JP3941084B2 - Battery pack - Google Patents

Battery pack Download PDF

Info

Publication number
JP3941084B2
JP3941084B2 JP18980398A JP18980398A JP3941084B2 JP 3941084 B2 JP3941084 B2 JP 3941084B2 JP 18980398 A JP18980398 A JP 18980398A JP 18980398 A JP18980398 A JP 18980398A JP 3941084 B2 JP3941084 B2 JP 3941084B2
Authority
JP
Japan
Prior art keywords
storage container
battery
unit cell
metal
battery pack
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18980398A
Other languages
Japanese (ja)
Other versions
JP2000011975A5 (en
JP2000011975A (en
Inventor
浩 中原
寿 塚本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa Corp
Original Assignee
GS Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa Corp filed Critical GS Yuasa Corp
Priority to JP18980398A priority Critical patent/JP3941084B2/en
Publication of JP2000011975A publication Critical patent/JP2000011975A/en
Publication of JP2000011975A5 publication Critical patent/JP2000011975A5/ja
Application granted granted Critical
Publication of JP3941084B2 publication Critical patent/JP3941084B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Mounting, Suspending (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電池パックに属する。
【0002】
【従来の技術】
近年、携帯用無線電話、携帯用パソコン、携帯用ビデオカメラ等の電子機器が開発され、各種電子機器が携帯可能な程度に小型化されている。それに伴って、内蔵される電池としても、高エネルギー密度を有し、且つ軽量なものが採用されている。そのような要求を満たす典型的な電池は、特にリチウム金属やリチウム合金等の活物質、又はリチウムイオンをホスト物質(ここでホスト物質とは、リチウムイオンを吸蔵及び放出できる物質をいう。)である炭素に吸蔵させたリチウムインターカレーション化合物を負極材料とし、LiClO4、LiPF6等のリチウム塩を溶解した非プロトン性の有機溶媒を電解液とする非水電解質二次電池である。
【0003】
この非水電解質二次電池は、上記の負極材料をその支持体である負極集電体に保持してなる負極板、リチウムコバルト複合酸化物のようにリチウムイオンと可逆的に電気化学反応をする正極活物質をその支持体である正極集電体に保持してなる正極板、電解液を保持するとともに負極板と正極板との間に介在して両極の短絡を防止するセパレータからなっている。
【0004】
そして、上記正極板、セパレータ及び負極板は、いずれも薄いシートないし箔状に成形されたものを順に積層、又は螺旋状に巻いて、気密構造を有する金属ラミネート樹脂フィルムからなる電池容器に収納される。
【0005】
この非水電解質二次電池を電子機器に用いる場合、単電池又は複数個の直列接続したものとして所某の電圧を得るようにする。この単数又は複数個の電池は、充放電制御回路とともに樹脂もしくは金属と樹脂からなる筐体に収納され、内容物を取り出せないよう封口して電池パックとして用いられる。
【0006】
【発明が解決しようとする課題】
金属ラミネート樹脂フィルムを熱溶着してなる電池ケースを用いた単電池(以下、ラミネート単電池)は、使用中の物理衝撃対策として、また電池を取り扱う際の利便性向上のため、ラミネート単電池を単電池収納容器に格納して用いられる。ラミネート単電池は、従来の金属ケースを用いた電池と比較すると、電池内部で異常発熱がおこったり、外部から加熱された場合に電池自身が容易に膨らんでしまうという点で異なっている。したがって、単電池収納容器に格納した場合、電池パックが膨張変形し、パックを機器から取り外せなくなったり、パック自体が破損してしまうおそれがあった。
【0007】
【課題を解決するための手段】
そこで、本発明にかかかる電池パックは、気密構造を有し、金属又は金属と樹脂とを構成要素とする発電要素収納容器に発電要素が収納された単電池と、前記単電池が1個又は2個以上収納される樹脂又は樹脂と金属とを構成要素とする単電池収納容器を備え、
前記発電要素収納容器の耐圧(P1)と温度(T)との関係を表す関数をP1=f1(T)とし、前記単電池収納容器の耐変形圧(P2)と温度(T)との関係を表す関数をP2=f2(T)とすると、
f2(T)≧f1(T)
P1、P2:[kgf/cm2]
T :[K]
の関係を満足することを特徴とする。
【0008】
また、本発明においては、前記発電要素収納容器の構成要素が金属ラミネート樹脂フィルムであることが好ましい
【0009】
これにより、単電池内部で異常発熱がおこったり、外部から加熱された時に、単電池内部の圧力が上昇しはじめると、電池パックが異常変形したり万一の破損が生じる前に、単電池収納容器内の電池(単電池)が開口するので、上記の課題を効果的に解決できる。
【0010】
【発明の実施の形態】
本発明の一実施の形態を図面とともに説明する。図1は本発明になる非水電解質二次電池の説明図である。
【0011】
非水電解質二次電池1は、電極リードを有する正極板、電極リードを有する負極板及びセパレータからなる電極群が非水系の電解液(図示省略)とともに金属と樹脂とを構成要素とする発電要素収納容器、すなわち、ここでは金属ラミネート樹脂フィルムを熱溶着してなる単電池ケース6に収納されている。なお、本実施の形態では、電極群と電解液が発電要素である。加えて、本発明にかかる金属を構成要素とする発電要素収納容器とは、その厚さが上限値として0.1mmのものであり、金属としては、アルミニウム、アルミニウム合金、SUS等が例示される。
【0012】
正極板は、集電体に活物質としてリチウムコバルト複合酸化物が保持されたものである。集電体は、厚さ20μmのアルミニウム箔である。正極板は、結着剤であるポリフッ化ビニリデン6部と導電剤であるアセチレンブラック3部とを活物質91部とともに混合し、適宜N−メチルピロリドンを加えてペースト状に調製した後、前記アルミニウム箔集電体の両面に塗布、乾燥することによって製作した。
【0013】
負極板の集電体は、厚さ12μmの銅箔である。負極板は、前記銅箔集電体の両面に、グラファイト(黒鉛)92部と結着剤としてのポリフッ化ビニリデン8部とを混合し、適宜N−メチルピロリドンを加えてペースト状に調製したものを塗布、乾燥することによって製作した。
【0014】
セパレータは、ポリエチレン微多孔膜である。また、電解液は、LiPF6を1mol/l含むエチレンカーボネート:メチルエチルカーボネート=4:6(体積比)の混合液である。
【0015】
それぞれの寸法は、正極板が厚さ180μm、幅29mmで、セパレータが厚さ25μm、幅33mmで、負極板が厚さ170μm、幅31mmである。そして、負極、セパレータ、正極、セパレータの順に重ね合わせて扁平状に巻回した後、単電池ケース6に収納した。
【0016】
発電要素収納容器である、気密封口用の単電池ケース6は、図2のように最外層に表面保護用の12μmのPETフィルム15を有し、その下にバリア層として9μmのアルミニウム箔16をウレタン系接着剤で接着している。さらに、その下に熱融着層として100μmの酸変性ポリエチレン層17を有するラミネートフィルムからなっている。金属ラミネート樹脂フィルムとしてここでは、3層構造を用いているが、4層以上の多層金属ラミネート樹脂フィルムであっても良いし、金属箔と樹脂フィルムとの2層構造のものでも良い。なお、本発明では、シートとフィルムとは同意語として定義する。
【0017】
また、リード端子は、図2のように50から100μmの銅、アルミ、ニッケルなどの金属導体が例示され、ここでは正極リード導体に5にアルミ、負極リード導体5'にニッケルを用いており、これらの導体に金属との接着層を形成する50μmの酸変性LDPE層18を接着し、その外側に電解液バリア層として70μmのエバール樹脂(クラレ製のエチレンビニルアルコール共重合樹脂)層19を設けたものである。これらを図のように重ねて接着すると良好な気密性が得られる。
【0018】
次に、上記単電池1を単電池収納容器100に収納した本発明になる電池パック200の分解斜視図を図3に示す。この単電池1を収納する単電池収納容器100は、実用上充分な機械的強度を有しておればどの様なデザイン・構成でも良い。また、安価な単電池収納容器を得るためには、鉄、鉄の合金(SUSなど)、アルミニウム、アルミニウム合金などの金属板をプレスし、折り曲げて作る方法が優れている。金属板を用いたものは、従来の樹脂製の容器に比較して、より薄くて優れた機械的強度を有している。ただし、生産性の面からみると、金属板のみを用いるものよりも、機械的強度に優れた金属板と、加工性に優れた樹脂とを有する、たとえば金属板の周囲に樹脂を額縁状に形成したものを用いることにより、生産性、機械的強度ともに優れたものとすることができる。加えて、単電池収納容器100には外部との電力または/及び電気信号をやりとりするための端子を有している。(図示せず)
次に、上記ラミネート単電池の製作方法で示した金属ラミネート樹脂フィルムの熱溶着層において、ポリエチレン密度やこの層をポリプロピレンにかえた時のケース開口圧力の温度依存性を調査した。
【0019】
ここでは、熱溶着層のポリエチレンの密度を0.91g/cm3、0.94g/cm3、0.96g/cm3とし、上記同様の単電池ケース6を作製して各温度における耐圧試験をおこなった。また、熱溶着層をポリプロピレンにかえたものについても同様の試験をおこなった。
【0020】
発電要素収納容器の耐圧試験は、任意の恒温環境下で単電池ケース6に外部より空気を送り込み、その時の内圧を監視し、単電池ケース6が開口する直前の圧力を耐圧とした。また、単電池収納容器100の耐変形圧試験は、任意の恒温環境下で単電池収納容器内にエアージャッキを内填し、そのエアージャッキに外部より空気を送り込み、その時の収納ケースの変形、割れ等が生じる直前の圧力を耐変形圧とした。また、任意の温度とは、−20,0,25,45,60,70,80,100,110,120℃とした。空気は、0.1cc/minの速度で送った。
【0021】
この結果を図4に示した。同図より、同一温度で比較した場合、熱溶着層のポリエチレンの密度が高いほど、高い圧力まで単電池が開口しないことが示された。そして、熱溶着層にポリエチレンを用いる場合には、その密度が高いものの方が好ましいことがわかった。
【0022】
次に、単電池収納容器100の樹脂製の容器について、上記単電池での各温度での耐圧試験と同様の試験を上記のように行った。単電池収納容器100は、長方形状の周縁を断面L字状に形成した略皿状体を凹部同士を対向させて前記L字状の先端同士を熱溶着により融着したものである。また、単電池収納容器100はポリブチレンテレフタレート樹脂を成型したものであり、耐変形圧を変えるために肉厚を1mm、1.5mm、3mmとかえたものを用いた。この結果を図5に示す。同図より、単電池収納容器100の肉厚が厚くなるほど、各温度でのケースの耐変形圧が高くなることがわかった。
【0023】
次に、単電池1を単電池収納容器100に封入して過充電後(充電条件:1CmA/4.4V、3時間)、種々の温度で30日間放置した。なお、ラミネート単電池1のケース6の熱溶着部となる樹脂フィルムには密度0.91g/cm3のポリエチレンを用いた。
【0024】
図6は、上記試験における各温度での電池パックの状態を示す図である。図7は、単電池ケースの耐圧と単電池収納容器の耐変形圧を比較した図である。
これらの図より、単電池ケースの耐圧が単電池収納容器の耐変形圧よりも低い場合、電池パックはまったく変形しなかった。一方、単電池ケース6の耐圧が単電池収納容器100の耐変形圧よりも高い場合は、電池パックの厚みが増加したり、単電池収納容器に割れを生じたりして単電池収納容器が変形を生じた。
【0025】
よって、上記より、過充電状態で保持された時の電池内圧上昇に対する解決策は、温度全域に渡って単電池ケースの耐圧を単電池収納容器の耐変形圧よりも低く設定するという、本発明になる極めて簡単な構成により、防止することができる。そして、パックを機器から取り外せなくなったり、パックが破損したりするなどの問題を解決することが可能である。
【0026】
すなわち、本発明における最大の効果は、安全弁が必要となる場合、つまり電池が異常高温になった場合に、ラミネート単電池ケース6そのものが適性耐圧に低下して安全性を確保することができるところにある。
【0027】
さらに、本発明は、発電要素をたとえば薄いシート状から形成されたラミネートソフトケースに収納しているので、気密性に優れかつシーリング工程の煩雑さを解消することができ、もって安価な製造、軽量化も可能となる。
【0028】
【発明の効果】
本発明によれば、電池パックを安全かつ安価なものとすることができるので、携帯用電子機器の部品として有益である。
【図面の簡単な説明】
【図1】本発明になる一実施の形態にかかる電池の説明図である。
【図2】本発明になる一実施の形態にかかる電池の端部断面説明図である。
【図3】本発明になる一実施の形態にかかる電池パックの説明図である。
【図4】ラミネート単電池ケースの耐圧と雰囲気温度の関係を示した図である。
【図5】電池パックケースの耐変形圧と雰囲気温度の関係を示した図である。
【図6】電池パックを各温度で保持した後の電池パックの状態を示す説明図である。
【図7】単電池収納容器の耐変形圧と単電池ケースの耐圧との温度依存性を比較した図である。
【符号の説明】
1 非水電解質二次電池
5 端子リード
6 単電池ケース
100 単電池収納容器
200 電池パック
[0001]
BACKGROUND OF THE INVENTION
The present invention belongs to a battery pack.
[0002]
[Prior art]
In recent years, electronic devices such as portable radio telephones, portable personal computers, and portable video cameras have been developed, and various electronic devices have been miniaturized to the extent that they can be carried. Accordingly, a battery having a high energy density and a light weight has been adopted as a built-in battery. A typical battery that satisfies such a requirement is an active material such as lithium metal or a lithium alloy, or a lithium ion host material (where the host material refers to a material that can occlude and release lithium ions). This is a nonaqueous electrolyte secondary battery in which a lithium intercalation compound occluded in a certain carbon is used as a negative electrode material, and an aprotic organic solvent in which a lithium salt such as LiClO 4 or LiPF 6 is dissolved is used as an electrolyte.
[0003]
This non-aqueous electrolyte secondary battery has a negative electrode plate in which the above negative electrode material is held by a negative electrode current collector that is a support, and reversibly electrochemically reacts with lithium ions like a lithium cobalt composite oxide. It consists of a positive electrode plate that holds a positive electrode active material on a positive electrode current collector that is a support, and a separator that holds an electrolyte and is interposed between the negative electrode plate and the positive electrode plate to prevent short-circuiting of both electrodes. .
[0004]
The positive electrode plate, the separator, and the negative electrode plate are all laminated in a thin sheet or foil shape, or wound spirally, and are housed in a battery container made of a metal laminate resin film having an airtight structure. The
[0005]
When this non-aqueous electrolyte secondary battery is used for an electronic device, a desired voltage is obtained as a single battery or a plurality of serially connected batteries. The battery or batteries are housed in a casing made of resin or metal and resin together with a charge / discharge control circuit, and sealed so that the contents cannot be taken out, and used as a battery pack.
[0006]
[Problems to be solved by the invention]
Single cells using a battery case made of heat-welded metal laminate resin film (hereinafter referred to as “laminated cell”) are used as a measure against physical impact during use and to improve convenience when handling batteries. Used in a cell storage container. Compared to a battery using a conventional metal case, the laminated battery is different in that abnormal heat generation occurs inside the battery or the battery itself swells easily when heated from the outside. Therefore, when stored in the unit cell storage container, the battery pack may expand and deform, and the pack cannot be removed from the device, or the pack itself may be damaged.
[0007]
[Means for Solving the Problems]
Therefore, a battery pack according to the present invention has an airtight structure, and a single battery in which a power generation element is stored in a power generation element storage container having metal or metal and resin as constituent elements, and one single battery or A single-cell storage container having a resin or a resin and a metal as a constituent element for storing two or more,
The function representing the relationship between the pressure resistance (P1) and temperature (T) of the power generation element storage container is P1 = f1 (T), and the relationship between the deformation resistance pressure (P2) and temperature (T) of the unit cell storage container If the function representing is P2 = f2 (T),
f2 (T) ≧ f1 (T)
P1, P2: [kgf / cm 2 ]
T: [K]
It is characterized by satisfying the relationship.
[0008]
Moreover, in this invention , it is preferable that the component of the said electric power generation element storage container is a metal laminate resin film.
[0009]
As a result, if abnormal heat generation occurs inside the unit cell or if the pressure inside the unit cell starts to rise when it is heated from the outside, the cell pack will be stored before the battery pack is abnormally deformed or damaged. Since the battery (unit cell) in the container is opened, the above problem can be effectively solved.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described with reference to the drawings. FIG. 1 is an explanatory view of a nonaqueous electrolyte secondary battery according to the present invention.
[0011]
The nonaqueous electrolyte secondary battery 1 includes a power generation element in which an electrode group including a positive electrode plate having an electrode lead, a negative electrode plate having an electrode lead, and a separator is composed of a metal and a resin together with a nonaqueous electrolyte solution (not shown). It is accommodated in a storage container, that is, a unit cell case 6 formed by thermally welding a metal laminate resin film here. In the present embodiment, the electrode group and the electrolytic solution are power generation elements. In addition, the power generation element storage container having the metal according to the present invention as a constituent element has a thickness of 0.1 mm as an upper limit, and examples of the metal include aluminum, aluminum alloy, and SUS. .
[0012]
The positive electrode plate is obtained by holding a lithium cobalt composite oxide as an active material on a current collector. The current collector is an aluminum foil having a thickness of 20 μm. The positive electrode plate was prepared by mixing 6 parts of polyvinylidene fluoride as a binder and 3 parts of acetylene black as a conductive agent together with 91 parts of an active material, and appropriately adding N-methylpyrrolidone to prepare a paste. It was manufactured by applying and drying on both sides of the foil current collector.
[0013]
The current collector of the negative electrode plate is a copper foil having a thickness of 12 μm. The negative electrode plate was prepared by mixing 92 parts of graphite (graphite) and 8 parts of polyvinylidene fluoride as a binder on both sides of the copper foil current collector, and appropriately adding N-methylpyrrolidone to prepare a paste. Was produced by coating and drying.
[0014]
The separator is a polyethylene microporous membrane. The electrolytic solution is a mixed solution of ethylene carbonate: methyl ethyl carbonate = 4: 6 (volume ratio) containing 1 mol / l of LiPF 6 .
[0015]
The positive electrode plate has a thickness of 180 μm and a width of 29 mm, the separator has a thickness of 25 μm and a width of 33 mm, and the negative electrode plate has a thickness of 170 μm and a width of 31 mm. Then, the negative electrode, the separator, the positive electrode, and the separator were stacked in this order and wound in a flat shape, and then stored in the single battery case 6.
[0016]
As shown in FIG. 2, the cell case 6 for the airtight opening, which is a power generation element storage container, has a 12 μm PET film 15 for surface protection as an outermost layer, and a 9 μm aluminum foil 16 as a barrier layer below it. Bonded with urethane adhesive. Further, it is composed of a laminate film having an acid-modified polyethylene layer 17 having a thickness of 100 μm as a heat sealing layer. Here, a three-layer structure is used as the metal laminate resin film, but a multilayer metal laminate resin film having four or more layers may be used, or a two-layer structure of a metal foil and a resin film may be used. In the present invention, a sheet and a film are defined as synonyms.
[0017]
Further, as shown in FIG. 2, the lead terminal is exemplified by a metal conductor such as copper, aluminum, and nickel having a thickness of 50 to 100 μm. Here, aluminum is used for the positive lead conductor, and nickel is used for the negative lead conductor 5 ′. A 50 μm acid-modified LDPE layer 18 that forms an adhesive layer with a metal is bonded to these conductors, and a 70 μm Eval resin (Kuraray ethylene vinyl alcohol copolymer resin) layer 19 is provided on the outside as an electrolyte solution barrier layer. It is a thing. When these are stacked and adhered as shown in the figure, good airtightness can be obtained.
[0018]
Next, an exploded perspective view of the battery pack 200 according to the present invention in which the unit cell 1 is stored in the unit cell storage container 100 is shown in FIG. The cell storage container 100 for storing the cell 1 may have any design / configuration as long as it has a practically sufficient mechanical strength. Moreover, in order to obtain an inexpensive unit cell storage container, a method of pressing and bending a metal plate such as iron, an iron alloy (SUS, etc.), aluminum, or an aluminum alloy is excellent. The metal plate is thinner and has excellent mechanical strength as compared with a conventional resin container. However, from the viewpoint of productivity, it has a metal plate with excellent mechanical strength and a resin with excellent workability than those using only a metal plate. For example, the resin is framed around the metal plate. By using the formed one, both productivity and mechanical strength can be improved. In addition, the single cell storage container 100 has a terminal for exchanging electric power and / or electric signals with the outside. (Not shown)
Next, the temperature dependency of the polyethylene density and the case opening pressure when the layer was replaced with polypropylene in the heat-welded layer of the metal laminate resin film shown in the method for producing the laminated unit cell was investigated.
[0019]
Here, the density of polyethylene in the heat-welded layer was set to 0.91 g / cm 3 , 0.94 g / cm 3 , and 0.96 g / cm 3, and the same cell case 6 as described above was prepared, and the pressure resistance test at each temperature was performed. I did it. A similar test was also performed on the heat-welded layer replaced with polypropylene.
[0020]
In the pressure resistance test of the power generation element storage container, air was sent from outside to the cell case 6 under an arbitrary constant temperature environment, the internal pressure at that time was monitored, and the pressure immediately before the cell case 6 was opened was defined as the pressure resistance. The deformation resistance test of the cell storage container 100 is performed by inserting an air jack into the cell storage container in an arbitrary constant temperature environment, sending air from the outside to the air jack, and deforming the storage case at that time. The pressure immediately before the occurrence of cracking was taken as the deformation resistance pressure. Moreover, arbitrary temperature was made into -20,0,25,45,60,70,80,100,110,120 degreeC. Air was sent at a speed of 0.1 cc / min.
[0021]
The results are shown in FIG. From the same figure, when compared at the same temperature, it was shown that the higher the density of the polyethylene in the heat-welded layer, the more open the unit cell up to a higher pressure. And when using polyethylene for a heat welding layer, it turned out that the thing with the higher density is preferable.
[0022]
Next, for the resin container of the unit cell storage container 100, a test similar to the pressure resistance test at each temperature in the unit cell was performed as described above. The unit cell container 100 is formed by fusing the L-shaped tips by heat welding with a substantially dish-shaped body having a rectangular peripheral edge formed in an L-shaped cross section with the recesses facing each other. Further, the unit cell storage container 100 is formed by molding polybutylene terephthalate resin, and the thickness is changed to 1 mm, 1.5 mm, or 3 mm in order to change the deformation resistance pressure. The result is shown in FIG. From the figure, it has been found that the deformation resistance pressure of the case at each temperature increases as the thickness of the cell storage container 100 increases.
[0023]
Next, the unit cell 1 was sealed in the unit cell storage container 100, and after being overcharged (charging condition: 1 CmA / 4.4 V, 3 hours), it was left to stand at various temperatures for 30 days. Note that polyethylene having a density of 0.91 g / cm 3 was used for the resin film serving as a heat-welded portion of the case 6 of the laminated unit cell 1.
[0024]
FIG. 6 is a diagram showing the state of the battery pack at each temperature in the test. FIG. 7 is a diagram comparing the pressure resistance of the cell case and the deformation pressure of the cell storage container.
From these figures, when the pressure resistance of the cell case is lower than the deformation resistance pressure of the cell storage container, the battery pack was not deformed at all. On the other hand, when the pressure resistance of the unit cell case 6 is higher than the deformation resistance of the unit cell storage container 100, the thickness of the battery pack increases or the unit cell storage container is cracked to deform the unit cell storage container. Produced.
[0025]
Therefore, from the above, the solution to the increase in battery internal pressure when held in an overcharged state is to set the pressure resistance of the cell case lower than the deformation resistance pressure of the cell storage container over the entire temperature range. This can be prevented by an extremely simple configuration. Then, it is possible to solve problems such as that the pack cannot be removed from the device or the pack is damaged.
[0026]
That is, the greatest effect in the present invention is that when the safety valve is required, that is, when the battery becomes abnormally high in temperature, the laminated single battery case 6 itself can be reduced to an appropriate pressure resistance to ensure safety. It is in.
[0027]
Furthermore, since the power generation element is housed in a laminated soft case formed of, for example, a thin sheet, the present invention is excellent in airtightness and can eliminate the complexity of the sealing process. It becomes possible.
[0028]
【The invention's effect】
According to the present invention, since the battery pack can be made safe and inexpensive, it is useful as a component of a portable electronic device.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of a battery according to an embodiment of the present invention.
FIG. 2 is an explanatory sectional view of an end portion of a battery according to an embodiment of the present invention.
FIG. 3 is an explanatory diagram of a battery pack according to an embodiment of the present invention.
FIG. 4 is a diagram showing the relationship between the pressure resistance of the laminated battery case and the ambient temperature.
FIG. 5 is a diagram showing the relationship between the deformation pressure resistance of the battery pack case and the ambient temperature.
FIG. 6 is an explanatory diagram showing a state of the battery pack after the battery pack is held at each temperature.
FIG. 7 is a diagram comparing the temperature dependence of the deformation pressure of the cell storage container and the pressure resistance of the cell case.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Nonaqueous electrolyte secondary battery 5 Terminal lead 6 Single battery case 100 Single battery storage container 200 Battery pack

Claims (1)

気密構造を有し、金属又は金属と樹脂とを構成要素とする発電要素収納容器に発電要素が収納された単電池と、前記単電池が1個又は2個以上収納される樹脂又は樹脂と金属とを構成要素とする単電池収納容器を備えた電池パックにおいて、
前記発電要素収納容器の耐圧(P1)と温度(T)との関係を表す関数をP1=f1(T)とし、前記単電池収納容器の耐変形圧(P2)と温度(T)との関係を表す関数をP2=f2(T)とすると、
f2(T)≧f1(T)
P1、P2:[kgf/cm
T:[K]
の関係を満足することを特徴とする電池パック。
A unit cell having an airtight structure and having a power generation element stored in a power generation element storage container having metal or metal and resin as constituent elements, and a resin or resin and metal in which one or more unit cells are stored In a battery pack provided with a unit cell storage container having the following components:
A function representing the relationship between the pressure resistance (P1) and the temperature (T) of the power generation element storage container is P1 = f1 (T), and the relationship between the deformation resistance pressure (P2) of the unit cell storage container and the temperature (T). Let P2 = f2 (T) be a function that represents
f2 (T) ≧ f1 (T)
P1, P2: [kgf / cm 2 ]
T: [K]
A battery pack characterized by satisfying the above relationship.
JP18980398A 1998-06-18 1998-06-18 Battery pack Expired - Fee Related JP3941084B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18980398A JP3941084B2 (en) 1998-06-18 1998-06-18 Battery pack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18980398A JP3941084B2 (en) 1998-06-18 1998-06-18 Battery pack

Publications (3)

Publication Number Publication Date
JP2000011975A JP2000011975A (en) 2000-01-14
JP2000011975A5 JP2000011975A5 (en) 2005-10-20
JP3941084B2 true JP3941084B2 (en) 2007-07-04

Family

ID=16247479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18980398A Expired - Fee Related JP3941084B2 (en) 1998-06-18 1998-06-18 Battery pack

Country Status (1)

Country Link
JP (1) JP3941084B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101104650B1 (en) * 2009-03-24 2012-01-13 에스케이이노베이션 주식회사 A Vehicle Battery Pack equipped wit h Exterior Member
JP5734806B2 (en) * 2011-10-14 2015-06-17 トヨタ自動車株式会社 Container evaluation apparatus, evaluation method, and secondary battery manufacturing method

Also Published As

Publication number Publication date
JP2000011975A (en) 2000-01-14

Similar Documents

Publication Publication Date Title
JP4038699B2 (en) Lithium ion battery
US7122271B2 (en) Battery unit and lithium secondary battery employing the same
JP4075034B2 (en) Nonaqueous electrolyte battery and manufacturing method thereof
WO2022111126A1 (en) Battery assembly and heating method therefor, and electronic device
KR100914108B1 (en) Electrode assembly and rechargeable battery with the same
US20190348644A1 (en) High power battery and battery case
JP4432146B2 (en) Nonaqueous electrolyte secondary battery
JP2000156227A (en) Nonaqueous electrolyte battery
JP2001273930A (en) Manufacturing method of polymer battery
JPH11250873A (en) Nonaqueous electrolyte secondary battery
JP2000090897A5 (en)
JP2000090897A (en) Battery and battery pack
JP2001167752A (en) Non-aqueous electrolyte secondary battery
JP3941084B2 (en) Battery pack
WO2021235154A1 (en) Secondary battery
WO2022000329A1 (en) Electrochemical apparatus and electronic apparatus
JP2000156211A (en) Battery and battery pack
KR100580767B1 (en) Pouch Type Lithium Ion Polymer Battery
JP2000021368A (en) Battery and battery pack
JP2000277159A (en) Nonaqueous electrolyte secondary battery
JP2003346768A (en) Non-aqueous electrolyte secondary battery
JP2000100404A (en) Nonaqueous electrolyte battery and battery pack
JP2000100404A5 (en)
JP2000149993A (en) Film-like lithium secondary battery
JPH11233076A (en) Battery pack

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050614

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050614

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070325

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 4

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 4

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120413

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140413

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees