JP3942973B2 - Seismic control structure of concrete structure with fiber reinforced cementitious material - Google Patents

Seismic control structure of concrete structure with fiber reinforced cementitious material Download PDF

Info

Publication number
JP3942973B2
JP3942973B2 JP2002202660A JP2002202660A JP3942973B2 JP 3942973 B2 JP3942973 B2 JP 3942973B2 JP 2002202660 A JP2002202660 A JP 2002202660A JP 2002202660 A JP2002202660 A JP 2002202660A JP 3942973 B2 JP3942973 B2 JP 3942973B2
Authority
JP
Japan
Prior art keywords
concrete
short
fiber
span
cementitious material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002202660A
Other languages
Japanese (ja)
Other versions
JP2004044207A (en
Inventor
比呂人 高津
秀樹 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Corp
Original Assignee
Takenaka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Corp filed Critical Takenaka Corp
Priority to JP2002202660A priority Critical patent/JP3942973B2/en
Publication of JP2004044207A publication Critical patent/JP2004044207A/en
Application granted granted Critical
Publication of JP3942973B2 publication Critical patent/JP3942973B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、短スパン梁を有する各種のコンクリート系構造物において、短スパン梁部材の中央部又は全部を繊維補強セメント系材料により形成して同構造物の地震応答を制御可能とした、繊維補強セメント系材料によるコンクリート系構造物の制震構造の技術分野に属する。
【0002】
【従来の技術】
コンクリート系構造物の一つの形式として、スパンが短い短スパン梁を具備するコンクリート系構造物も多く実施されている。
例えば図6に例示したようなコンクリート系ラーメン構造物が具備する短スパン梁1、又は図7及び図8に例示したコンクリート系耐震壁2による構造物における境界梁1、若しくは図9に例示したコンクリート系チューブ架構構造物における外周部及びコア部を構成する短スパン梁1、或いは図10に例示したコンクリート系板状集合住宅のバルコニー部(又は廊下部)を構成する短スパン梁1などが該当する。
【0003】
因みに、本発明でいう短スパン梁とは、例えば梁の全長と同梁の横断面における高さ寸法との比率(地震荷重時の剪断スパン比)が1.5程度のような短い梁を指して云う。前記短スパン梁1を含むコンクリート系構造物は、大地震時に同構造物に入力した地震エネルギが、短スパン梁1に対しては剪断力が卓越する形に作用し、剪断破壊が集中しやすい。しかし、短スパン梁は、充分な剪断補強筋を配さない限り、脆性的な剪断破壊をし、変形能力は殆どないに等しいことが問題である。
【0004】
普通コンクリートによる通常の鉄筋コンクリート造短スパン梁の場合には、剪断補強筋や帯筋などを密に配置しても、ひび割れの分散性に限度があり、損傷を制御することは至難である。
【0005】
制震デバイスとしてコンクリート系構造物にブレースを配置したり、間柱を配置する対策も実施されている。しかし、これらの制震デバイスは上下の梁部材間に組み込まれるものであるから、出入り口や通路などを確保する平面計画と、ブレース、間柱の配置計画の双方を両立させねばならないという面倒な解決課題が存在する。間柱は、通常の建物で制震効果を期待するためには多数配置する必要があることも問題である。
【0006】
異なる従来技術として、特許第3171092号公報に記載された建物の制震構造は、梁の中間部に低降伏点鋼を接合し、該低降伏点鋼部分に変形を集中させてエネルギ吸収を行わしめ制震効果を得る構成である。但し、梁もH形鋼から成る鉄骨造建物の実施例である。
【0007】
【本発明が解決しようとする課題】
上述の如く短スパン梁を含むコンクリート系構造物が大地震時の大きな繰り返し荷重を受けた場合は、短スパン梁の剪断耐力によって設計が決まると云って良い。したがって、最大剪断力を正確に見積もり、配筋やコンクリート強度の設計を適正に行う必要がある。
それにしても短スパン梁の変形能力は本来的に小さく、エネルギ吸収能力を期待できないし、剪断破壊してしまうと、修復して利用することも至難である。
【0008】
上記のような問題点の対策としては、上記特許第3171092号公報に記載された制震構造は無力である。コンクリート系構造物の短スパン梁に低降伏点鋼を接合して該低降伏点鋼の部分に変形を集中させてエネルギ吸収を行わしめることは実施不可能だからである。
【0009】
ところで、炭素繊維、アラミド繊維、ガラス繊維、ビニロン繊維、ポリプロピレン繊維、鋼繊維などの短繊維をコンクリートの補強材として混入した所謂繊維補強セメント系材料(又は繊維補強モルタル)は、従来の普通コンクリートに比較して、引張り時のひび割れが分散されること、繊維によってひび割れの幅が開くのを拘束する作用があることにより、見かけの引張り強度や引張り靱性に優れていることが公知であり、上記従来技術の項でも説明した通り、既にコンクリート系構造物の一部として使用されている。
【0010】
したがって、コンクリート系構造物の短スパン梁に上記繊維補強セメント系材料を適用すると、同短スパン梁の部位で曲げひび割れ、剪断ひび割れが分散され、繊維によってひび割れの幅が開くのを拘束するので、所謂コンクリートの剥落などは発生せず、耐力の急激な低下も生じない。また、鉄筋とコンクリートの付着強度が向上し、塑性回転変形能力が増大するから、より大きなエネルギ吸収能を期待できる。
そこで、前記エネルギ吸収量を適切に把握して設計することにより、建物全体の地震応答を制御することが出来ることに着眼して本発明がなされた。
なお、繊維補強セメント系材料は、性質上、現場打ち施工が難しいことも解決課題である。
【0011】
本発明の目的は、コンクリート系構造物の短スパン梁の中央部又は全部を繊維補強セメント系材料で形成することにより、塑性変形回転能力を増大させて、建物全体の地震応答制御を可能にし、開口部の平面計画等に影響を与える制震デバイスの設置を無用としつつ、構造物に制震効果を付与した制震構造を提供することである。
【0012】
本発明の次の目的は、短スパン梁の中央部又は全部を繊維補強セメント系材料で形成することにより、剪断補強筋量を節減しつつ変形能力を増大させ、全体として大きな地震エネルギ吸収能力を発揮させると共に、ひび割れの分散性に優れ、損傷度を低減して地震後には簡単な補修だけで構造物の再使用を可能にした制震構造を提供することである。
【0013】
【課題を解決するための手段】
上述した従来技術の課題を解決するための手段として、請求項1記載の発明に係る繊維補強セメント系材料によるコンクリート系構造物の制震構造は、
コンクリート系構造物において、
スパンが短い短スパン梁の中央部の剪断変形が集中する範囲が繊維補強セメント系材料によりプレキャスト梁部材として形成され、その他の部分は普通コンクリートで形成されたプレキャスト梁部材により、短スパン梁が構築されていることを特徴とする。
【0015】
請求項に記載した発明に係る繊維補強セメント系材料によるコンクリート系構造物の制震構造は、コンクリート系構造物において、
スパンが短い短スパン梁の中央部の剪断変形が集中する範囲が繊維補強セメント系材料によりプレキャスト梁部材として形成され、その他の部分は同じ繊維補強セメント系材料により梁型枠を兼ねるU字形断面として前記中央部と一連に形成されたプレキャスト梁部材により、短スパン梁が架構され、前記梁型枠を兼ねるU字形断面部分に普通コンクリートが打設されて成ることを特徴とする。
【0016】
請求項に記載した発明に係る繊維補強セメント系材料によるコンクリート系構造物の制震構造は、コンクリート系構造物において、
スパンが短い短スパン梁の中央部の剪断変形が集中する範囲が繊維補強セメント系材料によるプレキャスト梁ブロックとして底面に鋼板を一体化施工して形成され、他の普通コンクリートにより底面に鋼板を一体化施工して形成された部分と前記梁ブロックとは、各々の底面の鋼板を一連に一体的に接合して前記梁ブロックを中央部に配置した短スパン梁が構築されていることを特徴とする。
【0017】
【発明の実施形態】
以下に、請求項1〜に記載した発明に係る繊維補強セメント系材料によるコンクリート系構造物の制震構造を、図1〜図5に示した実施形態に基づいて説明する。
【0018】
先ず図1は、図6に例示したコンクリート系ラーメン構造物における柱3、3と接合された短スパン梁1…について、剪断変形、剪断破壊が集中する中央部1Aを上述した繊維補強セメント系材料により形成し(図1Cを参照)、これ以外の両側部分1Bは普通コンクリートで形成された(図1B)プレキャスト梁部材を予め工場で製作し、これを現場へ搬入し、柱3、3の間へ公知の手法で架設して短スパン梁1が構築された実施例(請求項1記載の発明)を示している。繊維補強セメント系材料は、その性質上、現場打ち施工が難しいからである。
なお、図1に示した短スパン梁1は、その上面に梁主筋5及びフープ筋6の一部を露出させ、後打ちするスラブコンクリートとの一体化施工を容易にする、公知のハーフプレキャスト梁部材として構成されたものを示している。
【0019】
次に、図2の実施形態は、図1と同様、短スパン梁1において剪断変形、剪断破壊が集中する中央部1Aが繊維補強セメント系材料により形成されている(図2Bを参照)。また、前記中央部1A以外の両側部分1Bも、図2Cに示したように、梁型枠を兼ねるU字形断面が繊維補強セメント系材料により一連に(一体的に)形成されている。更に前記両側部分1Bの溝内に梁主筋5とフープ筋6とから成る梁鉄筋が予め納められた構成のプレキャスト梁部材として予め工場で製作し、これを現場へ搬入し、柱3、3の間へ公知の手法で架設した段階を図2Aに示す。その後スラブコンクリートの打設と共に前記梁型枠を兼ねるU字形断面部分1Bの溝内へ普通コンクリートを打設して、短スパン梁1が構築される(請求項2に載した発明)。
【0020】
両側部分1Bの梁型枠を兼ねるU字形断面構造はまた、図2Dに示した実施例のように、梁鉄筋の下半部までを繊維補強セメント系材料の中に埋設した構成でも実施される。
いずれにしても、上記のプレキャスト梁部材を柱3、3の間へ架設した後、スラブコンクリートの打設に際して、普通コンクリートを前記梁型枠を兼ねるU字形断面の溝内へ打設して短スパン梁1とスラブが一気に完成される(請求項記載の発明)。
この実施形態によれば、両側部分1Bを、梁型枠を兼ねるU字形断面として欠き込み形成して現場へ搬入するから、図1の実施形態に比して、プレキャスト梁部材の軽量化を格別に図れ、運搬や設置の取り扱いの手間を軽減できる。ひいてはコストダウンを図れる利点がある。
【0021】
次に図3は、柱3の梁接合部分として普通コンクリートで形成された柱梁接合ブロック4と、短スパン梁1の中央部を除く両側部分1Bとが、それぞれ普通コンクリートで一体的なプレキャストコンクリート部材として予め工場で製作され、これを現場へ搬入し、柱3の上に設置する実施形態を示している。
柱梁接合ブロック4には、柱3の各主筋7を通すシース孔が上下方向に設けられている。また、短スパン梁の両側部分1Bには、梁鉄筋を構成する主筋5が前記柱梁接合ブロック4をも貫通して配筋され、更にフープ筋6…も配置され、上端主筋5及びフープ筋6の上半部が露出するハーフプレキャスト部材として構成されている。
【0022】
図3はまた、上記構成の柱梁接合ブロック4を短スパン梁の両側部分1Bと共に柱3の上部(梁取付位置)へ、同ブロック4のシース孔へ柱3の各主筋7を通す要領で設置した後、短スパン梁の中央部分1Aの梁型枠を現場で組み立て、更に梁鉄筋の組み立てを完成して、繊維補強セメント系材料を用いて前記両側部分1Bと一連に中央部分1Aを一体構造に構築して、短スパン梁1を完成した状況を示している。
【0023】
次に図4では、短スパン梁1の中央部1Aを除く両側部分1Bが、普通コンクリートによる現場打ち工法で、又は工場製作のプレキャストコンクリート部材として柱3の梁取り付け位置へ先行して設置されている。一方、短スパン梁1の中央部1Aは、予め工場で繊維補強セメント系材料によるプレキャストコンクリート部材として製作し、これを現場へ搬入し、先行して柱3へ設置した前記両側部分1B、1Bの間へ嵌め込まれている。そして、予め中央部1A及び両側部分1Bの底面に一体化施工しておいた鋼板9及び10の接合部11を溶接等の手段で曲げモーメントを伝達可能に接続して一体化した実施形態を示している。
【0024】
図4の実施形態においては、上記中央部1Aをスラブコンクリート12とも縁切りすることを目的として、前記中央部1Aの上面に蓋板13を被せておく。
本実施形態の主眼は、地震時の剪断変形が集中し破壊された中央部1Aは、事後に上記鋼板9及び10の接合部11を切り離し、新規製作の中央部1Aと交換して修復することを可能にすることである。
【0025】
【本発明が奏する効果】
請求項1〜に記載した発明に係る繊維補強セメント系材料によるコンクリート系構造物の制震構造は、短スパン梁において剪断力、剪断変形が集中する中央部又は全部を繊維補強セメント系材料により形成するので、前記範囲での曲げひび割れ、剪断ひび割れが分散され、見かけの付着強度が高くなり、塑性回転変形性能が増大するので、より大きな地震エネルギの吸収能力を期待できる。よって、この地震エネルギ吸収性能を適切に把握して設計することにより、当該コンクリート系構造物全体の地震応答を制御する制震構造とすることができる。
しかも、他の高価なダンパーの如き制震デバイスを使用する必要がなく、コンクリート系構造物に制震性能を付与することが出来る。したがって、安価に、しかも建物の平面計画に何の影響を及ぼすことなく実施することが出来る。
したがって、短スパン梁について必要以上に密な配筋も無用であるから、施工性が大きく向上する。
しかも繊維補強セメント系材料には、ひび割れを分散させる作用効果があり、損傷が一箇所に集中して起こりにくい為、見た目の損傷も軽減され、地震後の再使用に有利である。
更に、構造物のプレキャスト化を進められる結果、現場作業の省力化、品質の向上にも寄与するのである。
【図面の簡単な説明】
【図1】Aは短スパン梁の構造を示す正面図、B、CはA図のb−bおよびc−c断面図である。
【図2】Aは短スパン梁の異なる構造を示す正面図、B、C、DはA図のb−bおよびc−c断面図である。
【図3】短スパン梁の異なる構造を示す立面図である。
【図4】短スパン梁の更に異なる構造を示す立面図である。
【図5】図4の平面図である。
【図6】コンクリート系ラーメン構造物の短スパン梁を示す立面図である。
【図7】耐震壁によるコンクリート系構造物の短スパン梁を示した正面図である。
【図8】コンクリート系耐震壁構造物の短スパン梁を示した側面図である。
【図9】コンクリート系チューブ架構構造物の短スパン梁を示す平面図である。
【図10】コンクリート系板状集合住宅の短スパン梁を示した平面図である。
【符号の説明】
1 短スパン梁
3 柱
1A 短スパン梁の中央部(繊維補強セメント系材料)
1B 短スパン梁の両側部分(普通コンクリート)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a fiber reinforced structure in which various parts of a concrete structure having a short span beam can be controlled by controlling the seismic response of the structure by forming a central part or all of the short span beam member with a fiber reinforced cement material. It belongs to the technical field of damping structures for concrete structures made of cement-based materials.
[0002]
[Prior art]
As one type of concrete-based structure, many concrete-based structures including short-span beams having a short span have been implemented.
For example, the short-span beam 1 included in the concrete-based rigid frame structure illustrated in FIG. 6, the boundary beam 1 in the structure formed by the concrete-based earthquake-resistant wall 2 illustrated in FIGS. 7 and 8, or the concrete illustrated in FIG. 9. The short-span beam 1 constituting the outer peripheral part and the core part in the steel tube frame structure, or the short-span beam 1 constituting the balcony part (or the lower part of the corridor) of the concrete plate-like apartment house illustrated in FIG. .
[0003]
Incidentally, the short span beam referred to in the present invention refers to a short beam whose ratio between the total length of the beam and the height dimension in the cross section of the beam (shear span ratio under earthquake load) is about 1.5. Say. In the concrete structure including the short span beam 1, the seismic energy input to the structure at the time of a large earthquake acts on the short span beam 1 in a form in which shearing force is dominant, and shear failure tends to concentrate. . However, the problem is that short-span beams have brittle shear failure and almost no deformation capability unless sufficient shear reinforcement is provided.
[0004]
In the case of ordinary reinforced concrete short-span beams made of ordinary concrete, there is a limit to the dispersibility of cracks even if the shear reinforcement bars and strips are densely arranged, and it is difficult to control the damage.
[0005]
Measures are also being implemented to place braces on concrete structures or place studs as seismic control devices. However, since these seismic control devices are installed between the upper and lower beam members, it is a troublesome solution to both the plan for securing entrances and passages and the plan for arranging braces and studs. Exists. It is also a problem that a large number of studs need to be placed in order to expect a seismic control effect in ordinary buildings.
[0006]
As a different conventional technique, the vibration control structure of a building described in Japanese Patent No. 3171902 is constructed by joining a low yield point steel to the middle part of the beam and concentrating deformation on the low yield point steel part to absorb energy. This is a configuration that achieves a squeeze damping effect. However, the beam is an example of a steel structure building made of H-shaped steel.
[0007]
[Problems to be solved by the present invention]
As described above, when a concrete structure including a short span beam is subjected to a large repetitive load during a large earthquake, it can be said that the design is determined by the shear strength of the short span beam. Therefore, it is necessary to accurately estimate the maximum shear force and to properly design reinforcement and concrete strength.
Even so, the deformation capacity of the short span beam is inherently small, and the energy absorption capacity cannot be expected, and if it is sheared, it is difficult to repair and use it.
[0008]
As a countermeasure against the above problems, the vibration control structure described in Japanese Patent No. 3171902 is ineffective. This is because it is impossible to perform energy absorption by joining a low yield point steel to a short span beam of a concrete structure and concentrating deformation on the low yield point steel portion.
[0009]
By the way, a so-called fiber-reinforced cement-based material (or fiber-reinforced mortar) in which short fibers such as carbon fiber, aramid fiber, glass fiber, vinylon fiber, polypropylene fiber, and steel fiber are mixed as a reinforcing material for concrete is used in conventional ordinary concrete. In comparison, it is known that the cracks at the time of tension are dispersed and that the width of the cracks is restricted by the fibers, so that it has excellent apparent tensile strength and tensile toughness. As explained in the technical section, it is already used as a part of concrete structure.
[0010]
Therefore, when the fiber-reinforced cement material is applied to a short span beam of a concrete structure, bending cracks and shear cracks are dispersed at the portion of the short span beam and the width of the crack is restricted by the fibers. So-called concrete peeling or the like does not occur and the yield strength does not drop rapidly. Moreover, since the adhesion strength between the reinforcing bar and the concrete is improved and the plastic rotational deformation ability is increased, a larger energy absorption ability can be expected.
Accordingly, the present invention has been made with a focus on the fact that the seismic response of the entire building can be controlled by appropriately grasping and designing the energy absorption amount.
Another problem to be solved is that fiber-reinforced cement-based materials are difficult to perform on-site due to their properties.
[0011]
The object of the present invention is to form the center part or all of a short span beam of a concrete structure with a fiber-reinforced cement-based material, thereby increasing the plastic deformation rotation capability and enabling seismic response control of the entire building, The purpose is to provide a seismic control structure that gives a seismic control effect to the structure while eliminating the need to install a seismic control device that affects the plan of the opening.
[0012]
The next object of the present invention is to form the central part or the whole of the short span beam with a fiber reinforced cementitious material, thereby increasing the deformation capacity while reducing the amount of shear reinforcement, resulting in a large seismic energy absorption capacity as a whole. The aim is to provide a seismic control structure that exhibits excellent crack dispersibility, reduces the degree of damage, and enables the reuse of the structure by simple repair after an earthquake.
[0013]
[Means for Solving the Problems]
As a means for solving the above-described problems of the prior art, the vibration control structure of a concrete structure using the fiber-reinforced cement material according to the invention of claim 1 is:
In concrete structures,
The short-span beam has a short-span beam in which the center of shear deformation is concentrated as a precast beam member made of fiber-reinforced cement-based material, and the other parts are made of ordinary concrete. It is characterized by being.
[0015]
Seismic structure of Concrete Structures by fiber-reinforced cement-based material according to the invention described in claim 2, in Concrete Structure,
The area where shear deformation concentrates at the center of a short span beam with a short span is formed as a precast beam member with a fiber reinforced cementitious material, and the other part is a U-shaped cross section that also serves as a beam form frame with the same fiber reinforced cementitious material A short-span beam is constructed by a precast beam member formed in series with the central portion, and ordinary concrete is cast on a U-shaped cross-sectional portion that also serves as the beam form frame.
[0016]
Seismic structure of Concrete Structures by fiber-reinforced cement-based material according to the invention described in claim 3, in Concrete Structure,
The area where shear deformation concentrates at the center of a short span beam with a short span is formed by integrating steel sheets on the bottom surface as a precast beam block made of fiber reinforced cementitious material, and steel plates are integrated on the bottom surface using other ordinary concrete. The part formed by construction and the beam block are characterized in that a short-span beam is constructed in which the steel plate on each bottom surface is integrally joined together and the beam block is arranged in the center. .
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Below, the damping structure of the concrete structure by the fiber reinforced cementitious material which concerns on the invention described in Claims 1-3 is demonstrated based on embodiment shown in FIGS.
[0018]
First, FIG. 1 shows a fiber-reinforced cement-based material in which the central portion 1A where shear deformation and shear fracture are concentrated in the short-span beam 1... Joined to the columns 3 and 3 in the concrete ramen structure illustrated in FIG. (See FIG. 1C), and the other side parts 1B are made of ordinary concrete (FIG. 1B). A precast beam member is manufactured in the factory in advance, and it is carried to the site between the columns 3 and 3. short span beam 1 and erection by known techniques shows an embodiment which is built (the invention of claim 1 Symbol placement) to. This is because fiber-reinforced cement-based materials are difficult to perform on-site due to their properties.
The short-span beam 1 shown in FIG. 1 is a known half precast beam that exposes a part of the beam main reinforcement 5 and the hoop reinforcement 6 on its upper surface and facilitates the integrated construction with the slab concrete to be struck later. What is comprised as a member is shown.
[0019]
Next, in the embodiment of FIG. 2, as in FIG. 1, the central portion 1 </ b> A where shear deformation and shear fracture concentrate in the short span beam 1 is formed of a fiber reinforced cementitious material (see FIG. 2B). In addition, as shown in FIG. 2C, both side portions 1B other than the central portion 1A also have a U-shaped cross section that also serves as a beam form frame formed in series (integrally) from a fiber-reinforced cement material. Further, a precast beam member having a structure in which a beam reinforcing bar composed of a beam main reinforcing bar 5 and a hoop reinforcing bar 6 is preliminarily stored in the grooves of the both side portions 1B is manufactured in advance in the factory, and this is carried to the work site. FIG. 2A shows a stage in which it is erected by a known technique. After that, the short-span beam 1 is constructed by placing ordinary concrete into the groove of the U-shaped cross-sectional portion 1B that also serves as the beam form frame with the placement of the slab concrete (the invention according to claim 2 ).
[0020]
The U-shaped cross-sectional structure that also serves as the beam form of the both side portions 1B is also implemented in a configuration in which the lower half of the beam rebar is embedded in a fiber-reinforced cement material as in the embodiment shown in FIG. 2D. .
In any case, after laying the precast beam member between the columns 3 and 3, when placing the slab concrete, the ordinary concrete is cast into the groove of the U-shaped cross section which also serves as the beam formwork. The span beam 1 and the slab are completed at once (the invention according to claim 2 ).
According to this embodiment, the both side portions 1B are cut into a U-shaped cross section that also serves as a beam form and are carried into the field. Therefore, compared with the embodiment of FIG. It can reduce the time and effort of transportation and installation. As a result, there is an advantage that the cost can be reduced.
[0021]
Next, FIG. 3 shows a precast concrete in which a beam-column joint block 4 formed of ordinary concrete as a beam joint portion of the column 3 and both side portions 1B excluding the central portion of the short span beam 1 are integrally made of ordinary concrete. An embodiment in which a member is manufactured in advance in a factory, is carried into the field, and is installed on a pillar 3 is shown.
In the beam-column joining block 4, a sheath hole through which each main reinforcing bar 7 of the column 3 passes is provided in the vertical direction. Further, on both side portions 1B of the short span beam, the main reinforcing bars 5 constituting the beam reinforcing bars are also laid through the column beam joining block 4, and the hoop bars 6 are also arranged. The upper main bars 5 and the hoop bars are also arranged. 6 is configured as a half precast member in which the upper half of 6 is exposed.
[0022]
FIG. 3 also shows how the main beam 7 of the column 3 is passed through the column-beam joint block 4 having the above configuration to the upper portion (beam mounting position) of the column 3 together with both side portions 1B of the short span beam and to the sheath hole of the block 4. After installation, the beam formwork of the central part 1A of the short span beam is assembled on-site, and the assembly of the beam rebar is completed, and the central part 1A is integrated with the both side parts 1B in series using fiber reinforced cementitious material. to build the structure, it shows a status which was completed a short span beam 1.
[0023]
Next, in FIG. 4, both side portions 1B except the central portion 1A of the short span beam 1 are installed in advance to the beam mounting position of the column 3 by a field casting method using ordinary concrete or as a precast concrete member manufactured by a factory. Yes. On the other hand, the central portion 1A of the short span beam 1 is manufactured in advance as a precast concrete member made of a fiber-reinforced cement material at a factory, carried into the site, and previously installed on the column 3 of the both side portions 1B and 1B. It is inserted in between. And the embodiment which integrated the joint part 11 of the steel plates 9 and 10 which were integratedly constructed in the bottom face of the center part 1A and the both side parts 1B in advance so as to be able to transmit a bending moment by means such as welding is shown. ing.
[0024]
In the embodiment of FIG. 4, a cover plate 13 is placed on the upper surface of the central portion 1 </ b> A for the purpose of cutting the central portion 1 </ b> A with the slab concrete 12.
The main point of this embodiment is that the central portion 1A where the shear deformation during the earthquake is concentrated and destroyed is repaired after the joint 11 of the steel plates 9 and 10 is separated and replaced with a newly manufactured central portion 1A. Is to make it possible.
[0025]
[Effects of the present invention]
The damping structure of the concrete structure by the fiber reinforced cement material according to the invention described in claims 1 to 3 is made of the fiber reinforced cement material at the central part or the whole where the shearing force and shear deformation are concentrated in the short span beam. Since they are formed, bending cracks and shear cracks within the above range are dispersed, the apparent adhesion strength is increased, and the plastic rotational deformation performance is increased, so that a greater seismic energy absorption capability can be expected. Therefore, by properly grasping and designing this seismic energy absorption performance, it is possible to provide a seismic control structure that controls the seismic response of the entire concrete structure.
In addition, it is not necessary to use a seismic control device such as another expensive damper, and the seismic performance can be imparted to the concrete structure. Therefore, it can be implemented at low cost and without any influence on the floor plan of the building.
Therefore, since it is not necessary to arrange bars that are more dense than necessary for short span beams, the workability is greatly improved.
In addition, the fiber reinforced cementitious material has the effect of dispersing cracks, and damage is less likely to occur in a single location, which reduces visual damage and is advantageous for reuse after an earthquake.
Furthermore, as a result of the advancement of precasting of the structure, it contributes to labor saving and quality improvement of field work.
[Brief description of the drawings]
FIG. 1A is a front view showing a structure of a short span beam, and B and C are sectional views taken along lines bb and cc in FIG.
FIG. 2A is a front view showing different structures of a short span beam, and B, C, and D are bb and cc cross-sectional views of FIG.
FIG. 3 is an elevational view showing a different structure of a short span beam.
FIG. 4 is an elevational view showing a further different structure of the short span beam.
FIG. 5 is a plan view of FIG. 4;
FIG. 6 is an elevation view showing a short span beam of a concrete-based rigid frame structure.
FIG. 7 is a front view showing a short span beam of a concrete structure by a seismic wall.
FIG. 8 is a side view showing a short-span beam of a concrete seismic wall structure.
FIG. 9 is a plan view showing a short span beam of a concrete tube frame structure.
FIG. 10 is a plan view showing a short span beam of a concrete plate-like apartment house.
[Explanation of symbols]
1 Short span beam 3 Column 1A Center part of short span beam (fiber reinforced cement material)
1B Both sides of short span beam (ordinary concrete)

Claims (3)

コンクリート系構造物において、
スパンが短い短スパン梁の中央部の剪断変形が集中する範囲が繊維補強セメント系材料によりプレキャスト梁部材として形成され、その他の部分は普通コンクリートで形成されたプレキャスト梁部材により、短スパン梁が構築されていることを特徴とする、繊維補強セメント系材料によるコンクリート系構造物の制震構造。
In concrete structures,
The short-span beam has a short-span beam in which the center of shear deformation is concentrated as a precast beam member made of fiber-reinforced cement-based material, and the other parts are made of ordinary concrete. It is characterized in that is, vibration control structure of concrete structures by fiber維補strong cementitious material.
コンクリート系構造物において、
スパンが短い短スパン梁の中央部の剪断変形が集中する範囲が繊維補強セメント系材料によりプレキャスト梁部材として形成され、その他の部分は同じ繊維補強セメント系材料により梁型枠を兼ねるU字形断面として前記中央部と一連に形成されたプレキャスト梁部材により、短スパン梁が架構され、前記梁型枠を兼ねるU字形断面部分に普通コンクリートが打設されて成ることを特徴とする、繊維補強セメント系材料によるコンクリート系構造物の制震構造。
In concrete structures,
The area where shear deformation concentrates at the center of a short span beam with a short span is formed as a precast beam member with a fiber reinforced cementitious material, and the other part is a U-shaped cross section that also serves as a beam form frame with the same fiber reinforced cementitious material the precast beam members formed in series with the central portion, the short span beams are frames, usually concrete U-shaped cross section that serves as the beam-type frame, characterized in that formed by pouring, fiber維補strong cement Damping structure for concrete structures using steel materials.
コンクリート系構造物において、
スパンが短い短スパン梁の中央部の剪断変形が集中する範囲が繊維補強セメント系材料によるプレキャスト梁ブロックとして底面に鋼板を一体化施工して形成され、他の普通コンクリートにより底面に鋼板を一体化施工して形成された部分と前記梁ブロックとは、各々の底面の鋼板を一連に一体的に接合して前記梁ブロックを中央部に配置した短スパン梁が構築されていることを特徴とする、繊維補強セメント系材料によるコンクリート系構造物の制震構造。
In concrete structures,
The area where shear deformation concentrates at the center of a short span beam with a short span is formed by integrating steel sheets on the bottom surface as a precast beam block made of fiber reinforced cementitious material, and steel plates are integrated on the bottom surface using other ordinary concrete. The part formed by construction and the beam block are characterized in that a short-span beam is constructed in which the steel plate on each bottom surface is integrally joined together and the beam block is arranged in the center. , the seismic structure of concrete-based structures by fiber維補strong cement-based material.
JP2002202660A 2002-07-11 2002-07-11 Seismic control structure of concrete structure with fiber reinforced cementitious material Expired - Fee Related JP3942973B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002202660A JP3942973B2 (en) 2002-07-11 2002-07-11 Seismic control structure of concrete structure with fiber reinforced cementitious material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002202660A JP3942973B2 (en) 2002-07-11 2002-07-11 Seismic control structure of concrete structure with fiber reinforced cementitious material

Publications (2)

Publication Number Publication Date
JP2004044207A JP2004044207A (en) 2004-02-12
JP3942973B2 true JP3942973B2 (en) 2007-07-11

Family

ID=31708783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002202660A Expired - Fee Related JP3942973B2 (en) 2002-07-11 2002-07-11 Seismic control structure of concrete structure with fiber reinforced cementitious material

Country Status (1)

Country Link
JP (1) JP3942973B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013011105A (en) * 2011-06-29 2013-01-17 Okumura Corp Junction structure of beam member and vertical member

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4565318B2 (en) * 2004-04-12 2010-10-20 清水建設株式会社 Damping structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013011105A (en) * 2011-06-29 2013-01-17 Okumura Corp Junction structure of beam member and vertical member

Also Published As

Publication number Publication date
JP2004044207A (en) 2004-02-12

Similar Documents

Publication Publication Date Title
US11680401B2 (en) Precast wall panels and method of erecting a high-rise building using the panels
AU2009338184B2 (en) Precast wall panels and method of erecting a high-rise building using these panels
JP2018520285A (en) Prefabricated column and beam type construction
JP2001027005A (en) Connection structure of steel member and concrete in a composite structure
KR100939970B1 (en) A method of constructing a complex girder and its structure
JP3999591B2 (en) Seismic control structure of concrete structure with fiber reinforced cementitious material
JP3809536B2 (en) Seismic wall structures in existing reinforced concrete buildings and steel reinforced concrete buildings
JP2003213623A (en) Upper structure of ridge
KR20130117204A (en) Earthquake-resistant frame and seismic retrofit method for building using the same
JP3942973B2 (en) Seismic control structure of concrete structure with fiber reinforced cementitious material
KR102321433B1 (en) Seismic Reinforcement Structure Of Being Mounted On Exterior
RU73891U1 (en) PLATE REINFORCED CONCRETE DESIGN
WO2002018725A1 (en) Crux-bar concrete structure
KR20020063779A (en) Prefabricated Enclosed Steel Concrete Structures
JPH1096294A (en) Steel frame and reinforced concrete beam
JP3909488B2 (en) Seismic reinforcement structure of existing building and its construction method
JPH07207755A (en) Connection part structure of reinforced concrete column and steel structure beam
JP2007224586A (en) Composite structural building and method of constructing composite structural building
JP2001020376A (en) Sc beam construction method for building
JPH11152908A (en) Earthquake resistant reinforcing structure for existing building, and its method
JPH02252831A (en) Pre-fabricated cruciform beam construction method
JP7443643B2 (en) wall structure
JP4658826B2 (en) SC wall block, SC wall block manufacturing method, and SC structure construction method
KR101188367B1 (en) Punching shear reinforcement for reinforcing flat-plate slab
JP4152328B2 (en) Wall type reinforced concrete structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061010

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070306

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070404

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100413

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120413

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120413

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140413

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees