JP3941239B2 - Constant velocity joint - Google Patents

Constant velocity joint Download PDF

Info

Publication number
JP3941239B2
JP3941239B2 JP18066898A JP18066898A JP3941239B2 JP 3941239 B2 JP3941239 B2 JP 3941239B2 JP 18066898 A JP18066898 A JP 18066898A JP 18066898 A JP18066898 A JP 18066898A JP 3941239 B2 JP3941239 B2 JP 3941239B2
Authority
JP
Japan
Prior art keywords
ring
inner ring
balls
constant velocity
outer ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18066898A
Other languages
Japanese (ja)
Other versions
JP2000018267A5 (en
JP2000018267A (en
Inventor
重興 嘉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP18066898A priority Critical patent/JP3941239B2/en
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to DE69833340T priority patent/DE69833340T2/en
Priority to DE69828467T priority patent/DE69828467T2/en
Priority to EP98305640A priority patent/EP0892187B1/en
Priority to EP03007209A priority patent/EP1326027B1/en
Priority to US09/116,527 priority patent/US6368223B1/en
Publication of JP2000018267A publication Critical patent/JP2000018267A/en
Publication of JP2000018267A5 publication Critical patent/JP2000018267A5/ja
Application granted granted Critical
Publication of JP3941239B2 publication Critical patent/JP3941239B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
    • F16D3/20Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members
    • F16D3/22Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts
    • F16D3/223Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts
    • F16D2003/22303Details of ball cages
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Landscapes

  • Rolling Contact Bearings (AREA)

Description

【0001】
【発明の属する技術分野】
この発明に係る等速ジョイントは、例えば独立懸架式サスペンションに駆動輪を支持する為の転がり軸受ユニットに一体的に組み込み、トランスミッションから駆動輪に駆動力を伝達するのに利用する。
【0002】
【従来の技術】
自動車のトランスミッションと、独立懸架式サスペンションにより支持した駆動輪との間には等速ジョイントを設けて、デファレンシャルギヤと駆動輪との相対変位や車輪に付与された舵角に拘らず、エンジンの駆動力を駆動輪に、全周に亙り同一角速度で伝達自在としている。この様な部分に使用される等速ジョイントとして従来から、例えば実開昭57−145824〜5号公報、同59−185425号公報、同62−12021号公報等に記載されたものが知られている。
【0003】
この様な従来から知られた等速ジョイント1は、例えば図6〜8に示す様に、内輪2と外輪3との間の回転力伝達を6個のボール4、4を介して行なう様に構成している。上記内輪2は、トランスミッションにより回転駆動される一方の軸5の外端部に固定する。この為、上記内輪2の中心部には、この軸の端部に形成した雄スプライン部を係合させる為のスプライン孔31を設けている。又、上記外輪3は、駆動輪を結合する他方の軸6の内端部に固定する。上記内輪2の外周面2aには、断面円弧形の内側係合溝7、7を6本、円周方向等間隔に、それぞれ円周方向に対し直角方向に形成している。又、上記外輪3の内周面3aで、上記各内側係合溝7、7と対向する位置には、やはり断面円弧形の外側係合溝8、8を6本、円周方向に対し直角方向に形成している。
【0004】
又、上記内輪2の外周面2aと外輪3の内周面3aとの間には、断面が円弧状で全体が円環状の保持器9を挟持している。この保持器9の円周方向6箇所位置で、上記内側、外側両係合溝7、8に整合する位置には、それぞれポケット10、10を形成し、各ポケット10、10の内側にそれぞれ1個ずつ、合計6個のボール4、4を保持している。これらのボール4、4は、それぞれ上記各ポケット10、10に保持された状態で、上記内側、外側両係合溝7、8に沿い転動自在である。
【0005】
上記各ポケット10、10は図8に示す様に、円周方向に長い矩形とし、次述する軸交角αの変化に伴って、円周方向に隣り合うボール4、4同士の間隔が変化した場合でも、この変化を吸収できる様にしている。即ち、上記内側係合溝7、7の底面7a、7a同士の位置関係、並びに上記各外側係合溝8、8の底面8a、8a同士の位置関係は、図9に一点鎖線で示す様に、地球儀の経線の如き関係になっている。上記内輪2の中心軸と外輪3の中心軸とが一致している(軸交角α=180°)場合に上記各ボール4、4は、図9に二点鎖線で示した、地球儀の赤道に対応する位置の近傍に存在する。これに対して、上記内輪2の中心軸と外輪3の中心軸とが不一致になる(軸交角α<180°)と、等速ジョイント1の回転に伴って上記各ボール4、4が、図9の上下方向に往復変位(地球儀の北極方向と南極方向とに交互に変位)する。この結果、円周方向に隣り合うボール4、4同士の間隔が拡縮するので、上記各ポケット10、10を、それぞれ円周方向に長い矩形として、上記間隔の拡縮を行なえる様にしている。尚、上記内側係合溝7、7の底面7a、7aと上記各外側係合溝8、8の底面8a、8aとは、前述の説明から明らかな通り、互いに同心ではない。従って、上記経線に相当する線は、これら各係合溝7、8毎に、互いに少しずれた位置に存在する。
【0006】
更に、図6に示す様に、前記一方の軸5と他方の軸6との変位に拘らず、上記各ボール4、4を、これら両軸5、6の軸交角α、即ち、上記一方の軸5の中心線aと他方の軸6の中心線bとの交点oで両線a、bのなす角度αを二等分する、二等分面c内に配置している。この為に、上記内側係合溝7、7の底面7a、7aは、上記中心線a上で、上記交点oからhだけ離れた点dを中心とする球面上に位置させ、上記外側係合溝8、8の底面8a、8aは、上記中心線b上で、上記交点oからhだけ離れた点eを中心とする球面上に位置させている。但し、前記内輪2の外周面2a、外輪3の内周面3a、並びに前記保持器9の内外両周面は、それぞれ上記交点oを中心とする球面上に位置させて、上記内輪2の外周面2aと保持器9の内周面との摺動、並びに外輪3の内周面3aと保持器9の外周面との摺動を自在としている。
【0007】
上述の様に構成する等速ジョイント1の場合、上記一方の軸5により内輪2を回転させると、この回転運動は6個のボール4、4を介して外輪3に伝達され、他方の軸6が回転する。両軸5、6同士の位置関係(上記軸交角α)が変化した場合には、上記各ボール4、4が内側、外側両係合溝7、8に沿って転動し、上記一方の軸5と他方の軸6との変位を許容する。
【0008】
等速ジョイントの基本的な構造及び作用は上述の通りであるが、この様な等速ジョイントと、車輪を懸架装置に対して回転自在に支持する為の車輪用転がり軸受ユニットとを一体的に組み合わせる事が、近年研究されている。即ち、自動車の車輪を懸架装置に回転自在に支持する為には、外輪と内輪とを転動体を介して回転自在に組み合わせた車輪用転がり軸受ユニットを使用する。この様な車輪用転がり軸受ユニットと上述の様な等速ジョイントとを一体的に組み合わせれば、これら車輪用転がり軸受ユニットと等速ジョイントとを、全体として小型且つ軽量に構成できる。この様な車輪用転がり軸受ユニットと等速ジョイントとを一体的に組み合わせた、所謂第四世代のハブユニットと呼ばれる車輪用転がり軸受ユニットとして従来から、特開平7−317754号公報に記載されたものが知られている。
【0009】
図10は、この公報に記載された従来構造を示している。車両への組み付け状態で、懸架装置に支持した状態で回転しない外輪11は、外周面にこの懸架装置に支持する為の第一の取付フランジ12を、内周面に複列の外輪軌道13、13を、それぞれ有する。上記外輪11の内側には、第一、第二の内輪部材14、15を組み合わせて成るハブ16を配置している。このうちの第一の内輪部材14は、外周面の一端寄り(図10の左寄り)部分に車輪を支持する為の第二の取付フランジ17を、同じく他端寄り(図10の右寄り)部分に第一の内輪軌道18を、それぞれ設けた円筒状に形成している。これに対して、上記第二の内輪部材15は、一端部(図10の左端部)を、上記第一の内輪部材14を外嵌固定する為の円筒部19とし、他端部(図10の右端部)を等速ジョイント1aの外輪3Aとし、中間部外周面に第二の内輪軌道20を設けている。そして、上記各外輪軌道13、13と上記第一、第二の内輪軌道18、20との間にそれぞれ複数個ずつの転動体21、21を設ける事により、上記外輪11の内側に上記ハブ16を、回転自在に支持している。
【0010】
又、上記第一の内輪部材14の内周面と上記第二の内輪部材15の外周面との互いに整合する位置には、それぞれ係止溝22、23を形成すると共に、止め輪24を、これら両係止溝22、23に掛け渡す状態で設けて、上記第一の内輪部材14が上記第二の内輪部材15から抜け出るのを防止している。更に、上記第二の内輪部材15の一端面(図10の左端面)外周縁部と、上記第一の内輪部材14の内周面に形成した段部25の内周縁部との間に溶接26を施して、上記第一、第二の内輪部材14、15同士を結合固定している。
【0011】
更に、上記外輪11の両端開口部と上記ハブ16の中間部外周面との間には、ステンレス鋼板等の金属製で略円筒状のカバー27a、27bと、ゴム、エラストマー等の弾性材製で円環状のシールリング28a、28bとを設けている。これらカバー27a、27b及びシールリング28a、28bは、上記複数の転動体21、21を設置した部分と外部とを遮断し、この部分に存在するグリースが外部に漏出するのを防止すると共に、この部分に雨水、塵芥等の異物が侵入する事を防止する。又、上記第二の内輪部材15の中間部内側には、この第二の内輪部材15の内側を塞ぐ隔板部29を設けて、この第二の内輪部材15の剛性を確保すると共に、この第二の内輪部材15の先端(図10の左端)開口からこの第二の内輪部材15の内側に入り込んだ異物が、前記等速ジョイント1a部分にまで達する事を防止している。尚、この等速ジョイント1aは、前述の図6〜8に示した等速ジョイント1と同様に構成している。
【0012】
上述の様に構成する車輪用転がり軸受ユニットを車両に組み付ける際には、第一の取付フランジ12により外輪11を懸架装置に支持し、第二の取付フランジ17により駆動輪である車輪を第一の内輪部材14に固定する。又、エンジンによりトランスミッションを介して回転駆動される、図示しない駆動軸の先端部を、等速ジョイント1aを構成する内輪2の内側にスプライン係合させる。自動車の走行時には、この内輪2の回転を、複数のボール4、4を介して第二の内輪部材15を含むハブ16に伝達し、上記車輪を回転駆動する。
【0013】
上述の様な第四世代のハブユニットをより小型化する為には、上記等速ジョイント1aを構成する複数個のボール4、4の外接円の直径を小さくする事が有効である。そして、この外接円の直径を小さくする為、上記各ボール4、4の直径を小さくし、しかも上記等速ジョイント1aにより伝達可能なトルクを確保する為には、上記ボール4、4の数を増やす必要がある。又、この様な事情によりボール4、4の数を増やした場合でも、これら各ボール4、4を保持する保持器9の耐久性を確保する為には、この保持器9に設けた複数のポケット10、10同士の間に存在する柱部30、30(図7、8、11〜14参照)の円周方向に亙る長さ寸法を確保する必要がある。何となれば、これら各柱部30、30の円周方向に亙る長さ寸法が不十分であると、上記保持器9の強度が不足し、長期間に亙る使用に伴って、上記各ポケット10、10の周縁部から亀裂等の損傷が発生する可能性が生じる為である。但し、これら各柱部30、30の長さ寸法を大きくする事は、ボール4、4との干渉防止の面から規制を受ける。即ち、第一として上記各ポケット10、10の円周方向に亙る長さは、上記等速ジョイント1aをジョイント角(内輪2の中心軸と外輪3Aの中心軸との位置関係が直線状態からずれた角度。図6に示した軸交角αの補角。)を付した状態で回転させた場合に、上記各ボール4、4が上記保持器9の円周方向に変位できる大きさである必要がある。又、第二として上記長さは、上記等速ジョイント1aを組み立てるべく、内輪2と外輪3Aと保持器9とを組み合わせた後、この保持器9、9のポケット10、10内に、上記各ボール4、4を組み込める大きさでなければならない。
【0014】
この様な点を考慮しつつ、上記ボール4、4の数を6個よりも多くし、上記各柱部30、30の長さ寸法を大きくする構造として、特開平9−177814号公報には、図11〜14に示す様な等速ジョイント1bが記載されている。この公報に記載された等速ジョイント1bは、内輪2と外輪3との間の回転力伝達を8個のボール4、4を介して行なう様に構成している。そして、この公報に記載された構造の場合には、保持器9aの円周方向8個所に、円周方向に亙る長さ寸法が大きいポケット10a、10aと長さ寸法が短いポケット10b、10bとを互いに等間隔に(分割ピッチ角を互いに等しくして)、且つ交互に配置している。これら2種類のポケット10a、10bのうち、長さ寸法が短いポケット10b、10bは、ジョイント角を最大にしての上記等速ジョイント1bの使用状態でも、これら各ポケット10b、10bの長さ方向両端部内側面とこれら各ポケット10b、10b内に保持されたボール4、4の転動面とが干渉しない大きさにしている。これに対して、長さ寸法が長いポケット10a、10aは、上記各ポケット10b、10b内に上記各ボール4、4を組み込むべく、上記内輪2の中心軸と上記外輪3の中心軸とを、上記使用状態でのジョイント角の最大値を越えて傾斜させた状態でも、上記各ポケット10a、10aの長さ方向両端部内側面と、既にこれら各ポケット10a、10a内に組み込んであるボール4、4とが干渉しない大きさにしている。
【0015】
上述の様に構成される、前記特開平9−177814号公報に記載された等速ジョイントによれば、長さ寸法が長いポケット10a、10aにボール4、4を組み込んだ後、長さ寸法が短いポケット10b、10b内にボールを組み込む事により、総てのポケット10a、10b内にボール4、4を組み込める。即ち、これら各ポケット10a、10b内にボール4、4を組み込む際には、図14に示す様に、上記内輪2の中心軸と上記外輪3の中心軸とを、上記使用状態でのジョイント角の最大値を越えて傾斜させた状態で行なう。長さ寸法が長いポケット10a、10aにボール4、4を組み込む際には、これら各ポケット10a、10aの端部と、上記内輪2の外周面に形成した内側係合溝7、7の端部とが、上記ボール4、4の1個分以上整合する。従って、これら各ポケット10a、10a内へのボール4、4の組み込みを確実に行なえる。次いで、長さ寸法が短い4個のポケット10b、10b内にボール4、4を組み込むべく、上記内輪2の中心軸と上記外輪3の中心軸とを図14に示す様に傾斜させると、既に上記長さ寸法が長いポケット10a、10a内に組み込んであるボール4、4が、図13に鎖線矢印で示す様に、長さ寸法が短いポケット10b、10bに近づく方向に、上記各ポケット10a、10a内で変位する。そして、上記長さ寸法が短い各ポケット10b、10bの中央部と、上記内輪2の外周面に形成した内側係合溝7、7の端部とが整合する。従って、これら各ポケット10b、10b内へのボール4、4の組み込みを確実に行なえる。
【0016】
更に、特開平9−317783号公報には、8個のボールを組み込んだ等速ジョイントに於いて、これら8個のボールのピッチ円直径DP とこれら各ボールの直径DB との関係、並びに、上記等速ジョイントを構成する外輪の外径DO と内輪の中心部に形成したセレーション孔の内周面に形成した雌セレーションのピッチ円直径DS との関係を規制する事が記載されている。即ち、この公報に記載された発明の場合には、3.3≦DP /DB ≦5.0とし、2.5≦DO /DS ≦3.5とするとしている。
【0017】
【発明が解決しようとする課題】
上述した特開平9−317783号公報に記載された発明の様に、ボールのピッチ円直径DP とボールの直径DB との関係、並びに外輪の外径DO と雌セレーションのピッチ円直径DS との関係を規制するだけでは、等速ジョイントの強度・耐久性を確保しつつ小型化を図るには不十分である。特に、等速ジョイントのトルク容量を決める、セレーション孔の内周面に形成した雌セレーションのピッチ円直径DS と、等速ジョイントの耐久性に大きな影響を与える上記ボールの直径DB 、並びにボールのピッチ円直径DP と各ボールの直径DB との関係は、保持器に設けた柱部の強度を十分考慮した関係にしなければならない。
【0018】
これに対して、仮に従来から一般的に実施されていた、6個のボールを組み込んだ等速ジョイントに対して、ボールの数を8個に増やす事により等速ジョイントを構成する外輪の外径を7%小型化する事を考えた場合、上記特開平9−317783号公報に記載された発明の様に、ボールのピッチ円直径DP と各ボールの直径DB との比を5.0とすると、各ボールの直径DB が小さくなり過ぎて、ボールと外側係合溝及び内側係合溝の内側面との接触面圧が、6個のボールを組み込んだ等速ジョイントに比べて大幅に高くなり、耐久性を損なう。反対に、上記ボールのピッチ円直径DP と各ボールの直径DB との比を3.3とした場合には、各ボールの直径DB が大きい為、保持器の柱部の長さが小さくなり、保持器の強度、耐久性が低下する。
【0019】
又、上記特開平9−317783号公報に記載された発明では、外輪の外径DO と内輪の中心部に形成したセレーション孔の内周面に形成した雌セレーションのピッチ円直径DS との比を2.5〜3.5としているが、等速ジョイントを小型化するには、ボールのピッチ円直径DP を内輪及び外輪に対して、どの位置に設定するかが重要である。更に、この場合に上記各ボールの直径DB をどの程度に設定するかも重要である。
【0020】
例えば、ボールのピッチ円直径DP を大きくすれば、内輪の肉厚が大きくなって、内輪の強度並びに耐久性が高くなり、又、保持器の柱部の長さも大きくなって、保持器の強度並びに耐久性も高くなる。しかし外輪の肉厚が薄くなって、外輪の強度並びに耐久性が低下する。逆にボールのピッチ円直径DP を小さくすれば、内輪の肉厚が薄くなり、内輪の強度並びに耐久性が低下し、又、保持器の柱部の長さも小さくなり保持器の強度並びに耐久性も低下する。
この様な事情に鑑みて本発明は、構成各部材の強度並びに耐久性を、現在一般的に使用されている、ボールを6個組み込んだ構造のものと同等に保ちつつ、等速ジョイントの小型化を実現すべく発明したものである。
【0021】
【課題を解決する為の手段】
本発明の等速ジョイントは、前述した従来の等速ジョイントと同様に、中心部にセレーション孔を有する内輪と、この内輪の外周面の円周方向に互いに離隔した位置に存在する8個所に、それぞれ円周方向に対し直角方向に形成された断面円弧形の内側係合溝と、上記内輪の周囲に設けられた外輪と、この外輪の内周面で上記各内側係合溝と対向する位置に、円周方向に対し直角方向に形成された断面円弧形の外側係合溝と、上記内輪の外周面と外輪の内周面との間に挟持され、上記内側、外側両係合溝に整合する位置にそれぞれ円周方向に長い8個のポケットを形成した保持器と、これら各ポケットの内側に1個ずつ保持された状態で内側、外側両係合溝に沿う転動を自在とされた、8個のボールとから成り、これら各ボールを、上記内輪の中心軸と上記外輪の中心軸との軸交角を二等分し、これら両中心軸を含む平面に対し直交する二等分面内に配置している。
【0022】
特に、本発明の等速ジョイントに於いては、上記8個のボールのピッチ円直径をDP とし、これら各ボールの直径をDB とし、上記セレーション孔の内周面に設けた雌セレーションのピッチ円直径をDS とした場合に、3.5≦DP /DB ≦3.9、2.0≦DP /DS ≦2.2、0.51≦DB /DS ≦0.63の関係を何れも満たす。
更に、本発明の等速ジョイントに於いては、上記外輪の開口周縁部に、上記各外側係合溝と軸方向に連続する凹部を、全周に亙り設けている。そして、この凹部と上記外輪の軸方向内端面との連続部と、この凹部とこの外輪の内周面のうちで上記各外側係合溝同士の間部分に存在する肩面との連続部とを通過する、仮想円すい面の母線よりも径方向外方に、上記凹部と上記各外側係合溝の開口端縁部との連続部を配置している。
【0023】
【作用】
上述の様に構成する本発明の等速ジョイントによれば、等速ジョイントの小型化を図るべく、ボールの数を従来一般的に実施されていた6個から8個に増やし、これら各ボールの直径を小さくした場合でも、保持器、内輪、外輪の強度並びに耐久性を、ボールを6個組み込んだ構造のものと同等に保つ事ができる。この様に、構成各部材の強度及び耐久性を確保しつつ等速ジョイントを小径化する事ができて、等速ジョイントとハブユニットの内輪とを一体化した、所謂第四世代のハブユニットの実用化が可能になる。
又、上記外輪の開口周縁部に、上記各外側係合溝と連続する凹部を全周に亙り設けている為、上記各ポケット内に上記各ボールを組み込む際に、これら各ボールと上記外輪の開口周縁部とが干渉する事を防止できる。従って、上記内輪とこの外輪との中心軸同士の変位量が比較的小さくても、上記各ポケット内への上記各ボールの組み込み作業を行なう事ができる。又、上記凹部の形状を上述の様に規制している為、ボール組み込み用治具と、上記各外側係合溝の開口端縁部とが当接する事を防止して、ボール組み込み作業の円滑化に寄与する事ができる。
【0024】
尚、ボールのピッチ円直径DP と、これら各ボールの直径DB と、セレーション孔の内周面に設けた雌セレーションのピッチ円直径DS との関係を上述の様に規制した理由は、次の通りである。
▲1▼ 3.5≦DP /DB ≦3.9とした理由
ボールのピッチ円直径DP に対して、これら各ボールの直径DB を決める場合に、これら各ボールの直径DB を大きくすれば、これら各ボールの転動面と内側係合溝及び外側係合溝の内側面との接触面圧を低く設定できる。但し、保持器に、このボールを組み込めるだけのポケットを設ける事を考慮しなければならない。特に、このポケットの内側で上記内側係合溝及び外側係合溝の間部分にボールを組み込む際、並びに等速ジョイントの運転時、ボールはポケットの中で周方向に移動するので、その分、ポケットの周方向に亙る長さを大きくしておく必要がある。従って、上記各ボールの直径DB を大きくすれば、保持器の柱部の長さが小さくなり、保持器の強度が低下する。逆に上記各ボールの直径DB を小さくすれば、保持器の柱部の長さを大きくでき、保持器の強度は向上するが、上記各ボールの転動面と内側係合溝及び外側係合溝の内側面との接触面圧が高くなり、これら内側係合溝及び外側係合溝を設けた内輪及び外輪の耐久性が低下する。下記の表1は、ボールのピッチ円直径DP と各ボールの直径DB との比(DP /DB )と、保持器の強度並びに上記各ボールの転動面と内側係合溝及び外側係合溝の内側面との接触面圧との関係を示したものである。
【0025】
【表1】

Figure 0003941239
【0026】
この表1中、○印は可を、×印は不可を、それぞれ表している。又、保持器の強度は実験結果に基づくものであり、各ボールの転動面と内側係合溝及び外側係合溝の内側面との接触面圧は、計算により求めたものである。この接触面圧が4,200MPa(428kgf/ mm2)を超えた場合には、等速ジョイントの運転を円滑に行なえないとして、×(不可)とした。即ち、等速ジョイントを構成する場合に一般的な、HRC60〜64程度に焼入硬化した鋼に、上記4,200MPaなる接触圧力を与えると、ボールと上記各内側面との永久変形量の和が、ボールの直径DB のほぼ0.0001倍となる。そして、この永久変形量の和がこの値を超えると、ボールの円滑な運動を妨げる様になる。そこで、上記した表1の結果から、ボールのピッチ円直径DP と、これら各ボールの直径DB との関係を、3.5≦DP /DB ≦3.9とした。
【0027】
▲2▼ 2.0≦DP /DS ≦2.2とした理由
上記各ボールの直径DB を小さくし、代りにボールの数を増やす事によって、等速ジョイントの小型化を図れるが、これら各ボールの直径DB は無制限に小さくできる訳ではない。又、ボールのピッチ円直径DP の設定範囲は、上記各ボールの直径DB と、保持器に設ける柱部に必要とする長さとにより限定される。下記の表2は、ボールのピッチ円直径DP と、セレーション孔の内周面に設けた雌セレーションのピッチ円直径DS との比(DP /DS )と、上記各ボールの転動面と内側係合溝及び外側係合溝の内側面との接触面圧との関係を示したものである。
【0028】
【表2】
Figure 0003941239
【0029】
この表中、○印は可を、×印は不可を、それぞれ表している。ちなみに、現在一般的に使用されている、6個のボールを組み込んだ一般的な等速ジョイントの場合、上記比DP /DS は、2.2〜2.4程度である。従って、この比DP /DS が2.2を越えた場合には、ボールの数を6個から8個に増やす事による小型化を図れない。
そこで、この様な表2の結果から、ボールのピッチ円直径DP と、セレーション孔の内周面に設けた雌セレーションのピッチ円直径DS との関係を、2.0≦DP /DS ≦2.2とした。
【0030】
▲3▼ 0.51≦DB /DS ≦0.63とした理由
ボールのピッチ円直径がDP 、各ボールの直径がDB 、セレーション孔の内周面に設けた雌セレーションのピッチ円直径がDS であり、
3.5≦DP /DB ≦3.9 −−− (1)
2.0≦DP /DS ≦2.2 −−− (2)
であるから、(1)式より
P /3.9≦DB ≦DP /3.5 −−− (3)
(2)式より、
P /2.2≦DS ≦DP /2.0 −−− (4)
(3)、(4)式より、
2.0/3.9≦DB /DS ≦2.2/3.5
0.51≦DB /DS ≦0.63
となる。
【0031】
【発明の実施の形態】
図1〜5は、本発明の実施の形態の1例として、本発明を第四世代のハブユニットを構成する等速ジョイントに適用した状態を示している。懸架装置に支持した状態で回転しない外輪11は、外周面にこの懸架装置に支持する為の第一の取付フランジ12を、内周面に複列の外輪軌道13、13を、それぞれ有する。上記外輪11の内径側には、ハブ本体32と内輪33とから成るハブ34を、この外輪11と同心に配置している。このハブ34の外周面で上記各外輪軌道13、13に対向する部分には、それぞれ第一、第二の内輪軌道18、20を設けている。これら両内輪軌道18、20のうち、第一の内輪軌道18は、上記ハブ本体32の中間部外周面に直接形成している。又、このハブ本体32の中間部のうち、上記第一の内輪軌道18を形成した部分よりも内端寄り(図1の右端寄り)部分に、上記内輪33を外嵌している。上記第二の内輪軌道20は、この内輪33の外周面に形成している。そして、上記各外輪軌道13、13と上記第一、第二の内輪軌道18、20との間に、それぞれ複数個ずつの転動体21、21を転動自在に設ける事により、上記外輪11の内側に上記ハブ34を、回転自在に支持している。
【0032】
図示の例の場合には、上述の様に、上記第一の内輪軌道18を上記ハブ本体32の外周面に直接形成する事により、この第一の内輪軌道18の直径を、上記内輪33の外周面に形成した第二の内輪軌道20の直径よりも小さくしている。又、この様に第一の内輪軌道18の直径を第二の内輪軌道20の直径よりも小さくした事に伴い、上記第一の内輪軌道18と対向する外側(自動車への組み付け状態で幅方向外側となる側を言い、図1の左側)の外輪軌道13の直径を、内側(自動車への組み付け状態で幅方向中央側となる側を言い、図1の右側)の外輪軌道13の直径よりも小さくしている。更に、この外側の外輪軌道13を形成した、外輪11の外半部の外径を、上記内側の外輪軌道13を形成した部分である、上記外輪11の内半部の外径よりも小さくしている。又、図示の例では、この様に第一の内輪軌道18及び外側の外輪軌道13の直径を小さくした事に伴い、これら第一の内輪軌道18と外側の外輪軌道13との間に設ける転動体21、21の数を、上記第二の内輪軌道20と内側の外輪軌道13との間に設ける転動体21、21の数よりも少なくしている。
【0033】
又、上記ハブ本体32の外端部外周面には、このハブ本体32に車輪を支持固定する為の第二の取付フランジ17を、このハブ本体32と一体に設けており、この第二の取付フランジ17に、上記車輪を結合する為の複数本のスタッド35の基端部を固定している。図示の例の場合にこれら複数本のスタッド35のピッチ円直径は、上述の様に外輪11の外半部の外径を、同じく内半部の外径よりも小さくした分だけ(上記各スタッド35の頭部36が上記外輪11の外端部外周面と干渉しない程度に)小さくしている。尚、上記ハブ本体32の外周面のうちで、上記第一の内輪軌道18を形成した部分よりも軸方向内方に存在する部分の直径は、この第一の内輪軌道18に対応する転動体21、21の内接円の直径よりも小さくしている。この理由は、車輪用転がり軸受ユニットの組み立て時に、外輪11の外端部内周面に形成した外輪軌道13の内径側に複数の転動体21、21を組み付けると共に、上記外輪11の外端部内周面にシールリング37を内嵌固定した状態で、この外輪11の内径側に上記ハブ本体32を挿入自在とする為である。又、上記ハブ本体32の中間部外周面で、上記第一の内輪軌道18と上記内輪33を外嵌した部分との間部分には、全周に亙り凹溝状の肉盗み部38を形成して、上記ハブ本体32の軽量化を図っている。
【0034】
又、上記ハブ本体32に外嵌した内輪33が軸方向内端側にずれ動くのを防止して、上記各外輪軌道13、13と上記第一、第二の内輪軌道18、20との間にそれぞれ複数個ずつ転動自在に設けた、上記各転動体21、21に付与した予圧を適正値に保持すべく、上記ハブ本体32の外周面内端寄り部分に全周に亙り形成した係止凹溝39に、止め輪40を係止している。この止め輪40は、それぞれが半円弧状である、1対の止め輪素子により構成している。この様な止め輪40は、上記各転動体21、21に適正な予圧を付与すべく、上記内輪33を上記ハブ本体32に対して軸方向外方に押圧しつつ、その内周縁部を上記係止凹溝39に係合させる。上記内輪33を軸方向外方に押圧している力を解除した状態でも上記各転動体21、21に適正な予圧を付与したままにすべく、上記止め輪40として、適切な厚さ寸法を有するものを選択使用する。即ち、上記止め輪40として、厚さ寸法が僅かずつ異なるものを複数種類用意し、上記係止凹溝39の溝幅等、転がり軸受ユニットの構成各部材の寸法との関係で適切な厚さ寸法を有する止め輪40を選択し、上記係止凹溝39に係合させる。従って、この止め輪40を係止凹溝39に係止すれば、上記押圧している力を解除しても、上記内輪33が軸方向内端側にずれ動くのを防止して、上記各転動体21、21に適切な予圧を付与したままに保持できる。
【0035】
又、上記止め輪40を構成する1対の止め輪素子が直径方向外方に変位し、この止め輪40が上記係止凹溝39から不用意に抜け落ちる事を防止すべく、この止め輪40の周囲に、間座41の一部を配置している。この間座41は、上記ハブ本体32の内端部分に設けた、等速ジョイント用の外輪42により構成する、本発明の対象である等速ジョイント1c内に、雨水、塵芥等の異物が入り込むのを防止する為のブーツ43の外端部を外嵌支持する為のものである。又、前記外輪11の外端部内周面と上記ハブ本体32の中間部外周面との間には前記シールリング37を、上記外輪11の内端部内周面と前記内輪33の内端部外周面との間には組み合わせシールリング44を、それぞれ設けて、前記複数の転動体21、21を設置した空間45の両端開口部を塞いでいる。
【0036】
更に、上記ハブ本体32の内端部で、上記内輪33と上記ブーツ43の外端部とを外嵌した部分は、上述の様に、等速ジョイント1cの外輪となる外輪42としている。この外輪42の内周面の円周方向に関して等間隔位置には、それぞれ断面形状が円弧形である8本の外側係合溝8、8を、それぞれ円周方向に対し直角方向(図1の左右方向)に形成している。又、上記外輪42の内側には、この外輪42と共にツェッパ型の上記等速ジョイント1cを構成する為の、内輪2を配置している。そして、この内輪2の外周面に8本の内側係合溝7、7を、それぞれ円周方向に対し直角方向に、やはり円周方向に亙り等間隔に形成している。そして、これら各内側係合溝7、7と上記各外側係合溝8、8との間に、これら各係合溝7、8毎に1個ずつ、合計8個のボール4、4を、保持器9aのポケット10a、10b内に保持した状態で転動自在に設けている。更に、上記内輪2の中心部には、スプライン孔31を軸方向に亙り形成している。自動車への組み付け状態でこのスプライン孔31には、図示しない駆動軸の端部をスプライン係合させ、上記内輪2及び上記8個のボール4、4を介して、上記ハブ本体32を回転駆動自在とする。
【0037】
上記保持器9aには、前述の図11〜14に示した従来構造の場合と同様に、円周方向の長さ寸法が互いに異なる2種類のポケット10a、10bを、円周方向に亙って交互に設けている。即ち、円周方向に亙る長さが大きいポケット10a、10aを90度置きに配置し、円周方向に関して、これら長さが大きいポケット10a、10a同士の中間位置に、円周方向に関する長さが小さいポケット10b、10bを配置している。
【0038】
又、図示の例では、上記外輪42の開口周縁部に、上記各外側係合溝8、8と軸方向に連続する凹部46を、全周に亙り形成している。上記各ポケット10a、10b内にボール4、4を組み込む際には、上記凹部46が、図4に示す様に、これら各ボール4、4と上記外輪42の開口周縁部との干渉を防止する。従って、図示の例の場合には、内輪2と外輪42との中心軸a、b(図6)同士の変位量が比較的小さくても、上記各ポケット10a、10b内へのボール4、4の組み込み作業を行なえる。
【0039】
又、上記凹部46の形状は、以下の様に規制している。即ち、この凹部46と前記外輪42の軸方向内端面との連続部(図5に示す位置A)と、この凹部46とこの外輪42の内周面のうちで上記各外側係合溝8、8同士の間部分に存在する肩面48との連続部(図5に示す位置B)とを通過する、仮想円すい面の母線よりも径方向外方に、上記凹部46と上記各外側係合溝8、8の開口端縁部との連続部(図5に示す位置C)を配置している。この様な形状を有する上記凹部46は、ボール組み込み用治具を構成するシャフト47(図5)と、上記外側係合溝8、8の開口端縁部とが当接する事を防止して、ボール組み込み作業の円滑化に寄与する。即ち、上記各ポケット10a、10b内にボール4、4を組み込む際には、上記ボール組み込み用治具のシャフト47を上記内輪2のスプライン孔31内に挿入し、この内輪2を揺動変位させる。この際、上記シャフト47の外周面が、円周方向に亙って凹凸部を構成する、上記外側係合溝8、8の開口端縁部に当接すると、上記シャフト47を操作する作業者に違和感を与える。これに対して本例の場合には、上記凹部46を設ける事により、上記開口端縁部と上記シャフト47の外周面とが当接する事を防止している。即ち、上記外輪42に対して上記シャフト47を大きく傾斜させた場合にこのシャフト47の外周面は、上記凹部46の開口周縁部に当接する。この開口周縁部は全周に亙って滑らかに連続するので、上記シャフト47を操作する作業者に違和感を与える事はなく、作業の円滑化に寄与する。
【0040】
各部を上述の様に構成する本発明の等速ジョイント1cに於いては、前記8個のボール4、4のピッチ円直径DP と、これら各ボール4、4の直径DB と、前記セレーション孔の内周面に設けた雌セレーションのピッチ円直径DS との関係を、3.5≦DP /DB ≦3.9、2.0≦DP /DS ≦2.2、0.51≦DB /DS ≦0.63としている。
【0041】
上述の様に構成する本例の等速ジョイント1cを組み込んだ車輪用転がり軸受ユニットにより、車輪を懸架装置に対して回転自在に支持する作用は、前述した従来の等速ジョイントを組み込んだ車輪用転がり軸受ユニットの場合と同様である。又、本発明の等速ジョイント1cによれば、等速ジョイント1cの小型化を図るべく、ボール4、4の数を従来一般的に実施されていた6個から8個に増やし、これら各ボール4、4の直径を小さくした場合でも、保持器9b、内輪2、外輪42の強度並びに耐久性を、ボールを6個組み込んだ構造のものと同等に保つ事ができる。この様に、構成各部材の強度及び耐久性を確保しつつ等速ジョイント1cを小径化する事ができて、等速ジョイント1cと車輪用転がり軸受ユニットを構成するハブ本体32とを一体化した、所謂第四世代のハブユニットの実用化が可能になる。
【0042】
即ち、本発明の等速ジョイント1cを組み込んだ車輪用転がり軸受ユニットの場合には、この等速ジョイント1cを構成する内側、外側両係合溝7、8の数を8本とし、上記ボール4、4の数を8個としているので、車輪用転がり軸受ユニットの使用に伴う、ハブ34と内輪2との間でのトルク伝達時に、上記等速ジョイント1cを構成する各ボール4、4毎に加わる負荷の大きさを、前述の図6〜7に示した従来構造の場合よりも小さくできる。従って、その分だけ、上記各ボール4、4の外径を小さくして、環状に配置したこれら各ボール4、4の外接円の直径、並びに上記複数の外側係合溝8、8の外接円の直径を小さくできる。そして、この様に外側係合溝8、8の外接円の直径を小さくした分、車輪用転がり軸受ユニットの外径寸法を小さくして、装置全体の小型・軽量化を図れる。しかも、上述の様に、構成各部材の強度並びに耐久性を確保できる。
【0043】
特に、図示の例の様に、上記各外側係合溝8、8の外半部を前記第二の内輪軌道20の内径側に配置すれば、車輪用転がり軸受ユニットの外径寸法だけでなく軸方向寸法も小さくして、装置全体の小型・軽量化をより有効に図れる。この様な本例の構造は、転がり軸受ユニット本体を構成する第二の内輪軌道20を、上記各外側係合溝8、8よりも大径にせざるを得ず、上記転がり軸受ユニット本体の外径寸法が大きくなる。この様な本例の構造では、上記ボール4、4の数を6個から8個に増やして、その分ボール4、4の外径を小さくし、上記転がり軸受ユニットの外径寸法を小さくできる本発明の効果が、特に大きくなる。
【0044】
更に、図示の例の場合には、前述した様に、外側の転動体列を構成する各転動体21、21のピッチ円直径を小さくする事により、外輪11の外半部の外径を小さくできる。そして、この外輪11の外半部の外径を小さくした分だけ、ハブ本体32の外周面に設けた第二の取付フランジ17に固定した複数のスタッド35のピッチ円直径を小さくできる。従って、上記ハブ本体32の軸方向寸法を大きくする事なく、上記スタッド35を支持固定する上記第二の取付フランジ17の外径を小さくして、車輪用転がり軸受ユニットの小型・軽量化を、更に有効に図れる。
【0045】
尚、上述の様に、外側の転動体列を構成する各転動体21、21のピッチ円直径を内側の転動体列を構成する各転動体21、21のピッチ円直径よりも小さくする事に伴い、外側の転動体列部分の基本動定格荷重が内側の転動体列部分の基本動定格荷重よりも小さくなる。従って、両列に加わる荷重が同じであれば、外側の転動体列部分の寿命が内側の転動体列部分の寿命よりも短くなる。これに対して、一般的な自動車では、外側の転動体列部分に加わる荷重は内側の転動体列部分に加わる荷重よりも小さい。この為、上記両列部分の寿命をほぼ同じにする設計が容易になって、無駄のない設計が可能になる。尚、図示の例では、転動体21、21として玉を使用しているが、重量の嵩む自動車用の転がり軸受ユニットの場合には、転動体としてテーパころを使用する場合もある。本発明は、勿論、この様に転動体としてテーパころを使用する転がり軸受ユニットにも適用可能である。
【0046】
【発明の効果】
本発明の等速ジョイントは、以上に述べた通り構成され作用するので、回転力伝達用のボールの数を8個とする事により外径を小さくできる構造で、しかも構成各部材の強度並びに耐久性を確保できる。従って、第四世代のハブユニットと呼ばれる、等速ジョイントを一体的に組み込んだ車輪用転がり軸受ユニットの小型・軽量化を、十分な耐久性を確保しつつ実現できる。
【図面の簡単な説明】
【図1】本発明の等速ジョイントを組み込んだ車輪用転がり軸受ユニットの1例を示す断面図。
【図2】図1のA−A断面図。
【図3】保持器とボールとを取り出して図2と同方向から見た断面図。
【図4】等速ジョイントの保持器を、ボールの組み込みが可能な程度にまで外輪に対して傾斜させた状態を示す断面図。
【図5】等速ジョイントの保持器をボールの組み込みが可能な程度にまで外輪に対して傾斜させた状態で、組み込み用治具のシャフトと外輪との関係を示す断面図。
【図6】従来の等速ジョイントの第1例を、ジョイント角を付与した状態で示す断面図。
【図7】同じくジョイント角を付与しない状態で示す、図6のB−B断面に相当する図。
【図8】保持器の一部を外周側から見た図。
【図9】内側、外側両係合溝の底面の位置関係を示す模式図。
【図10】等速ジョイントを一体的に組み込んだ車輪用転がり軸受ユニットの1例を示す断面図。
【図11】従来の等速ジョイントの第2例を、ジョイント角を付与しない状態で示す断面図。
【図12】図11のC−C断面図。
【図13】従来構造の第2例に組み込む保持器の断面図。
【図14】保持器にボールを組み込むべく、内輪と外輪とを所定方向に変位させた状態を示す断面図。
【符号の説明】
1、1a、1b、1c 等速ジョイント
2 内輪
2a 外周面
3、3A 外輪
3a 内周面
4 ボール
5 軸
6 軸
7 内側係合溝
7a 底面
8 外側係合溝
8a 底面
9、9a 保持器
10、10a、10b ポケット
11 外輪
12 第一の取付フランジ
13 外輪軌道
14 第一の内輪部材
15 第二の内輪部材
16 ハブ
17 第二の取付フランジ
18 第一の内輪軌道
19 円筒部
20 第二の内輪軌道
21 転動体
22 係止溝
23 係止溝
24 止め輪
25 段部
26 溶接
27a、27b カバー
28a、28b シールリング
29 隔板部
30 柱部
31 スプライン孔
32 ハブ本体
33 内輪
34 ハブ
35 スタッド
36 頭部
37 シールリング
38 肉盗み部
39 係止凹溝
40 止め輪
41 間座
42 外輪
43 ブーツ
44 組み合わせシールリング
45 空間
46 凹部
47 シャフト
48 肩面 [0001]
BACKGROUND OF THE INVENTION
The constant velocity joint according to the present invention is incorporated, for example, in a rolling bearing unit for supporting a driving wheel in an independent suspension type suspension, and used to transmit a driving force from the transmission to the driving wheel.
[0002]
[Prior art]
A constant velocity joint is provided between the transmission of the automobile and the drive wheel supported by the independent suspension, and the engine is driven regardless of the relative displacement between the differential gear and the drive wheel and the steering angle applied to the wheel. Force can be transmitted to the drive wheel at the same angular velocity over the entire circumference. Conventionally, constant velocity joints used in such parts are known, for example, those described in Japanese Utility Model Laid-Open Nos. 57-145824-5, 59-185425, 62-12021, etc. Yes.
[0003]
  Such a conventionally known constant velocity joint 1 is configured to transmit the rotational force between the inner ring 2 and the outer ring 3 through six balls 4, 4 as shown in FIGS. It is composed. The inner ring 2 is fixed to the outer end portion of one shaft 5 that is rotationally driven by a transmission. For this reason, the center of the inner ring 2 has this shaft.5A spline hole 31 is provided for engaging a male spline portion formed at the end portion. The outer ring 3 is fixed to the inner end portion of the other shaft 6 to which the driving wheel is coupled. On the outer peripheral surface 2a of the inner ring 2, six inner engagement grooves 7, 7 having an arc cross section are formed at equal intervals in the circumferential direction, respectively, at right angles to the circumferential direction. Further, on the inner peripheral surface 3a of the outer ring 3, there are six outer engagement grooves 8, 8 having a circular arc shape in the circumferential direction at positions facing the inner engagement grooves 7, 7. It is formed in a perpendicular direction.
[0004]
Further, between the outer peripheral surface 2a of the inner ring 2 and the inner peripheral surface 3a of the outer ring 3, a cage 9 having a circular cross section and an annular shape is sandwiched. Pockets 10 and 10 are formed at positions corresponding to the inner and outer engaging grooves 7 and 8 at six positions in the circumferential direction of the retainer 9, respectively, and 1 inside each pocket 10 and 10. A total of six balls 4, 4 are held one by one. The balls 4 and 4 can roll along the inner and outer engaging grooves 7 and 8 while being held in the pockets 10 and 10, respectively.
[0005]
As shown in FIG. 8, each of the pockets 10 and 10 has a rectangular shape that is long in the circumferential direction, and the interval between the balls 4 and 4 that are adjacent to each other in the circumferential direction has changed in accordance with the change in the axis crossing angle α described below. Even so, this change is absorbed. That is, the positional relationship between the bottom surfaces 7a and 7a of the inner engagement grooves 7 and 7 and the positional relationship between the bottom surfaces 8a and 8a of the outer engagement grooves 8 and 8 are as shown by a one-dot chain line in FIG. The relationship is like a meridian of the globe. When the center axis of the inner ring 2 and the center axis of the outer ring 3 coincide with each other (axis crossing angle α = 180 °), the balls 4, 4 are located on the equator of the globe shown by a two-dot chain line in FIG. It exists in the vicinity of the corresponding position. On the other hand, when the central axis of the inner ring 2 and the central axis of the outer ring 3 do not coincide with each other (the axis crossing angle α <180 °), the balls 4 and 4 are moved as the constant velocity joint 1 rotates. 9 is reciprocated in the vertical direction (displaced alternately in the north and south pole directions of the globe). As a result, the interval between the balls 4, 4 adjacent to each other in the circumferential direction expands / contracts, so that the pockets 10, 10 are each formed into a rectangle that is long in the circumferential direction so that the interval can be expanded / contracted. The bottom surfaces 7a and 7a of the inner engagement grooves 7 and 7 and the bottom surfaces 8a and 8a of the outer engagement grooves 8 and 8 are not concentric with each other, as is apparent from the above description. Accordingly, a line corresponding to the meridian exists at a position slightly deviated from each other for each of the engagement grooves 7 and 8.
[0006]
Further, as shown in FIG. 6, regardless of the displacement between the one shaft 5 and the other shaft 6, the balls 4, 4 are moved to the axis crossing angle α between the two shafts 5, 6, that is, The angle a formed by the two lines a and b is bisected at the intersection o between the center line a of the shaft 5 and the center line b of the other shaft 6. For this purpose, the bottom surfaces 7a, 7a of the inner engagement grooves 7, 7 are positioned on a spherical surface centered on a point d separated from the intersection o by h on the center line a. The bottom surfaces 8a and 8a of the grooves 8 and 8 are positioned on a spherical surface centered on a point e that is separated from the intersection o by h on the center line b. However, the outer peripheral surface 2a of the inner ring 2, the inner peripheral surface 3a of the outer ring 3, and both inner and outer peripheral surfaces of the retainer 9 are positioned on a spherical surface centering on the intersection point o, respectively, The sliding between the surface 2 a and the inner peripheral surface of the cage 9 and the sliding between the inner peripheral surface 3 a of the outer ring 3 and the outer peripheral surface of the cage 9 are made free.
[0007]
In the case of the constant velocity joint 1 configured as described above, when the inner ring 2 is rotated by the one shaft 5, this rotational motion is transmitted to the outer ring 3 via the six balls 4, 4, and the other shaft 6 Rotates. When the positional relationship between the shafts 5 and 6 (the above-mentioned axis crossing angle α) changes, the balls 4 and 4 roll along the inner and outer engaging grooves 7 and 8 and the one shaft 5 and the other shaft 6 are allowed to be displaced.
[0008]
Although the basic structure and operation of the constant velocity joint are as described above, such a constant velocity joint and a wheel rolling bearing unit for supporting the wheel rotatably with respect to the suspension device are integrated. Combining has been studied in recent years. That is, in order to rotatably support a vehicle wheel on a suspension device, a wheel rolling bearing unit in which an outer ring and an inner ring are rotatably combined via a rolling element is used. If such a wheel rolling bearing unit and a constant velocity joint as described above are combined together, the wheel rolling bearing unit for a wheel and the constant velocity joint can be made small and light as a whole. Conventionally, such a wheel rolling bearing unit for a wheel called a fourth generation hub unit, in which a wheel rolling bearing unit for a wheel and a constant velocity joint are integrally combined, is described in JP-A-7-317754. It has been known.
[0009]
FIG. 10 shows a conventional structure described in this publication. The outer ring 11 that does not rotate while being supported by the suspension device when assembled to the vehicle has a first mounting flange 12 for supporting the suspension device on the outer peripheral surface and a double row outer ring raceway 13 on the inner peripheral surface. 13 respectively. A hub 16 formed by combining the first and second inner ring members 14 and 15 is disposed inside the outer ring 11. Of these, the first inner ring member 14 has a second mounting flange 17 for supporting the wheel on one end portion (left side in FIG. 10) of the outer peripheral surface, and on the other end portion (right side in FIG. 10). The first inner ring raceway 18 is formed in a cylindrical shape provided. On the other hand, the second inner ring member 15 has one end portion (left end portion in FIG. 10) as a cylindrical portion 19 for fitting and fixing the first inner ring member 14 to the other end portion (FIG. 10). Is the outer ring 3A of the constant velocity joint 1a, and the second inner ring raceway 20 is provided on the outer peripheral surface of the intermediate part. Then, by providing a plurality of rolling elements 21 and 21 between the outer ring raceways 13 and 13 and the first and second inner ring raceways 18 and 20, the hub 16 is provided inside the outer ring 11. Is supported rotatably.
[0010]
Further, locking grooves 22 and 23 are formed at positions where the inner peripheral surface of the first inner ring member 14 and the outer peripheral surface of the second inner ring member 15 are aligned with each other, and a retaining ring 24 is provided. The first inner ring member 14 is prevented from slipping out of the second inner ring member 15 by being provided in a state of being hung over both the locking grooves 22 and 23. Further, welding is performed between the outer peripheral edge of one end surface (left end surface in FIG. 10) of the second inner ring member 15 and the inner peripheral edge of the step portion 25 formed on the inner peripheral surface of the first inner ring member 14. 26, the first and second inner ring members 14, 15 are coupled and fixed together.
[0011]
Further, between the opening portions at both ends of the outer ring 11 and the outer peripheral surface of the intermediate portion of the hub 16 are made of a metal and substantially cylindrical cover 27a, 27b such as a stainless steel plate, and an elastic material such as rubber or elastomer. Annular seal rings 28a and 28b are provided. The covers 27a and 27b and the seal rings 28a and 28b block the portion where the plurality of rolling elements 21 and 21 are installed from the outside, and prevent the grease existing in the portion from leaking outside. Prevents foreign matter such as rainwater and dust from entering the area. In addition, a partition plate portion 29 that closes the inside of the second inner ring member 15 is provided inside the intermediate portion of the second inner ring member 15 to ensure the rigidity of the second inner ring member 15 and Foreign matter that has entered the inside of the second inner ring member 15 from the opening (left end in FIG. 10) of the second inner ring member 15 is prevented from reaching the constant velocity joint 1a. The constant velocity joint 1a is configured in the same manner as the constant velocity joint 1 shown in FIGS.
[0012]
When the rolling bearing unit for a wheel configured as described above is assembled to a vehicle, the outer ring 11 is supported on the suspension device by the first mounting flange 12, and the wheel as the driving wheel is first supported by the second mounting flange 17. The inner ring member 14 is fixed. Further, the tip of a drive shaft (not shown) that is rotationally driven by the engine via the transmission is spline-engaged with the inner side of the inner ring 2 constituting the constant velocity joint 1a. During traveling of the automobile, the rotation of the inner ring 2 is transmitted to the hub 16 including the second inner ring member 15 through the plurality of balls 4 and 4 to drive the wheels to rotate.
[0013]
In order to reduce the size of the fourth generation hub unit as described above, it is effective to reduce the diameter of the circumscribed circle of the plurality of balls 4 and 4 constituting the constant velocity joint 1a. In order to reduce the diameter of the circumscribed circle, the diameter of each of the balls 4 and 4 is reduced, and in order to secure a torque that can be transmitted by the constant velocity joint 1a, the number of the balls 4 and 4 is set. Need to increase. Further, even when the number of balls 4 and 4 is increased due to such circumstances, in order to ensure the durability of the cage 9 that holds the balls 4 and 4, a plurality of balls 9 provided in the cage 9 are provided. It is necessary to ensure the length of the column portions 30 and 30 (see FIGS. 7, 8 and 11 to 14) existing between the pockets 10 and 10 in the circumferential direction. If the length of the pillars 30 and 30 extending in the circumferential direction is insufficient, the strength of the retainer 9 is insufficient, and the pockets 10 are used with use over a long period of time. This is because there is a possibility that damage such as cracks may occur from the peripheral portion of the ten. However, increasing the length of each of the pillars 30 and 30 is restricted from the viewpoint of preventing interference with the balls 4 and 4. That is, the length of the pockets 10 and 10 in the circumferential direction is that the constant velocity joint 1a has a joint angle (the positional relationship between the central axis of the inner ring 2 and the central axis of the outer ring 3A is deviated from a linear state). The balls 4 and 4 need to be large enough to be displaced in the circumferential direction of the cage 9 when rotated in a state of being supplemented with the axis crossing angle α shown in FIG. There is. Secondly, the above-mentioned length is determined by combining the inner ring 2, the outer ring 3 </ b> A and the cage 9 in order to assemble the constant velocity joint 1 a. It must be large enough to accommodate the balls 4 and 4.
[0014]
In consideration of these points, Japanese Patent Application Laid-Open No. 9-177814 discloses a structure in which the number of the balls 4 and 4 is larger than six and the lengths of the pillars 30 and 30 are increased. The constant velocity joint 1b as shown to FIGS. 11-14 is described. The constant velocity joint 1b described in this publication is configured to transmit the rotational force between the inner ring 2 and the outer ring 3 through eight balls 4 and 4. In the case of the structure described in this publication, pockets 10a and 10a having a large length in the circumferential direction and pockets 10b and 10b having a short length are provided at eight locations in the circumferential direction of the cage 9a. Are arranged at equal intervals (with equal division pitch angles) and alternately. Of these two types of pockets 10a and 10b, the pockets 10b and 10b having a short length are both ends in the longitudinal direction of the pockets 10b and 10b even when the constant velocity joint 1b is used with the joint angle being maximized. The inner side surface and the rolling surfaces of the balls 4 and 4 held in the pockets 10b and 10b are set so as not to interfere with each other. On the other hand, the pockets 10a and 10a having a long length have a central axis of the inner ring 2 and a central axis of the outer ring 3 in order to incorporate the balls 4 and 4 into the pockets 10b and 10b. Even in a state where the joint angle is inclined beyond the maximum value of the joint angle in the use state, the inner surfaces of both ends in the longitudinal direction of the pockets 10a, 10a and the balls 4, 4 already incorporated in the pockets 10a, 10a. The size is such that it does not interfere with.
[0015]
According to the constant velocity joint described in JP-A-9-177814, which is configured as described above, after the balls 4 and 4 are assembled in the pockets 10a and 10a having long lengths, the length dimensions are By incorporating the balls into the short pockets 10b and 10b, the balls 4 and 4 can be incorporated into all the pockets 10a and 10b. That is, when the balls 4 and 4 are assembled in the pockets 10a and 10b, as shown in FIG. 14, the center angle of the inner ring 2 and the center axis of the outer ring 3 are set to the joint angle in the use state. It is performed in a state of being inclined beyond the maximum value of. When the balls 4 and 4 are assembled into the pockets 10a and 10a having a long length, the end portions of the pockets 10a and 10a and the end portions of the inner engagement grooves 7 and 7 formed on the outer peripheral surface of the inner ring 2 are used. Match one or more of the balls 4, 4. Therefore, it is possible to reliably incorporate the balls 4 and 4 into the pockets 10a and 10a. Next, when the central axis of the inner ring 2 and the central axis of the outer ring 3 are inclined as shown in FIG. 14 in order to incorporate the balls 4 and 4 into the four pockets 10b and 10b having a short length, The balls 4 and 4 incorporated in the pockets 10a and 10a having long lengths are arranged in the direction approaching the pockets 10b and 10b having short lengths as shown by chain line arrows in FIG. Displace within 10a. And the center part of each pocket 10b, 10b with a short said length dimension and the edge part of the inner side engagement grooves 7 and 7 formed in the outer peripheral surface of the said inner ring | wheel 2 align. Therefore, it is possible to reliably incorporate the balls 4 and 4 into the pockets 10b and 10b.
[0016]
Further, JP-A-9-317783 discloses a pitch circle diameter D of eight balls in a constant velocity joint incorporating eight balls.P And the diameter D of each of these ballsB And the outer diameter D of the outer ring constituting the constant velocity joint.O The pitch circle diameter D of the female serration formed on the inner peripheral surface of the serration hole formed at the center of the inner ringS It regulates the relationship between That is, in the case of the invention described in this publication, 3.3 ≦ DP / DB ≦ 5.0, 2.5 ≦ DO / DS ≦ 3.5.
[0017]
[Problems to be solved by the invention]
As in the invention described in Japanese Patent Laid-Open No. 9-317783, the pitch circle diameter D of the ballP And ball diameter DB And the outer diameter D of the outer ringO And female serration pitch circle diameter DS Is not sufficient to reduce the size while ensuring the strength and durability of the constant velocity joint. In particular, the pitch diameter D of the female serration formed on the inner peripheral surface of the serration hole, which determines the torque capacity of the constant velocity joint.S And the diameter D of the ball, which greatly affects the durability of the constant velocity jointB , As well as the pitch circle diameter D of the ballP And the diameter D of each ballB The relationship between and should be a relationship that fully considers the strength of the pillar provided in the cage.
[0018]
On the other hand, the outer diameter of the outer ring constituting the constant velocity joint is increased by increasing the number of balls to eight compared to the constant velocity joint in which six balls are incorporated, which has been generally performed conventionally. Is considered to be downsized by 7%, the pitch circle diameter D of the ball as in the invention described in the above-mentioned JP-A-9-317783.P And the diameter D of each ballB If the ratio to the diameter is 5.0, the diameter D of each ballB Becomes too small, the contact surface pressure between the ball and the inner surface of the outer engagement groove and the inner engagement groove is significantly higher than that of a constant velocity joint incorporating six balls, which impairs durability. On the contrary, the pitch circle diameter D of the ballP And the diameter D of each ballB When the ratio to the diameter is 3.3, the diameter D of each ballB Therefore, the length of the cage column is reduced, and the strength and durability of the cage are reduced.
[0019]
Further, in the invention described in the above-mentioned JP-A-9-317783, the outer diameter D of the outer ringO The pitch circle diameter D of the female serration formed on the inner peripheral surface of the serration hole formed at the center of the inner ringS However, in order to reduce the constant velocity joint, the pitch circle diameter D of the ballP It is important to set the position with respect to the inner ring and the outer ring. Further, in this case, the diameter D of each of the above ballsB It is also important how much to set.
[0020]
For example, the pitch circle diameter D of the ballP Increasing the thickness of the inner ring increases the strength and durability of the inner ring, and increases the length of the pillar portion of the cage, thereby increasing the strength and durability of the cage. However, the thickness of the outer ring is reduced, and the strength and durability of the outer ring are reduced. Conversely, the pitch circle diameter D of the ballP By reducing the thickness of the inner ring, the thickness of the inner ring is reduced, the strength and durability of the inner ring are lowered, and the length of the pillar portion of the cage is also reduced, so that the strength and durability of the cage are also lowered.
In view of such circumstances, the present invention is a small-sized constant velocity joint while maintaining the strength and durability of each constituent member equal to that of a structure in which six balls are generally used. It was invented in order to realize this.
[0021]
[Means for solving the problems]
The constant velocity joint of the present invention is similar to the conventional constant velocity joint described above, in the inner ring having a serration hole in the central portion, and at eight positions that are separated from each other in the circumferential direction of the outer circumferential surface of the inner ring. An inner engagement groove having an arc cross section formed in a direction perpendicular to the circumferential direction, an outer ring provided around the inner ring, and each inner engagement groove on the inner circumferential surface of the outer ring. The outer engagement groove having a circular arc cross section formed at a position perpendicular to the circumferential direction at a position, and sandwiched between the outer peripheral surface of the inner ring and the inner peripheral surface of the outer ring. A cage that has eight pockets that are long in the circumferential direction at positions that align with the grooves, and can be rolled along both the inner and outer engagement grooves while one pocket is held inside each pocket. And each of these balls is connected to the inner ring. The axis intersection angle between the central axis and the central axis of the outer ring bisecting are arranged on the bisecting plane perpendicular to the plane containing these two central axes.
[0022]
  In particular, in the constant velocity joint of the present invention, the pitch circle diameter of the eight balls is set to D.PAnd the diameter of each of these balls is DBThe pitch circle diameter of the female serration provided on the inner peripheral surface of the serration hole is DS   If 3.5 ≦ DP/ DB≦ 3.9, 2.0 ≦ DP/ DS≦ 2.2, 0.51 ≦ DB/ DS   All of the relations ≦ 0.63 are satisfied.
  Furthermore, in the constant velocity joint of the present invention, the outer circumferential edge of the outer ring is provided with a concave portion continuous with the outer engaging grooves in the axial direction over the entire circumference. And the continuous part of this recessed part and the axial direction inner end surface of the said outer ring | wheel, and the continuous part of this recessed part and the shoulder surface which exists in the part between each said outer engagement groove | channel among the inner peripheral surfaces of this outer ring | wheel The continuous part of the said recessed part and the opening edge part of each said outer engagement groove | channel is arrange | positioned in radial direction outward rather than the bus line of the virtual conical surface which passes through.
[0023]
[Action]
  According to the constant velocity joint of the present invention configured as described above, in order to reduce the size of the constant velocity joint, the number of balls is increased from six to eight, which has been generally practiced in the past. Even when the diameter is reduced, the strength and durability of the cage, inner ring, and outer ring can be kept equal to those of a structure in which six balls are incorporated. In this way, the constant velocity joint can be reduced in diameter while ensuring the strength and durability of the constituent members, and the so-called fourth generation hub unit in which the constant velocity joint and the inner ring of the hub unit are integrated. Practical application becomes possible.
  In addition, since the outer periphery of the opening of the outer ring is provided with a recess that is continuous with the outer engagement grooves on the entire circumference, when the balls are assembled in the pockets, Interference with the peripheral edge of the opening can be prevented. Therefore, even if the displacement between the central axes of the inner ring and the outer ring is relatively small, the work of assembling the balls into the pockets can be performed. In addition, since the shape of the concave portion is regulated as described above, the ball mounting jig and the opening edge of each outer engagement groove are prevented from coming into contact with each other so that the ball mounting operation is smooth. Can contribute to the development.
[0024]
The pitch circle diameter D of the ballP And the diameter D of each of these ballsB And the pitch circle diameter D of the female serration provided on the inner peripheral surface of the serration hole.S The reason for regulating the relationship with the above is as follows.
▲ 1 ▼ 3.5 ≦ DP / DB Reason for ≦ 3.9
Ball pitch circle diameter DP The diameter D of each of these ballsB The diameter D of each of these ballsB Is increased, the contact surface pressure between the rolling surfaces of these balls and the inner surfaces of the inner and outer engaging grooves can be set low. However, it must be considered that the cage is provided with a pocket that can accommodate the ball. In particular, when the ball is incorporated inside the pocket between the inner engagement groove and the outer engagement groove, and when the constant velocity joint is operated, the ball moves in the circumferential direction in the pocket. It is necessary to increase the length of the pocket in the circumferential direction. Therefore, the diameter D of each ballB If is increased, the length of the pillar portion of the cage is reduced, and the strength of the cage is reduced. Conversely, the diameter D of each ballB If the length of the cage is reduced, the length of the cage pillar can be increased and the strength of the cage is improved. However, the contact surfaces of the rolling surfaces of the balls and the inner surfaces of the inner and outer engagement grooves are as follows. The pressure is increased, and the durability of the inner ring and the outer ring provided with the inner engagement groove and the outer engagement groove is lowered. Table 1 below shows the pitch circle diameter D of the ball.P And the diameter D of each ballB Ratio (DP / DB ) And the strength of the cage and the contact surface pressure between the rolling surface of each ball and the inner surfaces of the inner and outer engaging grooves.
[0025]
[Table 1]
Figure 0003941239
[0026]
  In Table 1, a circle mark represents “OK” and a cross mark represents “not possible”. The strength of the cage is based on the experimental results, and the contact surface pressure between the rolling surface of each ball and the inner surfaces of the inner and outer engaging grooves is obtained by calculation. This contact surface pressure is4,200MPa (428 kgf / mm2), The constant velocity joint could not be operated smoothly. That is, in the case of forming a constant velocity joint, the steel hardened and hardened to about HRC 60 to 64 is used.4,200When a contact pressure of MPa is applied, the sum of the permanent deformation amounts of the ball and each of the inner surfaces is the diameter D of the ball.B Is approximately 0.0001 times greater than AndThisIf the sum of the amount of permanent deformation exceeds this value, smooth movement of the ball will be hindered. Therefore, from the results of Table 1 above, the pitch circle diameter D of the ballP And the diameter D of each of these ballsB And the relationship 3.5 ≦ DP / DB ≦ 3.9.
[0027]
(2) 2.0 ≦ DP / DS Reason for ≦ 2.2
Diameter D of each ball aboveB The constant velocity joint can be miniaturized by reducing the diameter and increasing the number of balls instead.B Can't be made infinitely small. Also, the pitch circle diameter D of the ballP The setting range is the diameter D of each ball.B And the length required for the pillar portion provided in the cage. Table 2 below shows the pitch circle diameter D of the ball.P And the pitch circle diameter D of the female serration provided on the inner peripheral surface of the serration hole.S Ratio (DP / DS ) And the contact surface pressure between the rolling surface of each of the balls and the inner surfaces of the inner and outer engaging grooves.
[0028]
[Table 2]
Figure 0003941239
[0029]
In this table, a circle indicates yes and a cross indicates not. Incidentally, in the case of a general constant velocity joint that incorporates six balls, which is generally used at present, the above ratio DP / DS Is about 2.2 to 2.4. Therefore, this ratio DP / DS When the value exceeds 2.2, the size cannot be reduced by increasing the number of balls from six to eight.
Therefore, from the results of Table 2, the pitch circle diameter D of the ballP And the pitch circle diameter D of the female serration provided on the inner peripheral surface of the serration hole.S And the relationship 2.0 ≦ DP / DS ≦ 2.2.
[0030]
(3) 0.51 ≦ DB / DS Reason for ≦ 0.63
The pitch circle diameter of the ball is DP , The diameter of each ball is DB The pitch circle diameter of the female serration provided on the inner peripheral surface of the serration hole is DS And
3.5 ≦ DP / DB ≦ 3.9 −−− (1)
2.0 ≦ DP / DS ≦ 2.2 −−− (2)
Therefore, from equation (1)
DP /3.9≦DB ≦ DP /3.5 --- (3)
From equation (2)
DP /2.2≦DS ≦ DP /2.0 ---- (4)
From equations (3) and (4),
2.0 / 3.9 ≦ DB / DS ≦ 2.2 / 3.5
0.51 ≦ DB / DS ≦ 0.63
It becomes.
[0031]
DETAILED DESCRIPTION OF THE INVENTION
1 to 5 show a state in which the present invention is applied to a constant velocity joint constituting a fourth generation hub unit as an example of an embodiment of the present invention. The outer ring 11 that does not rotate while being supported by the suspension device has a first mounting flange 12 for supporting the suspension device on the outer peripheral surface, and double-row outer ring raceways 13 and 13 on the inner peripheral surface. On the inner diameter side of the outer ring 11, a hub 34 including a hub body 32 and an inner ring 33 is disposed concentrically with the outer ring 11. First and second inner ring raceways 18 and 20 are provided on portions of the outer peripheral surface of the hub 34 facing the outer ring raceways 13 and 13, respectively. Of these inner ring raceways 18 and 20, the first inner ring raceway 18 is formed directly on the outer peripheral surface of the intermediate portion of the hub body 32. Further, the inner ring 33 is externally fitted to a portion closer to the inner end than the portion where the first inner ring raceway 18 is formed in the intermediate portion of the hub body 32 (closer to the right end in FIG. 1). The second inner ring raceway 20 is formed on the outer peripheral surface of the inner ring 33. A plurality of rolling elements 21, 21 are provided between the outer ring raceways 13, 13 and the first and second inner ring raceways 18, 20, respectively. The hub 34 is rotatably supported on the inner side.
[0032]
In the case of the illustrated example, as described above, the first inner ring raceway 18 is formed directly on the outer peripheral surface of the hub main body 32, so that the diameter of the first inner ring raceway 18 is changed to that of the inner ring 33. The diameter of the second inner ring raceway 20 formed on the outer peripheral surface is made smaller. Further, as the diameter of the first inner ring raceway 18 is made smaller than the diameter of the second inner ring raceway 20 in this way, the outer side facing the first inner ring raceway 18 (in the width direction in the assembled state to the automobile) The diameter of the outer ring raceway 13 on the outside side (left side in FIG. 1) is larger than the diameter of the outer ring raceway 13 on the inside (right side in FIG. 1 on the right side in FIG. 1). Is also small. Further, the outer diameter of the outer half portion of the outer ring 11 that forms the outer ring raceway 13 on the outside is made smaller than the outer diameter of the inner half portion of the outer ring 11 that is the portion where the inner outer ring raceway 13 is formed. ing. Further, in the example shown in the drawing, as the diameters of the first inner ring raceway 18 and the outer outer ring raceway 13 are reduced in this way, the rolling provided between the first inner ring raceway 18 and the outer outer ring raceway 13 is reduced. The number of moving bodies 21 and 21 is smaller than the number of rolling elements 21 and 21 provided between the second inner ring raceway 20 and the inner outer ring raceway 13.
[0033]
A second mounting flange 17 for supporting and fixing a wheel to the hub body 32 is provided integrally with the hub body 32 on the outer peripheral surface of the outer end portion of the hub body 32. A base end portion of a plurality of studs 35 for connecting the wheel is fixed to the mounting flange 17. In the case of the illustrated example, the pitch circle diameter of the plurality of studs 35 is equal to the outer diameter of the outer half of the outer ring 11 smaller than the outer diameter of the inner half as described above (each of the studs described above). The 35 heads 36 are made small (so as not to interfere with the outer peripheral surface of the outer end of the outer ring 11). Of the outer peripheral surface of the hub main body 32, the diameter of the portion existing in the axial direction from the portion where the first inner ring raceway 18 is formed is the rolling element corresponding to the first inner ring raceway 18. 21 and 21 are smaller than the diameter of the inscribed circle. This is because, when the rolling bearing unit for the wheel is assembled, a plurality of rolling elements 21 and 21 are assembled on the inner diameter side of the outer ring raceway 13 formed on the inner peripheral surface of the outer ring 11, and the inner periphery of the outer ring 11 is assembled. This is because the hub main body 32 can be inserted into the inner diameter side of the outer ring 11 with the seal ring 37 fitted and fixed to the surface. Further, on the outer peripheral surface of the intermediate portion of the hub main body 32, a groove stealing portion 38 having a groove shape is formed over the entire circumference between the first inner ring raceway 18 and the portion where the inner ring 33 is externally fitted. Thus, the hub body 32 is reduced in weight.
[0034]
  Further, the inner ring 33 fitted on the hub main body 32 is prevented from moving to the inner end side in the axial direction, so that the outer ring raceways 13 and 13 and the first and second inner ring raceways 18,20In order to keep the preload applied to each of the rolling elements 21 and 21 provided in a freely movable manner at a proper value, the hub main body 32 has an entire inner periphery near the inner end of the outer peripheral surface. The retaining ring 40 is locked in the formed locking groove 39. The retaining ring 40 is constituted by a pair of retaining ring elements each having a semicircular arc shape. Such a retaining ring 40 presses the inner ring 33 against the hub body 32 in the axial direction so as to apply an appropriate preload to each of the rolling elements 21, 21, and the inner peripheral edge of the inner ring 33 is Engage with the locking groove 39. In order to keep an appropriate preload applied to the rolling elements 21 and 21 even in a state in which the force pressing the inner ring 33 outward in the axial direction is released, an appropriate thickness dimension is set as the retaining ring 40. Select what you have. That is, as the retaining ring 40, a plurality of types having slightly different thickness dimensions are prepared, and the appropriate thickness is determined in relation to the dimensions of the constituent members of the rolling bearing unit, such as the groove width of the locking groove 39. A retaining ring 40 having a size is selected and engaged with the locking groove 39. Therefore, when the retaining ring 40 is locked in the locking groove 39, the inner ring 33 is prevented from moving toward the inner end side in the axial direction even when the pressing force is released, and The rolling elements 21 and 21 can be held with an appropriate preload applied.
[0035]
Further, in order to prevent the pair of retaining ring elements constituting the retaining ring 40 from displacing outward in the diametrical direction, the retaining ring 40 is inadvertently falling out of the retaining groove 39. A part of the spacer 41 is arranged around the. The spacer 41 is formed by a constant velocity joint outer ring 42 provided at the inner end portion of the hub body 32, and foreign matter such as rainwater and dust enters the constant velocity joint 1c that is the subject of the present invention. This is for externally supporting the outer end portion of the boot 43 for preventing the above-described problem. Further, the seal ring 37 is provided between the outer peripheral surface of the outer end of the outer ring 11 and the outer peripheral surface of the intermediate portion of the hub body 32, and the inner peripheral surface of the inner end of the outer ring 11 and the outer periphery of the inner end of the inner ring 33. A combination seal ring 44 is provided between the two surfaces, and both ends of the space 45 in which the plurality of rolling elements 21 and 21 are installed are closed.
[0036]
Further, the portion of the inner end portion of the hub main body 32 where the inner ring 33 and the outer end portion of the boot 43 are externally fitted is the outer ring 42 that becomes the outer ring of the constant velocity joint 1c as described above. Eight outer engagement grooves 8 and 8 each having a circular cross-sectional shape are arranged at right angles to the circumferential direction (FIG. 1) at equal intervals with respect to the circumferential direction of the inner circumferential surface of the outer ring 42. Left and right direction). Further, an inner ring 2 for constituting the Rzeppa type constant velocity joint 1c together with the outer ring 42 is disposed inside the outer ring 42. Then, eight inner engagement grooves 7, 7 are formed on the outer peripheral surface of the inner ring 2 in a direction perpendicular to the circumferential direction and also in the circumferential direction at equal intervals. And between these inner engagement grooves 7, 7 and the outer engagement grooves 8, 8, one for each of the engagement grooves 7, 8, a total of eight balls 4, 4, It is provided so as to be able to roll while being held in the pockets 10a and 10b of the cage 9a. Further, a spline hole 31 is formed in the center portion of the inner ring 2 in the axial direction. The spline hole 31 is spline-engaged with an end portion of a drive shaft (not shown) in an assembled state in an automobile, and the hub main body 32 can be driven to rotate via the inner ring 2 and the eight balls 4, 4. And
[0037]
As in the case of the conventional structure shown in FIGS. 11 to 14 described above, the retainer 9a has two types of pockets 10a and 10b having different circumferential lengths extending in the circumferential direction. It is provided alternately. That is, the pockets 10a and 10a having a large length in the circumferential direction are arranged every 90 degrees, and the length in the circumferential direction is set at an intermediate position between the pockets 10a and 10a having a large length in the circumferential direction. Small pockets 10b and 10b are arranged.
[0038]
  In the illustrated example, the outer peripheral edge of the outer ring 42The outer engaging grooves 8 and 8 are continuous in the axial direction.A recess 46 is formed over the entire circumference. When the balls 4 and 4 are assembled in the pockets 10a and 10b, the concave portion 46 prevents interference between the balls 4 and 4 and the outer peripheral edge of the outer ring 42 as shown in FIG. . Therefore, in the case of the illustrated example, even if the displacement amount between the central axes a and b (FIG. 6) of the inner ring 2 and the outer ring 42 is relatively small, the balls 4 and 4 into the pockets 10a and 10b. Can be built in.
[0039]
  The shape of the recess 46 is regulated as follows. That is, each of the outer engagement grooves 8 among the continuous portion (position A shown in FIG. 5) between the concave portion 46 and the inner end surface in the axial direction of the outer ring 42 and the inner peripheral surface of the concave portion 46 and the outer ring 42. The recessed portion 46 and each outer engagement are radially outward from the generatrix of the virtual conical surface passing through the continuous portion (position B shown in FIG. 5) with the shoulder surface 48 that exists between the eight. The continuous part (position C shown in FIG. 5) with the opening edge part of the groove | channels 8 and 8 is arrange | positioned. Have such a shapeThe recess 46 includes a shaft 47 (FIG. 5) constituting a ball mounting jig,the aboveThis prevents the outer engagement grooves 8 and 8 from coming into contact with the opening edge portions, thereby contributing to the smooth operation of assembling the ball. That is, when the balls 4 and 4 are assembled in the pockets 10a and 10b, the shaft 47 of the ball mounting jig is inserted into the spline hole 31 of the inner ring 2, and the inner ring 2 is oscillated and displaced. . At this time, an operator who operates the shaft 47 when the outer peripheral surface of the shaft 47 comes into contact with the opening end edge of the outer engagement grooves 8 and 8 that form a concavo-convex portion in the circumferential direction. Give a sense of incongruity. On the other hand, in the case of this example, by providing the recess 46, the opening edge and the outer peripheral surface of the shaft 47 are prevented from coming into contact with each other. That is, when the shaft 47 is largely inclined with respect to the outer ring 42, the outer peripheral surface of the shaft 47 abuts on the opening peripheral edge of the recess 46. Since the peripheral edge of the opening is smoothly continuous over the entire circumference, the operator who operates the shaft 47 does not feel uncomfortable and contributes to smooth operation.
[0040]
In the constant velocity joint 1c of the present invention in which each part is configured as described above, the pitch circle diameter D of the eight balls 4, 4 is as follows.P And the diameter D of each of these balls 4 and 4B And the pitch circle diameter D of the female serration provided on the inner peripheral surface of the serration hole.S And the relationship 3.5 ≦ DP / DB ≦ 3.9, 2.0 ≦ DP / DS ≦ 2.2, 0.51 ≦ DB / DS ≦ 0.63.
[0041]
The wheel rolling bearing unit incorporating the constant velocity joint 1c of the present example configured as described above supports the wheel rotatably with respect to the suspension device, for the wheel incorporating the conventional constant velocity joint described above. The same as the case of the rolling bearing unit. Further, according to the constant velocity joint 1c of the present invention, in order to reduce the size of the constant velocity joint 1c, the number of balls 4, 4 is increased from six to eight, which has been generally practiced in the past. Even when the diameters of 4 and 4 are reduced, the strength and durability of the cage 9b, the inner ring 2, and the outer ring 42 can be kept equal to those of a structure in which six balls are incorporated. In this way, the constant velocity joint 1c can be reduced in diameter while ensuring the strength and durability of the constituent members, and the constant velocity joint 1c and the hub body 32 constituting the wheel rolling bearing unit are integrated. In other words, the so-called fourth generation hub unit can be put into practical use.
[0042]
That is, in the case of the wheel rolling bearing unit incorporating the constant velocity joint 1c of the present invention, the number of the inner and outer engaging grooves 7 and 8 constituting the constant velocity joint 1c is eight, and the ball 4 Since the number of 4 is eight, each of the balls 4 and 4 constituting the constant velocity joint 1c at the time of torque transmission between the hub 34 and the inner ring 2 due to the use of the wheel rolling bearing unit. The magnitude of the applied load can be made smaller than in the case of the conventional structure shown in FIGS. Accordingly, the outer diameter of each of the balls 4 and 4 is reduced by that amount, and the diameter of the circumscribed circle of each of the balls 4 and 4 arranged in an annular shape, and the circumscribed circle of the plurality of outer engaging grooves 8 and 8. Can be made smaller in diameter. Further, by reducing the diameter of the circumscribed circle of the outer engaging grooves 8 and 8 in this way, the outer diameter of the wheel rolling bearing unit can be reduced, and the overall apparatus can be reduced in size and weight. In addition, as described above, the strength and durability of each constituent member can be ensured.
[0043]
In particular, if the outer half of each of the outer engagement grooves 8, 8 is arranged on the inner diameter side of the second inner ring raceway 20 as in the illustrated example, not only the outer diameter dimension of the wheel rolling bearing unit is provided. By reducing the axial dimension, the entire device can be made more compact and lighter. In such a structure of this example, the second inner ring raceway 20 constituting the rolling bearing unit main body must be made larger in diameter than the outer engaging grooves 8, 8. The diameter is increased. In the structure of this example, the number of the balls 4 and 4 is increased from 6 to 8, and the outer diameter of the balls 4 and 4 can be reduced accordingly, and the outer diameter of the rolling bearing unit can be reduced. The effect of the present invention is particularly great.
[0044]
Further, in the case of the illustrated example, as described above, the outer diameter of the outer half of the outer ring 11 is reduced by reducing the pitch circle diameter of the rolling elements 21 and 21 constituting the outer rolling element row. it can. The pitch circle diameter of the plurality of studs 35 fixed to the second mounting flange 17 provided on the outer peripheral surface of the hub main body 32 can be reduced by the amount that the outer diameter of the outer half of the outer ring 11 is reduced. Therefore, the outside diameter of the second mounting flange 17 for supporting and fixing the stud 35 is reduced without increasing the axial dimension of the hub body 32, thereby reducing the size and weight of the wheel rolling bearing unit. Furthermore, it can be achieved effectively.
[0045]
As described above, the pitch circle diameter of the rolling elements 21 and 21 constituting the outer rolling element row is made smaller than the pitch circle diameter of the rolling elements 21 and 21 constituting the inner rolling element row. Accordingly, the basic dynamic load rating of the outer rolling element row portion is smaller than the basic dynamic load rating of the inner rolling element row portion. Therefore, if the load applied to both rows is the same, the life of the outer rolling element row portion is shorter than that of the inner rolling element row portion. In contrast, in a general automobile, the load applied to the outer rolling element row portion is smaller than the load applied to the inner rolling element row portion. For this reason, the design which makes the lifetime of the both row portions substantially the same becomes easy, and the design without waste becomes possible. In the illustrated example, balls are used as the rolling elements 21, 21, but in the case of a rolling bearing unit for automobiles that is heavy in weight, tapered rollers may be used as the rolling elements. Of course, the present invention can also be applied to a rolling bearing unit that uses a tapered roller as a rolling element.
[0046]
【The invention's effect】
Since the constant velocity joint of the present invention is configured and operates as described above, the structure can reduce the outer diameter by setting the number of balls for transmitting rotational force to eight, and the strength and durability of each component. Can be secured. Therefore, it is possible to realize a reduction in size and weight of a rolling bearing unit for a wheel integrated with a constant velocity joint, which is called a fourth generation hub unit, while ensuring sufficient durability.
[Brief description of the drawings]
FIG. 1 is a sectional view showing an example of a rolling bearing unit for a wheel incorporating a constant velocity joint according to the present invention.
FIG. 2 is a cross-sectional view taken along line AA in FIG.
3 is a sectional view of the cage and the ball taken out and viewed from the same direction as FIG.
FIG. 4 is a cross-sectional view showing a state in which a cage of a constant velocity joint is inclined with respect to an outer ring to such an extent that a ball can be incorporated.
FIG. 5 is a cross-sectional view showing the relationship between the shaft of the assembling jig and the outer ring in a state where the cage of the constant velocity joint is inclined with respect to the outer ring to such an extent that the ball can be incorporated.
FIG. 6 is a sectional view showing a first example of a conventional constant velocity joint in a state where a joint angle is given.
FIG. 7 is a view corresponding to the BB cross section of FIG. 6, similarly showing a state where no joint angle is given.
FIG. 8 is a view of a part of the cage as viewed from the outer peripheral side.
FIG. 9 is a schematic diagram showing the positional relationship between the bottom surfaces of both the inner and outer engagement grooves.
FIG. 10 is a sectional view showing an example of a rolling bearing unit for a wheel in which a constant velocity joint is integrated.
FIG. 11 is a sectional view showing a second example of a conventional constant velocity joint in a state where no joint angle is given.
12 is a cross-sectional view taken along the line CC of FIG.
FIG. 13 is a cross-sectional view of a cage incorporated in the second example of the conventional structure.
FIG. 14 is a cross-sectional view showing a state where an inner ring and an outer ring are displaced in a predetermined direction in order to incorporate a ball into the cage.
[Explanation of symbols]
    1, 1a, 1b, 1c constant velocity joint
    2 inner ring
    2a Outer peripheral surface
    3, 3A Outer ring
    3a Inner peripheral surface
    4 balls
    5 axes
    6 axes
    7 Inner engagement groove
    7a Bottom
    8 Outer engagement groove
    8a Bottom
    9, 9a Cage
  10, 10a, 10b pocket
  11 Outer ring
  12 First mounting flange
  13 Outer ring raceway
  14 First inner ring member
  15 Second inner ring member
  16 Hub
  17 Second mounting flange
  18 First inner ring raceway
  19 Cylindrical part
  20 Second inner ring raceway
  21 Rolling elements
  22 Locking groove
  23 Locking groove
  24 retaining ring
  25 steps
  26 Welding
  27a, 27b cover
  28a, 28b Seal ring
  29 Separator
  30 pillars
  31 Spline hole
  32 Hub body
  33 inner ring
  34 Hub
  35 Stud
  36 heads
  37 Seal ring
  38 Meat Stealing Club
  39 Locking groove
  40 retaining ring
  41 spacer
  42 Outer ring
  43 Boots
  44 Combination seal ring
  45 space
  46 recess
  47 Shaft
  48    Shoulder

Claims (1)

中心部にセレーション孔を有する内輪と、この内輪の外周面の円周方向に互いに離隔した位置に存在する8個所に、それぞれ円周方向に対し直角方向に形成された断面円弧形の内側係合溝と、上記内輪の周囲に設けられた外輪と、この外輪の内周面で上記各内側係合溝と対向する位置に、円周方向に対し直角方向に形成された断面円弧形の外側係合溝と、上記内輪の外周面と外輪の内周面との間に挟持され、上記内側、外側両係合溝に整合する位置にそれぞれ円周方向に長い8個のポケットを形成した保持器と、これら各ポケットの内側に1個ずつ保持された状態で内側、外側両係合溝に沿う転動を自在とされた、8個のボールとから成り、これら各ボールを、上記内輪の中心軸と上記外輪の中心軸との軸交角を二等分し、これら両中心軸を含む平面に対し直交する二等分面内に配置した等速ジョイントに於いて、上記8個のボールのピッチ円直径をDP とし、これら各ボールの直径をDB とし、上記セレーション孔の内周面に設けた雌セレーションのピッチ円直径をDS とした場合に、3.5≦DP /DB ≦3.9、2.0≦DP /DS ≦2.2、0.51≦DB /DS ≦0.63の関係を何れも満たすと共に、上記外輪の開口周縁部に、上記各外側係合溝と軸方向に連続する凹部を全周に亙り設けており、この凹部と上記外輪の軸方向内端面との連続部と、この凹部とこの外輪の内周面のうちで上記各外側係合溝同士の間部分に存在する肩面との連続部とを通過する、仮想円すい面の母線よりも径方向外方に、上記凹部と上記各外側係合溝の開口端縁部との連続部が配置されている事を特徴とする等速ジョイント。An inner ring having a serration hole in the center, and an inner ring having an arc cross section formed at a right angle with respect to the circumferential direction at eight locations on the outer circumferential surface of the inner ring that are separated from each other in the circumferential direction. A cross-section arc shape formed in a direction perpendicular to the circumferential direction at a position facing the inner engagement grooves on the inner peripheral surface of the outer ring and the outer ring provided around the inner ring and the inner ring Eight pockets that are sandwiched between the outer engagement groove and the outer peripheral surface of the inner ring and the inner peripheral surface of the outer ring and that are aligned with both the inner and outer engagement grooves are formed in the circumferential direction. The cage is composed of eight balls, one of which is held inside each of the pockets, and can freely roll along both the inner and outer engaging grooves. The angle of intersection between the center axis of the outer ring and the center axis of the outer ring is divided into two equal parts. In a constant velocity joint arranged on the bisecting plane orthogonal to free plane, the pitch circle diameter of the eight balls as D P, these diameter of each ball and D B, among the serration hole When the pitch circle diameter of the female serration provided on the peripheral surface is D S , 3.5 ≦ D P / D B ≦ 3.9, 2.0 ≦ D P / D S ≦ 2.2, 0.51 ≦ D B / D S ≦ 0.63 is satisfied , and the outer circumferential edge of the outer ring is provided with a concave portion continuous in the axial direction with the outer engagement groove. And a continuous portion of the outer ring with respect to the axial inner end surface, and a continuous portion of the recess and the shoulder surface existing in the portion between the outer engagement grooves among the inner peripheral surface of the outer ring, A continuous portion between the concave portion and the opening edge of each outer engagement groove is disposed radially outward from the generatrix of the virtual conical surface. Constant velocity joint, wherein a thing.
JP18066898A 1997-07-16 1998-06-26 Constant velocity joint Expired - Lifetime JP3941239B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP18066898A JP3941239B2 (en) 1998-06-26 1998-06-26 Constant velocity joint
DE69828467T DE69828467T2 (en) 1997-07-16 1998-07-15 Constant velocity joint for wheels
EP98305640A EP0892187B1 (en) 1997-07-16 1998-07-15 Constant velocity ratio joint
EP03007209A EP1326027B1 (en) 1997-07-16 1998-07-15 Constant velocity joint for wheels
DE69833340T DE69833340T2 (en) 1997-07-16 1998-07-15 Rolling bearing unit and constant velocity joint for wheels
US09/116,527 US6368223B1 (en) 1997-07-16 1998-07-16 Rolling bearing unit and constant velocity joint for wheels

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18066898A JP3941239B2 (en) 1998-06-26 1998-06-26 Constant velocity joint

Publications (3)

Publication Number Publication Date
JP2000018267A JP2000018267A (en) 2000-01-18
JP2000018267A5 JP2000018267A5 (en) 2005-06-09
JP3941239B2 true JP3941239B2 (en) 2007-07-04

Family

ID=16087229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18066898A Expired - Lifetime JP3941239B2 (en) 1997-07-16 1998-06-26 Constant velocity joint

Country Status (1)

Country Link
JP (1) JP3941239B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6632143B2 (en) 2000-03-31 2003-10-14 Ntn Corporation Constant velocity universal joint
JP2006162023A (en) * 2004-12-10 2006-06-22 Honda Motor Co Ltd Constant velocity joint
DE602005025450D1 (en) * 2004-01-15 2011-02-03 Honda Motor Co Ltd HOMOKINETIC JOINT
JP4880902B2 (en) * 2005-01-11 2012-02-22 本田技研工業株式会社 Constant velocity joint
EP1926920B1 (en) 2005-09-23 2010-11-10 GKN Driveline International GmbH Optimized constant-velocity fixed joint with ball tracks free from undercuts

Also Published As

Publication number Publication date
JP2000018267A (en) 2000-01-18

Similar Documents

Publication Publication Date Title
US6368223B1 (en) Rolling bearing unit and constant velocity joint for wheels
US6478684B2 (en) Constant velocity joint and rolling bearing unit for wheel
JP3941214B2 (en) Constant velocity joint
JPH1162951A (en) Rolling bearing unit for wheel
EP1777079A1 (en) Wheel drive unit
JPH11182537A (en) Rolling bearing unit for wheel
JP4067191B2 (en) Constant velocity joints and rolling bearing units with constant velocity joints
JP3941239B2 (en) Constant velocity joint
JP2000065049A (en) Automotive hub unit and assembling method for it
JP2000065049A5 (en)
JP3767168B2 (en) Constant velocity joints and rolling bearing units for wheels with constant velocity joints
JP2000142015A (en) Axle unit for wheel driving
JP2000145805A (en) Constant velocity universal joint and automobile hub unit with constant velocity universal joint
JP4123579B2 (en) How to assemble constant velocity joints
JP2000038003A (en) Rolling bearing unit for wheel
JP2021181811A (en) Cage and wheel bearing device using cage
JP4026206B2 (en) Rolling bearing unit for wheels
JP2000065083A (en) Constant velocity joint
JPH11218147A (en) Constant velocity joint
JP2000274430A (en) Axle unit for wheel driving
WO2020255990A1 (en) Angular contact ball bearing and bearing device for vehicle wheel
JP4096920B2 (en) Rolling bearing unit for wheels
JPH11166525A (en) Rolling bearing unit for wheel
JP2522311Y2 (en) Bearings for vehicle front suspension
JP2001065591A (en) Fixed constant velocity universal joint for propeller shaft

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040827

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040827

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070313

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070326

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100413

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120413

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140413

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term