JP3941452B2 - Operation stop control method and operation stop control device for vacuum pump - Google Patents

Operation stop control method and operation stop control device for vacuum pump Download PDF

Info

Publication number
JP3941452B2
JP3941452B2 JP2001318893A JP2001318893A JP3941452B2 JP 3941452 B2 JP3941452 B2 JP 3941452B2 JP 2001318893 A JP2001318893 A JP 2001318893A JP 2001318893 A JP2001318893 A JP 2001318893A JP 3941452 B2 JP3941452 B2 JP 3941452B2
Authority
JP
Japan
Prior art keywords
oil
chamber
deceleration
pump chamber
stop control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001318893A
Other languages
Japanese (ja)
Other versions
JP2003120543A (en
Inventor
亮介 越坂
覚 藏本
昌宏 井田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2001318893A priority Critical patent/JP3941452B2/en
Priority to EP02023201A priority patent/EP1304484A3/en
Priority to US10/272,711 priority patent/US20030072651A1/en
Publication of JP2003120543A publication Critical patent/JP2003120543A/en
Application granted granted Critical
Publication of JP3941452B2 publication Critical patent/JP3941452B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/06Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids specially adapted for stopping, starting, idling or no-load operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C27/00Sealing arrangements in rotary-piston pumps specially adapted for elastic fluids
    • F04C27/008Sealing arrangements in rotary-piston pumps specially adapted for elastic fluids for other than working fluid, i.e. the sealing arrangements are not between working chambers of the machine
    • F04C27/009Shaft sealings specially adapted for pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/40Electric motor
    • F04C2240/403Electric motor with inverter for speed control

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Compressor (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、回転軸の回転に基づいてポンプ室内のガス移送体を動かし、前記ガス移送体の動作によってガスを移送して吸引作用をもたらす真空ポンプにおける運転停止方法及び運転停止制御装置に関するものである。
【0002】
【従来の技術】
特開昭63−129829号公報、特開平3−11193号公報に開示される真空ポンプでは、真空ポンプ内の潤滑必要部位を潤滑するための油を存在させたくない領域に油を侵入させないようにする対策が施されている。
【0003】
特開昭63−129829号公報の装置では、油が発電機室に侵入しないようにプレートが回転軸に止着されている。回転軸の周面に沿って発電機室に侵入しようとする油はプレートに付着し、プレートに付着した油は、プレートの回転に伴う遠心力によってプレートの周囲の環状溝に飛ばされる。環状溝内に跳ばされた油は、環状溝の下部に接続された排出油路を経由して外部に排出される。
【0004】
特開平3−11193号公報の装置では、軸受けに油を供給するための環状室内にスリンガが配設されている。環状室から回転軸の周面に沿って渦流ポンプ要素側へ侵入しようとする油は、回転するスリンガによってはね飛ばされ、スリンガによってはね飛ばされた油は環状室に繋がる排油孔を経由してモータ室側に排出される。
【0005】
【発明が解決しようとする課題】
回転軸と一体的に回転するプレート(スリンガ)は、油の侵入を阻止するための非接触型油侵入防止手段の一種である。プレート(スリンガ)の回転に伴う遠心力を利用した油侵入防止作用は、回転軸の回転停止状態では無効となる。真空ポンプが運転状態から運転停止状態へ移行する際には、隣合うモータ室(発電機室)とポンプ室との間で差圧が生じる。リップシール等の接触型シール手段が用いられていないとすると、前記した差圧の生じ方によってはモータ室(発電機室)側からポンプ室側へ油が侵入する。前記した差圧による油侵入を防止し得るリップシール等の接触型シール手段には劣化の問題があり、接触型シール手段が劣化すると油侵入の防止が困難になる。
【0006】
本発明は、真空ポンプが運転状態から運転停止状態へ移行する際のポンプ室への油侵入を防止することを目的とする。
【0007】
【課題を解決するための手段】
そのために請求項1及び請求項2の発明は、ポンプ室と隣接するように油存在領域を形成するオイルハウジングと、前記オイルハウジングを貫通して前記油存在領域に突出する回転軸に沿って前記油存在領域から前記ポンプ室へ油が侵入するのを防止するための非接触型油侵入防止手段とを備え、前記回転軸の回転に基づいてポンプ室内のガス移送体を動かし、前記ガス移送体の動作によってガスを移送して吸引作用をもたらす真空ポンプを対象とし、請求項1の発明では、前記ポンプ室と前記油存在領域との間の最大差圧が前記回転軸の完全停止よりも前に生じるように前記回転軸の回転速度を減速するようにした。
【0008】
請求項2の発明では、請求項1において、前記回転軸の回転速度を一定の減速度よりも大きい減速度で減速開始した後、前記一定の減速度よりも小さい減速度で減速し、前記一定の減速度で減速して停止させるのに要する時間で運転を停止させるようにした。
【0009】
請求項3及び請求項4の発明は、回転軸の回転に基づいてポンプ室内のガス移送体を動かし、前記ガス移送体の動作によってガスを移送して吸引作用をもたらす真空ポンプを対象とし、請求項3の発明では、前記ポンプ室と隣接するように油存在領域を形成するオイルハウジングと、前記オイルハウジングを貫通して前記油存在領域に突出する前記回転軸に沿って前記油存在領域から前記ポンプ室へ油が侵入するのを防止するための非接触型油侵入防止手段と、真空ポンプの運転停止制御を行なう停止制御手段とを備えた真空ポンプを構成し、前記停止制御手段は、前記ポンプ室と前記油存在領域との間の最大差圧が前記回転軸の完全停止よりも前に生じるように前記回転軸の回転速度を減速するようにした。
【0010】
請求項1及び請求項3の発明において、真空ポンプの停止時におけるポンプ室と油存在領域との間の差圧が大き過ぎると、非接触型油侵入防止手段の存在にも係わらず油存在領域の油がポンプ室へ侵入してしまうおそれがある。ポンプ室と油存在領域との間の最大差圧が回転軸の完全停止よりも前に生じるようにする運転制御は、回転軸の完全停止時の差圧を低減する。回転軸の完全停止時の差圧の低減は、油洩れ防止に有効である。
【0011】
請求項4の発明では、請求項3において、前記停止制御手段は、前記回転軸の回転速度を一定の減速度よりも大きい減速度で減速開始した後、前記一定の減速度よりも小さい減速度で減速し、前記一定の減速度で減速して停止させるのに要する時間で運転を停止させるようにした。
【0012】
請求項2及び請求項4の発明におけるこのような減速の仕方は、回転軸の完全停止時の差圧を低減する上で適正である。
【0013】
【発明の実施の形態】
以下、本発明をルーツポンプに具体化した第1の実施の形態を図1〜図7に基づいて説明する。
【0014】
図1(a)に示すように、多段ルーツポンプ11のロータハウジング12の前端にはフロントハウジング13が接合されており、フロントハウジング13には封鎖体36が接合されている。ロータハウジング12の後端にはリヤハウジング14が接合されている。ロータハウジング12は、シリンダブロック15と複数の室形成壁16とからなる。図2(b)に示すように、シリンダブロック15は、一対のブロック片17,18からなり、室形成壁16は一対の壁片161,162からなる。図1(a)に示すように、フロントハウジング13と室形成壁16との間の空間、隣合う室形成壁16の間の空間、及びリヤハウジング14と室形成壁16との間の空間は、それぞれポンプ室39,40,41,42,43となっている。
【0015】
フロントハウジング13とリヤハウジング14とには一対の回転軸19,20がラジアルベアリング21,37,22,38を介して回転可能に支持されている。両回転軸19,20は、横向き、かつ互いに平行に配置されている。回転軸19,20は室形成壁16に通されている。ラジアルベアリング37,38は、ベアリングホルダ45,46に支持されている。ベアリングホルダ45,46は、リヤハウジング14の端面144に凹設された嵌入孔47,48に嵌合して固定されている。
【0016】
回転軸19には複数のロータ23,24,25,26,27が一体形成されており、回転軸20には同数のロータ28,29,30,31,32が一体形成されている。ロータ23〜32は、回転軸19,20の軸線191,201の方向に見て同形同大の形状をしている。ロータ23,24,25,26,27の厚みはこの順に小さくなってゆくようにしてあり、ロータ28,29,30,31,32の厚みはこの順に小さくなってゆくようにしてある。ロータ23,28は互いに噛合した状態でポンプ室39に収容されており、ロータ24,29は互いに噛合した状態でポンプ室40に収容されている。ロータ25,30は互いに噛合した状態でポンプ室41に収容されており、ロータ26,31は互いに噛合した状態でポンプ室42に収容されている。ロータ27,32は互いに噛合した状態でポンプ室43に収容されている。ポンプ室39〜43内は無潤滑状態にされる。そのため、各ロータ23〜32は、シリンダブロック15、室形成壁16、フロントハウジング13及びリヤハウジング14との間で摺接しないようになっている。又、噛合するロータ同士の間でも摺接しないようになっている。
【0017】
図2(a)に示すように、ロータ23,28は、ポンプ室39内に吸入領域391と、吸入領域391よりも高圧となる圧力領域392とを区画する。同様に、ロータ24,29はポンプ室40内に、ロータ25,30はポンプ室41内に、ロータ26,31はポンプ室42内に、それぞれ吸入領域391及び圧力領域392と同様の吸入領域及び圧力領域を区画する。図3(a)に示すように、ロータ27,32はポンプ室43内に、吸入領域391及び圧力領域392と同様の吸入領域431及び圧力領域432を区画する。
【0018】
図1(a)に示すように、リヤハウジング14にはギヤハウジング33が組み付けられている。回転軸19,20は、リヤハウジング14における貫通孔141,142及び嵌入孔47,48を通ってギヤハウジング33内に突出している。各回転軸19,20の突出部位193,203には歯車34,35が互いに噛合した状態で止着されている。ギヤハウジング33には電動モータMが組み付けられている。誘導モータ型の電動モータMの駆動力は、軸継ぎ手44を介して回転軸19に伝えられ、回転軸19は、電動モータMによって図2(a),(b)及び図3(a),(b)の矢印R1の方向に回転される。回転軸19の回転は歯車34,35を介して回転軸20に伝えられ、回転軸20は図2(a),(b)及び図3(a),(b)の矢印R2で示すように回転軸19とは逆方向に回転する。即ち、回転軸19,20は、歯車34,35を用いて同期して回転される。
【0019】
図4(a)及び図5(a)に示すように、ギヤハウジング33内のギヤ収容室331には潤滑油Yが貯留されており、この潤滑油Yが歯車34,35を潤滑する。歯車機構を構成する歯車34,35を収容するギヤハウジング33のギヤ収容室331は、多段ルーツポンプ11の本体の外部に連通しないように密封された油存在領域である。ギヤハウジング33及びリヤハウジング14は、ポンプ室43と隣接するように油存在領域を形成するオイルハウジングを構成する。ギヤ収容室331内の貯留油は、歯車34,35の回転動作によってかき上げられる。歯車34,35の回転動作によってかき上げられた潤滑油Yは、軸受けであるラジアルベアリング37,38を潤滑する。
【0020】
図2(b)に示すように、室形成壁16内には通路163が形成されている。室形成壁16には通路163の入口164及び出口165が形成されている。隣合うポンプ室39,40,41,42,43は、通路163を介して連通している。
【0021】
図2(a)に示すように、ブロック片18には導入口181がポンプ室39の吸入領域391に連通するように形成されている。図3(a)に示すように、ブロック片17には排出口171がポンプ室43の圧力領域432に連通するように形成されている。導入口181からポンプ室39の吸入領域391に導入されたガスは、ロータ23,28の回転に伴って圧力領域392へ移行する。圧力領域392へ移行したガスは、吸入領域391での状態よりも圧縮されて増圧された状態となる。圧力領域392のガスは、室形成壁16の入口164から通路163を経由して出口165から隣のポンプ室40の吸入領域へ移送される。以下、同様にガスは、ポンプ室の容積が小さくなってゆく順、即ちポンプ室40,41,42,43の順に移送される。ポンプ室43の吸入領域431へ移送されたガスは、ロータ27,32の回転によって圧力領域432へ移行した後、排出口171から外部へ排出される。ロータ23〜32は、ガスを移送するガス移送体である。
【0022】
排出口171は、真空ポンプの本体のハウジングの外部へ前記ガスを吐出する吐出通路である。ポンプ室43は、吐出通路である排出口171に連なる最終のポンプ室であり、最終のポンプ室43内の圧力領域432は、ポンプ室39〜43内で最大の圧力(大気圧に近い圧力)となる最大圧力領域である。排出口171は、ロータ27,32によってポンプ室43内に区画される最大圧力領域432に連通している。
【0023】
図1(a)に示すように、嵌入孔47,48内における回転軸19,20には環状の軸封環体49,50が嵌合して固定されている。軸封環体49,50の内周面と回転軸19,20の周面192,202との間にはシールリング51,52が介在されている。軸封環体49,50と回転軸19,20との間に介在されたシールリング51,52は、潤滑油Yが回転軸19,20の周面192,202に沿って嵌入孔47,48からポンプ室43側へ洩れるのを阻止する。
【0024】
図4(b)及び図5(b)に示すように、軸封環体49,50の最大径部60の外周面491,501と嵌入孔47,48の円周面471,481との間には間隙がある。軸封環体49,50の端面492,502と嵌入孔47,48の底形成面472,482との間には間隙がある。従って、軸封環体49,50は、回転軸19,20と一体的に回転可能である。
【0025】
嵌入孔47,48の底形成面472,482には複数の環状突条53,54が同心円状に形成されている。底形成面472,482に対向する軸封環体49,50の端面492,502には複数の環状溝55,56が同心円状に形成されている。環状突条53,54は、環状溝55,56に対向するように入り込んでいる。環状溝55,56に入り込んでいる環状突条53,54の先端は、環状溝55,56の底面に近接している。環状溝55は、環状突条53によってラビリンス室551,552に区画されており、環状溝56は、環状突条54によってラビリンス室561,562に区画されている。環状突条53と環状溝55とは、回転軸19側におけるラビリンスシール57を構成し、環状突条54と環状溝56とは、回転軸20側におけるラビリンスシール58を構成する。非接触型シール手段であるラビリンスシール57,58は、ギヤ収容室331からポンプ室43への油侵入を防止する非接触型油侵入防止手段である。。
【0026】
軸封環体49,50の端面492,502は、軸封環体49,50側のシール用対向面となり、嵌入孔47,48の底形成面472,482は、リヤハウジング14側のシール用対向面となる。本実施の形態では、端面492,502及び底形成面472,482は、回転軸19,20の軸線191,201と直交する平面である。即ち、シール用対向面である端面492,502及び底形成面472,482は、軸封環体49,50の半径方向の方向成分のみを有する。
【0027】
図4(b)に示すように、軸封環体49の最大径部60の外周面491には螺旋溝61が形成されている。図5(b)に示すように、軸封環体50の最大径部60の外周面501には螺旋溝62が形成されている。螺旋溝61の螺旋の向きは、回転軸19の回転方向R1に辿るにつれてギヤ収容室331側からポンプ室43側へ移行する向きとなっている。螺旋溝62の螺旋の向きは、回転軸20の回転方向R2に辿るにつれてギヤ収容室331側からポンプ室43側へ移行する向きとなっている。従って、螺旋溝61,62は、回転軸19,20の回転に伴って流体をポンプ室43側からギヤ収容室331側へ移送するポンプ作用をもたらす。即ち、螺旋溝61,62は、軸封環体49,50の外周面491,501と嵌入孔47,48の円周面471,481との間における油をポンプ室43側から油存在領域側へ付勢するポンピング手段を構成する。このようなポンピング手段は、油存在領域であるギヤ収容室331からポンプ室43へ油が侵入するのを防止するための非接触型油侵入防止手段の一種である。嵌入孔47,48の円周面471,481はシール面となり、円周面471,481に対向する外周面491,501は、シール面に対する対向面となる。
【0028】
図3(b)に示すように、最終のポンプ室43を形成するリヤハウジング14の室形成壁面143には排気圧波及溝63,64が形成されている。図4(a)に示すように、排気圧波及溝63は、ロータ27,32の回転に伴って容積変化する最大圧力領域432に通じている。又、排気圧波及溝63は、貫通孔141に通じている。図5(a)に示すように、排気圧波及溝64は、最大圧力領域432に通じ、かつ貫通孔142に通じている。
【0029】
図1(b)及び図6に示すように、軸封環体49の最小径部59の外周面には環状の油侵入防止リング66が嵌合して固定されている。油侵入防止リング66は、小径の油侵入防止部67と大径の油侵入防止部68とからなる。ベアリングホルダ45の奥壁69には環状の第1の油回収室70と環状の第2の油回収室71とが油侵入防止リング66を包囲するように形成されている。環状の第1の油回収室70は、小径の油侵入防止部67を包囲しており、環状の第2の油回収室71は、大径の油侵入防止部68を包囲している。
【0030】
軸封環体49の最大径部60には油侵入防止部72が一体形成されている。嵌入孔47の円周面471には環状の第3の油回収室73が油侵入防止部72を包囲するように形成されている。
【0031】
嵌入孔47の周面の最下部及びリヤハウジング14の端面144には油回収通路74が形成されている。油回収通路74は、嵌入孔47の周面の最下部に形成された水平経路741と、端面144に形成された垂直経路742とからなる。水平経路741は、第3の油回収室73に連通しており、垂直経路742はギヤ収容室331に連通している。即ち、第3の油回収室73とギヤ収容室331とは、油回収通路74によって連通している。
【0032】
軸封環体50の最小径部59にも油侵入防止リング66が設けられており、軸封環体50の最大径部60にも油侵入防止部72が設けられている。又、ベアリングホルダ46にも油回収室70,71が形成されており、嵌入孔48にも油回収室73が形成されている。さらに、嵌入孔48の最下部にも油回収通路74が形成されている。軸封環体50側における第3の油回収室73とギヤ収容室331とは、軸封環体50側における油回収通路74によって連通している。
【0033】
ギヤ収容室331に貯留された潤滑油Yは、歯車34,35及びラジアルベアリング37,38を潤滑する。ラジアルベアリング37,38を潤滑した潤滑油Yは、ラジアルベアリング37,38のリング間隙371,381を介してベアリングホルダ45,46の奥壁69に形成された挿通孔691へ侵入する。挿通孔691へ侵入した潤滑油Yは、軸封環体49,50の最小径部59の周面と挿通孔691の周面との間の間隙、及び油侵入防止部67の端面672と第1の油回収室70の油回収用端面701との間の間隙g1を経由して第1の油回収室70に侵入しようとする。このとき、端面672に付着した潤滑油Yは、油侵入防止部67の回転に伴う遠心力によって第1の油回収室70の油回収用周壁面702あるいは油回収用端面701に向けて飛ばされる。油回収用周壁面702あるいは油回収用端面701に向けて飛ばされた潤滑油Yの少なくとも一部は、油回収用周壁面702あるいは油回収用端面701に付着する。油回収用周壁面702あるいは油回収用端面701に付着した潤滑油Yは、自重によって油回収用周壁面702あるいは油回収用端面701を伝い落ちて第1の油回収室70の最下部に達する。第1の油回収室70の最下部に達した潤滑油Yは、第2の油回収室71の最下部へ伝い落ちる。
【0034】
第1の油回収室70に侵入した潤滑油Yは、大径の油侵入防止部68の油侵入防止端面681と第2の油回収室71の油回収用端面711との間の間隙g2を経由して第2の油回収室71に侵入しようとする。このとき、油侵入防止端面681に付着した潤滑油Yは、油侵入防止部68の回転に伴う遠心力によって第2の油回収室71の油回収用周壁面712あるいは油回収用端面711に向けて飛ばされる。油回収用周壁面712あるいは油回収用端面711に向けて飛ばされた潤滑油Yの少なくとも一部は、油回収用周壁面712あるいは油回収用端面711に付着する。油回収用周壁面712あるいは油回収用端面711に付着した潤滑油Yは、自重によって油回収用周壁面712あるいは油回収用端面711を伝い落ちて第2の油回収室71の最下部に達する。
【0035】
第2の油回収室71の最下部に達した潤滑油Yは、第3の油回収室73の最下部へ伝い落ちる。
第2の油回収室71に侵入した潤滑油Yは、油侵入防止部72の端面601と第3の油回収室73の油回収用端面731との間の間隙g3を経由して第3の油回収室73に侵入しようとする。このとき、端面601に付着した潤滑油Yは、油侵入防止部72の回転に伴う遠心力によって第3の油回収室73の周壁面732あるいは油回収用端面731に向けて飛ばされる。周壁面732あるいは油回収用端面731に向けて飛ばされた潤滑油Yの少なくとも一部は、周壁面732あるいは油回収用端面731に付着する。周壁面732あるいは油回収用端面731に付着した潤滑油Yは、自重によって周壁面732あるいは油回収用端面731を伝い落ちて第3の油回収室73の最下部に達する。
【0036】
回転軸19,20よりも上方において、小径の油侵入防止部67の端面672から周壁面702あるいは端面701に向けて飛ばされた潤滑油Yのうちの一部がテーパ周面671上に落下することもある。又、油侵入防止端面681から油回収用周壁面712あるいは油回収用端面711に向けて飛ばされた潤滑油Yの一部がテーパ周面671上に落下することもある。テーパ周面671上に落下した潤滑油Yは、油侵入防止リング66の回転に伴う遠心力によって周壁面702に向けて飛ばされたり、あるいはテーパ周面671上を油侵入防止端面681側から端面701に向けて移動してゆく。油侵入防止端面681側から端面701に向けてテーパ周面671上を移動してゆく潤滑油Yは、端面701に向けて飛ばされたり、あるいは油侵入防止部67の端面672に移行する。従って、テーパ周面671上に付着した潤滑油Yは、最終的には第2の油回収室71の最下部に達する。
【0037】
第3の油回収室73の最下部に達した潤滑油Yは、油回収通路74を経由してギヤ収容室331に還流する。
油侵入防止部67と第1の油回収室70、油侵入防止部68と第2の油回収室71、及び油侵入防止部72と第3の油回収室73とは、それぞれ油存在領域であるギヤ収容室331からポンプ室43へ油が侵入するのを防止するための非接触型油侵入防止手段を構成する。
【0038】
図1(a)に示すように、電動モータMにはインバータ65が電気接続されている。インバータ65は、制御装置75の指令制御を受ける。制御装置75は、ON−OFFスイッチ76のON−OFF指令に基づいてインバータ65の出力を制御する。インバータ65は、制御装置75の指令制御に基づいて交流電源77を電源として電動モータMの回転速度制御を行なう。
【0039】
図7の曲線E1は、真空ポンプが運転状態にあって時間toにON−OFFスイッチ76がOFFされた後の回転軸19,20の回転数の変化を表す。制御装置75は、真空ポンプが運転状態にあってON−OFFスイッチ76がOFFされると、回転軸19,20の回転数が曲線E1で示す変化をもたらす指令をインバータ65に与える。インバータ65は、ON−OFFスイッチ76のOFFに応じた制御装置75の前記した指令に基づいて、回転軸19,20の回転数が曲線E1の変化となるように電動モータMの作動停止を遂行する。制御装置75は、真空ポンプの運転停止制御を行なう停止制御手段である。
【0040】
本実施の形態では、真空ポンプの定常運転状態では回転軸19,20は一定の回転数Nで回転するようにしてある。そして、真空ポンプの定常運転状態ではポンプ室43の圧力領域432とギヤ収容室331との間の差圧が殆ど無いようになっている。
【0041】
第1の実施の形態では以下の効果が得られる。
(1-1)図7の曲線Poは、回転軸19,20が直線Dで示すように一定の減速度で減速したときのポンプ室43の圧力領域432とギヤ収容室331との間の差圧の変化を表す。この場合の最大差圧は、回転軸19,20の回転が完全停止した時間t1よりも後に生じている。
【0042】
図7の曲線P1は、回転軸19,20が曲線E1で示すように減速したときのポンプ室43の圧力領域432とギヤ収容室331との間の差圧の変化を表す。曲線E1で示す回転軸19,20の減速における完全停止までに要する時間は、直線Dで示す回転軸19,20の減速における完全停止までに要する時間(t1−to)と同じである。この場合の最大差圧は、回転軸19,20の回転が完全停止した時間t1よりも前に生じており、回転軸19,20が完全停止したときの差圧は、直線Dの減速の場合よりも小さくなっている。
【0043】
回転軸19,20の回転が完全停止したときには、前記したポンピング手段のポンピング作用、及び油侵入防止部67,68,72の油侵入防止作用が無力化したときである。ポンピング手段のポンピング作用及び油侵入防止部67,68,72の油侵入防止作用が無力化したとき、圧力領域432とギヤ収容室331との間の差圧が大きいと、油がポンプ室43へ侵入するおそれがある。そのため、ポンプ室43の圧力領域432とギヤ収容室331との間の最大差圧が時間t1よりも後に生じる場合には、油がポンプ室43へ侵入するおそれがある。
【0044】
曲線E1は、直線Dで示す一定の減速度よりも大きい減速度で回転軸19,20の回転を減速開始した後、直線Dで示す一定の減速度よりも小さい減速度で回転軸19,20の回転を減速させる減速曲線である。又、曲線E1は、直線Dで示す一定の減速度で減速して停止させるのに要する時間(t1−to)で運転を停止させる減速曲線である。このような曲線E1で示す減速によってポンプ室43の圧力領域432とギヤ収容室331との間の最大差圧を時間t1よりも前に生じさせる運転停止制御は、油がポンプ室43へ侵入するおそれを解消する。
【0045】
(1-2)曲線E1は、a・e-bt で表されるエキスポネンシャル曲線である。tは時間、a,bは正の定数である。エキスポネンシャル曲線は、最大差圧をできる限り小さく、かつ回転軸19,20の完全停止時の差圧をできるだけ小さくする上で、減速曲線として好適である。
【0046】
(1-3)真空ポンプを運転しているときには、ポンプ室39〜43内の圧力は、大気圧相当の圧力領域であるギヤ収容室331内の圧力よりも低くなる。そのため、特にミスト状の潤滑油Yが油侵入防止リング66の表面及び軸封環体49,50の表面に沿ってポンプ室43側へ侵入しようとする。ミスト状の潤滑油Yがポンプ室43側へ侵入するのを防止するには、ミスト状の潤滑油Yを固定壁面に付着させて液化させるのがよい。又、回転軸19,20の周面あるいは回転軸19,20と一体的に回転する部材の壁面に付着している潤滑油Yは、前記した固定壁面に移して付着させるのがよい。
【0047】
油侵入防止部67,68,72は、油回収室70,71,73の形成壁面に潤滑油Yを効率良く付着させる役割を果たす。油侵入防止部の個数が増えれば、油侵入防止部の全体における油付着面積が増える。油侵入防止部の全体における油付着面積が増えるほど、油侵入防止部の回転に伴う遠心力によって飛ばされる油量が多くなる。即ち、複数の油侵入防止部67,68,72を回転軸19,20の軸線191,201の方向に並設した構成は、真空ポンプの運転状態における油侵入防止作用を向上する。
【0048】
(1-4)回転軸19,20に嵌合された軸封環体49,50の端面492,502の径は、回転軸19,20の周面192,202の径よりも大きい。従って、軸封環体49,50の端面492,502と嵌入孔47,48の底形成面472,482との間のラビリンスシール57,58の径は、回転軸19,20の周面192,202とリヤハウジング14との間に設けられるラビリンスシールの径よりも大きくなる。ラビリンスシール57,58の径が大きくなるほど圧力変動波及抑制用のラビリンス室551,552,561,562の容積が大きくなり、ラビリンスシール57,58におけるシール機能が向上する。即ち、軸封環体49,50の端面492,502と嵌入孔47,48の底形成面472,482との間は、ラビリンス室551,552,561,562の容積を増やしてシール機能を向上する上で、ラビリンスシール57,58の設定領域として好適である。
【0049】
(1-5)嵌入孔47,48と軸封環体49,50との間の間隙が小さいほど、潤滑油Yは嵌入孔47,48と軸封環体49,50との間の間隙へ入り難くなる。円周面471,481を有する嵌入孔47,48の底形成面472,482と、軸封環体49,50の端面492,502とは、全面にわたって均等に近接させ易い。従って、環状突条53,54の先端と環状溝55,56の底面との間の間隙、及び嵌入孔47,48の底形成面472,482と軸封環体49,50の端面492,502との間の間隙を可及的に小さくし易い。これらの間隙が小さいほど、ラビリンスシール57,58におけるシール機能が向上する。即ち、嵌入孔47,48の底形成面472,482は、非接触型シール手段であるラビリンスシール57,58の設定領域として好適である。
【0050】
(1-6)ラビリンスシール57,58は、ガスに対してもシール性を有する。多段ルーツポンプ11の運転開始時にはポンプ室39〜43内は大気圧よりも高くなる。ラビリンスシール57,58は、ポンプ室43からギヤ収容室331側への軸封環体49,50の表面に沿った排ガス洩れを防止する。油洩れ及び排ガス洩れを共に防止するラビリンスシール57,58は、非接触型シール手段として最適である。
【0051】
(1-7)非接触型シール手段は、リップシールのような接触型シール手段における経時的な劣化(シール性の低下)を生じないが、接触型シール手段に比べてシール性では幾分劣る。非接触型油侵入防止手段を構成する油侵入防止部67,68,72は、これを補償するものである。
【0052】
(1-8)軸封環体49に設けられた螺旋溝61は、回転軸19の回転に伴い、嵌入孔47の円周面471を掃過してゆく。螺旋溝61の掃過領域にある潤滑油Yは、ポンプ室43側からギヤ収容室331側へ掃き移される。又、軸封環体50に設けられた螺旋溝62は、回転軸20の回転に伴い、嵌入孔48の円周面481を掃過してゆく。螺旋溝62の掃過領域にある潤滑油Yは、ポンプ室43側からギヤ収容室331側へ掃き移される。即ち、ポンピング手段である螺旋溝61,62を備えた軸封環体49,50は、潤滑油Yに対して高いシール性を発揮する。
【0053】
(1-9)螺旋溝61,62を設けた外周面491,501は、軸封環体49,50の最大径部60の外周面であり、軸封環体49,50における周速度が最大となる箇所である。軸封環体49,50の外周面491,501と嵌入孔47,48の円周面471,481との間にあるガスは、高速で周回する螺旋溝61,62によってポンプ室43側からギヤ収容室331側へ効率よく付勢される。軸封環体49,50の外周面491,501と嵌入孔47,48の円周面471,481との間にある潤滑油Yは、ポンプ室43側からギヤ収容室331側へ効率よく付勢されるガスに追随する。軸封環体49,50の外周面491,501は、外周面491,501と円周面471,481との間を経由した嵌入孔47,48側からポンプ室43側への油洩れを阻止する性能、即ち潤滑油Yに対する軸封環体49,50のシール性を高める上で、螺旋溝61,62の設定箇所として好適である。
【0054】
(1-10)回転軸19の周面192と貫通孔141との間には僅かな間隙があり、ロータ27,32とリヤハウジング14の室形成壁面143との間には僅かな間隙がある。そのため、最終のポンプ室43の圧力が前記の僅かな間隙を介してラビリンスシール57に波及する。同様に、回転軸20の周面202と貫通孔142との間にも僅かな間隙があるため、最終のポンプ室43の圧力がラビリンスシール58に波及する。排気圧波及溝63,64のない場合には、吸入領域431の圧力と最大圧力領域432の圧力とがラビリンスシール57,58に同程度に波及する。
【0055】
本実施の形態における排気圧波及溝63,64は、ラビリンスシール57,58に対する最大圧力領域432の圧力の波及効果を高める。即ち、排気圧波及溝63,64を介した最大圧力領域432の圧力の波及効果が吸入領域431の圧力の波及効果を大きく上回る。従って、排気圧波及溝63,64がある場合にポンプ室43からラビリンスシール57,58に波及する圧力は、排気圧波及溝63,64がない場合に比べて大きく上回ることになる。その結果、排気圧波及溝63,64がある場合のラビリンスシール57,58の前後の圧力差は、排気圧波及溝63,64がない場合に比べて大きく下回る。即ち、排気圧波及溝63,64は、ラビリンスシール57,58における油洩れ防止効果を高める。
【0056】
(1-11)ドライポンプ型のルーツポンプ11では、ポンプ室39〜43内での潤滑油Yの使用は行われない。ポンプ室39〜43内に潤滑油Yを存在させたくないルーツポンプ11は、本発明の適用対象として好適である。
【0057】
本発明では、図8の曲線E2で示す減速曲線の採用も可能である。曲線E2は、直線Dで示す一定の減速度よりも大きい一定の減速度で回転軸19,20の減速を開始した後、直線Dで示す一定の減速度よりも小さい一定の減速度で回転軸19,20の回転を減速させる減速曲線である。又、曲線E2は、直線Dで示す一定の減速度で減速して停止させるのに要する時間(t1−to)で運転を停止させる減速曲線である。このような曲線E2で示す減速制御は、ポンプ室43の圧力領域432とギヤ収容室331との間の最大差圧を時間t1よりも前に生じさせる。
【0058】
本発明では以下のような実施の形態も可能である。
(1)3つ以上の直線部分からなる減速曲線で表される減速制御を行なうこと。
【0059】
(2)直線部分と曲線部分とからなる減速曲線で表される減速制御を行なうこと。
(3)ポンピング手段及び油侵入防止部67,68,72がなく、ラビリンスシール57,58のみを備えた真空ポンプに本発明を適用すること。
【0060】
(4)ポンピング手段がなく、油侵入防止部67,68,72とラビリンスシール57,58とを備えた真空ポンプに本発明を適用すること。
(5)油侵入防止部67,68,72がなく、ポンピング手段とラビリンスシール57,58とを備えた真空ポンプに本発明を適用すること。
【0061】
(6)ルーツポンプ以外の真空ポンプに本発明を適用すること。
前記した実施の形態から把握できる請求項記載以外の発明について以下に記載する。
【0062】
〔1〕請求項4において、前記停止制御手段は、エキスポネンシャル曲線で表される減速曲線をもたらすように前記回転軸の回転速度を減速させる制御を行なう真空ポンプにおける運転停止制御装置。
【0063】
〔2〕請求項3、請求項4及び前記〔1〕項のいずれか1項において、前記非接触型油侵入防止手段は、非接触型シール手段である真空ポンプにおける運転停止制御装置。
【0064】
〔3〕前記〔1〕項において、前記非接触型シール手段は、前記回転軸と前記オイルハウジングとの間に設けられたラビリンスシールである真空ポンプにおける運転停止制御装置。
【0065】
〔4〕請求項3、請求項4及び前記〔1〕項のいずれか1項において、前記オイルハウジングを貫通して前記油存在領域に突出する前記回転軸の突出部位に設けられた環状の軸封環体と、
前記回転軸と一体的に回転する前記軸封環体に対向するように前記オイルハウジングに形成されたシール面と、
前記シール面に対向する前記軸封環体の対向面に設けられたポンピング手段とによって前記非接触型油侵入防止手段を構成し、
前記ポンピング手段は、前記回転軸の回転に伴い、前記対向面と前記シール面との間における油を前記ポンプ室側から前記油存在領域側へ付勢するようにした真空ポンプにおける運転停止制御装置。
【0066】
〔5〕請求項3、請求項4及び前記〔1〕項乃至前記〔4〕項のいずれか1項において、前記油存在領域は、前記回転軸を回転可能に支持するための軸受けを収容する領域である真空ポンプにおける運転停止制御装置。
【0067】
〔6〕請求項3、請求項4及び前記〔1〕項乃至前記〔5〕項のいずれか1項において、前記真空ポンプは、複数の前記回転軸を平行に配置すると共に、前記各回転軸上にロータを配置し、隣合う回転軸上のロータを互いに噛み合わせ、互いに噛み合った状態の複数のロータを1組として収容する複数のポンプ室、又は単一のポンプ室を備えたルーツポンプであり、複数の前記回転軸は、歯車機構を用いて同期して回転され、前記油存在領域は、前記歯車機構を収容する領域である真空ポンプにおける運転停止制御装置。
【0068】
【発明の効果】
以上詳述したように本発明では、ポンプ室と油存在領域との間の最大差圧が回転軸の完全停止よりも前に生じるように前記回転軸の回転速度を減速するようにしたので、真空ポンプが運転状態から運転停止状態へ移行する際のポンプ室への油侵入を防止し得るという優れた効果を奏する。
【図面の簡単な説明】
【図1】第1の実施の形態を示し、(a)は多段ルーツポンプ11全体の平断面図。(b)は要部拡大平断面図。
【図2】(a)は図1のA−A線断面図。(b)は図1のB−B線断面図。
【図3】(a)は図1のC−C線断面図。(b)は図1のD−D線断面図。
【図4】(a)は図3(b)のE−E線断面図。(b)は要部拡大側断面図。
【図5】(a)は図3(b)のF−F線断面図。(b)は要部拡大側断面図。
【図6】要部拡大側断面図。
【図7】減速を説明するためのグラフ。
【図8】別例の減速を説明するためのグラフ。
【符号の説明】
11…真空ポンプであるルーツポンプ。14…オイルハウジングを構成するリヤハウジング。19,20…回転軸。193,203…突出部位。23,24,25,26,27,28,29,30,31,32…ガス移送体となるロータ。33…オイルハウジングを構成するギヤハウジング。331…油存在領域となるギヤ収容室。43…ポンプ室。57,58…非接触型シール手段としてのラビリンスシール。61,62…非接触型油侵入防止手段を構成するポンピング手段としての螺旋溝。67,68,72…非接触型油侵入防止手段を構成する油侵入防止部。75…停止制御手段としての制御装置。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an operation stop method and an operation stop control device for a vacuum pump that moves a gas transfer body in a pump chamber based on rotation of a rotating shaft and transfers gas by the operation of the gas transfer body to bring about a suction action. is there.
[0002]
[Prior art]
In the vacuum pumps disclosed in Japanese Patent Laid-Open Nos. 63-129829 and 3-11193, the oil is not allowed to enter a region where it is not desired to have oil for lubricating the necessary lubrication site in the vacuum pump. Measures are taken.
[0003]
In the apparatus disclosed in Japanese Patent Laid-Open No. 63-1229829, the plate is fixed to the rotating shaft so that oil does not enter the generator chamber. The oil that tries to enter the generator chamber along the peripheral surface of the rotating shaft adheres to the plate, and the oil attached to the plate is blown into the annular groove around the plate by the centrifugal force accompanying the rotation of the plate. The oil jumped into the annular groove is discharged to the outside through a discharge oil passage connected to the lower part of the annular groove.
[0004]
In the apparatus disclosed in Japanese Patent Laid-Open No. 3-11193, a slinger is disposed in an annular chamber for supplying oil to a bearing. Oil that tries to enter the vortex pump element side along the circumference of the rotating shaft from the annular chamber is splashed by the rotating slinger, and the oil splashed by the slinger passes through an oil drain hole that leads to the annular chamber. Then, it is discharged to the motor chamber side.
[0005]
[Problems to be solved by the invention]
A plate (slinger) that rotates integrally with the rotating shaft is a kind of non-contact type oil intrusion preventing means for preventing oil from entering. The oil intrusion prevention action utilizing the centrifugal force accompanying the rotation of the plate (slinger) is invalid when the rotation shaft is stopped. When the vacuum pump shifts from the operation state to the operation stop state, a differential pressure is generated between the adjacent motor chamber (generator chamber) and the pump chamber. If contact-type sealing means such as a lip seal is not used, oil enters the pump chamber from the motor chamber (generator chamber) side depending on how the differential pressure is generated. The contact-type sealing means such as a lip seal that can prevent oil intrusion due to the differential pressure described above has a problem of deterioration. When the contact-type sealing means deteriorates, it becomes difficult to prevent oil intrusion.
[0006]
An object of the present invention is to prevent oil intrusion into a pump chamber when a vacuum pump shifts from an operation state to an operation stop state.
[0007]
[Means for Solving the Problems]
For this purpose, the invention according to claim 1 and claim 2 includes an oil housing that forms an oil existence region adjacent to the pump chamber, and a rotating shaft that penetrates the oil housing and projects into the oil existence region. A non-contact type oil intrusion preventing means for preventing oil from entering the pump chamber from an oil existing area, and moving the gas transfer body in the pump chamber based on the rotation of the rotary shaft, According to the first aspect of the present invention, the maximum differential pressure between the pump chamber and the oil existing area is before the complete stop of the rotating shaft. The rotational speed of the rotary shaft is decelerated so as to occur.
[0008]
According to a second aspect of the present invention, in the first aspect, the rotation speed of the rotating shaft starts to decelerate at a deceleration larger than a certain deceleration, and then decelerates at a deceleration smaller than the certain deceleration, and the constant The operation was stopped at the time required to decelerate and stop at the deceleration of.
[0009]
The inventions of claim 3 and claim 4 are directed to a vacuum pump that moves a gas transfer body in a pump chamber based on rotation of a rotating shaft and transfers gas by an operation of the gas transfer body to provide a suction action. In the invention of Item 3, an oil housing that forms an oil existing area so as to be adjacent to the pump chamber, and the oil existing area from the oil existing area along the rotating shaft that passes through the oil housing and protrudes into the oil existing area. A vacuum pump comprising non-contact type oil intrusion preventing means for preventing oil from entering the pump chamber and stop control means for performing operation stop control of the vacuum pump, the stop control means, The rotational speed of the rotary shaft is decelerated so that the maximum differential pressure between the pump chamber and the oil existing region occurs before the complete stop of the rotary shaft.
[0010]
In the first and third aspects of the invention, if the differential pressure between the pump chamber and the oil existing area when the vacuum pump is stopped is too large, the oil existing area is provided regardless of the presence of the non-contact type oil intrusion preventing means. Oil may enter the pump chamber. The operation control in which the maximum differential pressure between the pump chamber and the oil existing area is generated before the complete stop of the rotary shaft reduces the differential pressure at the complete stop of the rotary shaft. Reduction of the differential pressure when the rotating shaft is completely stopped is effective in preventing oil leakage.
[0011]
According to a fourth aspect of the present invention, in the third aspect, the stop control means starts to decelerate the rotational speed of the rotating shaft at a deceleration larger than a certain deceleration, and then decelerates less than the certain deceleration. The operation is stopped at the time required to decelerate and stop at the constant deceleration.
[0012]
Such a deceleration method in the inventions of claims 2 and 4 is appropriate for reducing the differential pressure when the rotating shaft is completely stopped.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a first embodiment in which the present invention is embodied in a Roots pump will be described with reference to FIGS.
[0014]
As shown in FIG. 1A, the front housing 13 is joined to the front end of the rotor housing 12 of the multistage roots pump 11, and the sealing body 36 is joined to the front housing 13. A rear housing 14 is joined to the rear end of the rotor housing 12. The rotor housing 12 includes a cylinder block 15 and a plurality of chamber forming walls 16. As shown in FIG. 2B, the cylinder block 15 includes a pair of block pieces 17 and 18, and the chamber forming wall 16 includes a pair of wall pieces 161 and 162. As shown in FIG. 1A, the space between the front housing 13 and the chamber forming wall 16, the space between the adjacent chamber forming walls 16, and the space between the rear housing 14 and the chamber forming wall 16 are as follows. These are pump chambers 39, 40, 41, 42, 43, respectively.
[0015]
A pair of rotary shafts 19, 20 are rotatably supported by the front housing 13 and the rear housing 14 via radial bearings 21, 37, 22, 38. Both the rotating shafts 19 and 20 are arranged horizontally and parallel to each other. The rotary shafts 19 and 20 are passed through the chamber forming wall 16. The radial bearings 37 and 38 are supported by bearing holders 45 and 46. The bearing holders 45 and 46 are fitted and fixed in fitting holes 47 and 48 that are recessed in the end surface 144 of the rear housing 14.
[0016]
A plurality of rotors 23, 24, 25, 26, and 27 are integrally formed on the rotating shaft 19, and the same number of rotors 28, 29, 30, 31, and 32 are integrally formed on the rotating shaft 20. The rotors 23 to 32 have the same shape and the same size when viewed in the directions of the axis lines 191 and 201 of the rotary shafts 19 and 20. The thicknesses of the rotors 23, 24, 25, 26, and 27 are made smaller in this order, and the thicknesses of the rotors 28, 29, 30, 31, and 32 are made smaller in this order. The rotors 23 and 28 are accommodated in the pump chamber 39 in mesh with each other, and the rotors 24 and 29 are accommodated in the pump chamber 40 in mesh with each other. The rotors 25 and 30 are accommodated in the pump chamber 41 in mesh with each other, and the rotors 26 and 31 are accommodated in the pump chamber 42 in mesh with each other. The rotors 27 and 32 are accommodated in the pump chamber 43 while being engaged with each other. The pump chambers 39 to 43 are not lubricated. For this reason, the rotors 23 to 32 do not slide in contact with the cylinder block 15, the chamber forming wall 16, the front housing 13 and the rear housing 14. Moreover, it is made not to slidably contact between the rotors which mesh.
[0017]
As shown in FIG. 2A, the rotors 23 and 28 define a suction region 391 and a pressure region 392 having a higher pressure than the suction region 391 in the pump chamber 39. Similarly, the rotors 24 and 29 are in the pump chamber 40, the rotors 25 and 30 are in the pump chamber 41, and the rotors 26 and 31 are in the pump chamber 42, respectively, and a suction region similar to the suction region 391 and the pressure region 392. A pressure region is defined. As shown in FIG. 3A, the rotors 27 and 32 define a suction region 431 and a pressure region 432 similar to the suction region 391 and the pressure region 392 in the pump chamber 43.
[0018]
As shown in FIG. 1A, a gear housing 33 is assembled to the rear housing 14. The rotary shafts 19 and 20 protrude into the gear housing 33 through the through holes 141 and 142 and the fitting holes 47 and 48 in the rear housing 14. Gears 34 and 35 are fixed to the projecting portions 193 and 203 of the rotary shafts 19 and 20 in a state where they are engaged with each other. An electric motor M is assembled to the gear housing 33. The driving force of the induction motor type electric motor M is transmitted to the rotary shaft 19 via the shaft joint 44, and the rotary shaft 19 is transmitted to the rotary motor 19 by the electric motor M in FIGS. 2 (a), 2 (b) and 3 (a), It is rotated in the direction of arrow R1 in (b). The rotation of the rotary shaft 19 is transmitted to the rotary shaft 20 through gears 34 and 35, and the rotary shaft 20 is indicated by an arrow R2 in FIGS. 2 (a) and 2 (b) and FIGS. 3 (a) and 3 (b). The rotating shaft 19 rotates in the opposite direction. That is, the rotating shafts 19 and 20 are rotated synchronously using the gears 34 and 35.
[0019]
As shown in FIGS. 4A and 5A, the lubricating oil Y is stored in the gear housing chamber 331 in the gear housing 33, and the lubricating oil Y lubricates the gears 34 and 35. The gear housing chamber 331 of the gear housing 33 that houses the gears 34 and 35 constituting the gear mechanism is an oil existing region that is sealed so as not to communicate with the outside of the main body of the multistage roots pump 11. The gear housing 33 and the rear housing 14 constitute an oil housing that forms an oil existing region so as to be adjacent to the pump chamber 43. The stored oil in the gear housing chamber 331 is pumped up by the rotating operation of the gears 34 and 35. The lubricating oil Y pumped up by the rotation of the gears 34 and 35 lubricates the radial bearings 37 and 38 that are bearings.
[0020]
As shown in FIG. 2B, a passage 163 is formed in the chamber forming wall 16. An inlet 164 and an outlet 165 of the passage 163 are formed in the chamber forming wall 16. Adjacent pump chambers 39, 40, 41, 42 and 43 communicate with each other via a passage 163.
[0021]
As shown in FIG. 2A, an introduction port 181 is formed in the block piece 18 so as to communicate with the suction region 391 of the pump chamber 39. As shown in FIG. 3A, a discharge port 171 is formed in the block piece 17 so as to communicate with the pressure region 432 of the pump chamber 43. The gas introduced from the inlet 181 into the suction region 391 of the pump chamber 39 moves to the pressure region 392 as the rotors 23 and 28 rotate. The gas transferred to the pressure region 392 is compressed and increased in pressure compared to the state in the suction region 391. The gas in the pressure region 392 is transferred from the inlet 164 of the chamber forming wall 16 through the passage 163 to the suction region of the adjacent pump chamber 40 from the outlet 165. Hereinafter, similarly, the gas is transferred in the order of decreasing volume of the pump chamber, that is, in the order of the pump chambers 40, 41, 42, and 43. The gas transferred to the suction region 431 of the pump chamber 43 moves to the pressure region 432 by the rotation of the rotors 27 and 32 and is then discharged to the outside from the discharge port 171. The rotors 23 to 32 are gas transfer bodies that transfer gas.
[0022]
The discharge port 171 is a discharge passage for discharging the gas to the outside of the housing of the main body of the vacuum pump. The pump chamber 43 is a final pump chamber connected to the discharge port 171 that is a discharge passage, and a pressure region 432 in the final pump chamber 43 has a maximum pressure (pressure close to atmospheric pressure) in the pump chambers 39 to 43. Is the maximum pressure region. The discharge port 171 communicates with a maximum pressure region 432 defined in the pump chamber 43 by the rotors 27 and 32.
[0023]
As shown in FIG. 1A, annular shaft seals 49 and 50 are fitted and fixed to the rotary shafts 19 and 20 in the fitting holes 47 and 48, respectively. Seal rings 51 and 52 are interposed between the inner peripheral surfaces of the shaft seal rings 49 and 50 and the peripheral surfaces 192 and 202 of the rotary shafts 19 and 20. The seal rings 51 and 52 interposed between the shaft seal members 49 and 50 and the rotary shafts 19 and 20 have the lubricating oil Y inserted into the insertion holes 47 and 48 along the peripheral surfaces 192 and 202 of the rotary shafts 19 and 20. Is prevented from leaking to the pump chamber 43 side.
[0024]
As shown in FIGS. 4B and 5B, between the outer peripheral surfaces 491 and 501 of the maximum diameter portion 60 of the shaft seal rings 49 and 50 and the peripheral surfaces 471 and 481 of the fitting holes 47 and 48, respectively. There is a gap. There are gaps between the end surfaces 492 and 502 of the shaft seal members 49 and 50 and the bottom forming surfaces 472 and 482 of the fitting holes 47 and 48. Therefore, the shaft seal members 49 and 50 can rotate integrally with the rotary shafts 19 and 20.
[0025]
A plurality of annular protrusions 53 and 54 are concentrically formed on the bottom forming surfaces 472 and 482 of the fitting holes 47 and 48. A plurality of annular grooves 55 and 56 are formed concentrically on the end surfaces 492 and 502 of the shaft seal rings 49 and 50 facing the bottom forming surfaces 472 and 482. The annular ridges 53 and 54 enter so as to face the annular grooves 55 and 56. The tips of the annular ridges 53, 54 entering the annular grooves 55, 56 are close to the bottom surfaces of the annular grooves 55, 56. The annular groove 55 is partitioned into labyrinth chambers 551 and 552 by an annular protrusion 53, and the annular groove 56 is partitioned into labyrinth chambers 561 and 562 by an annular protrusion 54. The annular protrusion 53 and the annular groove 55 constitute a labyrinth seal 57 on the rotating shaft 19 side, and the annular protrusion 54 and the annular groove 56 constitute a labyrinth seal 58 on the rotating shaft 20 side. Labyrinth seals 57 and 58 which are non-contact type sealing means are non-contact type oil intrusion preventing means for preventing oil from entering from the gear housing chamber 331 to the pump chamber 43. .
[0026]
The end faces 492 and 502 of the shaft seals 49 and 50 become seal facing surfaces on the shaft seals 49 and 50 side, and the bottom forming surfaces 472 and 482 of the fitting holes 47 and 48 are for sealing on the rear housing 14 side. It becomes the opposite surface. In the present embodiment, the end surfaces 492 and 502 and the bottom forming surfaces 472 and 482 are planes orthogonal to the axis lines 191 and 201 of the rotation shafts 19 and 20. That is, the end surfaces 492 and 502 and the bottom forming surfaces 472 and 482 that are the opposing surfaces for sealing have only the radial direction component of the shaft seal rings 49 and 50.
[0027]
As shown in FIG. 4B, a spiral groove 61 is formed on the outer peripheral surface 491 of the maximum diameter portion 60 of the shaft seal ring 49. As shown in FIG. 5B, a spiral groove 62 is formed on the outer peripheral surface 501 of the maximum diameter portion 60 of the shaft seal 50. The spiral direction of the spiral groove 61 is a direction that shifts from the gear housing chamber 331 side to the pump chamber 43 side as it follows the rotational direction R1 of the rotating shaft 19. The spiral direction of the spiral groove 62 is a direction that shifts from the gear housing chamber 331 side to the pump chamber 43 side as it follows the rotational direction R2 of the rotary shaft 20. Accordingly, the spiral grooves 61 and 62 provide a pumping action for transferring fluid from the pump chamber 43 side to the gear housing chamber 331 side as the rotary shafts 19 and 20 rotate. That is, the spiral grooves 61 and 62 allow oil between the outer circumferential surfaces 491 and 501 of the shaft seal rings 49 and 50 and the circumferential surfaces 471 and 481 of the fitting holes 47 and 48 to be from the pump chamber 43 side to the oil existing region side. A pumping means for biasing is configured. Such pumping means is a kind of non-contact type oil intrusion preventing means for preventing oil from entering the pump chamber 43 from the gear housing chamber 331 which is an oil existing area. The circumferential surfaces 471 and 481 of the fitting holes 47 and 48 serve as seal surfaces, and the outer peripheral surfaces 491 and 501 facing the circumferential surfaces 471 and 481 serve as surfaces facing the seal surface.
[0028]
As shown in FIG. 3 (b), exhaust pressure spreading grooves 63 and 64 are formed on the chamber forming wall surface 143 of the rear housing 14 that forms the final pump chamber 43. As shown in FIG. 4A, the exhaust pressure spreading groove 63 communicates with a maximum pressure region 432 whose volume changes as the rotors 27 and 32 rotate. Further, the exhaust pressure spreading groove 63 communicates with the through hole 141. As shown in FIG. 5A, the exhaust pressure spreading groove 64 communicates with the maximum pressure region 432 and communicates with the through hole 142.
[0029]
As shown in FIGS. 1B and 6, an annular oil intrusion prevention ring 66 is fitted and fixed to the outer peripheral surface of the minimum diameter portion 59 of the shaft seal ring 49. The oil intrusion prevention ring 66 includes a small diameter oil intrusion prevention portion 67 and a large diameter oil intrusion prevention portion 68. An annular first oil recovery chamber 70 and an annular second oil recovery chamber 71 are formed on the inner wall 69 of the bearing holder 45 so as to surround the oil intrusion prevention ring 66. The annular first oil recovery chamber 70 surrounds the small-diameter oil intrusion prevention portion 67, and the annular second oil recovery chamber 71 surrounds the large-diameter oil intrusion prevention portion 68.
[0030]
An oil intrusion prevention portion 72 is integrally formed with the maximum diameter portion 60 of the shaft seal ring 49. An annular third oil recovery chamber 73 is formed on the circumferential surface 471 of the insertion hole 47 so as to surround the oil intrusion prevention unit 72.
[0031]
An oil recovery passage 74 is formed in the lowermost portion of the peripheral surface of the insertion hole 47 and the end surface 144 of the rear housing 14. The oil recovery passage 74 includes a horizontal path 741 formed at the lowermost portion of the peripheral surface of the insertion hole 47 and a vertical path 742 formed in the end surface 144. The horizontal path 741 communicates with the third oil recovery chamber 73, and the vertical path 742 communicates with the gear housing chamber 331. In other words, the third oil recovery chamber 73 and the gear housing chamber 331 are communicated with each other through the oil recovery passage 74.
[0032]
An oil intrusion prevention ring 66 is also provided at the minimum diameter portion 59 of the shaft seal body 50, and an oil intrusion prevention portion 72 is also provided at the maximum diameter portion 60 of the shaft seal body 50. The bearing holder 46 is also formed with oil recovery chambers 70 and 71, and the fitting hole 48 is also formed with an oil recovery chamber 73. Further, an oil recovery passage 74 is formed at the lowermost portion of the insertion hole 48. The third oil recovery chamber 73 and the gear housing chamber 331 on the shaft seal 50 side are communicated with each other by an oil recovery passage 74 on the shaft seal 50 side.
[0033]
The lubricating oil Y stored in the gear housing chamber 331 lubricates the gears 34 and 35 and the radial bearings 37 and 38. The lubricating oil Y that has lubricated the radial bearings 37 and 38 enters the insertion hole 691 formed in the inner wall 69 of the bearing holders 45 and 46 through the ring gaps 371 and 381 of the radial bearings 37 and 38. The lubricating oil Y that has entered the insertion hole 691 has a gap between the peripheral surface of the smallest diameter portion 59 of the shaft seal rings 49 and 50 and the peripheral surface of the insertion hole 691, and the end surface 672 of the oil intrusion prevention portion 67 and the first surface 672. An attempt is made to enter the first oil recovery chamber 70 through a gap g1 between the oil recovery chamber 70 and the oil recovery end surface 701. At this time, the lubricating oil Y adhering to the end surface 672 is blown toward the oil recovery peripheral wall surface 702 or the oil recovery end surface 701 of the first oil recovery chamber 70 by the centrifugal force accompanying the rotation of the oil intrusion prevention unit 67. . At least a part of the lubricating oil Y blown toward the oil recovery peripheral wall surface 702 or the oil recovery end surface 701 adheres to the oil recovery peripheral wall surface 702 or the oil recovery end surface 701. The lubricating oil Y adhering to the oil recovery peripheral wall surface 702 or the oil recovery end surface 701 travels down the oil recovery peripheral wall surface 702 or the oil recovery end surface 701 by its own weight and reaches the lowermost portion of the first oil recovery chamber 70. . The lubricating oil Y that has reached the bottom of the first oil recovery chamber 70 is transferred to the bottom of the second oil recovery chamber 71.
[0034]
The lubricating oil Y that has entered the first oil recovery chamber 70 has a gap g2 between the oil intrusion prevention end surface 681 of the large-diameter oil intrusion prevention unit 68 and the oil recovery end surface 711 of the second oil recovery chamber 71. An attempt is made to enter the second oil recovery chamber 71 via the route. At this time, the lubricating oil Y adhering to the oil intrusion prevention end surface 681 is directed toward the oil recovery peripheral wall surface 712 or the oil recovery end surface 711 of the second oil recovery chamber 71 by the centrifugal force accompanying the rotation of the oil intrusion prevention portion 68. Will be skipped. At least a part of the lubricating oil Y blown toward the oil recovery peripheral wall surface 712 or the oil recovery end surface 711 adheres to the oil recovery peripheral wall surface 712 or the oil recovery end surface 711. The lubricating oil Y adhering to the oil recovery peripheral wall surface 712 or the oil recovery end surface 711 travels down the oil recovery peripheral wall surface 712 or the oil recovery end surface 711 by its own weight and reaches the lowermost portion of the second oil recovery chamber 71. .
[0035]
The lubricating oil Y reaching the lowermost part of the second oil recovery chamber 71 is transferred to the lowermost part of the third oil recovery chamber 73.
The lubricating oil Y that has entered the second oil recovery chamber 71 passes through the gap g3 between the end surface 601 of the oil intrusion prevention unit 72 and the oil recovery end surface 731 of the third oil recovery chamber 73, and then enters the third oil recovery chamber 71. An attempt is made to enter the oil recovery chamber 73. At this time, the lubricating oil Y adhering to the end surface 601 is blown toward the peripheral wall surface 732 of the third oil recovery chamber 73 or the oil recovery end surface 731 by the centrifugal force accompanying the rotation of the oil intrusion prevention unit 72. At least a part of the lubricating oil Y blown toward the peripheral wall surface 732 or the oil recovery end surface 731 adheres to the peripheral wall surface 732 or the oil recovery end surface 731. The lubricating oil Y adhering to the peripheral wall surface 732 or the oil recovery end surface 731 travels down the peripheral wall surface 732 or the oil recovery end surface 731 by its own weight and reaches the lowermost portion of the third oil recovery chamber 73.
[0036]
Above the rotary shafts 19 and 20, a part of the lubricating oil Y that is blown from the end surface 672 of the small-diameter oil intrusion prevention unit 67 toward the peripheral wall surface 702 or the end surface 701 falls on the tapered peripheral surface 671. Sometimes. In addition, part of the lubricating oil Y that has been blown from the oil intrusion prevention end surface 681 toward the oil recovery peripheral wall surface 712 or the oil recovery end surface 711 may fall on the tapered peripheral surface 671. The lubricating oil Y that has fallen on the tapered peripheral surface 671 is blown toward the peripheral wall surface 702 by the centrifugal force accompanying the rotation of the oil intrusion prevention ring 66, or the end surface from the oil intrusion prevention end surface 681 side on the tapered peripheral surface 671. Move towards 701. The lubricating oil Y moving on the tapered peripheral surface 671 from the oil intrusion prevention end surface 681 side toward the end surface 701 is blown toward the end surface 701 or moves to the end surface 672 of the oil intrusion prevention unit 67. Accordingly, the lubricating oil Y adhering onto the tapered peripheral surface 671 finally reaches the lowermost part of the second oil recovery chamber 71.
[0037]
The lubricating oil Y that has reached the bottom of the third oil recovery chamber 73 returns to the gear housing chamber 331 via the oil recovery passage 74.
The oil intrusion prevention unit 67 and the first oil recovery chamber 70, the oil intrusion prevention unit 68 and the second oil recovery chamber 71, and the oil intrusion prevention unit 72 and the third oil recovery chamber 73 are respectively in the oil existing region. Non-contact type oil intrusion prevention means for preventing oil from entering the pump chamber 43 from a certain gear housing chamber 331 is configured.
[0038]
As shown in FIG. 1A, an inverter 65 is electrically connected to the electric motor M. Inverter 65 receives command control from control device 75. The control device 75 controls the output of the inverter 65 based on the ON-OFF command of the ON-OFF switch 76. Inverter 65 performs rotation speed control of electric motor M using AC power supply 77 as a power source based on command control of control device 75.
[0039]
A curve E1 in FIG. 7 represents a change in the rotational speed of the rotary shafts 19 and 20 after the vacuum pump is in an operating state and the ON-OFF switch 76 is turned OFF at time to. When the vacuum pump is in an operating state and the ON-OFF switch 76 is turned off, the control device 75 gives a command to the inverter 65 that causes the rotation speed of the rotary shafts 19 and 20 to change as indicated by the curve E1. The inverter 65 performs the operation stop of the electric motor M so that the rotational speeds of the rotary shafts 19 and 20 change in the curve E1 based on the above-described command of the control device 75 according to the OFF of the ON-OFF switch 76. To do. The control device 75 is a stop control means for performing operation stop control of the vacuum pump.
[0040]
In the present embodiment, the rotary shafts 19 and 20 are rotated at a constant rotational speed N in the steady operation state of the vacuum pump. In the steady operation state of the vacuum pump, there is almost no differential pressure between the pressure region 432 of the pump chamber 43 and the gear housing chamber 331.
[0041]
The following effects can be obtained in the first embodiment.
(1-1) The curve Po in FIG. 7 shows the difference between the pressure region 432 of the pump chamber 43 and the gear housing chamber 331 when the rotating shafts 19 and 20 are decelerated at a constant deceleration as indicated by the straight line D. Represents a change in pressure. The maximum differential pressure in this case occurs after the time t1 when the rotation of the rotary shafts 19 and 20 is completely stopped.
[0042]
A curve P1 in FIG. 7 represents a change in the differential pressure between the pressure region 432 of the pump chamber 43 and the gear housing chamber 331 when the rotating shafts 19 and 20 are decelerated as indicated by the curve E1. The time required for complete stop in the deceleration of the rotary shafts 19 and 20 indicated by the curve E1 is the same as the time required for complete stop in the deceleration of the rotary shafts 19 and 20 indicated by the straight line D (t1-to). The maximum differential pressure in this case occurs before the time t1 when the rotation of the rotary shafts 19 and 20 is completely stopped, and the differential pressure when the rotary shafts 19 and 20 are completely stopped is the case of deceleration of the straight line D. Is smaller than
[0043]
When the rotation of the rotary shafts 19 and 20 is completely stopped, the pumping action of the pumping means and the oil intrusion preventing action of the oil intrusion preventing portions 67, 68 and 72 are disabled. When the pumping action of the pumping means and the oil intrusion preventing action of the oil intrusion preventing portions 67, 68, 72 are neutralized, if the differential pressure between the pressure region 432 and the gear housing chamber 331 is large, the oil enters the pump chamber 43. There is a risk of intrusion. Therefore, when the maximum differential pressure between the pressure region 432 of the pump chamber 43 and the gear housing chamber 331 occurs after the time t1, the oil may enter the pump chamber 43.
[0044]
A curve E1 indicates that the rotation shafts 19 and 20 start to decelerate at a deceleration larger than the constant deceleration indicated by the straight line D, and then the rotation shafts 19 and 20 have a deceleration smaller than the constant deceleration indicated by the straight line D. It is a deceleration curve which decelerates rotation of the. A curve E1 is a deceleration curve in which the operation is stopped in the time (t1-to) required to decelerate and stop at a constant deceleration indicated by the straight line D. In the operation stop control in which the maximum differential pressure between the pressure region 432 of the pump chamber 43 and the gear housing chamber 331 is generated before the time t1 by the deceleration indicated by the curve E1, the oil enters the pump chamber 43. Relieve fear.
[0045]
(1-2) Curve E1 is a · e -bt Is an exponential curve represented by t is time, and a and b are positive constants. The exponential curve is suitable as a deceleration curve for minimizing the maximum differential pressure as much as possible and minimizing the differential pressure when the rotary shafts 19 and 20 are completely stopped.
[0046]
(1-3) When the vacuum pump is operating, the pressure in the pump chambers 39 to 43 is lower than the pressure in the gear housing chamber 331 which is a pressure region corresponding to atmospheric pressure. Therefore, in particular, the mist-like lubricating oil Y tends to enter the pump chamber 43 side along the surface of the oil intrusion prevention ring 66 and the surfaces of the shaft seal rings 49 and 50. In order to prevent the mist-like lubricating oil Y from entering the pump chamber 43 side, the mist-like lubricating oil Y is preferably adhered to the fixed wall surface and liquefied. Further, the lubricating oil Y adhering to the peripheral surfaces of the rotary shafts 19 and 20 or the wall surfaces of the members that rotate integrally with the rotary shafts 19 and 20 is preferably transferred to the fixed wall surface.
[0047]
The oil intrusion prevention parts 67, 68, 72 play a role of efficiently attaching the lubricating oil Y to the forming wall surfaces of the oil recovery chambers 70, 71, 73. If the number of oil intrusion prevention portions increases, the oil adhesion area in the entire oil intrusion prevention portion increases. As the oil adhesion area in the entire oil intrusion prevention unit increases, the amount of oil that is blown off by the centrifugal force associated with the rotation of the oil intrusion prevention unit increases. That is, the configuration in which the plurality of oil intrusion prevention portions 67, 68, 72 are arranged in parallel in the direction of the axis 191, 201 of the rotary shafts 19, 20 improves the oil intrusion prevention action in the operating state of the vacuum pump.
[0048]
(1-4) The diameters of the end faces 492 and 502 of the shaft seal rings 49 and 50 fitted to the rotary shafts 19 and 20 are larger than the diameters of the peripheral surfaces 192 and 202 of the rotary shafts 19 and 20. Therefore, the diameters of the labyrinth seals 57 and 58 between the end surfaces 492 and 502 of the shaft seal members 49 and 50 and the bottom forming surfaces 472 and 482 of the fitting holes 47 and 48 are set to the peripheral surfaces 192 and 192 of the rotary shafts 19 and 20. The diameter of the labyrinth seal provided between 202 and the rear housing 14 is larger. As the diameters of the labyrinth seals 57 and 58 are increased, the volumes of the labyrinth chambers 551, 552, 561, and 562 for suppressing the pressure fluctuation are increased, and the sealing function of the labyrinth seals 57 and 58 is improved. That is, the volume of the labyrinth chambers 551, 552, 561, 562 is increased between the end surfaces 492, 502 of the shaft seals 49, 50 and the bottom forming surfaces 472, 482 of the fitting holes 47, 48 to improve the sealing function. Therefore, it is suitable as a setting area for the labyrinth seals 57 and 58.
[0049]
(1-5) The smaller the gap between the fitting holes 47 and 48 and the shaft sealing bodies 49 and 50, the more the lubricating oil Y moves to the gap between the fitting holes 47 and 48 and the shaft sealing bodies 49 and 50. It becomes difficult to enter. The bottom forming surfaces 472 and 482 of the fitting holes 47 and 48 having the circumferential surfaces 471 and 481 and the end surfaces 492 and 502 of the shaft seal rings 49 and 50 are easily brought close to each other evenly. Accordingly, the gap between the tips of the annular ridges 53 and 54 and the bottom surfaces of the annular grooves 55 and 56, the bottom forming surfaces 472 and 482 of the fitting holes 47 and 48, and the end surfaces 492 and 502 of the shaft seals 49 and 50. It is easy to make the gap between them as small as possible. As these gaps are smaller, the sealing function of the labyrinth seals 57 and 58 is improved. That is, the bottom forming surfaces 472 and 482 of the fitting holes 47 and 48 are suitable as setting regions for the labyrinth seals 57 and 58 which are non-contact type sealing means.
[0050]
(1-6) The labyrinth seals 57 and 58 have a sealing property against gas. At the start of operation of the multi-stage Roots pump 11, the inside of the pump chambers 39 to 43 becomes higher than the atmospheric pressure. The labyrinth seals 57 and 58 prevent exhaust gas leakage along the surfaces of the shaft seal rings 49 and 50 from the pump chamber 43 to the gear housing chamber 331 side. The labyrinth seals 57 and 58 that prevent both oil leakage and exhaust gas leakage are optimal as non-contact type sealing means.
[0051]
(1-7) The non-contact type sealing means does not cause deterioration over time in the contact type sealing means such as a lip seal (decrease in sealing performance), but the sealing performance is somewhat inferior to the contact type sealing means. . The oil intrusion prevention parts 67, 68 and 72 constituting the non-contact type oil intrusion prevention means compensate for this.
[0052]
(1-8) The spiral groove 61 provided in the shaft seal ring 49 sweeps the circumferential surface 471 of the insertion hole 47 as the rotary shaft 19 rotates. The lubricating oil Y in the sweep region of the spiral groove 61 is swept from the pump chamber 43 side to the gear housing chamber 331 side. Further, the spiral groove 62 provided in the shaft seal 50 sweeps the circumferential surface 481 of the insertion hole 48 as the rotary shaft 20 rotates. Lubricating oil Y in the sweep region of the spiral groove 62 is swept from the pump chamber 43 side to the gear housing chamber 331 side. That is, the shaft seal rings 49 and 50 provided with the spiral grooves 61 and 62 which are pumping means exhibit high sealing performance against the lubricating oil Y.
[0053]
(1-9) The outer peripheral surfaces 491 and 501 provided with the spiral grooves 61 and 62 are the outer peripheral surfaces of the maximum diameter portion 60 of the shaft seal members 49 and 50, and the peripheral speeds of the shaft seal members 49 and 50 are maximum. It is a place to become. Gas between the outer peripheral surfaces 491 and 501 of the shaft seals 49 and 50 and the circumferential surfaces 471 and 481 of the fitting holes 47 and 48 is geared from the pump chamber 43 side by the spiral grooves 61 and 62 that circulate at high speed. It is urged efficiently toward the storage chamber 331 side. Lubricating oil Y between the outer peripheral surfaces 491 and 501 of the shaft seal rings 49 and 50 and the circumferential surfaces 471 and 481 of the fitting holes 47 and 48 is efficiently applied from the pump chamber 43 side to the gear housing chamber 331 side. Follow the gas that is being forced. The outer peripheral surfaces 491 and 501 of the shaft seal members 49 and 50 prevent oil leakage from the fitting holes 47 and 48 passing through between the outer peripheral surfaces 491 and 501 and the circumferential surfaces 471 and 481 to the pump chamber 43 side. In order to improve the performance to be performed, that is, the sealing performance of the shaft seal members 49 and 50 with respect to the lubricating oil Y, it is suitable as a set location of the spiral grooves 61 and 62.
[0054]
(1-10) There is a slight gap between the peripheral surface 192 of the rotating shaft 19 and the through hole 141, and there is a slight gap between the rotors 27 and 32 and the chamber forming wall surface 143 of the rear housing 14. . Therefore, the pressure of the final pump chamber 43 is applied to the labyrinth seal 57 through the slight gap. Similarly, since there is a slight gap between the peripheral surface 202 of the rotary shaft 20 and the through hole 142, the final pressure in the pump chamber 43 is applied to the labyrinth seal 58. In the absence of the exhaust pressure spreading grooves 63, 64, the pressure in the suction region 431 and the pressure in the maximum pressure region 432 are spread to the labyrinth seals 57, 58 to the same extent.
[0055]
The exhaust pressure spreading grooves 63 and 64 in the present embodiment enhance the effect of the pressure in the maximum pressure region 432 on the labyrinth seals 57 and 58. That is, the ripple effect of the pressure in the maximum pressure region 432 via the exhaust pressure ripple grooves 63 and 64 greatly exceeds the ripple effect of the pressure in the suction region 431. Therefore, when the exhaust pressure spreading grooves 63 and 64 are present, the pressure spreading from the pump chamber 43 to the labyrinth seals 57 and 58 is significantly higher than when the exhaust pressure spreading grooves 63 and 64 are not present. As a result, the pressure difference between the front and rear of the labyrinth seals 57 and 58 when the exhaust pressure spreading grooves 63 and 64 are present is significantly lower than that when the exhaust pressure spreading grooves 63 and 64 are not present. That is, the exhaust pressure spreading grooves 63 and 64 enhance the oil leakage prevention effect in the labyrinth seals 57 and 58.
[0056]
(1-11) In the root pump 11 of the dry pump type, the lubricating oil Y is not used in the pump chambers 39 to 43. The roots pump 11 that does not want the lubricant oil Y to be present in the pump chambers 39 to 43 is suitable as an application target of the present invention.
[0057]
In the present invention, it is possible to adopt a deceleration curve indicated by a curve E2 in FIG. A curve E2 indicates that the rotation shafts 19 and 20 start decelerating at a constant deceleration larger than the constant deceleration indicated by the straight line D, and then the rotation shaft at a constant deceleration smaller than the constant deceleration indicated by the straight line D. It is a deceleration curve which decelerates rotation of 19 and 20. A curve E2 is a deceleration curve in which the operation is stopped in the time (t1-to) required to decelerate and stop at a constant deceleration indicated by the straight line D. Such deceleration control indicated by the curve E2 causes the maximum differential pressure between the pressure region 432 of the pump chamber 43 and the gear housing chamber 331 to be generated before the time t1.
[0058]
In the present invention, the following embodiments are also possible.
(1) Perform deceleration control represented by a deceleration curve composed of three or more straight line portions.
[0059]
(2) Perform deceleration control represented by a deceleration curve composed of a straight line portion and a curved portion.
(3) The present invention is applied to a vacuum pump having only the labyrinth seals 57 and 58 without the pumping means and the oil intrusion prevention portions 67, 68 and 72.
[0060]
(4) The present invention is applied to a vacuum pump that has no pumping means and includes oil intrusion prevention portions 67, 68, 72 and labyrinth seals 57, 58.
(5) The present invention is applied to a vacuum pump that does not have the oil intrusion prevention portions 67, 68, and 72 and includes pumping means and labyrinth seals 57 and 58.
[0061]
(6) The present invention is applied to vacuum pumps other than the roots pump.
Inventions other than the claims that can be grasped from the above-described embodiment will be described below.
[0062]
[1] The operation stop control device for a vacuum pump according to claim 4, wherein the stop control means performs control for reducing the rotational speed of the rotary shaft so as to provide a deceleration curve represented by an exponential curve.
[0063]
[2] The operation stop control device in the vacuum pump according to any one of [3], [4] and [1], wherein the non-contact type oil intrusion preventing means is a non-contact type sealing means.
[0064]
[3] The operation stop control device for a vacuum pump according to [1], wherein the non-contact type sealing means is a labyrinth seal provided between the rotating shaft and the oil housing.
[0065]
[4] The annular shaft provided in a projecting portion of the rotating shaft that penetrates the oil housing and projects into the oil existing region according to any one of the third, fourth, and [1] items. An encapsulant,
A seal surface formed on the oil housing so as to face the shaft seal ring that rotates integrally with the rotation shaft;
The non-contact type oil intrusion preventing means is constituted by a pumping means provided on the facing surface of the shaft seal ring facing the sealing surface,
The pumping means is an operation stop control device in a vacuum pump that urges oil between the facing surface and the seal surface from the pump chamber side to the oil existing region side as the rotating shaft rotates. .
[0066]
[5] In Claim 3, Claim 4, and any one of [1] to [4], the oil presence region accommodates a bearing for rotatably supporting the rotating shaft. Operation stop control device in the vacuum pump that is the area.
[0067]
[6] In Claim 3, Claim 4 and any one of [1] to [5], the vacuum pump includes a plurality of the rotating shafts arranged in parallel and the rotating shafts. A roots pump having a plurality of pump chambers or a single pump chamber in which rotors are arranged on top of each other, rotors on adjacent rotating shafts are meshed with each other, and a plurality of meshed rotors are accommodated as a set The plurality of rotating shafts are rotated synchronously using a gear mechanism, and the oil presence region is an operation stop control device in a vacuum pump that is a region accommodating the gear mechanism.
[0068]
【The invention's effect】
As described in detail above, in the present invention, the rotational speed of the rotary shaft is reduced so that the maximum differential pressure between the pump chamber and the oil existing region occurs before the complete stop of the rotary shaft. There is an excellent effect that oil can be prevented from entering the pump chamber when the vacuum pump shifts from the operation state to the operation stop state.
[Brief description of the drawings]
FIG. 1 shows a first embodiment, and FIG. 1 (a) is a plan sectional view of an entire multi-stage Roots pump 11; (B) is an enlarged plan sectional view of an essential part.
FIG. 2A is a cross-sectional view taken along line AA in FIG. (B) is the BB sectional drawing of FIG.
3A is a cross-sectional view taken along the line CC of FIG. (B) is the DD sectional view taken on the line of FIG.
4A is a cross-sectional view taken along line EE of FIG. 3B. FIG. (B) is a principal part expanded side sectional view.
5A is a cross-sectional view taken along line FF in FIG. 3B. (B) is a principal part expanded side sectional view.
FIG. 6 is an enlarged side sectional view of a main part.
FIG. 7 is a graph for explaining deceleration.
FIG. 8 is a graph for explaining another example of deceleration.
[Explanation of symbols]
11 ... Roots pump which is a vacuum pump. 14: A rear housing constituting an oil housing. 19, 20 ... rotating shaft. 193, 203 ... Projection site. 23, 24, 25, 26, 27, 28, 29, 30, 31, 32... Rotor serving as a gas transfer body. 33: A gear housing constituting the oil housing. 331: A gear housing chamber that serves as an oil existing area. 43 ... Pump room. 57, 58 ... Labyrinth seals as non-contact type sealing means. 61, 62 ... Spiral grooves as pumping means constituting non-contact type oil intrusion preventing means. 67, 68, 72 ... Oil intrusion prevention parts constituting non-contact type oil intrusion prevention means. 75: A control device as stop control means.

Claims (4)

ポンプ室と隣接するように油存在領域を形成するオイルハウジングと、
前記オイルハウジングを貫通して前記油存在領域に突出する回転軸に沿って前記油存在領域から前記ポンプ室へ油が侵入するのを防止するための非接触型油侵入防止手段とを備え、
前記回転軸の回転に基づいてポンプ室内のガス移送体を動かし、前記ガス移送体の動作によってガスを移送して吸引作用をもたらす真空ポンプにおいて、
前記ポンプ室と前記油存在領域との間の最大差圧が前記回転軸の完全停止よりも前に生じるように前記回転軸の回転速度を減速するようにした真空ポンプにおける運転停止制御方法。
An oil housing that forms an oil presence area adjacent to the pump chamber;
Non-contact type oil intrusion prevention means for preventing oil from entering the pump chamber from the oil existing area along a rotation shaft that penetrates the oil housing and protrudes into the oil existing area,
In the vacuum pump that moves the gas transfer body in the pump chamber based on the rotation of the rotating shaft and transfers the gas by the operation of the gas transfer body to bring about the suction action,
An operation stop control method for a vacuum pump, wherein the rotational speed of the rotary shaft is reduced so that a maximum differential pressure between the pump chamber and the oil existing region is generated before the complete stop of the rotary shaft.
前記回転軸の回転速度を一定の減速度よりも大きい減速度で減速開始した後、前記一定の減速度よりも小さい減速度で減速し、前記一定の減速度で減速して停止させるのに要する時間で運転を停止させるようにした請求項1に記載の真空ポンプにおける運転停止制御方法。Necessary for starting the deceleration of the rotation speed of the rotating shaft at a deceleration larger than a certain deceleration, decelerating at a deceleration smaller than the certain deceleration, decelerating at the certain deceleration, and stopping. The operation stop control method for a vacuum pump according to claim 1, wherein the operation is stopped in time. 回転軸の回転に基づいてポンプ室内のガス移送体を動かし、前記ガス移送体の動作によってガスを移送して吸引作用をもたらす真空ポンプにおいて、
前記ポンプ室と隣接するように油存在領域を形成するオイルハウジングと、
前記オイルハウジングを貫通して前記油存在領域に突出する前記回転軸に沿って前記油存在領域から前記ポンプ室へ油が侵入するのを防止するための非接触型油侵入防止手段と、
真空ポンプの運転停止制御を行なう停止制御手段とを備え、
前記停止制御手段は、前記ポンプ室と前記油存在領域との間の最大差圧が前記回転軸の完全停止よりも前に生じるように前記回転軸の回転速度を減速するようにした真空ポンプにおける運転停止制御装置。
In the vacuum pump that moves the gas transfer body in the pump chamber based on the rotation of the rotation shaft and transfers the gas by the operation of the gas transfer body to provide a suction action,
An oil housing that forms an oil presence area adjacent to the pump chamber;
Non-contact type oil intrusion preventing means for preventing oil from penetrating from the oil existing area into the pump chamber along the rotation shaft that penetrates the oil housing and protrudes into the oil existing area;
A stop control means for performing stop control of the vacuum pump,
In the vacuum pump in which the stop control means reduces the rotational speed of the rotary shaft so that the maximum differential pressure between the pump chamber and the oil existing region is generated before the complete stop of the rotary shaft. Operation stop control device.
前記停止制御手段は、前記回転軸の回転速度を一定の減速度よりも大きい減速度で減速開始した後、前記一定の減速度よりも小さい減速度で減速し、前記一定の減速度で減速して停止させるのに要する時間で運転を停止させるようにした請求項3に記載の真空ポンプにおける運転停止制御装置。The stop control means starts decelerating the rotation speed of the rotating shaft at a deceleration larger than a certain deceleration, decelerates at a deceleration smaller than the certain deceleration, and decelerates at the certain deceleration. The operation stop control device for a vacuum pump according to claim 3, wherein the operation is stopped in a time required to stop the operation.
JP2001318893A 2001-10-17 2001-10-17 Operation stop control method and operation stop control device for vacuum pump Expired - Fee Related JP3941452B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2001318893A JP3941452B2 (en) 2001-10-17 2001-10-17 Operation stop control method and operation stop control device for vacuum pump
EP02023201A EP1304484A3 (en) 2001-10-17 2002-10-16 Vacuum pump
US10/272,711 US20030072651A1 (en) 2001-10-17 2002-10-17 Method and apparatus for controlling vacuum pump to stop

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001318893A JP3941452B2 (en) 2001-10-17 2001-10-17 Operation stop control method and operation stop control device for vacuum pump

Publications (2)

Publication Number Publication Date
JP2003120543A JP2003120543A (en) 2003-04-23
JP3941452B2 true JP3941452B2 (en) 2007-07-04

Family

ID=19136518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001318893A Expired - Fee Related JP3941452B2 (en) 2001-10-17 2001-10-17 Operation stop control method and operation stop control device for vacuum pump

Country Status (3)

Country Link
US (1) US20030072651A1 (en)
EP (1) EP1304484A3 (en)
JP (1) JP3941452B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4702236B2 (en) * 2006-09-12 2011-06-15 株式会社豊田自動織機 Vacuum pump shutdown control method and shutdown control apparatus
JP4784484B2 (en) * 2006-11-02 2011-10-05 株式会社豊田自動織機 Electric pump
BRPI1100026A2 (en) * 2011-01-26 2013-04-24 Whirlpool Sa reciprocal compressor system and control method
US9902251B2 (en) 2016-01-26 2018-02-27 Deere & Company Recess-mounted hydraulic pump cartridge and work vehicle drivetrain therewith
CN110121597B (en) * 2017-01-27 2021-01-29 株式会社日立产机系统 Scroll compressor having a plurality of scroll members

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2937807A (en) * 1956-12-26 1960-05-24 Heraeus Gmbh W C High vacuum pumps
FR1449257A (en) * 1965-10-05 1966-08-12 Dresser Ind Lubricant seal for positive displacement rotary pump
JPS63129829A (en) 1986-11-14 1988-06-02 Nippon Denso Co Ltd Generator with vacuum pump
JPS6429690A (en) * 1987-07-22 1989-01-31 Hitachi Ltd Shaft sealing device for screw vacuum pump
JPH0311193A (en) 1989-06-08 1991-01-18 Daikin Ind Ltd Vacuum pump
US5028220A (en) * 1990-08-13 1991-07-02 Sullair Corpoation Cooling and lubrication system for a vacuum pump
KR100203019B1 (en) * 1991-03-04 1999-06-15 우도 벡; 클라우스 한, 파울 바흐만 Device for supplying a multi-stage dry-running vacuum pump with inert gas
EP0674106A1 (en) * 1994-03-16 1995-09-27 Chemitec Co., Ltd. A multistage vacuum pump
JP3593365B2 (en) * 1994-08-19 2004-11-24 大亜真空株式会社 Variable helix angle gear
JP2000170679A (en) * 1998-12-04 2000-06-20 Toyota Autom Loom Works Ltd Multi-stage roots pump and multi-stage pump
JP2001304115A (en) * 2000-04-26 2001-10-31 Toyota Industries Corp Gas feeding device for vacuum pump

Also Published As

Publication number Publication date
EP1304484A2 (en) 2003-04-23
US20030072651A1 (en) 2003-04-17
JP2003120543A (en) 2003-04-23
EP1304484A3 (en) 2003-09-03

Similar Documents

Publication Publication Date Title
KR101783131B1 (en) Compressor
KR940008174B1 (en) Stage vacuum pump
JPH0144914B2 (en)
JP4747437B2 (en) Oil leakage prevention structure in vacuum pump
JP3941452B2 (en) Operation stop control method and operation stop control device for vacuum pump
US5069605A (en) Scroll fluid machine having a sealing member radially inwardly of a thrust bearing
US6663367B2 (en) Shaft seal structure of vacuum pumps
JP2002332963A (en) Oil leakage preventive structure in vacuum pump
JP4061850B2 (en) Shaft seal structure in vacuum pump
TW585971B (en) Oil leak prevention structure of vacuum pump
JP2003013876A (en) Oil leak preventive structure of vacuum pump
JP2000213488A (en) Shaft seal mechanism and vacuum pump
JP4670854B2 (en) Shaft seal structure in vacuum pump
JPS61104187A (en) Shaft sealing device for vacuum pump
KR100481759B1 (en) Oil leak prevention structure for vacuum pump
JPS61291795A (en) Shaft sealing device for rough suction vacuum pump
JPS62197685A (en) Shaft seal device of screw vacuum pump
JPH10103268A (en) Vacuum pump
KR20080054843A (en) Oil supply structure for scroll compressor
JP2004116431A (en) Positive displacement vacuum-pump device
KR20040032504A (en) Oil leak prevention structure for vacuum pump
KR20040031854A (en) Oil leak prevention structure of vacuum pump
KR20040031859A (en) Oil leak prevention structure of vacuum pump
JPH0147639B2 (en)
JP2006118454A (en) Roots pump

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070313

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070326

LAPS Cancellation because of no payment of annual fees