JP3942245B2 - Method for producing silicon nitride powder granules - Google Patents

Method for producing silicon nitride powder granules Download PDF

Info

Publication number
JP3942245B2
JP3942245B2 JP24836397A JP24836397A JP3942245B2 JP 3942245 B2 JP3942245 B2 JP 3942245B2 JP 24836397 A JP24836397 A JP 24836397A JP 24836397 A JP24836397 A JP 24836397A JP 3942245 B2 JP3942245 B2 JP 3942245B2
Authority
JP
Japan
Prior art keywords
silicon nitride
surface area
specific surface
total pore
nitride powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24836397A
Other languages
Japanese (ja)
Other versions
JPH1183723A (en
Inventor
昭夫 吉田
勝博 小宮
徹也 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP24836397A priority Critical patent/JP3942245B2/en
Publication of JPH1183723A publication Critical patent/JPH1183723A/en
Application granted granted Critical
Publication of JP3942245B2 publication Critical patent/JP3942245B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、プレス成形、CIP成形等をするための窒化珪素粉末顆粒の製造方法に関する。
【0002】
【従来の技術】
エンジニアリングセラミックス焼結体は各種機械部品、自動車部品等に期待されているが、金属材料に比べて強度のバラツキが大きく、信頼性が乏しいという問題を抱えている。中でも窒化珪素の焼結体は耐熱性、曲げ強さ、靱性に優れ大々的な実用化が期待されている。
【0003】
エンジニアリングセラミックス焼結体の信頼性が低い原因は焼結体中に存在する種々の欠陥であり、窒化珪素を例にとれば、高純度で微細な窒化珪素粉末が開発される以前は不純物や粗大窒化珪素粒子が主に破壊源となっていた。高純度で微細な窒化珪素粉末を用いた場合は、凝集粒子や気孔が主に破壊源となってきており、凝集粒子や気孔が大きくなると焼結体は低強度になるばかりでなく、強度のバラツキが大きくなる。このような凝集粒子や気孔の形成は、成形用に調整された顆粒の特性に強く影響を受けることから、顆粒の破壊強度制御や凝集状態制御による欠陥低減の検討が行われている。
【0004】
例えば顆粒の破壊強度を小さくする方法(J.Ceram.Soc.,Japan 103[10]1037-1040(1995))、顆粒破壊強度のバラツキを低減する方法(特開平9−25171)、或いはスラリ−条件を制御して顆粒の凝集を抑制する方法(J.Am.Ceram.Soc.,79[4]843-848(1996))等が提案されている。
【0005】
得られた顆粒の評価は、嵩比重や安息角を測定する、或いは前記のようにグリーン成形体の破壊強度を測定するといった方法が一般的であり、必ずしも成形体の粗大気孔の生成可能性を評価する方法ではなかった。成形圧が高圧の場合の評価は成形体破面のSEM観察が主体であり、顆粒の破壊状態を評価することができるが、数値化するまでには至っていない。
【0006】
【発明が解決しようとする課題】
以上のように、信頼性の高いエンジニアリングセラミックス焼結体を得るためには、破壊源となる粗大欠陥を防止しなければならない。しかし、上記提案方法では、顆粒に由来するある程度の欠陥を評価し、それに基づいて欠陥の生成を抑制することができるが、高強度でバラツキの少ない曲げ強さを得ることは困難であり、更なる改良を必要とした。すなわち、実際成形時に問題となるような中圧〜高圧の総合的な成形体情報はなかった。
0007
本発明は、上記に鑑みてなされたものであり、窒化珪素粉末顆粒の特性と焼結後の曲げ強さの関係を調べた結果、成形時の中期〜後期において、水銀ポロシメータで測定される成形体の全細孔比表面積の変化が小さくなるように造粒された顆粒であると、それを用いて製造された窒化珪素焼結体には、粗大気孔が少なく、曲げ強さが大きく、また曲げ強さのバラツキも少なくなることを見いだし、本発明に到ったものである。
【0008】
【問題点を解決するための手段】
本発明は、窒化珪素粉末と、有機バインダーと、水とを含むスラリーを、二流体ノズル式のスプレードライヤーを用いて噴霧造粒乾燥を行う際に、スラリーの固形分濃度を50重量%以上、スプレードライヤーの出口温度を50℃以上することを特徴とする、以下で定義される全細孔比表面積値の変化率ΔSが2.5%以下である窒化珪素粉末顆粒の製造方法である。本発明にあっては、スラリーが、更にマグネシア系酸化物を含有していることが好ましい。
〔全細孔比表面積値の変化率ΔSの定義〕
90μmフルイを通した窒化珪素粉末顆粒を用いて圧力30MPaでCIP成形体を成形する。これを粉砕して得られた1〜5μmの粉末を用い水銀ポロシメータで全細孔比表面積値(Sa)を測定する。圧力を270MPaにしたこと以外は同様にしてCIP成形体の全細孔比表面積値(Sb)を測定する。これらの値から、式、ΔS(%)=(Sb−Sa)×100/Sb、により、全細孔比表面積値の変化率ΔSを算出する。
0009
【発明の実施の形態】
本発明で製造される窒化珪素粉末顆粒は、特定の圧力でCIP成形体を成形して全細孔比表面積値を測定したときに特定値を有するものである。すなわち、CIP圧力が30MPaの成形体と、CIP圧力が270MPaの成形体を成形し、それぞれの全細孔比表面積値(Sa)、(Sb)を測定したときに、ΔS(%)=(Sb−Sa)×100/Sb、で表される全細孔比表面積値の変化率ΔSが2.5%以下、好ましくは2.0%以下、更に好ましくは1.5%以下となるものである。ΔSが2.5%より大きいと、まだ顆粒の崩壊が十分でなく、数多くの閉気孔や大きな細孔径が成形体中に残っているため、これが焼結後も残存し、大きな細孔径が破壊発生源となり、曲げ強さが低下する。なお、本発明においては測定誤差の関係からΔSが負の値を取ることもあり得る。
【0010】
全細孔比表面積値は水銀ポロシメータによって測定される。水銀ポロシメータは、表面張力の大きい水銀を成形体内に圧入し、その圧力と圧入される細孔径の関係から細孔径分布を求める装置で、一般に市販されている。この細孔径分布より、細孔径が円筒と仮定して算出した全表面積が全細孔比表面積であり、顆粒内及び顆粒間の閉気孔の存在、全細孔容積、細孔径の大きさによって、この全細孔比表面積は決定される。
【0011】
本発明において、窒化珪素粉末顆粒の評価を、成形圧を30MPaと270MPaでCIP成形された成形体について全細孔比表面積値を測定し、それらの値を比較することにした理由は以下のとおりである。すなわち、まず、成形圧を30MPaとしたのは、成形体の全細孔比表面積は10〜500MPaの間でもっとも変化しやすく、顆粒の全細孔比表面積の変化を調べるうえで、10〜60MPaは前述の成形中期に相当するが、この圧力範囲内にあっても測定誤差によらない原因によって全細孔比表面積値が変化し(参考例1参照)、特定が不十分となるので、それをなくすため10〜60MPaの中央付近の30MPaとした。一方、成形圧を270MPaにしたのは、100〜500MPaは一般的な高い成形圧の成形終期に相当しており、この範囲内にあって全細孔比表面積値が変化 することはないが(参考例1参照)、それでも特定が不十分となる恐れのあることに配慮し、100〜500MPaの中央付近の270MPaとした。
0012
なお、成形圧が10〜500MPaの間で、成形体の全細孔比表面積がもっとも変化しやすくなる理由を考察すれば以下のとおりである。種々の顆粒について評価した結果、10MPaより低い成形圧の範囲では、成形圧を高くすると、顆粒同士の接触が進み、全細孔容積は小さくなるものの、閉気孔の減少や細孔径の微小化によって全細孔比表面積は大きく増加するが、この領域での成形体の細孔比表面積値は単に顆粒の再配列が生じているのみであり、顆粒内部の細孔自体に変化が少なく、顆粒の評価に用いるには不適切である。すなわち圧力が低すぎるのである。また、60MPaより高い成形圧では、高い圧力への遷移域であり、粗大欠陥が残存する顆粒であっても顆粒内及び顆粒間の崩壊がかなり進行するため、全細孔比表面積値(Sb)との差が小さくなりすぎて判定困難となる。
【0013】
一方、100MPa以上の高い成形圧においては、閉気孔は既にほとんど消失し、細孔径もある程度微小化している、また全細孔容積も小さくなるため、成形圧を高くしてもほとんど全細孔比表面積は増加しない。つまり全細孔比表面積の増加は顆粒の崩壊による閉気孔の消失や細孔径の微細化によって起こるため、より成形中期の段階で成形終期の高圧成形体に近い全細孔比表面積が得られるような顆粒が、その後の成形、焼結において真に欠陥の小さい焼結体を得ることができる。従って、顆粒の評価のための高い成形圧力としては、100MPa以上が必要である。さらに高圧力となって、500MPa以上の超高圧では、成形体の気孔減少より、無機粉末粒子の粒内破壊が選択的に発生するため、顆粒の評価としては不適切である。
0014
窒化珪素粉末顆粒を評価するための成形体をCIP成形体にした理由は、均一な加圧力が得られるのでより正確なデータを得られるからであり、また成形体を乳鉢内で破壊し、篩で1〜5mmの粒状としてから評価したのは、安定したデータが得られるからである。
0015
本発明の製造方法は、窒化珪素粉末と、有機バインダーと、水とを含み、必要に応じてマグネシア系酸化物を含むスラリーを調製した後、スプレードライヤーで噴霧造粒乾燥を行うものである。スラリーの調製にはボ−ルミル等が用いられる。
0016
窒化珪素粉末としては特に制限はないが、粒度分布はできるだけ狭い方が良く、体積分率10%径が0.2μm以上、体積分率90%径が3μm以下が好ましい。その理由として粒度分布が広いと得られる顆粒が不均質になりやすく、ΔSが大きくなる傾向にあるためである。本発明において窒化珪素粉末とは、単に窒化珪素粉末のみを指すのではなく、アルミナ、希土類酸化物等の焼結助剤或いは硬度、熱伝導、電気特性を改善するためのSiC,BN,TiN等の複合用添加剤を含有するものを含む。焼結助剤としては、MgO系酸化物助剤が含まれている方が、低温焼成可能で、焼結体組織が微細になるため、本発明の欠陥サイズ低減効果が顕著になり、より高い強度が得られる。
【0017】
有機バインダーとしては特に制限はなく、例えばワックス+ステアリン酸系(例えば中京油脂製:セルナWF−610)、ポバール系(例えば中京油脂製:セルナWF−804)などを用いることができる。有機バインダーを含まないスラリーであると、ΔSが2.5%をこえる(参照実験参照)。
0018
本発明においては、顆粒の形状が球状であり、均一な粒径が得やすく、また連続的に生産できる点からスプレードライヤー用いて、特に比較的顆粒サイズの小さい柔らかい顆粒を得るために二流体ノズル式のスプレードライヤー(例えばヤマト科学社製:パルピスミニスプレ−GA−31型)を用いてスラリーを噴霧造粒乾燥する。このスプレードライヤーに適合するスラリーは、スラリーの固形分濃度が50重量%以上が好ましく、有機バインダー量も実施例1に示される程度に比較的多い、或いは適度に硬くなりやすいものが好ましい。この条件からはずれて柔らかい顆粒になると、低い成形圧より閉気孔は少ないものの、柔らかいために顆粒の崩壊が早すぎて、成形体内部への圧力伝達が不十分になる。そのため、顆粒間気孔が高圧まで残り、ΔSが2.5%をえてしまう。例えば、従来技術の顆粒破壊強度の低い顆粒はこの範疇に入る。なお、有機バインダーの混合時間は長い方がよく、少なくとも10時間以上は必要で、それより短いと結局、高強度な焼結体は得られない。
0019
スプレードライヤーの条件についても、柔らかくなりにくい条件が必要であり、入り口温度は150℃以上が好ましく、出口温度は少なくとも50℃以上が必要である。また、アスピレータ吸引力も重要な操作因子であり、アスピレータの吸引力が85%前後以下である微粉が残り、ΔSが2.5%をこえてしまう。
0020
本発明のように、窒化珪素粉末と有機バインダーと水とを含み固形分濃度が50重量%以上のスラリーを、二流体ノズル式のスプレードライヤーを用い、出口温度を50℃以上の範囲内で選択し、ΔSが2.5%以下となる窒化珪素粉末顆粒を製造することは従来技術にはない。なお、本発明で製造された窒化珪素粉末顆粒を用いて焼結体を製造するには、金型、CIP等の成形を経て常圧焼結、ガス圧焼結等の常法で焼結すればよい。
0021
【実施例】
実施例1
窒化珪素粉末(比表面積11m/g、酸素量1.2wt%、平均粒子径0.6μm、体積分率10%径0.25μm、体積分率90%径1.2μm)91重量部に焼結助剤としてイットリア粉末5重量部とアルミナ粉末4重量部を添加し、蒸留水を用いて表1に示す固形分濃度のスラリーを調製した。さらにポリカルボン酸系の解膠剤(中京油脂製:セルナD−735)を原料粉末に対して2wt%添加し、ボールミルで6時間混合した後、ワックス+ステアリン酸系のバインダーA(中京油脂製:セルナWF−610)とポバール系のバインダーB(中京油脂製:セルナWF−804)を各々、原料粉末に対して、表1に示す条件の量を添加して、ボールミルで14時間の再混合をした。得られたスラリーを、二流体ノズル式スプレ−ドライヤ−(ヤマト科学社製パルピスミニスプレ−GA−31型)を用いて、表1に示す条件で噴霧造粒乾燥して窒化珪素粉末の顆粒を得た。
0022
得られた顆粒を90μmのフルイに通し、その一部を30MPa、270MPaでCIP成形を行った。得られた各成形体をそれぞれ乳鉢で粗砕し、1〜5mmのサイズとした。島津製作所製水銀ポロシメ−タ(商品名ポアサイザ9310)で粗砕品の全細孔比表面積値(Sa)、(Sb)を測定し、式1を用いてΔSを求めた。得られたΔSを表2に示す。
0023
前述の90μmのフルイで通した顆粒について、サイズ54×9mmの金型で10MPaのプレス成形を行い、その後270MPaのCIP成形を行った。成形体を窒素雰囲気中、最高温度1750℃、保持8時間で常圧焼結を行ない、得られた焼結体をJIS−R1601に準拠して4点曲げ強さ試験をn=10で行った。得られた曲げ強さとワイブル係数を表2に示す。
0024
表1、表2の結果より、窒化珪素粉末と有機バインダーと水とを含み固形分濃度が50重量%以上のスラリーを、二流体ノズル式のスプレードライヤーを用い、出口温度を50℃以上の範囲内で選択して噴霧造粒乾燥することによって、ΔSが2.5%以下の窒化珪素粉末顆粒を製造することができ、それを用いた焼結体は、4点曲げ強さが1200MPa以上、ワイブル係数が20以上となった。
【0025】
【表1】

Figure 0003942245
【0026】
【表2】
Figure 0003942245
0027
実施例2
焼結助剤としてイットリア粉末、アルミナ粉末及びマグネシア粉末を各々5重量部、2重量部及び3重量部を添加したこと以外は、実施例1と同様の方法でスラリーの調製及び噴霧造粒乾燥を行った。表にスラリー条件及びスプレードライヤー条件を示す。なお、実験と参照実験については焼結助剤をイットリア粉末5重量部、MgAl粉末4重量部に変更して行った。
0028
得られた顆粒について、焼成温度を1680℃にしたこと以外は、実施例1と同様にしてΔS、焼結体特性を評価し、表の結果を得た。表の結果より、マグネシア系酸化物を含有する焼結助剤を用いると、さらに高強度で高信頼性の焼結体が得られた。
0029
【表3】
Figure 0003942245
0030
【表4】
Figure 0003942245
0031
参考例1
90μmのフルイに通した実験1及び参照実験1で得た窒化珪素顆粒について、各々CIP圧10MPa、30MPa、50MPa、150MPa、270MPa及び300MPaでCIP成形し、実施例1と同様に全細孔比表面積値を測定した。それらの結果を表5に示す。表5より、全細孔比表面積値は、成形圧が10〜50MPaの範囲では成形圧の増加と共にかなり増加したが、成形圧が150〜300MPaの範囲では成形圧を上げてもほとんど増加していない。これらの結果から、本発明のように、異なる圧力で成形されたCIP成形体の全細孔比表面積値に基づいて窒化珪素粉末顆粒を特定するに際しては、全細孔比表面積がもっとも変化しやすい10〜500MPaの成形圧にあって、成形中期の成形圧として30MPaを、また成形終期の成形圧として270MPaを代表させることは妥当であることが示された。
0032
【表5】
Figure 0003942245
0033
【発明の効果】
本発明によれば、高強度でワイブル係数の高い、高信頼性の焼結体を得ることのできる窒化珪素粉末顆粒を容易に製造することができる。 [0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing silicon nitride powder granules for press molding, CIP molding and the like .
[0002]
[Prior art]
Engineering ceramics sintered body various mechanical parts, but are expected to automobile parts, etc., large variations in the strength as compared with the metal material, have a problem of poor reliability. Among them, sintered silicon nitride is excellent in heat resistance, bending strength, and toughness, and is expected to be put to practical use .
[0003]
The cause of the low reliability of the sintered ceramics is the various defects present in the sintered body. Taking silicon nitride as an example , before the development of high-purity and fine silicon nitride powder, impurities and coarse particles were developed. Silicon nitride particles were mainly the source of destruction. When high-purity and fine silicon nitride powder is used, aggregated particles and pores are mainly the source of destruction, and when the aggregated particles and pores become large, the sintered body not only has low strength but also has high strength. Variations increase. Since the formation of such agglomerated particles and pores is strongly influenced by the characteristics of the granules adjusted for molding, studies have been made on reducing defects by controlling the fracture strength of the granules and controlling the aggregation state.
[0004]
For example, a method for reducing the fracture strength of granules (J. Ceram. Soc., Japan 103 [10] 1037-1040 (1995)), a method for reducing variations in granule fracture strength (Japanese Patent Laid-Open No. 9-25171), or a slurry A method (J. Am. Ceram. Soc., 79 [4] 843-848 (1996)) that suppresses aggregation of granules by controlling conditions has been proposed.
[0005]
The evaluation of the obtained granule is generally performed by measuring the bulk specific gravity and angle of repose, or measuring the breaking strength of the green molded body as described above. It was not a method to evaluate . Evaluation if the molding pressure is high pressure Ri SEM observation main der of the molded body fracture, but can be evaluated destruction state of the granule, have yet before digitizing.
[0006]
[Problems to be solved by the invention]
As described above, in order to obtain a reliable engineering ceramic sintered body, it must prevent coarse defects become fracture source. However, with the proposed method, it is possible to evaluate a certain amount of defects derived from the granules and suppress the generation of defects based on the evaluation, but it is difficult to obtain a bending strength with high strength and little variation. Needed an improvement. That is, there was no medium pressure ~ overall molded body information of a high pressure, such as a problem in actual molding.
[ 0007 ]
The present invention has been made in view of the above, the result of examining the bending strength of the relationship of the characteristics after the sintering of the silicon nitride powder granules, Oite the Middle to late during molding, as measured with a mercury porosimeter When the granulated product is granulated so that the change in the total pore specific surface area of the molded product is small, the silicon nitride sintered body produced using the granulated product has few rough air holes and high bending strength. Further, it was found that the variation in bending strength is reduced , and the present invention has been achieved .
[0008]
[Means for solving problems]
The present invention includes a silicon nitride powder, an organic binder, a slurry comprising water, a two-fluid nozzle type using a spray dryer when performing spray granulation drying, the solid content of the slurries 50 wt% or more the outlet temperature of the spray dryer you, characterized in that the 50 ° C. or more, in the manufacturing method of the change rate ΔS 2.5% or less is silicon nitride powder granules of the total pore specific surface area defined below is there. In the present invention, it is preferable that the slurry further contains a magnesia-based oxide.
[Definition of change rate ΔS of total pore specific surface area value]
A CIP compact is molded at a pressure of 30 MPa using silicon nitride powder granules passed through a 90 μm sieve. The total pore specific surface area value (Sa) is measured with a mercury porosimeter using 1-5 μm powder obtained by pulverizing this. The total pore specific surface area value (Sb) of the CIP compact is measured in the same manner except that the pressure is 270 MPa. From these values, the rate of change ΔS of the total pore specific surface area value is calculated by the formula: ΔS (%) = (Sb−Sa) × 100 / Sb.
[ 0009 ]
DETAILED DESCRIPTION OF THE INVENTION
The silicon nitride powder granules produced by the present invention have a specific value when a CIP compact is molded at a specific pressure and the total pore specific surface area value is measured. That is, when a molded body having a CIP pressure of 30 MPa and a molded body having a CIP pressure of 270 MPa were molded and the total pore specific surface area values (Sa) and (Sb) were measured, ΔS (%) = (Sb -Sa) × 100 / Sb, in 2.5% change rate ΔS of the total pore specific surface area represented less, preferably 2.0% or less, more preferably be 1.5% or less . ΔS is larger than 2.5%, still disintegration of the granules is not sufficient, because there are still a number of closed pores and large pore size in the molded product, Re this also remains after sintering, a large pore size Becomes a source of fracture, and the bending strength decreases . Na us, [Delta] S from the relationship of the measurement error in the present invention may also be a negative value.
[0010]
The total pore specific surface area value is measured by a mercury porosimeter. Mercury porosimeters are devices that are generally commercially available and that press-fit mercury with a large surface tension into a molded body and determine the pore size distribution from the relationship between the pressure and the pore size. From this pore size distribution, the total surface area calculated assuming that the pore size is a cylinder is the total pore specific surface area, depending on the presence of closed pores within and between the granules, the total pore volume, the size of the pore diameter, This total pore specific surface area is determined.
[0011]
In the present invention, the evaluation of the silicon nitride powder granules was performed by measuring the total pore specific surface area values for the compacts formed by CIP molding at molding pressures of 30 MPa and 270 MPa, and comparing the values as follows. It is. That is, first, to the molding pressure was 30MPa, the total pore specific surface area of the shaped body is most easily varied between 10 to 500, in terms of examining the change of the total pore specific surface area of the granules, 10~60MPa Corresponds to the above-mentioned mid-stage molding , but the specific surface area of the total pore changes due to the cause not depending on the measurement error even within this pressure range (see Reference Example 1), and the identification becomes insufficient. Therefore, the pressure was set to 30 MPa near the center of 10 to 60 MPa. On the other hand, the molding pressure was set to 270 MPa. 100 to 500 MPa corresponds to the final stage of molding with a general high molding pressure, and the total pore specific surface area value does not change within this range ( In consideration of the possibility that the identification would still be insufficient, the pressure was set to 270 MPa near the center of 100 to 500 MPa.
[ 0012 ]
The reason why the total pore specific surface area of the molded body is most likely to change when the molding pressure is 10 to 500 MPa is as follows. As a result of evaluating various granules, in the range of molding pressure lower than 10 MPa, when the molding pressure is increased, the contact between the granules proceeds and the total pore volume is reduced, but the closed pores are reduced or the pore diameter is reduced. Although the total pore specific surface area greatly increases, the pore specific surface area value of the molded body in this region is merely the rearrangement of the granules, and there is little change in the pores themselves within the granules, Inappropriate for evaluation. That is, the pressure is too low. Further, when the molding pressure is higher than 60 MPa, it is a transition region to a high pressure, and even in a granule in which coarse defects remain, the disintegration within and between the granules proceeds considerably, so that the total pore specific surface area value (Sb) The difference between and becomes too small, making determination difficult.
[0013]
On the other hand, at a high molding pressure of 100 MPa or more, the closed pores have already almost disappeared, the pore diameter has been reduced to some extent, and the total pore volume is also reduced. The surface area does not increase. In other words, the increase in the total pore specific surface area occurs due to the disappearance of closed pores due to the collapse of the granule or the refinement of the pore diameter, so that the total pore specific surface area closer to the high-pressure molded body at the end of molding can be obtained in the middle stage of molding. With such a granule, a sintered body having truly small defects can be obtained in subsequent molding and sintering. Therefore, the high molding pressure for the evaluation of the granules, Ru required der at least 100 MPa. Becomes high pressure Furthermore, in the above ultra-high pressure 500 MPa, from the pores decrease of the molded article, since the transgranular fracture of the inorganic powder particles, selectively generate, are unsuitable as the evaluation of the granules.
[ 0014 ]
The reason why the molded body for evaluating the silicon nitride powder granules was made into a CIP molded body was that uniform pressure could be obtained, so that more accurate data could be obtained, and the molded body was broken in a mortar and sieved. The reason why the grain size of 1 to 5 mm was evaluated was that stable data was obtained .
[ 0015 ]
In the production method of the present invention, after preparing a slurry containing silicon nitride powder , an organic binder , and water and optionally containing a magnesia-based oxide, spray granulation drying is performed with a spray dryer. A ball mill or the like is used for the preparation of the slurry .
[ 0016 ]
The silicon nitride powder is not particularly limited, but the particle size distribution is preferably as narrow as possible, and the 10% volume fraction diameter is preferably 0.2 μm or more and the 90% volume fraction diameter is preferably 3 μm or less. The reason is that if the particle size distribution is wide, the resulting granules tend to be heterogeneous and ΔS tends to increase. The silicon nitride powder in the present invention, rather than simply refers only silicon nitride powder, alumina, sintering aids, or hardness, such as rare earth oxides, thermally conductive, SiC for improving the electrical properties, BN, TiN, etc. Including those containing composite additives. As the sintering aid, the one containing the MgO-based oxide aid can be fired at a low temperature and the sintered body structure becomes finer, so that the defect size reduction effect of the present invention becomes remarkable and higher. Strength is obtained.
[0017]
There is no restriction | limiting in particular as an organic binder, For example, a wax + stearic acid type | system | group (For example, the product made by Chukyo Yushi: Celna WF-610), a poval type (for example, made by Chukyo Yushi: Celna WF-804) etc. can be used. If the slurry does not contain an organic binder, ΔS exceeds 2.5% (see Reference Experiment 3 ).
[ 0018 ]
In the present invention, a two-fluid nozzle is used in order to obtain a soft granule having a relatively small granule size by using a spray dryer because the shape of the granule is spherical, it is easy to obtain a uniform particle size, and continuous production is possible. expression of the spray dryer by chromatography (eg if Yamato scientific Co., Ltd. Pal piston mini spray -GA-31 type) to spray granulation drying the slurry using. The slurry compatible with the spray dryer chromatography is at least 50% by weight solids concentration of the slurry is preferred, the amount of the organic binder is relatively large to the extent shown in the Examples 1, or those reasonably hard prone are preferred. If the granules deviate from this condition, the closed pores are less than the low molding pressure, but because of the softness, the granules collapse too quickly and the pressure transmission into the molded body becomes insufficient. Therefore, the remaining granules between pores to a high pressure, [Delta] S is thus E This 2.5%. For example, prior art granules with low granule breaking strength fall into this category. It should be noted that the mixing time of the organic binder is preferably long, and at least 10 hours or more is necessary. If it is shorter than that, a high-strength sintered body cannot be obtained after all.
[ 0019 ]
For even conditions of the spray dryer, it is necessary to soften it difficult conditions, the inlet temperature is preferably at least 0.99 ° C., the outlet temperature is required at least 50 ° C. or higher. It is also important operational factor Ass Pireta attraction, fines Ri remaining when the suction force of the aspirator is less than before and after 85%, delta S exceeds 2.5%.
[ 0020 ]
As in the present invention, a slurry containing a silicon nitride powder, an organic binder, and water and having a solid content concentration of 50% by weight or more is selected using a two-fluid nozzle spray dryer within an outlet temperature range of 50 ° C. or more. and, to produce the silicon nitride powder granules delta S is 2.5% or less are not in the prior art. Incidentally, in order to produce a sintered body with silicon nitride powder granules produced in the present invention, mold, pressureless sintering through forming such CIP, by sintering in a conventional manner, such as gas pressure sintering That's fine.
[ 0021 ]
【Example】
Example 1
Burned into 91 parts by weight of silicon nitride powder (specific surface area 11 m 2 / g, oxygen content 1.2 wt%, average particle diameter 0.6 μm, volume fraction 10% diameter 0.25 μm, volume fraction 90% diameter 1.2 μm) As a binder, 5 parts by weight of yttria powder and 4 parts by weight of alumina powder were added, and a slurry having a solid content concentration shown in Table 1 was prepared using distilled water. Furthermore, after adding 2 wt% of a polycarboxylic acid-based peptizer (manufactured by Chukyo Yushi: Celna D-735) to the raw material powder and mixing for 6 hours with a ball mill, wax + stearic acid-based binder A (manufactured by Chukyo Yushi) : Selna WF-610) and Povar binder B (manufactured by Chukyo Yushi Co., Ltd .: Selna WF-804) are added to the raw material powder in the amount shown in Table 1 and remixed for 14 hours in a ball mill Did. The obtained slurry is spray -granulated and dried under the conditions shown in Table 1 using a two-fluid nozzle spray dryer (Palpis Mini Spray-GA-31 manufactured by Yamato Kagaku Co., Ltd.), and granules of silicon nitride powder are obtained. Got.
[ 0022 ]
The obtained granule was passed through a 90 μm sieve, and a part thereof was subjected to CIP molding at 30 MPa and 270 MPa. Each obtained compact was roughly crushed in a mortar to give a size of 1 to 5 mm . The total pore specific surface area values (Sa) and (Sb) of the coarsely crushed product were measured with a mercury porosimeter (trade name Pore Sizer 9310) manufactured by Shimadzu Corporation, and ΔS was obtained using Equation 1. The obtained ΔS is shown in Table 2.
[ 0023 ]
The granules passed through the 90 μm sieve were subjected to 10 MPa press molding with a 54 × 9 mm size mold, and then 270 MPa CIP molding. The compact was subjected to atmospheric pressure sintering in a nitrogen atmosphere at a maximum temperature of 1750 ° C. and a holding time of 8 hours, and the obtained sintered body was subjected to a four-point bending strength test according to JIS-R1601 at n = 10. . Table 2 shows the obtained bending strength and Weibull coefficient.
[ 0024 ]
From the results shown in Tables 1 and 2, a slurry containing silicon nitride powder, an organic binder and water and having a solid content concentration of 50% by weight or more is used in a range where the outlet temperature is 50 ° C. or more using a two-fluid nozzle type spray dryer. The silicon nitride powder granules having a ΔS of 2.5% or less can be produced by selecting and spraying and drying in the above, and the sintered body using the same has a four-point bending strength of 1200 MPa or more, The Weibull coefficient was 20 or more .
[0025]
[Table 1]
Figure 0003942245
[0026]
[Table 2]
Figure 0003942245
[ 0027 ]
Example 2
The slurry was prepared and spray granulated and dried in the same manner as in Example 1 except that 5 parts by weight, 2 parts by weight and 3 parts by weight of yttria powder, alumina powder and magnesia powder were added as sintering aids, respectively. went. Table 3 shows slurry conditions and spray dryer conditions. In Experiment 9 and Reference Experiment 5 , the sintering aid was changed to 5 parts by weight of yttria powder and 4 parts by weight of MgAl 2 O 4 powder.
[ 0028 ]
About the obtained granule, (DELTA) S and a sintered compact characteristic were evaluated like Example 1 except having made the calcination temperature into 1680 degreeC, and the result of Table 4 was obtained. From the results shown in Table 4, when a sintering aid containing a magnesia-based oxide was used, a sintered body with higher strength and higher reliability was obtained.
[ 0029 ]
[Table 3]
Figure 0003942245
[ 0030 ]
[Table 4]
Figure 0003942245
[ 0031 ]
Reference example 1
The silicon nitride granules obtained in Experiment 1 and Reference Experiment 1 that were passed through a 90 μm sieve were CIP molded at CIP pressures of 10 MPa, 30 MPa, 50 MPa, 150 MPa, 270 MPa, and 300 MPa, respectively. The value was measured. The results are shown in Table 5. From Table 5, the total pore specific surface area, although molding pressure is in the range of 10~50MPa increased becomes whether to increase co the molding pressure in the range of the molding pressure is 1 50~300MPa raising the molding pressure Mohoton etc. do not increase. From these results, when specifying the silicon nitride powder granules based on the total pore specific surface area values of the CIP compacts molded at different pressures as in the present invention, the total pore specific surface area is most likely to change. In the molding pressure of 10 to 500 MPa, it was shown that it is appropriate to represent 30 MPa as the molding pressure at the middle of molding and 270 MPa as the molding pressure at the end of molding.
[ 0032 ]
[Table 5]
Figure 0003942245
[ 0033 ]
【The invention's effect】
By the present invention lever, high Weibull modulus high strength, the silicon nitride powder granules can be obtained a highly reliable sintered product can be produced easily.

Claims (2)

窒化珪素粉末と、有機バインダーと、水とを含むスラリーを、二流体ノズル式のスプレードライヤーを用いて噴霧造粒乾燥を行う際に、スラリーの固形分濃度を50重量%以上、スプレードライヤーの出口温度を50℃以上することを特徴とする、以下で定義される全細孔比表面積値の変化率ΔSが2.5%以下である窒化珪素粉末顆粒の製造方法。
〔全細孔比表面積値の変化率ΔSの定義〕
90μmフルイを通した窒化珪素粉末顆粒を用いて圧力30MPaでCIP成形体を成形する。これを粉砕して得られた1〜5μmの粉末を用い水銀ポロシメータで全細孔比表面積値(Sa)を測定する。圧力を270MPaにしたこと以外は同様にしてCIP成形体の全細孔比表面積値(Sb)を測定する。これらの値から、式、ΔS(%)=(Sb−Sa)×100/Sb、により、全細孔比表面積値の変化率ΔSを算出する。
And a silicon nitride powder, an organic binder, a slurry comprising water, a two-fluid nozzle type using a spray dryer when performing spray granulation drying, the solid content of the slurries 50 wt% or more, of the spray dryer the outlet temperature you characterized in that the 50 ° C. or higher, the manufacturing method of the silicon nitride powder granules is change rate ΔS of the total pore specific surface area of 2.5% or less, which is defined below.
[Definition of change rate ΔS of total pore specific surface area value]
A CIP compact is molded at a pressure of 30 MPa using silicon nitride powder granules passed through a 90 μm sieve. The total pore specific surface area value (Sa) is measured with a mercury porosimeter using 1-5 μm powder obtained by pulverizing this. The total pore specific surface area value (Sb) of the CIP compact is measured in the same manner except that the pressure is 270 MPa. From these values, the rate of change ΔS of the total pore specific surface area value is calculated by the formula: ΔS (%) = (Sb−Sa) × 100 / Sb.
スラリーが、更にマグネシア系酸化物を含有することを特徴とする請求項1に記載の窒化珪素粉末顆粒の製造方法。The method for producing a silicon nitride powder granule according to claim 1, wherein the slurry further contains a magnesia-based oxide.
JP24836397A 1997-09-12 1997-09-12 Method for producing silicon nitride powder granules Expired - Fee Related JP3942245B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24836397A JP3942245B2 (en) 1997-09-12 1997-09-12 Method for producing silicon nitride powder granules

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24836397A JP3942245B2 (en) 1997-09-12 1997-09-12 Method for producing silicon nitride powder granules

Publications (2)

Publication Number Publication Date
JPH1183723A JPH1183723A (en) 1999-03-26
JP3942245B2 true JP3942245B2 (en) 2007-07-11

Family

ID=17176994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24836397A Expired - Fee Related JP3942245B2 (en) 1997-09-12 1997-09-12 Method for producing silicon nitride powder granules

Country Status (1)

Country Link
JP (1) JP3942245B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113125311B (en) * 2019-12-31 2022-11-22 中核四0四有限公司 Detection method of MOX mixed particles

Also Published As

Publication number Publication date
JPH1183723A (en) 1999-03-26

Similar Documents

Publication Publication Date Title
JPS5964567A (en) Ceramic formed body, manufacture and structural member
Zhou et al. Gelcasting of concentrated aqueous silicon carbide suspension
US3875277A (en) Method for making polycrystalline alumina arc tubes
JPS6054976A (en) Silicon nitride sintered body and manufacture
Baron et al. Comparison of different alumina powders for the aqueous processing and pressureless sintering of Al2O3–SiC nanocomposites
JP3981988B2 (en) Polished fired body and method for producing the same
JPH10194824A (en) Zirconia-containing alumina sintered compact
JP3942245B2 (en) Method for producing silicon nitride powder granules
JP2006027914A (en) Ceramic granule for press molding
JPH10194743A (en) Zirconia-alumina granule and its production
Liu Influence of pore structure in green compacts on the densification of SiC Al2O3 Y2O3
Balasubramanian et al. Effect of Externally Applied Plasticizer on Compaction Behavior of Spray‐Dried Powders
Ganesh et al. An Aqueous Gelcasting Route to Dense β‐Si4Al2O2N6–0.5 SiO2 Ceramics
JP2010052963A (en) METHOD FOR PRODUCING SILICON NITRIDE-BONDED SiC REFRACTORY
JP3605632B2 (en) High-strength porous alumina and method for producing the same
JPH0544428B2 (en)
JPS647030B2 (en)
JP4514894B2 (en) Aluminum oxide powder with excellent fillability and process for producing the same
JP2676008B2 (en) Abrasion resistant zirconia sintered body and method for producing the same
JPH1029871A (en) Granule for ceramic compacting
Shin et al. Aggregate and necking force in Mn–Zn ferrite
JPH0694385B2 (en) Ceramic molded product and method for producing the same
JPH0745346B2 (en) Ceramic slurry casting
JP2007169158A (en) Heat insulating material comprising silica formed body and method of producing the same
JP2573720B2 (en) Manufacturing method of silicon nitride sintered body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060613

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070403

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100413

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140413

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees