JP3941532B2 - Body structure - Google Patents

Body structure Download PDF

Info

Publication number
JP3941532B2
JP3941532B2 JP2002031806A JP2002031806A JP3941532B2 JP 3941532 B2 JP3941532 B2 JP 3941532B2 JP 2002031806 A JP2002031806 A JP 2002031806A JP 2002031806 A JP2002031806 A JP 2002031806A JP 3941532 B2 JP3941532 B2 JP 3941532B2
Authority
JP
Japan
Prior art keywords
rocker
closed cross
vehicle body
vehicle
welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002031806A
Other languages
Japanese (ja)
Other versions
JP2003231483A (en
Inventor
浩史 玉腰
直哉 小坂
寛 大田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2002031806A priority Critical patent/JP3941532B2/en
Publication of JP2003231483A publication Critical patent/JP2003231483A/en
Application granted granted Critical
Publication of JP3941532B2 publication Critical patent/JP3941532B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は車体構造に係り、特に、閉断面構造を形成する車体骨格部材からなる自動車等の車両の車体構造に関する。
【0002】
【従来の技術】
従来、閉断面構造を形成する車体骨格部材からなる自動車等の車両の車体構造においては、その一例が特開平11−235985号に開示されている。
【0003】
図9に示される如く、この車体構造では、フロアパネル100の下面に溶着されるサイドメンバ(キャブアンダフレームともいう)102内に、閉断面構造とされた中空管体状の補強部材104が車両前後方向に沿って配設されており、補強部材104は外面がサイドメンバ102の内面に当接し、その当接部はレーザ溶接により溶着されている。また、補強部材104はハイドロフォーミングにより製造されており、サイドメンバ102は軽量で高剛性の補強部材104で補強され、特に、キックアップ部102Aが高剛性となり、衝撃力に耐えるようになっている。
【0004】
【発明が解決しようとする課題】
しかしながら、このような車体構造では、サイドメンバ102の軸方向に作用する荷重(図9の矢印F)に対して、サイドメンバ102のキックアップ部102Aに曲げモーメントMが発生する。この結果、この曲げモーメントMによりキックアップ部102Aに曲げ変形が起きる。この曲げ変形は、曲げ圧縮側から発生する断面崩れに起因し、この断面崩れが発生し易い骨格は曲げ強度が低くなる。また、この断面崩れが発生するのを防止するためには、サイドメンバ102または補強部材104の板厚を厚くする必要があるため、車体の重量が大幅に増加する。
【0005】
本発明は上記事実を考慮し、重量の増加を抑制でき、且つ骨格部材が断面崩れし難い車体構造を得ることが目的である。
【0006】
【課題を解決するための手段】
請求項1に記載の本発明は、長手方向から見て閉断面構造を形成する車体骨格部材を備えた車体構造であって、
長手方向からの荷重による前記閉断面構造の曲げ圧縮変形側のみに配設され、長手方向から見た断面形状が前記閉断面構造の曲げ圧縮変形側へ突出した山形状であり、頂部が前記閉断面構造の平面部に結合していると共に、前記頂部の両側の傾斜部の下端に形成された各フランジが前記閉断面構造の両側壁部にそれぞれ結合している補強部材を有することを特徴とする。
【0007】
従って、長手方向から見て閉断面構造を形成する車体骨格部材に長手方向からの荷重によって曲げモーメントが作用した場合には、閉断面構造の曲げ圧縮変形側のみに配設した補強部材により、閉断面構造の断面崩れを効果的に低減できる。一方、補強部材を閉断面構造の曲げ圧縮変形側のみに配設するため、補強部材の板厚を厚くした場合においても、車体の重量が大幅に増加するのを抑制できる。この結果、重量の増加を抑制でき、且つ骨格部材が断面崩れし難い車体構造を得ることができる。さらに、長手方向から見た断面形状が、閉断面構造の曲げ圧縮変形側へ突出した山形状である補強部材の頂部が、閉断面構造の平面部に結合していると共に、頂部の両側の傾斜部の下端に形成された各フランジが閉断面構造の両側壁部にそれぞれ結合しているため、通常、応力の作用が少ない閉断面構造の平面部における応力分布を増加させることができる。この結果、閉断面構造の強度が増加する。
【0008】
請求項2に記載の本発明は、請求項1に記載の車体構造において、前記閉断面構造と前記補強部材とのうちの少なくとも一方における曲げ圧縮変形側の板厚を他の部位に比べ厚くしたことを特徴とする。
【0009】
従って、請求項1に記載の内容に加えて、閉断面構造と補強部材とのうちの少なくとも一方における板厚を厚くした部位以外で、板厚を薄くすることができるため、重量増加を更に抑制できる。
【0010】
請求項3に記載の本発明は、請求項1に記載の車体構造において、前記閉断面構造と前記補強部材との接合部をレーザ溶接したことを特徴とする。
【0011】
従って、請求項1に記載の内容に加えて、閉断面構造と補強部材との接合部をレーザ溶接したため、閉断面構造に対して補強部材を容易且つ確実に溶着できる。
【0014】
【発明の実施の形態】
本発明の車体構造の第1実施形態について図1及び図2に従って説明する。
【0015】
なお、図中矢印FRは車両前方方向を、矢印UPは車両上方方向を、矢印INは車幅内側方向を示す。
【0016】
図2に示される如く、本実施形態の車体前部には、車幅方向両端下部近傍に車体前後方向に沿って、車体骨格部材としての左右一対のフロントサイドメンバ10が配設されている(車両左側のフロントサイドメンバは図示省略)。フロントサイドメンバ10の車両前後方向中間部には、曲げ部10Aが形成されており、この曲げ部10Aは、エンジンルームと車室とを仕切るダッシュパネル12に沿って車両後方斜め下方へ延設されている。
【0017】
また、車両の前突等によってフロントサイドメンバ10に車両前方側から荷重(図2の矢印F)が作用した場合に、曲げ部10Aには、モーメント(図2の矢印M)が作用する。この時、フロントサイドメンバ10内における曲げ圧縮変形側となる車両後方上側の部位にのみ、補強部材としてのリインフォースメント14が配設されている。
【0018】
なお、リインフォースメント14はフロントサイドメンバ10の長手方向に沿って曲げ部10Aに局所的に配置されているが、リインフォースメント14をフロントサイドメンバ10の長手方向に沿って連続的に配設しても良い。
【0019】
図1に示される如く、フロントサイドメンバ10の曲げ部10Aの長手方向から見た断面形状は、ハット形状とされており、車幅方向外側壁部10Bの上端部に車幅方向外側に向けて形成されたフランジ10Cが、ダッシュパネル12のエンジンルーム側の面12Aにレーザ溶接等の線溶接によって車室側から溶着(溶接点P1)されている。また、フロントサイドメンバ10の車幅方向内側壁部10Dの上端部に車幅方向内側に向けて形成されたフランジ10Eが、ダッシュパネル12のエンジンルーム側の面12Aにレーザ溶接等の線溶接によって車室側から溶着(溶接点P2)されている。従って、フロントサイドメンバ10はダッシュパネル12とで閉断面構造16を形成している。
【0020】
なお、溶接点P1及び溶接点P2はスポット溶接でも良い。
【0021】
リインフォースメント14は、閉断面構造16における上下曲げ主軸、即ち中立軸20の上側にその大部分が配設されており、長手方向から見た断面形状は、閉断面構造16の曲げ圧縮変形側、本実施形態では、ダッシュパネル12側へ突出した山形状となっている。リインフォースメント14の頂部は、所定幅Wの平面部14Aとなっており、平面部14Aの幅方向中間部がダッシュパネル12のエンジンルーム側の面12Aにレーザ溶接等の線溶接によって車室側から溶着(溶接点P3)されている。
【0022】
リインフォースメント14の頂部14Aの両側には、稜線14B、14Cを挟んで傾斜部14D、14Eが形成されており、車幅方向外側の傾斜部14Dの下端には、下方へ向けてフランジ14Fが形成されている。一方、リインフォースメント14における車幅方向内側の傾斜部14Eの下端には、下方へ向けてフランジ14Gが形成されている。
【0023】
リインフォースメント14のフランジ14Fは、中立軸20上、或いはその近傍の部位において、フロントサイドメンバ10の車幅方向外側壁部10Bに、レーザ溶接等の線溶接によって車幅方向外側から溶着(溶接点P4)されている。また、リインフォースメント14のフランジ14Gは、中立軸20上、或いはその近傍の部位において、フロントサイドメンバ10の車幅方向内側壁部10Dに、レーザ溶接等の線溶接によって車幅方向内側から溶着(溶接点P5)されている。
【0024】
なお、リインフォースメント14の板厚T1は、フロントサイドメンバ10の板厚T2より厚くなっており、フロントサイドメンバ10の板厚T2はダッシュパネル12の板厚T3より厚くなっている(T1>T2>T3)。
【0025】
次に、本実施形態の作用を説明する。
【0026】
本実施形態では、車両の前突等によってフロントサイドメンバ10に車両前方側から荷重(図2の矢印F)が作用した場合に、曲げ部10Aには、モーメント(図2の矢印M)が作用する。この時、閉断面構造16における曲げ圧縮変形側となる車両後方上側の部位のみに、補強部材としてのリインフォースメント14が配設されている。この結果、リインフォースメント14により、フロントサイドメンバ10の曲げ部10Aの断面崩れを効果的に低減できる。これにより、変形時の最大荷重の向上と、最大荷重発生後の荷重低下を抑制することができ、車体骨格の強度とエネルギ吸収量が大幅に向上する。
【0027】
一方、リインフォースメント14を閉断面構造16の圧縮変形側のみに配設するため、リインフォースメント14の板厚T1を厚くした場合においても、車体の重量が大幅に増加するのを抑制できる。この結果、重量の増加を抑制でき、且つフロントサイドメンバ10が断面崩れし難い車体構造を得ることができる。
【0028】
また、本実施形態では、長手方向から見た断面形状が、上方へ突出した山形状であるリインフォースメント14の頂部が所定幅Wの平面部14Aとなっており、平面部14Aの幅方向中間部がダッシュパネル12のエンジンルーム側の面12Aにレーザ溶接等の線溶接によって溶着(溶接点P3)されているため、通常、応力の作用が少ない閉断面構造16の平面部16Aの幅方向中央部16Bにおける応力分布を増加させることができる。この結果、閉断面構造16の強度が増加する。
【0029】
また、本実施形態では、リインフォースメント14の板厚T1を厚くし、フロントサイドメンバ10の板厚T2及びダッシュパネル12の板厚T3を薄くすることができるため、重量増加を更に抑制できる。
【0030】
また、本実施形態では、閉断面構造16とリインフォースメント14との接合部(溶着点P3、P4、P5)をレーザ溶接したため、閉断面構造16に対してリインフォースメント14を容易且つ確実に溶着できる。
【0031】
また、本実施形態では、リインフォースメント14のフランジ14F、14Gが、閉断面構造16における中立軸20上、或いはその近傍の部位において、そてぞれフロントサイドメンバ10の車幅方向外側壁部10B、車幅方向内側壁部10Dに、レーザ溶接等の線溶接によって溶着(溶接点P4、P5)されている。この結果、溶接点P4、P5においては、曲げ変形時の変形量が他の部位に比べて小さくなる。このため、溶接点P4、P5における溶接品質が悪化した場合にも、溶着部が破断、剥離し難くなり、骨格の曲げ強度低下を最小限にとどめることができる。且つ溶接点P4、P5は、板合わせ2枚の溶接であるため、従来の板合わせ3枚の溶接に比べて、精度管理が容易である。
【0032】
なお、結合強度を強くするため、図3に示される如く、フロントサイドメンバ10のフランジ10Cをダッシュパネル12のエンジンルーム側の面12Aに溶接点P1と溶着点P6との2点で溶着すると共に、フロントサイドメンバ10のフランジ10Eをダッシュパネル12のエンジンルーム側の面12Aに溶接点P1と溶着点P7との2点で溶着しても良い。また、リインフォースメント14の平面部14Aとダッシュパネル12のエンジンルーム側の面12Aにレーザ溶接等の線溶接によって車室側から溶接点P3と溶着点P8との2点で溶着すると共に、リインフォースメント14のフランジ14F、14Gを、フロントサイドメンバ10の側壁部10B、10Dに、レーザ溶接等の線溶接によって溶接点P4、P5と溶着点P9、P10との各2点で溶着しても良い。
【0033】
また、リインフォースメント14の断面形状は第1実施形態の形状に限定されず、例えば、図4に示される如く、リインフォースメント14の平面部14Aに凹部50を形成し、リインフォースメント14の稜線14H、14J、14K、14Lを増やすことで、リインフォースメント14の曲げ変形に対する剛性を向上させても良い。
【0034】
また、図5に示される如く、リインフォースメント14の長手方向から見た断面形状を、ダッシュパネル12側へ突出した円弧状の山形状とし、頂部14Mをダッシュパネル12のエンジンルーム側の面12Aにレーザ溶接等の線溶接によって車室側から溶着(溶接点P3)し、両端部14N、14Pをフロントサイドメンバ10の車幅方向外側壁部10B、車幅方向内側壁部10Dに、レーザ溶接等の線溶接によって溶着(溶接点P4、P5)した構成としても良い。
【0035】
次に、本発明の車体構造の第2実施形態を図6に従って説明する。
【0036】
図6に示される如く、本実施形態の車体側部には、車体下部近傍に車体前後方向に沿って、車体骨格部材としての左右一対のロッカ52が配設されている(車両左側のロッカは図示省略)。ロッカ52は、車幅方向外側部を構成するロッカアウタパネル54と、車幅方向内側部を構成するロッカインナパネル56とで、車体前後方向に延設された閉断面構造となっている。
【0037】
補強部材としてのリインフォースメント58は、ロッカ52における上下曲げ主軸、即ち中立軸60の上側にその大部分が配設されており、長手方向から見た断面形状は、閉断面構造とされたロッカ52の曲げ圧縮変形側、本実施形態では、車両上方側へ突出した山形状となっている。リインフォースメント58の頂部58Aは、所定幅Vとなっており、頂部58Aの幅方向両側端部近傍が、ロッカアウタパネル54の上壁部54Aの幅方向中央部とロッカインナパネル56の上壁部56Aの幅方向中央部にレーザ溶接等の線溶接によって、上方から溶着(溶接点P11、P12)されている。
【0038】
リインフォースメント58の頂部58Aの両側には、稜線58B、58Cを挟んで傾斜部58D、58Eが形成されており、車幅方向内側の傾斜部58Dの下端には、下方へ向けてフランジ58Fが形成されている。一方、リインフォースメント58における車幅方向外側の傾斜部58Eの下端には、下方へ向けてフランジ58Gが形成されている。
【0039】
リインフォースメント58のフランジ58Fは、中立軸60の上方近傍において、ロッカインナパネル56の縦壁部56Bに、レーザ溶接等の線溶接によって車幅方向内側から溶着(溶接点P13)されている。また、リインフォースメント58のフランジ58Gは、中立軸60の上方近傍において、ロッカアウタパネル54の縦壁部54Bに、レーザ溶接等の線溶接によって車幅方向外側から溶着(溶接点P14)されている。
【0040】
なお、リインフォースメント58の板厚T4は、ロッカアウタパネル54の板厚T5及びロッカインナパネル56の板厚T6より厚くなっている(T4>T5、T6)。
【0041】
次に、本実施形態の作用を説明する。
【0042】
本実施形態では、車両のオフセット前突等によってロッカ52に上下曲げモーメントが作用した場合に、閉断面構造とされたロッカ52の曲げ圧縮変形側となる車両上方側の部位に配設されたリインフォースメント58により、ロッカ52の面外変形、座屈等の断面崩れを効果的に低減できる。
【0043】
一方、リインフォースメント58を閉断面構造とされたロッカ52における圧縮変形側のみに配設するため、リインフォースメント58の板厚T4を厚くした場合においても、車体の重量が大幅に増加するのを抑制できる。この結果、重量の増加を抑制でき、且つロッカ52が断面崩れし難い車体構造を得ることができる。
【0044】
また、本実施形態では、長手方向から見た断面形状が、上方へ突出した山形状であるリインフォースメント58の頂部58Aが所定幅Vとなっており、頂部58Aの幅方向両側端部近傍が、ロッカアウタパネル54の上壁部54Aの幅方向中央部とロッカインナパネル56の上壁部56Aの幅方向中央部にレーザ溶接等の線溶接によって溶着(溶接点P11、P12)されているため、通常、応力の作用が少ないロッカアウタパネル54の上壁部54Aの幅方向中央部とロッカインナパネル56の上壁部56Aの幅方向中央部における応力分布を増加させることができる。この結果、ロッカ52の強度が増加する。
【0045】
また、本実施形態では、リインフォースメント58の板厚T4を厚くし、ロッカアウタパネル54の板厚T5及びロッカインナパネル56の板厚T6を薄くすることができるため、重量増加を更に抑制できる。
【0046】
また、本実施形態では、ロッカ52とリインフォースメント58との接合部(溶着点P11、P12、P13、P14)をレーザ溶接したため、閉断面構造とされたロッカ52に対してリインフォースメント58を容易且つ確実に溶着できる。
【0047】
次に、本発明の車体構造の第3実施形態を図7に従って説明する。
【0048】
図7に示される如く、本実施形態の車体側部には、車体下部近傍に車体前後方向に沿って、車体骨格部材としての左右一対のロッカ62が配設されている(車両右側のロッカは図示省略)。ロッカ62は、車両上下方向上側部を構成するロッカアッパ64と、車両上下方向下側部を構成するロッカアンダ66とで、車体前後方向に延設された閉断面構造となっている。
【0049】
ロッカアッパ64はハイドロフォーミングにより製造され閉断面構造となっており、長手方向(車両前後方向)から見た断面形状が車幅方向を長手方向とする矩形状となっている。また、ロッカアンダ66はプレスにより製造ざれ、長手方向(車両前後方向)から見た断面形状は、開口部上方に向けたコ字状となっており、補強部材を兼ねるロッカアッパ64は、ロッカ62における上下曲げ主軸、即ち中立軸68の上側に配設されている。
【0050】
ロッカアッパ64の車幅方向外側壁部64Aには、車幅方向外側からロッカアンダ66の車幅方向外側壁部66Aの上部が、レーザ溶接等の線溶接によって車幅方向外側から溶着(溶接点P15)されている。また、ロッカアッパ64の車幅方向内側壁部64Bには、車幅方向内側からロッカアンダ66の車幅方向内側壁部66Bの上部が、レーザ溶接等の線溶接によって車幅方向内側から溶着(溶接点P16)されている。
【0051】
なお、ロッカアッパ64の板厚T7は、ロッカアンダ66の板厚T8より厚くなっている(T7>T8)。
【0052】
次に、本実施形態の作用を説明する。
【0053】
本実施形態では、車両のオフセット前突等によってロッカ62に上下曲げモーメントが作用した場合に、ロッカ62内における曲げ圧縮変形側となる車両上方側の部位のみに配設した補強部材としてのロッカアッパ64により、ロッカ62の断面崩れを効果的に低減できる。
【0054】
一方、ロッカアッパ64をロッカ62における圧縮変形側のみに配設するため、ロッカアッパ64の板厚T7を厚くした場合においても、車体の重量が大幅に増加するのを抑制できる。この結果、重量の増加を抑制でき、且つロッカ62が断面崩れし難い車体構造を得ることができる。
【0055】
また、本実施形態では、ロッカアッパ64の板厚T7を厚くし、ロッカアンダ66の板厚T8を薄くすることができるため、重量増加を更に抑制できる。
【0056】
また、本実施形態では、ロッカ62内における曲げ圧縮変形側となる車両上方側の部位のみに、補強部材としてのハイドロフォームを用いたロッカアッパ64が配設されている。この結果、ロッカ62における上下曲げ主軸68、即ち、全塑性主軸68を従来構造に比べ高い位置にできる。この結果、曲げ部に発生するモーメントが小さくなるため、必要な耐力を従来構造に比べ小さくでき、更に、板厚を下げることができる。
【0057】
また、本実施形態では、ロッカアッパ64とロッカアンダ66との接合部(溶着点P15、P16)をレーザ溶接したため、閉断面構造とされたロッカアッパ64に対してロッカアンダ66を容易且つ確実に溶着できる。
【0058】
なお、図8に示される如く、ロッカアッパ64の上下幅を広げ、ロッカアッパ64の下壁部64Cが、ロッカ62の中立軸68の下方となるようにし、ロッカアッパ64の車幅方向外側壁部64Aに、車幅方向外側からロッカアンダ66の車幅方向外側壁部66Aの上部を、レーザ溶接等の線溶接によって溶接点P15と溶着点P17との2点で溶着すると共に、ロッカアッパ64の車幅方向内側壁部64Bに、車幅方向内側からロッカアンダ66の車幅方向内側壁部66Bの上部を、レーザ溶接等の線溶接によって溶接点P16と溶着点P18との2点で溶着した構成としても良い。
【0059】
また、ロッカアッパ64をアルミの押出し材で構成し、ロッカアンダ66をアルミのプレスで構成しても良い。
【0060】
以上に於いては、本発明を特定の実施形態について詳細に説明したが、本発明はかかる実施形態に限定されるものではなく、本発明の範囲内にて他の種々の実施形態が可能であることは当業者にとって明らかである。例えば、本発明の車体構造は、フロントサイドメンバ、ロッカ以外の他の曲げ強度が必要な部位にも適用可能である。
【0061】
【発明の効果】
請求項1に記載の本発明は、長手方向から見て閉断面構造を形成する車体骨格部材を備えた車体構造であって、長手方向からの荷重による閉断面構造の曲げ圧縮変形側のみに配設され、長手方向から見た断面形状が閉断面構造の曲げ圧縮変形側へ突出した山形状であり、頂部が閉断面構造の平面部に結合していると共に、頂部の両側の傾斜部の下端に形成された各フランジが閉断面構造の両側壁部にそれぞれ結合しているため、重量の増加を抑制でき、且つ骨格部材が断面崩れし難い車体構造を得ることができると共に、閉断面構造の強度が増加するという優れた効果を有する。
【0062】
請求項2に記載の本発明は、請求項1に記載の車体構造において、閉断面構造と補強部材とのうちの少なくとも一方における曲げ圧縮変形側の板厚を他の部位に比べ厚くしたため、請求項1に記載の効果に加えて、重量増加を更に抑制できるという優れた効果を有する。
【0063】
請求項3に記載の本発明は、請求項1に記載の車体構造において、閉断面構造と補強部材との接合部をレーザ溶接したため、請求項1に記載の効果に加えて、閉断面構造に対して補強部材を容易且つ確実に溶着できるという優れた効果を有する。
【図面の簡単な説明】
【図1】図2の1−1線に沿った拡大断面図である。
【図2】本発明の第1実施形態に係る車体構造を示す車両斜め前方外側から見た斜視図である。
【図3】本発明の第1実施形態の変形例に係る車体構造の図1に対応する断面図である。
【図4】本発明の第1実施形態の変形例に係る車体構造の図1に対応する断面図である。
【図5】本発明の第1実施形態の変形例に係る車体構造の図1に対応する断面図である。
【図6】本発明の第2実施形態に係る車体構造を示す車両前後方向から見た断面図である。
【図7】本発明の第3実施形態に係る車体構造を示す車両斜め前方外側から見た斜視図である。
【図8】本発明の第3実施形態の変形例に係る車体構造を示す車両斜め前方外側から見た斜視図である。
【図9】従来の実施形態に係る車体構造を示す斜視図である。
【符号の説明】
10 フロントサイドメンバ(車体骨格部材)
12 ダッシュパネル
14 リインフォースメント(補強部材)
16 閉断面構造
20 閉断面構造の中立軸
52 ロッカ(車体骨格部材)
58 リインフォースメント(補強部材)
60 ロッカの中立軸
62 ロッカ
64 ロッカアッパ(補強部材)
68 ロッカの中立軸
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a vehicle body structure, and more particularly to a vehicle body structure of a vehicle such as an automobile made of a vehicle body skeleton member that forms a closed cross-sectional structure.
[0002]
[Prior art]
Conventionally, an example of a vehicle body structure of a vehicle such as an automobile made of a vehicle body skeleton member that forms a closed cross-sectional structure is disclosed in Japanese Patent Laid-Open No. 11-235985.
[0003]
As shown in FIG. 9, in this vehicle body structure, a hollow tubular reinforcing member 104 having a closed cross-sectional structure is provided in a side member (also referred to as a cab underframe) 102 that is welded to the lower surface of the floor panel 100. The reinforcing member 104 is disposed along the vehicle front-rear direction. The outer surface of the reinforcing member 104 is in contact with the inner surface of the side member 102, and the contact portion is welded by laser welding. Further, the reinforcing member 104 is manufactured by hydroforming, and the side member 102 is reinforced by a lightweight and high-rigidity reinforcing member 104. In particular, the kick-up portion 102A has high rigidity and can withstand impact force. .
[0004]
[Problems to be solved by the invention]
However, in such a vehicle body structure, a bending moment M is generated in the kick-up portion 102A of the side member 102 with respect to a load acting in the axial direction of the side member 102 (arrow F in FIG. 9). As a result, the bending moment M causes bending deformation in the kick-up portion 102A. This bending deformation is caused by the collapse of the cross-section generated from the bending compression side, and the bending strength of the skeleton in which the cross-section collapse is likely to occur is low. Further, in order to prevent the occurrence of the collapse of the cross section, it is necessary to increase the plate thickness of the side member 102 or the reinforcing member 104, so that the weight of the vehicle body is significantly increased.
[0005]
In view of the above facts, an object of the present invention is to obtain a vehicle body structure in which an increase in weight can be suppressed and a skeleton member is less likely to collapse.
[0006]
[Means for Solving the Problems]
The present invention according to claim 1 is a vehicle body structure including a vehicle body skeleton member that forms a closed cross-sectional structure when viewed from the longitudinal direction,
It is disposed only on the bending compression deformation side of the closed cross-section structure due to the load from the longitudinal direction, the cross-sectional shape seen from the longitudinal direction is a mountain shape protruding toward the bending compression deformation side of the closed cross-section structure, and the top is the closed The flanges formed on the lower ends of the inclined portions on both sides of the top portion have reinforcing members that are respectively coupled to the side wall portions of the closed sectional structure. To do.
[0007]
Therefore, when a bending moment is applied to a vehicle body skeleton member that forms a closed cross-sectional structure when viewed from the longitudinal direction due to a load from the longitudinal direction, it is closed by a reinforcing member that is disposed only on the bending compression deformation side of the closed cross-sectional structure. Cross-sectional deformation of the cross-sectional structure can be effectively reduced. On the other hand, since the reinforcing member is disposed only on the bending compression deformation side of the closed cross-sectional structure, it is possible to suppress a significant increase in the weight of the vehicle body even when the thickness of the reinforcing member is increased. As a result, it is possible to obtain a vehicle body structure in which an increase in weight can be suppressed and the skeleton member is less likely to collapse. Furthermore, the top part of the reinforcing member whose cross-sectional shape seen from the longitudinal direction is a mountain shape protruding toward the bending compression deformation side of the closed cross-sectional structure is coupled to the flat part of the closed cross-sectional structure, and the slopes on both sides of the top part Since the flanges formed at the lower end of the portion are respectively coupled to the both side wall portions of the closed cross-sectional structure, the stress distribution in the flat portion of the closed cross-sectional structure where the action of stress is usually small can be increased. As a result, the strength of the closed cross-sectional structure increases.
[0008]
According to a second aspect of the present invention, in the vehicle body structure according to the first aspect, the plate thickness on the bending compression deformation side in at least one of the closed cross-sectional structure and the reinforcing member is made thicker than other portions. It is characterized by that.
[0009]
Therefore, in addition to the content described in claim 1, the plate thickness can be reduced except for the portion where the plate thickness is increased in at least one of the closed cross-section structure and the reinforcing member. it can.
[0010]
According to a third aspect of the present invention, in the vehicle body structure according to the first aspect, the joint portion between the closed cross-sectional structure and the reinforcing member is laser welded .
[0011]
Therefore, in addition to the content of the first aspect, since the joint between the closed cross-sectional structure and the reinforcing member is laser welded, the reinforcing member can be easily and reliably welded to the closed cross-sectional structure.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
A first embodiment of a vehicle body structure of the present invention will be described with reference to FIGS.
[0015]
In the figure, the arrow FR indicates the vehicle front direction, the arrow UP indicates the vehicle upward direction, and the arrow IN indicates the vehicle width inside direction.
[0016]
As shown in FIG. 2, a pair of left and right front side members 10 as vehicle body skeleton members are disposed in the vehicle body front portion of the present embodiment in the vicinity of the lower portions at both ends in the vehicle width direction along the vehicle body longitudinal direction ( (The front side member on the left side of the vehicle is not shown). A bent portion 10A is formed in the middle portion of the front side member 10 in the vehicle front-rear direction, and the bent portion 10A extends obliquely downward to the rear of the vehicle along a dash panel 12 that partitions the engine room and the vehicle compartment. ing.
[0017]
Further, when a load (arrow F in FIG. 2) acts on the front side member 10 from the front side of the vehicle due to a frontal collision of the vehicle, a moment (arrow M in FIG. 2) acts on the bending portion 10A. At this time, the reinforcement 14 as the reinforcing member is disposed only at the upper rear portion of the vehicle on the bending compression deformation side in the front side member 10.
[0018]
The reinforcement 14 is locally disposed in the bent portion 10 </ b> A along the longitudinal direction of the front side member 10, but the reinforcement 14 is continuously disposed along the longitudinal direction of the front side member 10. Also good.
[0019]
As shown in FIG. 1, the cross-sectional shape seen from the longitudinal direction of the bent portion 10A of the front side member 10 is a hat shape, and faces the outer side in the vehicle width direction at the upper end portion of the vehicle width direction outer side wall portion 10B. The formed flange 10C is welded (welding point P1) from the vehicle compartment side to the surface 12A on the engine room side of the dash panel 12 by wire welding such as laser welding. Further, a flange 10E formed at the upper end portion of the inner side wall portion 10D in the vehicle width direction of the front side member 10 toward the inner side in the vehicle width direction is applied to the surface 12A on the engine room side of the dash panel 12 by line welding such as laser welding. It is welded (welding point P2) from the passenger compartment side. Therefore, the front side member 10 forms a closed sectional structure 16 with the dash panel 12.
[0020]
The welding point P1 and the welding point P2 may be spot welding.
[0021]
Most of the reinforcement 14 is disposed on the upper side of the vertical bending main axis in the closed cross-section structure 16, that is, the neutral axis 20, and the cross-sectional shape viewed from the longitudinal direction is the bending compression deformation side of the closed cross-section structure 16, In this embodiment, it has a mountain shape protruding toward the dash panel 12 side. The top portion of the reinforcement 14 is a flat portion 14A having a predetermined width W, and the intermediate portion in the width direction of the flat portion 14A is applied to the surface 12A on the engine room side of the dash panel 12 from the vehicle compartment side by line welding such as laser welding. It is welded (welding point P3).
[0022]
Inclined portions 14D and 14E are formed on both sides of the top portion 14A of the reinforcement 14 with the ridge lines 14B and 14C interposed therebetween, and a flange 14F is formed on the lower end of the inclined portion 14D on the outer side in the vehicle width direction. Has been. On the other hand, a flange 14G is formed downward at the lower end of the inclined portion 14E on the inner side in the vehicle width direction of the reinforcement 14.
[0023]
The flange 14F of the reinforcement 14 is welded to the vehicle width direction outer side wall portion 10B of the front side member 10 from the outside in the vehicle width direction (welding point) by line welding such as laser welding on the neutral shaft 20 or in the vicinity thereof. P4). The flange 14G of the reinforcement 14 is welded from the inner side in the vehicle width direction to the inner side wall portion 10D of the front side member 10 on the neutral shaft 20 or in the vicinity thereof by line welding such as laser welding ( Welding point P5).
[0024]
The plate thickness T1 of the reinforcement 14 is thicker than the plate thickness T2 of the front side member 10, and the plate thickness T2 of the front side member 10 is thicker than the plate thickness T3 of the dash panel 12 (T1> T2). > T3).
[0025]
Next, the operation of this embodiment will be described.
[0026]
In the present embodiment, when a load (arrow F in FIG. 2) acts on the front side member 10 from the front side of the vehicle due to a frontal collision of the vehicle or the like, a moment (arrow M in FIG. 2) acts on the bending portion 10A. To do. At this time, the reinforcement 14 as the reinforcing member is disposed only on the rear upper side of the closed cross-sectional structure 16 on the bending compression deformation side. As a result, the reinforcement 14 can effectively reduce the cross-sectional collapse of the bent portion 10 </ b> A of the front side member 10. Thereby, the improvement of the maximum load at the time of deformation | transformation and the load fall after generation | occurrence | production of a maximum load can be suppressed, and the intensity | strength and energy absorption amount of a vehicle body skeleton are improved significantly.
[0027]
On the other hand, since the reinforcement 14 is disposed only on the compression deformation side of the closed cross-section structure 16, it is possible to suppress a significant increase in the weight of the vehicle body even when the thickness T1 of the reinforcement 14 is increased. As a result, it is possible to obtain a vehicle body structure in which an increase in weight can be suppressed and the front side member 10 does not easily collapse in cross section.
[0028]
Moreover, in this embodiment, the top part of the reinforcement 14 whose cross-sectional shape seen from the longitudinal direction is a mountain shape protruding upward is a flat part 14A having a predetermined width W, and an intermediate part in the width direction of the flat part 14A. Is welded to the surface 12A on the engine room side of the dash panel 12 by line welding such as laser welding (welding point P3). Therefore, the central portion in the width direction of the flat surface portion 16A of the closed cross-sectional structure 16 that is usually less affected by stress. The stress distribution at 16B can be increased. As a result, the strength of the closed cross-section structure 16 increases.
[0029]
Moreover, in this embodiment, since plate | board thickness T1 of the reinforcement 14 can be thickened, plate | board thickness T2 of the front side member 10, and plate | board thickness T3 of the dash panel 12 can be made thin, a weight increase can be suppressed further.
[0030]
Moreover, in this embodiment, since the junction part (welding point P3, P4, P5) of the closed cross-section structure 16 and the reinforcement 14 was laser-welded, the reinforcement 14 can be welded with respect to the closed cross-section structure 16 easily and reliably. .
[0031]
Further, in the present embodiment, the flanges 14F and 14G of the reinforcement 14 are respectively located on the neutral shaft 20 in the closed cross-section structure 16 or in the vicinity thereof, and the outer side wall portion 10B in the vehicle width direction of the front side member 10 respectively. In addition, welding (welding points P4, P5) is performed on the inner side wall portion 10D in the vehicle width direction by wire welding such as laser welding. As a result, at the welding points P4 and P5, the amount of deformation at the time of bending deformation becomes smaller than that of other parts. For this reason, even when the welding quality at the welding points P4 and P5 deteriorates, the welded portion becomes difficult to break and peel, and the reduction in the bending strength of the skeleton can be minimized. In addition, since the welding points P4 and P5 are welding of two plates, the accuracy control is easier than the conventional welding of three plates.
[0032]
In order to increase the bonding strength, as shown in FIG. 3, the flange 10C of the front side member 10 is welded to the surface 12A on the engine room side of the dash panel 12 at two points, a welding point P1 and a welding point P6. The flange 10E of the front side member 10 may be welded to the surface 12A on the engine room side of the dash panel 12 at two points of the welding point P1 and the welding point P7. Further, the flat surface portion 14A of the reinforcement 14 and the surface 12A of the dash panel 12 on the engine room side are welded at the two points of the welding point P3 and the welding point P8 from the vehicle compartment side by wire welding such as laser welding, and the reinforcement The 14 flanges 14F and 14G may be welded to the side wall portions 10B and 10D of the front side member 10 at two points, welding points P4 and P5 and welding points P9 and P10, by wire welding such as laser welding.
[0033]
Further, the cross-sectional shape of the reinforcement 14 is not limited to the shape of the first embodiment. For example, as shown in FIG. 4, a recess 50 is formed in the flat portion 14 </ b> A of the reinforcement 14, and the ridge line 14 </ b> H of the reinforcement 14 is formed. The rigidity of the reinforcement 14 against bending deformation may be improved by increasing 14J, 14K, and 14L.
[0034]
Further, as shown in FIG. 5, the cross-sectional shape of the reinforcement 14 viewed from the longitudinal direction is an arc-shaped mountain shape protruding toward the dash panel 12 side, and the top portion 14M is formed on the surface 12A of the dash panel 12 on the engine room side. Welding (welding point P3) from the passenger compartment side by line welding such as laser welding, and both ends 14N and 14P are welded to the outer side wall portion 10B and the inner side wall portion 10D in the vehicle width direction of the front side member 10 by laser welding or the like. It is good also as a structure welded (welding point P4, P5) by this wire welding.
[0035]
Next, a second embodiment of the vehicle body structure of the present invention will be described with reference to FIG.
[0036]
As shown in FIG. 6, a pair of left and right rockers 52 as vehicle body skeleton members are disposed in the vehicle body side portion in the vicinity of the lower portion of the vehicle body in the longitudinal direction of the vehicle body. (Not shown). The rocker 52 has a closed cross-sectional structure extending in the longitudinal direction of the vehicle body by a rocker outer panel 54 constituting an outer portion in the vehicle width direction and a rocker inner panel 56 constituting an inner portion in the vehicle width direction.
[0037]
Most of the reinforcement 58 as a reinforcing member is disposed above the vertical bending main shaft of the rocker 52, that is, the neutral shaft 60, and the cross-sectional shape viewed from the longitudinal direction is a rocker 52 having a closed cross-sectional structure. In this embodiment, the shape is a mountain shape that protrudes upward from the vehicle. The top portion 58A of the reinforcement 58 has a predetermined width V, and the vicinity of both end portions in the width direction of the top portion 58A is the central portion in the width direction of the upper wall portion 54A of the rocker outer panel 54 and the upper wall portion 56A of the rocker inner panel 56. Are welded from above (welding points P11 and P12) by line welding such as laser welding.
[0038]
Inclined portions 58D and 58E are formed on both sides of the top portion 58A of the reinforcement 58 with the ridge lines 58B and 58C interposed therebetween, and a flange 58F is formed on the lower end of the inclined portion 58D on the inner side in the vehicle width direction. Has been. On the other hand, a flange 58G is formed downward at the lower end of the inclined portion 58E on the outer side in the vehicle width direction of the reinforcement 58.
[0039]
The flange 58F of the reinforcement 58 is welded to the vertical wall portion 56B of the rocker inner panel 56 from the inner side in the vehicle width direction (welding point P13) by line welding such as laser welding in the vicinity of the upper portion of the neutral shaft 60. Further, the flange 58G of the reinforcement 58 is welded to the vertical wall portion 54B of the rocker outer panel 54 from the outside in the vehicle width direction (welding point P14) by line welding such as laser welding in the vicinity of the upper portion of the neutral shaft 60.
[0040]
The plate thickness T4 of the reinforcement 58 is larger than the plate thickness T5 of the rocker outer panel 54 and the plate thickness T6 of the rocker inner panel 56 (T4> T5, T6).
[0041]
Next, the operation of this embodiment will be described.
[0042]
In the present embodiment, when a vertical bending moment is applied to the rocker 52 due to a vehicle offset frontal collision or the like, the reinforcement disposed on the upper side of the vehicle, which is the bending compression deformation side of the rocker 52 having a closed cross-sectional structure. The ment 58 can effectively reduce the deformation of the rocker 52 such as out-of-plane deformation and buckling.
[0043]
On the other hand, since the reinforcement 58 is disposed only on the compression deformation side of the rocker 52 having a closed cross-sectional structure, even when the plate thickness T4 of the reinforcement 58 is increased, the weight of the vehicle body is prevented from significantly increasing. it can. As a result, it is possible to obtain a vehicle body structure in which an increase in weight can be suppressed and the rocker 52 is less likely to collapse.
[0044]
Further, in the present embodiment, the top 58A of the reinforcement 58, which is a mountain shape protruding upward from the longitudinal direction, has a predetermined width V, and the vicinity of both side ends of the top 58A in the width direction is Usually, the center part in the width direction of the upper wall part 54A of the rocker outer panel 54 and the center part in the width direction of the upper wall part 56A of the rocker inner panel 56 are welded by welding such as laser welding (welding points P11, P12). Further, the stress distribution at the center in the width direction of the upper wall portion 54A of the rocker outer panel 54 and the center portion in the width direction of the upper wall portion 56A of the rocker inner panel 56 can be increased. As a result, the strength of the rocker 52 increases.
[0045]
Further, in this embodiment, the plate thickness T4 of the reinforcement 58 can be increased, and the plate thickness T5 of the rocker outer panel 54 and the plate thickness T6 of the rocker inner panel 56 can be reduced, so that an increase in weight can be further suppressed.
[0046]
In the present embodiment, since the joints (welding points P11, P12, P13, P14) between the rocker 52 and the reinforcement 58 are laser-welded, the reinforcement 58 can be easily applied to the rocker 52 having a closed cross-sectional structure. Can be reliably welded.
[0047]
Next, a third embodiment of the vehicle body structure of the present invention will be described with reference to FIG.
[0048]
As shown in FIG. 7, a pair of left and right rockers 62 as vehicle body skeleton members are disposed in the vehicle body side portion in the vicinity of the lower portion of the vehicle body in the longitudinal direction of the vehicle body. (Not shown). The rocker 62 has a closed cross-sectional structure extending in the longitudinal direction of the vehicle body by a rocker upper 64 constituting the upper part in the vehicle vertical direction and a rocker under 66 constituting the lower part in the vehicle vertical direction.
[0049]
The rocker upper 64 is manufactured by hydroforming and has a closed cross-sectional structure, and the cross-sectional shape viewed from the longitudinal direction (vehicle longitudinal direction) is a rectangular shape with the vehicle width direction as the longitudinal direction. Further, the rocker under 66 is manufactured by pressing, and the cross-sectional shape viewed from the longitudinal direction (vehicle longitudinal direction) is a U-shape toward the upper part of the opening, and the rocker upper 64 serving also as a reinforcing member It is disposed above the bending main axis, that is, the neutral axis 68.
[0050]
The upper portion of the outer wall portion 66A of the rocker under 66 from the outer side in the vehicle width direction is welded to the outer wall portion 64A of the rocker upper 64 from the outer side in the vehicle width direction from the outer side in the vehicle width direction by line welding such as laser welding (welding point P15). Has been. Further, the upper part of the inner side wall part 66B of the rocker under 66 from the inner side in the vehicle width direction is welded to the inner side wall part 64B of the rocker upper 64 from the inner side in the car width direction by welding such as laser welding (welding point). P16).
[0051]
The plate thickness T7 of the rocker upper 64 is greater than the plate thickness T8 of the rocker under 66 (T7> T8).
[0052]
Next, the operation of this embodiment will be described.
[0053]
In the present embodiment, when a vertical bending moment is applied to the rocker 62 due to a frontal offset collision or the like of the vehicle, the rocker upper 64 is provided as a reinforcing member disposed only in the upper part of the rocker 62 on the side of the bending compression deformation. Thus, the collapse of the cross section of the rocker 62 can be effectively reduced.
[0054]
On the other hand, since the rocker upper 64 is disposed only on the compression deformation side of the rocker 62, it is possible to suppress a significant increase in the weight of the vehicle body even when the thickness T7 of the rocker upper 64 is increased. As a result, it is possible to obtain a vehicle body structure in which an increase in weight can be suppressed and the rocker 62 is less likely to collapse.
[0055]
Further, in this embodiment, the plate thickness T7 of the rocker upper 64 can be increased and the plate thickness T8 of the rocker under 66 can be reduced, so that an increase in weight can be further suppressed.
[0056]
Further, in the present embodiment, the rocker upper 64 using hydroform as a reinforcing member is disposed only on the vehicle upper side portion on the bending compression deformation side in the rocker 62. As a result, the vertical bending main shaft 68 in the rocker 62, that is, the all-plastic main shaft 68 can be set higher than the conventional structure. As a result, the moment generated in the bent portion is reduced, so that the required proof stress can be reduced as compared with the conventional structure, and the plate thickness can be reduced.
[0057]
In the present embodiment, since the joints (welding points P15, P16) between the rocker upper 64 and the rocker under 66 are laser welded, the rocker under 66 can be easily and reliably welded to the rocker upper 64 having a closed cross-sectional structure.
[0058]
As shown in FIG. 8, the upper and lower widths of the rocker upper 64 are widened so that the lower wall portion 64C of the rocker upper 64 is located below the neutral shaft 68 of the rocker 62, and the rocker upper 64 has an outer wall portion 64A in the vehicle width direction. From the outside in the vehicle width direction, the upper portion of the outer wall portion 66A of the rocker under 66 in the vehicle width direction is welded at two points of the welding point P15 and the welding point P17 by wire welding such as laser welding and the inside of the rocker upper 64 in the vehicle width direction. It is good also as a structure which welded the upper part of the vehicle width direction inner side wall part 66B of the rocker under 66 from the vehicle width direction inner side to the wall part 64B by two points of the welding point P16 and the welding point P18 by wire welding, such as laser welding.
[0059]
Further, the rocker upper 64 may be made of an extruded aluminum material, and the rocker under 66 may be made of an aluminum press.
[0060]
Although the present invention has been described in detail with respect to specific embodiments, the present invention is not limited to such embodiments, and various other embodiments are possible within the scope of the present invention. It will be apparent to those skilled in the art. For example, the vehicle body structure of the present invention can also be applied to parts that require bending strength other than the front side member and the rocker.
[0061]
【The invention's effect】
The present invention according to claim 1 is a vehicle body structure including a vehicle body skeleton member that forms a closed cross-sectional structure when viewed from the longitudinal direction, and is disposed only on the bending compression deformation side of the closed cross-sectional structure due to a load from the longitudinal direction. The cross-sectional shape as viewed from the longitudinal direction is a mountain shape protruding toward the bending compression deformation side of the closed cross-sectional structure, and the top part is coupled to the flat part of the closed cross-sectional structure, and the lower ends of the inclined parts on both sides of the top part Since the flanges formed on each side are connected to the both side walls of the closed cross-section structure, it is possible to suppress the increase in weight and to obtain a vehicle body structure in which the skeletal member is less likely to collapse. It has an excellent effect of increasing the strength.
[0062]
According to the second aspect of the present invention, in the vehicle body structure according to the first aspect , the plate thickness at the side of the bending compression deformation in at least one of the closed cross-section structure and the reinforcing member is made thicker than other portions. In addition to the effect described in item 1, it has an excellent effect that the increase in weight can be further suppressed .
[0063]
According to the third aspect of the present invention, in the vehicle body structure according to the first aspect , since the joint portion between the closed cross-sectional structure and the reinforcing member is laser-welded , in addition to the effect of the first aspect , the closed cross-sectional structure is improved. In contrast, the reinforcing member can be easily and reliably welded .
[Brief description of the drawings]
FIG. 1 is an enlarged cross-sectional view taken along line 1-1 of FIG.
FIG. 2 is a perspective view showing the vehicle body structure according to the first embodiment of the present invention as seen from the obliquely forward outer side of the vehicle.
FIG. 3 is a cross-sectional view corresponding to FIG. 1 of a vehicle body structure according to a modification of the first embodiment of the present invention.
FIG. 4 is a cross-sectional view corresponding to FIG. 1 of a vehicle body structure according to a modification of the first embodiment of the present invention.
FIG. 5 is a cross-sectional view corresponding to FIG. 1 of a vehicle body structure according to a modification of the first embodiment of the present invention.
FIG. 6 is a cross-sectional view showing a vehicle body structure according to a second embodiment of the present invention as seen from the vehicle front-rear direction.
FIG. 7 is a perspective view showing a vehicle body structure according to a third embodiment of the present invention as seen from the obliquely forward outer side of the vehicle.
FIG. 8 is a perspective view showing a vehicle body structure according to a modification of the third embodiment of the present invention as seen from the obliquely forward outer side of the vehicle.
FIG. 9 is a perspective view showing a vehicle body structure according to a conventional embodiment.
[Explanation of symbols]
10 Front side member (body frame member)
12 Dash panel 14 Reinforcement (Reinforcement member)
16 Closed section structure 20 Neutral shaft 52 closed section structure Rocker (body frame member)
58 Reinforcement
60 Rocker neutral shaft 62 Rocker 64 Rocker upper (reinforcing member)
68 Rocker neutral shaft

Claims (3)

長手方向から見て閉断面構造を形成する車体骨格部材を備えた車体構造であって、
長手方向からの荷重による前記閉断面構造の曲げ圧縮変形側のみに配設され、長手方向から見た断面形状が前記閉断面構造の曲げ圧縮変形側へ突出した山形状であり、該山形状の頂部が前記閉断面構造の平面部に結合していると共に、前記頂部の両側の傾斜部の下端に形成された各フランジが前記閉断面構造の両側壁部にそれぞれ結合している補強部材を有することを特徴とする車体構造。
A vehicle body structure including a vehicle body skeleton member forming a closed cross-sectional structure when viewed from the longitudinal direction,
It is disposed only on the bending compression deformation side of the closed cross-sectional structure due to the load from the longitudinal direction, and the cross-sectional shape seen from the longitudinal direction is a mountain shape protruding to the bending compression deformation side of the closed cross-sectional structure , The top portion is coupled to the flat portion of the closed cross-sectional structure, and the flanges formed at the lower ends of the inclined portions on both sides of the top portion include reinforcing members respectively coupled to the side wall portions of the closed cross-sectional structure. Body structure characterized by that.
前記閉断面構造と前記補強部材とのうちの少なくとも一方における曲げ圧縮変形側の板厚を他の部位に比べ厚くしたことを特徴とする請求項1に記載の車体構造。  2. The vehicle body structure according to claim 1, wherein a plate thickness on a bending compression deformation side in at least one of the closed cross-sectional structure and the reinforcing member is made thicker than other portions. 前記閉断面構造と前記補強部材との接合部をレーザ溶接したことを特徴とする請求項1に記載の車体構造。  The vehicle body structure according to claim 1, wherein a joint portion between the closed cross-sectional structure and the reinforcing member is laser-welded.
JP2002031806A 2002-02-08 2002-02-08 Body structure Expired - Fee Related JP3941532B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002031806A JP3941532B2 (en) 2002-02-08 2002-02-08 Body structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002031806A JP3941532B2 (en) 2002-02-08 2002-02-08 Body structure

Publications (2)

Publication Number Publication Date
JP2003231483A JP2003231483A (en) 2003-08-19
JP3941532B2 true JP3941532B2 (en) 2007-07-04

Family

ID=27775104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002031806A Expired - Fee Related JP3941532B2 (en) 2002-02-08 2002-02-08 Body structure

Country Status (1)

Country Link
JP (1) JP3941532B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4398746B2 (en) 2004-02-04 2010-01-13 本田技研工業株式会社 Rear frame structure of the vehicle
JP4535084B2 (en) 2007-05-10 2010-09-01 トヨタ自動車株式会社 Cross-sectional structure of structural members
JP5283405B2 (en) * 2008-03-13 2013-09-04 新日鐵住金株式会社 Automotive reinforcement
JP5158060B2 (en) * 2009-11-30 2013-03-06 トヨタ自動車株式会社 Structural member reinforcement
JP2011207265A (en) * 2010-03-29 2011-10-20 Jfe Steel Corp Vehicle body structure
JP5708564B2 (en) * 2012-06-06 2015-04-30 トヨタ自動車株式会社 Lower body structure
JP5847692B2 (en) * 2012-11-29 2016-01-27 豊田鉄工株式会社 Front side member for vehicle
FR3007374A3 (en) * 2013-06-24 2014-12-26 Renault Sa FRAME PART HAVING TWO HOLLOW BODIES DELIMITED BY A STRUCTURE PART
JP6536558B2 (en) 2016-12-26 2019-07-03 トヨタ自動車株式会社 Vehicle front structure
JP6838432B2 (en) * 2017-03-06 2021-03-03 日本製鉄株式会社 Impact resistant parts of automobiles

Also Published As

Publication number Publication date
JP2003231483A (en) 2003-08-19

Similar Documents

Publication Publication Date Title
JP4969827B2 (en) Body front structure
JP3783546B2 (en) Vehicle side sill structure
US7832795B2 (en) Vehicle front structure
EP1125829B1 (en) Vehicle structure with load transmission elements
EP2006191B1 (en) Vehicle body floor structure
JP4283780B2 (en) Body floor structure
JP4384206B2 (en) Auto body structure
EP1332949A2 (en) Vehicle front structure
JP4151527B2 (en) Body side structure
JP2003127893A (en) Front structure of vehicle body
JP3941532B2 (en) Body structure
JP2011037291A (en) Front pillar structure
JP3307870B2 (en) Car body side sill reinforcement structure
JPH08133131A (en) Cross member structure for floor in vehicle
JP3591508B2 (en) Body front structure
JP3321065B2 (en) Car body frame reinforcement structure
JPH11235963A (en) Side sill reinforcing structure of cab
JP2004338570A (en) Vehicle body structure
JP2003285766A (en) Front body structure
JP3321066B2 (en) Reinforcement structure of lower part of car body
JP7288000B2 (en) Body front structure
JP2852244B2 (en) Lower body structure of vehicle
CN216994557U (en) Instrument board stiffening beam assembly and vehicle that has it
CN217804950U (en) Vehicle body side structure
JPH11235985A (en) Cab under frame reinforcing structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060829

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070313

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070326

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100413

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120413

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120413

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140413

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees