123371B2 (en) Barrier laminate
JP4032607B2 (en) Gas barrier vapor deposition film having flexibility
JP2013226836A (en) Gas barrier laminated film
JP3841507B2 (en) Thin film gas barrier polypropylene film
JP4552392B2 (en) Evaporated film laminate with moisture absorption function
JP2011005835A (en) Gas-barrier laminated film, laminate, and vacuum heat insulating material using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041012

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20041012

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20041012

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20041013

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070405

R150 Certificate of patent or registration of utility model

Ref document number: 3943304

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120413

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term