JP3940796B2 - Photodetection method for electron donating gas - Google Patents

Photodetection method for electron donating gas Download PDF

Info

Publication number
JP3940796B2
JP3940796B2 JP2003075709A JP2003075709A JP3940796B2 JP 3940796 B2 JP3940796 B2 JP 3940796B2 JP 2003075709 A JP2003075709 A JP 2003075709A JP 2003075709 A JP2003075709 A JP 2003075709A JP 3940796 B2 JP3940796 B2 JP 3940796B2
Authority
JP
Japan
Prior art keywords
thin film
gas
cobalt oxide
electron
electron donating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003075709A
Other languages
Japanese (ja)
Other versions
JP2004286466A (en
Inventor
毅 佐々木
ズブロニエック レシェック
鐘源 尹
直人 越崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2003075709A priority Critical patent/JP3940796B2/en
Publication of JP2004286466A publication Critical patent/JP2004286466A/en
Application granted granted Critical
Publication of JP3940796B2 publication Critical patent/JP3940796B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ガラス板などの基体上に光吸収体薄膜を堆積させ、光吸収体薄膜の光透過率の変化を利用して一酸化炭素や一酸化窒素などの電子供与性の被検ガスを検知する方法に関する
【0002】
【従来の技術】
酸化ニッケルや酸化コバルトのようなP型半導体特性を示す遷移金属酸化物の薄膜は、一定の温度域で空気中に一酸化炭素ガス又は一酸化窒素のような電子供与性ガスが存在すると、350nmから1500nmの波長領域における光透過率が空気中に比較して増加する事が知られている。
また、その光透過率は空気中の一酸化炭素ガス又は一酸化窒素の濃度に比例して可逆的に変化することから光応答型のセンサとして利用できる。遷移金属酸化物の中でもNiO、Mn、Coなどの遷移金属酸化物薄膜が僅かではあるものの一酸化炭素に光応答する事が知られている(例えば非特許文献1参照)。
【0003】
通常、これらの遷移金属酸化物薄膜は一酸化炭素濃度の変化による透過率変化量が少なく、また応答速度特性もそれほど良くないことから、一酸化炭素濃度の変化を感度よく検知する事は非常に困難であり一酸化炭素センサとして実用性がないと言われてきた。
そのようなことから、遷移金属酸化物を複合化して一酸化炭素ガスや一酸化窒素ガスの応答特性を向上させる試みがなされてきた(例えば特許文献1参照)。
この特許文献1では、ニッケルとコバルトの原子比で1:99から1:1(但し1:1は除く)の割合で含有しているコバルト−ニッケル複合酸化物を用いたものである。
【0004】
また、Au、Ag及びCuから選択される少なくとも1種類の金属微粒子とNi、Co、Mn、Cr及びRuから選択される少なくとも1種類の金属の酸化物からなる複合体を用いたものが報告されている(特許文献2参照)。
この他、遷移金属酸化物であるCoO微粒子をシリカガラス中に分散させたナノ複合体を用いたものについても報告されている(非特許文献2参照)。
以上のように、遷移金属酸化物だけから構成される薄膜を実用性のある電子供与性ガスの光検知薄膜材料として利用する事はできず、第二の成分を加える事によってのみ実現可能であると考えられていた。
【0005】
一方、本発明者らは酸化鉄や酸化コバルト等の遷移金属酸化物のターゲットを使用し、レーザーアブレーション法によって、酸化鉄や酸化コバルト等の遷移金属の結晶性薄膜を基板上に形成し、ナノメーターレベルの酸化物微粒子を形成する方法の研究及び開発を実施していた(非特許文献3及び4参照)。
しかし、これ自体上記のような前例(特許文献2又は非特許文献2)があったために、ガスセンサとしての機能を有するものとは理解しておらず、ガスの光検知方法としての具体的な開発がなされていなかった。
【0006】
【非特許文献1】
「Proceedings of Third International Meeting on Chemical Sensors」 page 318-321, Cleaveland USA, September 24-26, 1990.
【非特許文献2】
「Characterization of CoO-Doped SiO2 Nanocomposite Films and Their Optical Transmittance Change by Nitrogen Oxide」, Japanese Journal of Applied Physics, Part 2-Letters, vol.34, Page 119-121, Suppliment34-1, 1994.
【非特許文献3】
「Pressure dependence of the morphology and size of cobalt (II, II I) oxide nanoparticles prepared by pulsed-laser ablation」Applied Physics, A 69. P.115-118 (1999)
【非特許文献4】
「レーザーアブレーションによる金属酸化物ナノ微粒子の調整」佐々木毅外著、レーザー研究(2000年6月)第28巻第6号、頁348〜353
【特許文献1】
特開平10−96690号公報
【特許文献2】
特開平7−311145号公報
【0007】
【発明が解決しようとする課題】
本発明は、上記従来技術の問題点を解消し、第2の成分を加える事なしに遷移金属酸化物のみから構成される電子供与性ガスの光検知薄膜を用いて一酸化炭素や一酸化窒素などの電子供与性の被検ガスを検知する方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明者らは、ナノメーターレベルの酸化物微粒子の遷移金属酸化物、特に遷移金属であるコバルトの酸化物を用いることにより飛躍的な光透過率の改善を図ることが可能となる知見を得た。
本発明は、この知見に基づいて、
1.コバルト酸化物ターゲットを用い、希ガス中でレーザーアブレーションにより基板上に、1〜50nmの一次粒子又はこの一次粒子が凝集した500nm以下の粒子からなるコバルト酸化物薄膜を形成し、このコバルト酸化物薄膜の光透過率の変化により電子供与性ガスの検知(以下「光検知」と言う。)を行うことを特徴とする電子供与性ガスの光検知方法
2.コバルト酸化物ターゲットを用い、希ガス中でレーザーアブレーションにより基板上に、1〜50nmの一次粒子又はこの一次粒子が凝集した500nm以下の粒子からなるコバルト酸化物薄膜を形成し、このコバルト酸化物薄膜を250〜400°Cに加熱して、薄膜の光透過率の変化により電子供与性ガスの検知を行うことを特徴とする電子供与性ガスの光検知方法
3.コバルト酸化物ターゲットを用い、希ガス中でレーザーアブレーションにより基板上に、1〜50nmの一次粒子又はこの一次粒子が凝集した500nm以下の粒子からなるコバルト酸化物薄膜を形成し、この基板上に形成したコバルト酸化物薄膜を、予め250〜400°Cにアニーリングし、このアニーリングしたコバルト酸化物薄膜の光透過率の変化により電子供与性ガスの検知を行うことを特徴とする電子供与性ガスの光検知方法
4.基板上に形成したコバルト酸化物薄膜を空気中でアニーリングすることを特徴とする上記3記載電子供与性ガスの光検知方法
5.空気中および1%電子供与性ガス中での紫外可視分光器による波長300nm〜800nmの範囲内のいずれか一波長における光透過率の差が20%以上となる上記1〜4のいずれかに記載の電子供与性ガスの光検知方法
6.希ガスにArガスを使用し、圧力0.6Pa〜15kPaの範囲でレーザーアブレーションを行うことを特徴とする上記1〜5のいずれかに記載の電子供与性ガスの光検知方法。
7.酸化コバルトの焼結体ターゲット若しくは単結晶の酸化コバルトターゲットを用いてレーザーアブレーションを行うことを特徴とする上記1〜6のいずれかに記載の電子供与性ガスの光検知方法
8.電子供与性ガスが一酸化炭素又は一酸化窒素であることを特徴とする上記1〜7のいずれかに記載の電子供与性ガスの光検知方法、を提供する。
【0009】
【発明の実施の形態】
本発明らは、遷移金属酸化物の電子供与性ガスに対する応答は薄膜への電子供与性ガスの表面吸着に基づいており、ガス吸着による透過率変化量を大きくするためには酸化物から構成される光吸収体薄膜の表面積を大幅に向上させることが非常に重要であることが分かった。
このような観点から本発明の目的を達成するために、レーザーアブレーションを利用して石英ガラス等の基板上にナノメートルオーダーのサイズを有する微結晶、すなわちナノ微結晶から構成される遷移金属酸化物薄膜を堆積させることによって作製した光吸収体薄膜が、電子供与性ガスである一酸化炭素ガス及び一酸化窒素の濃度の変化に応じてその光透過率が大幅に変化する事を見出し、本発明を完成するに至った。
【0010】
すなわち、本発明は遷移金属酸化物ターゲットを用い希ガス中でレーザーアブレーションにより、基板上に1〜50nmの一次粒子又はこの一次粒子が凝集した500nm以下の粒子からなる遷移金属酸化物薄膜を形成し、これを250〜400°Cに加熱して電子供与性ガスの検知を行うものである。
遷移金属酸化物ターゲットには、酸化コバルト、酸化鉄、酸化ニッケル又は酸化マンガンの焼結体若しくは単結晶を使用するのが有効である。
希ガスには、通常Arガスを使用し、圧力0.6Pa〜15kPaの範囲でレーザーアブレーションを行う。この圧力範囲は、酸化物粒子を形成する好適な範囲である。低圧ではやや粒子が形成され難い傾向があるが、アニーリングにより酸化物粒子が形成される。
基板上に形成される結晶性の粒子サイズは1〜50nmであり、これによって薄膜の表面積が大きくなり、光透過率が向上する。特に10〜50nmが望ましい。希ガスの圧力が高くなると一次粒子が凝集する構造となる。凝集した膜構造も同様に効果がある。この場合、凝集した膜構造に一次粒子が見られる。この場合、凝集した粒子として500nm以下であることが望ましい。あまり粒径が大きくなると散乱効果により好ましくないからである。
【0011】
このような、膜構造の基板を使用することにより、電子供与性ガスの検知の際に、空気中と1%電子供与性ガスとの紫外可視分光器による光透過率の差が20%以上、さらには50%以上となる。この光透過率の差が大きいほど望ましいが、本発明はそれを達成することが可能となった。換言すれば、0.5%以下の一酸化炭素の検知も可能となるという優れた効果が得られた。
基板上の薄膜として、代表的には100〜500nm厚のCo膜又はCo膜とCoOの混相膜、100〜500nm厚のFe膜又はFeとFeOの混相膜、100〜500nm厚のNiO膜、150から500nmのMn膜またはMnとMnOの混相膜を使用することができる。これらの膜は、最低でも100nmの厚さが必要であるが、500nmを超えると膜の光透過率が著しく低下し、光検知が困難になるので500nm厚を上限とした。より好ましい範囲は150〜200nmである。
【0012】
本発明の基板上に遷移金属酸化物薄膜を形成した光検知用薄膜をそのまま使用するか、または基板上に形成した遷移金属酸化物薄膜を250〜400°C、好ましくは300〜350°Cにアニーリングして光検知用薄膜とするか、さらには基板上に形成した遷移金属酸化物薄膜を空気中で250〜400°C、好ましくは300〜350°Cにアニーリングして光検知用薄膜とし、これを用いて検知を行うことができる。
作動温度が低すぎると応答せず、また逆に高すぎると粒子が焼結して同様に応答しなる。したがって、上記の温度範囲とすることが望ましい。
【0013】
図1に遷移金属酸化物ナノ微結晶薄膜からなる電子供与性ガスの光検知薄膜材料の製造装置1を示す。ターゲット4には遷移金属酸化物の単結晶を使用した(直径13〜20mm、厚さ1〜5mm)。遷移金属酸化物の焼結体を使用する事も可能である。符号2は反応室である。
ターゲット4を図1に示したターゲット支持軸6に装着する。酸化物ナノ微結晶を堆積させる基板3は、光を透過して400°C程度の温度まで耐える材料であれば良く、石英ガラス、ソーダライムガラス、サファイア、などの基板3を使用することができる。
図1における符号8は真空ポンプ、符号9はアルゴン等のガスを導入するパイプ、符号10はレーザー光導入用の窓、符号11はレーザー、符号12はレンズを示す。
【0014】
本製造装置1での基板3とターゲット4との位置関係は、図2のようになっており、基板3とターゲット4間の距離を20mmから60mmの間で変化させる事ができ、通常は50mm程度とする。
また、台5上に設置した基板3とターゲット4は、それぞれモーター7によって回転させる事が可能で、作成される薄膜の膜圧の均一性を向上させるためにそれそれの回転軸は0mmから30mmまでオフセットが可能であり、通常10mmとする。符号13はレーザー光である。
【0015】
レーザーアブレーションによる薄膜調製では結晶性薄膜を得るために基板加熱を施す事が多いが、この場合、特段に加熱する必要はない。
本製造装置1の反応室2を密閉排気後、ガス導入バルブを開いてパイプ9から例えばアルゴンガスを導入し圧力を5mTorr(=0.67Pa)から100Torr(=13.3kPa)の間に調製する。望ましくは5mTorr(=0.67Pa)から600mTorr(=80Pa)の圧力である。この圧力は検知性能が向上するように、適宜調節することができる。
ターゲット4および基板3を、回転駆動用モーター7を介して回転させると共にレーザー光13を集光照射する。
使用するレーザーには各種の波長のレーザー、例えばパルスNd:YAGレーザーの基本波、第二高調波、第三高調波、第四高調波もしくはエキシマレーザーなどの紫外線パルスレーザーを使用することができる。使用するレーザーのパルスエネルギーは一パルスあたり100から300mJである。
【0016】
【実施例】
以下にその実施例を具体的に示しながら詳細に説明する。なお、本実施例は本発明の理解を容易にするために作成したものであり、この実施例によって本発明を制限するものではない。すなわち、本発明の技術思想に基づく、他の実施例、変形、態様は全て本発明に含まれるものとする。
【0017】
以下に、典型的な条件で作製した遷移金属酸化物(Co)ナノ微結晶からなる光検知薄膜材料について述べる。調製条件は表1の通りである
表1の条件で作成した薄膜を、空気中350°Cで3時間アニーリングを施し光検知薄膜とした。なお、熱処理は必須のものではなく、熱処理なしでも光検知薄膜として使用できる。
図3に、薄膜の堆積直後(A)、空気中350°Cで熱処理後の膜(B)及び窒素で希釈した1%一酸化炭素ガスに350°Cで暴露し、その後空気中にて室温まで冷却した光検知薄膜(C)、の3種類の薄膜のX線回折パターンを示す。薄膜の構造はどれもCo相であったが、薄膜の調製条件によっては堆積直後にCoO相(混相)が観測される事もあった。
【0018】
【表1】

Figure 0003940796
【0019】
また、図4に得られた薄膜の走査電子顕微鏡写真を示す。この薄膜は10から50nm程度の大きさの粒子から構成されており緻密な薄膜に比較して大きな表面積を有していることが分かる。
図5に、一酸化炭素ガスの光検知に使用したセンサ特性評価セル14の構造を示す。セル14を紫外可視分光器(島津製作所製紫外可視分光器UV−3101PC)中に設置し、ヒーター18により350°Cに加熱して光検知薄膜の空気中および1%一酸化炭素ガス中における光透過率を測定した。
図5において、符号15は入射光、符号16は輻射光遮蔽、符号17は支持台、符号19はガス導入口、符号20はガス排出口、符号21は熱電対、符号22は光検知薄膜材料、符号23は石英セルを示す。
【0020】
図6にその結果を示すと共に差スペクトルを示した。薄膜は300nmから800nmの波長領域に渡ってその透過スペクトルがガスによって大幅に変化しており、500〜600nmの波長においてその変化率は最大となっている。
また空気と1%一酸化炭素ガスとを繰り返しセル中へ交互に流し、500nmの波長においてその透過率の変化を記録し、検知薄膜のガス応答性について評価した。図7に示すように非常に再現性よく一酸化炭素ガスに応答していることがわかる。
上記においては、主としてCo膜又はCo膜とCoOの混相膜について説明したが、Fe膜又はFeとFeOの混相膜、NiO膜及びMn膜またはMnとMnOの混相膜でも、同様の機能及び効果を有する。
【0021】
【発明の効果】
以上のように、遷移金属酸化物の単結晶あるいは焼結体をターゲットとしたレーザーアブレーション法により第2の成分を加えることなく遷移金属酸化物ナノ微結晶薄膜薄膜を形成し、その優れた光透過率の変化を利用して一酸化炭素や一酸化窒素などの電子供与性の被検ガスを検知することができる著しい効果を有する。
【図面の簡単な説明】
【図1】電子供与性ガスの光検知薄膜材料の製造装置を示す図である。
【図2】ターゲットと基板の位置関係を示す図である。
【図3】検知薄膜の堆積直後の膜(A)、350°Cで熱処理後の膜(B)、窒素で希釈した1%一酸化炭素ガスに350°Cで暴露させ、さらに空気中にて室温まで冷却した後の膜(C)の、それぞれのX線回折パターンを示す図である。
【図4】検知薄膜の走査電子顕微鏡写真である。
【図5】一酸化炭素ガスの光検知に使用したセルの構造を示す図である。
【図6】検知薄膜の光透過スペクトル及び差スペクトルを示す図である。
【図7】空気および1%一酸化炭素ガス中における550nmの光透過率経時変化を示す図である。
【符号の説明】
1 製造装置
2 反応室
3 基板
4 ターゲット
5 台
6 軸
7 モーター
8 真空ポンプ
9 パイプ
10 レーザー光導入用の窓
11 レーザー
12 レンズ
13 レーザー光
14 センサ特性評価セル
15 入射光
16 輻射光遮蔽
17 支持台
18 ヒーター
19 ガス導入口
20 ガス排出口
21 熱電対
22 光検知薄膜材料
23 石英セル[0001]
BACKGROUND OF THE INVENTION
In the present invention, a light absorber thin film is deposited on a substrate such as a glass plate, and an electron-donating test gas such as carbon monoxide or nitrogen monoxide is applied using a change in light transmittance of the light absorber thin film. Detecting method
[Prior art]
A transition metal oxide thin film having P-type semiconductor characteristics such as nickel oxide and cobalt oxide has a thickness of 350 nm when an electron donating gas such as carbon monoxide gas or nitrogen monoxide exists in the air at a certain temperature range. It is known that the light transmittance in the wavelength region of 1500 nm increases from that in air.
Further, since the light transmittance changes reversibly in proportion to the concentration of carbon monoxide gas or nitrogen monoxide in the air, it can be used as a photoresponsive sensor. Among transition metal oxides, NiO, Mn 3 O 4 , Co 3 O 4 and other transition metal oxide thin films are known to be optically responsive to carbon monoxide (see, for example, Non-Patent Document 1). .
[0003]
Normally, these transition metal oxide thin films have little change in transmittance due to changes in carbon monoxide concentration, and response speed characteristics are not so good, so it is very difficult to detect changes in carbon monoxide concentration with high sensitivity. It has been said that it is difficult and not practical as a carbon monoxide sensor.
For this reason, attempts have been made to improve the response characteristics of carbon monoxide gas and nitrogen monoxide gas by combining transition metal oxides (see, for example, Patent Document 1).
In Patent Document 1, a cobalt-nickel composite oxide containing an atomic ratio of nickel and cobalt in a ratio of 1:99 to 1: 1 (excluding 1: 1) is used.
[0004]
Also reported is a composite using at least one metal fine particle selected from Au, Ag and Cu and at least one metal oxide selected from Ni, Co, Mn, Cr and Ru. (See Patent Document 2).
In addition, a nanocomposite in which CoO fine particles, which are transition metal oxides, are dispersed in silica glass has been reported (see Non-Patent Document 2).
As described above, a thin film composed only of a transition metal oxide cannot be used as a light-sensitive thin film material for a practical electron donating gas, and can only be realized by adding a second component. It was thought.
[0005]
On the other hand, the present inventors use a transition metal oxide target such as iron oxide or cobalt oxide to form a crystalline thin film of a transition metal such as iron oxide or cobalt oxide on a substrate by a laser ablation method. Research and development of a method for forming meter-level oxide fine particles has been carried out (see Non-Patent Documents 3 and 4).
However, since there was a precedent as described above (Patent Document 2 or Non-Patent Document 2), it is not understood that it has a function as a gas sensor, and a specific development as a gas photodetection method. Was not made.
[0006]
[Non-Patent Document 1]
`` Proceedings of Third International Meeting on Chemical Sensors '' page 318-321, Cleaveland USA, September 24-26, 1990.
[Non-Patent Document 2]
“Characterization of CoO-Doped SiO 2 Nanocomposite Films and Their Optical Transmittance Change by Nitrogen Oxide”, Japanese Journal of Applied Physics, Part 2-Letters, vol.34, Page 119-121, Suppliment34-1, 1994.
[Non-Patent Document 3]
“Pressure dependence of the morphology and size of cobalt (II, II I) oxide nanoparticles prepared by pulsed-laser ablation”, Applied Physics, A 69. P. 115-118 (1999)
[Non-Patent Document 4]
"Preparation of metal oxide nano-particles by laser ablation", Sasaki Shingai, Laser Research (June 2000) Vol. 28, No. 6, pp. 348-353
[Patent Document 1]
JP-A-10-96690 [Patent Document 2]
Japanese Patent Laid-Open No. 7-31145
[Problems to be solved by the invention]
The present invention solves the above-mentioned problems of the prior art, and uses a photodetection thin film of an electron donating gas composed of only a transition metal oxide without adding a second component, so that carbon monoxide and nitrogen monoxide are used. An object of the present invention is to provide a method for detecting an electron-donating test gas such as the above.
[0008]
[Means for Solving the Problems]
The present inventors have obtained knowledge that it is possible to dramatically improve the light transmittance by using a transition metal oxide of oxide particles of nanometer level, particularly cobalt oxide which is a transition metal. It was.
The present invention is based on this finding.
1. Using a cobalt oxide target, on the substrate by laser ablation in rare gas to form a cobalt oxide thin film composed of primary particles or 500nm or less of particles the primary particles are aggregated in 1 to 50 nm, the cobalt oxide thin film 1. An electron donating gas photodetection method, comprising: detecting an electron donating gas (hereinafter referred to as “light detection”) based on a change in light transmittance . Using a cobalt oxide target, on the substrate by laser ablation in rare gas to form a cobalt oxide thin film composed of primary particles or 500nm or less of particles the primary particles are aggregated in 1 to 50 nm, the cobalt oxide thin film 2. An electron donating gas photodetection method, wherein the electron donating gas is detected by changing the light transmittance of the thin film by heating to 250 to 400 ° C. Using a cobalt oxide target, a cobalt oxide thin film consisting of primary particles of 1 to 50 nm or particles of 500 nm or less in which the primary particles are aggregated is formed on a substrate by laser ablation in a rare gas, and formed on the substrate. The electron-donating gas is characterized in that the cobalt-oxide thin film is annealed in advance at 250 to 400 ° C., and the electron-donating gas is detected by changing the light transmittance of the annealed cobalt oxide thin film. Detection method 4. 4. The method for photodetection of an electron donating gas as described in 3 above, wherein the cobalt oxide thin film formed on the substrate is annealed in air . Any one of 1 to 4 above, wherein a difference in light transmittance at any one wavelength within a range of 300 nm to 800 nm by an ultraviolet-visible spectrometer in air and 1% electron donating gas is 20% or more. 5. Method for optical detection of electron donating gas 6. The method for photodetection of an electron donating gas according to any one of 1 to 5 above, wherein Ar gas is used as a rare gas and laser ablation is performed in a pressure range of 0.6 Pa to 15 kPa.
7). 7. The method for photodetection of an electron donating gas according to any one of 1 to 6 above, wherein laser ablation is performed using a sintered compact target of cobalt oxide or a single crystal cobalt oxide target. The method for photodetection of an electron donating gas according to any one of 1 to 7 above, wherein the electron donating gas is carbon monoxide or nitric oxide.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, the response of the transition metal oxide to the electron-donating gas is based on the surface adsorption of the electron-donating gas to the thin film. It was found that it is very important to greatly improve the surface area of the light absorber thin film.
In order to achieve the object of the present invention from such a viewpoint, a transition metal oxide composed of a microcrystal having a size of nanometer order on a substrate such as quartz glass using laser ablation, that is, a nanocrystallite. The light absorber thin film produced by depositing a thin film has been found to have a light transmittance that varies greatly according to changes in the concentrations of carbon monoxide gas and nitrogen monoxide, which are electron donating gases, and the present invention. It came to complete.
[0010]
That is, the present invention forms a transition metal oxide thin film composed of primary particles of 1 to 50 nm or particles of 500 nm or less in which the primary particles are aggregated on a substrate by laser ablation in a rare gas using a transition metal oxide target. This is heated to 250 to 400 ° C. to detect the electron donating gas.
For the transition metal oxide target, it is effective to use a sintered body or single crystal of cobalt oxide, iron oxide, nickel oxide or manganese oxide.
As the rare gas, Ar gas is usually used, and laser ablation is performed in a pressure range of 0.6 Pa to 15 kPa. This pressure range is a suitable range for forming oxide particles. Although there is a tendency that particles are hardly formed at a low pressure, oxide particles are formed by annealing.
The crystalline particle size formed on the substrate is 1 to 50 nm, which increases the surface area of the thin film and improves the light transmittance. 10-50 nm is particularly desirable. When the pressure of the rare gas is increased, the primary particles are aggregated. An agglomerated membrane structure is also effective. In this case, primary particles are seen in the aggregated film structure. In this case, the aggregated particles are desirably 500 nm or less. This is because an excessively large particle size is not preferable due to the scattering effect.
[0011]
By using such a substrate having a film structure, when detecting an electron donating gas, the difference in light transmittance between the air and 1% electron donating gas by an ultraviolet-visible spectrometer is 20% or more, Furthermore, it becomes 50% or more. Although it is desirable that the difference in light transmittance is large, the present invention has made it possible to achieve this. In other words, an excellent effect that carbon monoxide of 0.5% or less can be detected was obtained.
As the thin film on the substrate, typically, a Co 3 O 4 film having a thickness of 100 to 500 nm or a mixed phase film of Co 3 O 4 film and CoO, a Fe 2 O 3 film having a thickness of 100 to 500 nm, or Fe 2 O 3 and FeO is used. A mixed phase film, a 100-500 nm thick NiO film, a 150 to 500 nm Mn 3 O 4 film or a mixed phase film of Mn 3 O 4 and MnO can be used. These films are required to have a thickness of at least 100 nm. However, if the thickness exceeds 500 nm, the light transmittance of the film is remarkably lowered, and light detection becomes difficult. A more preferable range is 150 to 200 nm.
[0012]
The thin film for light detection in which the transition metal oxide thin film is formed on the substrate of the present invention is used as it is, or the transition metal oxide thin film formed on the substrate is 250 to 400 ° C, preferably 300 to 350 ° C. Annealing to make a thin film for light detection, or further, annealing the transition metal oxide thin film formed on the substrate in air to 250 to 400 ° C., preferably 300 to 350 ° C. to make a thin film for light detection, Detection can be performed using this.
If the operating temperature is too low, it will not respond, and if it is too high, the particles will sinter and respond similarly. Therefore, it is desirable to set the above temperature range.
[0013]
FIG. 1 shows an apparatus 1 for producing an electron donating gas photodetection thin film material comprising a transition metal oxide nanocrystallite thin film. A single crystal of transition metal oxide was used for the target 4 (diameter 13 to 20 mm, thickness 1 to 5 mm). It is also possible to use a sintered body of a transition metal oxide. Reference numeral 2 denotes a reaction chamber.
The target 4 is mounted on the target support shaft 6 shown in FIG. The substrate 3 on which the oxide nanocrystallites are deposited may be any material that transmits light and can withstand a temperature of about 400 ° C., and a substrate 3 such as quartz glass, soda lime glass, or sapphire can be used. .
In FIG. 1, reference numeral 8 is a vacuum pump, reference numeral 9 is a pipe for introducing a gas such as argon, reference numeral 10 is a window for introducing laser light, reference numeral 11 is a laser, and reference numeral 12 is a lens.
[0014]
The positional relationship between the substrate 3 and the target 4 in the manufacturing apparatus 1 is as shown in FIG. 2, and the distance between the substrate 3 and the target 4 can be changed between 20 mm and 60 mm, usually 50 mm. To the extent.
In addition, the substrate 3 and the target 4 installed on the table 5 can be rotated by a motor 7 respectively, and the rotation axis of each of the substrate 3 and the target 4 is 0 mm to 30 mm in order to improve the uniformity of the film pressure of the formed thin film. Can be offset up to 10 mm. Reference numeral 13 denotes a laser beam.
[0015]
In thin film preparation by laser ablation, substrate heating is often performed to obtain a crystalline thin film, but in this case, there is no need to perform special heating.
After the reaction chamber 2 of the production apparatus 1 is hermetically evacuated, the gas introduction valve is opened and, for example, argon gas is introduced from the pipe 9 to adjust the pressure between 5 mTorr (= 0.67 Pa) and 100 Torr (= 13.3 kPa). . The pressure is desirably 5 mTorr (= 0.67 Pa) to 600 mTorr (= 80 Pa). This pressure can be appropriately adjusted so that the detection performance is improved.
The target 4 and the substrate 3 are rotated via the rotation driving motor 7 and the laser beam 13 is condensed and irradiated.
As the laser to be used, lasers of various wavelengths, for example, pulsed Nd: YAG laser fundamental wave, second harmonic wave, third harmonic wave, fourth harmonic wave, or excimer laser or other ultraviolet pulse laser can be used. The pulse energy of the laser used is 100 to 300 mJ per pulse.
[0016]
【Example】
The embodiment will be described in detail below with specific examples. In addition, this Example was created in order to make an understanding of this invention easy, and this invention is not restrict | limited by this Example. That is, all other examples, modifications, and modes based on the technical idea of the present invention are included in the present invention.
[0017]
Hereinafter, a photodetection thin film material made of transition metal oxide (Co 3 O 4 ) nanocrystallites manufactured under typical conditions will be described. Preparation conditions were as shown in Table 1. The thin film prepared under the conditions shown in Table 1 was annealed at 350 ° C. in air for 3 hours to obtain a light detection thin film. Note that heat treatment is not essential and can be used as a light-sensitive thin film without heat treatment.
FIG. 3 shows that immediately after deposition of the thin film (A), the film after heat treatment at 350 ° C. in air (B) and 1% carbon monoxide gas diluted with nitrogen at 350 ° C., and then in air at room temperature. 3 shows X-ray diffraction patterns of three types of thin films, that is, the light-sensitive thin film (C) cooled to the temperature. All the thin film structures were Co 3 O 4 phases, but depending on the thin film preparation conditions, a CoO phase (mixed phase) was sometimes observed immediately after deposition.
[0018]
[Table 1]
Figure 0003940796
[0019]
FIG. 4 shows a scanning electron micrograph of the thin film obtained. It can be seen that this thin film is composed of particles having a size of about 10 to 50 nm and has a larger surface area than a dense thin film.
FIG. 5 shows the structure of the sensor characteristic evaluation cell 14 used for optical detection of carbon monoxide gas. The cell 14 is placed in an ultraviolet-visible spectrometer (UV-3101PC, manufactured by Shimadzu Corporation), heated to 350 ° C. by the heater 18 and light in the air of the light detection thin film and in 1% carbon monoxide gas. The transmittance was measured.
In FIG. 5, reference numeral 15 denotes incident light, reference numeral 16 denotes radiation shielding, reference numeral 17 denotes a support base, reference numeral 19 denotes a gas inlet, reference numeral 20 denotes a gas outlet, reference numeral 21 denotes a thermocouple, reference numeral 22 denotes a light detection thin film material. Reference numeral 23 denotes a quartz cell.
[0020]
FIG. 6 shows the result and the difference spectrum. The transmission spectrum of the thin film varies greatly depending on the gas over a wavelength range of 300 nm to 800 nm, and the rate of change is maximum at a wavelength of 500 to 600 nm.
In addition, air and 1% carbon monoxide gas were alternately flowed into the cell, and the change in transmittance was recorded at a wavelength of 500 nm to evaluate the gas responsiveness of the detection thin film. As shown in FIG. 7, it can be seen that it responds to carbon monoxide gas with very good reproducibility.
In the above, the Co 3 O 4 film or the Co 3 O 4 film and the CoO mixed phase film have been mainly described. However, the Fe 2 O 3 film or the mixed phase film of Fe 2 O 3 and FeO, the NiO film, and the Mn 3 O 4 film are described. Alternatively, a mixed phase film of Mn 3 O 4 and MnO has similar functions and effects.
[0021]
【The invention's effect】
As described above, a transition metal oxide nanocrystallite thin film is formed without adding a second component by laser ablation using a transition metal oxide single crystal or sintered body as a target, and its excellent light transmission It has a remarkable effect that it can detect an electron-donating test gas such as carbon monoxide or nitrogen monoxide by utilizing the change in the rate.
[Brief description of the drawings]
FIG. 1 is a view showing an apparatus for producing a photodetection thin film material of an electron donating gas.
FIG. 2 is a diagram showing a positional relationship between a target and a substrate.
FIG. 3 shows a film (A) immediately after deposition of a sensing thin film, a film (B) after heat treatment at 350 ° C., and exposed to 1% carbon monoxide gas diluted with nitrogen at 350 ° C., and further in air. It is a figure which shows each X-ray-diffraction pattern of the film | membrane (C) after cooling to room temperature.
FIG. 4 is a scanning electron micrograph of a sensing thin film.
FIG. 5 is a diagram showing a structure of a cell used for optical detection of carbon monoxide gas.
FIG. 6 is a diagram showing a light transmission spectrum and a difference spectrum of a detection thin film.
FIG. 7 is a graph showing changes with time in light transmittance of 550 nm in air and 1% carbon monoxide gas.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Manufacturing apparatus 2 Reaction chamber 3 Substrate 4 Target 5 stand 6 Axis 7 Motor 8 Vacuum pump 9 Pipe 10 Laser light introduction window 11 Laser 12 Lens 13 Laser light 14 Sensor characteristic evaluation cell 15 Incident light 16 Radiation light shielding 17 Support stand 18 Heater 19 Gas inlet 20 Gas outlet 21 Thermocouple 22 Light detection thin film material 23 Quartz cell

Claims (8)

コバルト酸化物ターゲットを用い、希ガス中でレーザーアブレーションにより基板上に、1〜50nmの一次粒子又はこの一次粒子が凝集した500nm以下の粒子からなるコバルト酸化物薄膜を形成し、このコバルト酸化物薄膜の光透過率の変化により電子供与性ガスの検知(以下「光検知」と言う。)を行うことを特徴とする電子供与性ガスの光検知方法。Using a cobalt oxide target, on the substrate by laser ablation in rare gas to form a cobalt oxide thin film composed of primary particles or 500nm or less of particles the primary particles are aggregated in 1 to 50 nm, the cobalt oxide thin film An electron-donating gas photodetection method, comprising: detecting an electron-donating gas (hereinafter referred to as “light detection”) based on a change in light transmittance . コバルト酸化物ターゲットを用い、希ガス中でレーザーアブレーションにより基板上に、1〜50nmの一次粒子又はこの一次粒子が凝集した500nm以下の粒子からなるコバルト酸化物薄膜を形成し、このコバルト酸化物薄膜を250〜400°Cに加熱して、薄膜の光透過率の変化により電子供与性ガスの検知を行うことを特徴とする電子供与性ガスの光検知方法。Using a cobalt oxide target, on the substrate by laser ablation in rare gas to form a cobalt oxide thin film composed of primary particles or 500nm or less of particles the primary particles are aggregated in 1 to 50 nm, the cobalt oxide thin film The electron donating gas is detected by changing the light transmittance of the thin film by heating to 250 to 400 ° C. コバルト酸化物ターゲットを用い、希ガス中でレーザーアブレーションにより基板上に、1〜50nmの一次粒子又はこの一次粒子が凝集した500nm以下の粒子からなるコバルト酸化物薄膜を形成し、この基板上に形成したコバルト酸化物薄膜を、予め250〜400°Cにアニーリングし、このアニーリングしたコバルト酸化物薄膜の光透過率の変化により電子供与性ガスの検知を行うことを特徴とする電子供与性ガスの光検知方法。 Using a cobalt oxide target, a cobalt oxide thin film consisting of primary particles of 1 to 50 nm or particles of 500 nm or less in which the primary particles are aggregated is formed on a substrate by laser ablation in a rare gas, and formed on the substrate. The electron-donating gas is characterized in that the cobalt-oxide thin film is annealed in advance to 250 to 400 ° C., and the electron-donating gas is detected by changing the light transmittance of the annealed cobalt oxide thin film. Detection method. 基板上に形成したコバルト酸化物薄膜を空気中でアニーリングすることを特徴とする請求項3記載電子供与性ガスの光検知方法 4. The method of photodetecting an electron donating gas according to claim 3, wherein the cobalt oxide thin film formed on the substrate is annealed in air . 空気中および1%電子供与性ガス中での紫外可視分光器による波長300nm〜800nmの範囲内のいずれか一波長における光透過率の差が20%以上となる請求項1〜4のいずれかに記載の電子供与性ガスの光検知方法。 5. The difference in light transmittance at any one wavelength within a wavelength range of 300 nm to 800 nm by an ultraviolet-visible spectrometer in air and 1% electron donating gas is 20% or more. The method for light detection of the electron donating gas described 希ガスにArガスを使用し、圧力0.6Pa〜15kPaの範囲でレーザーアブレーションを行うことを特徴とする請求項1〜5のいずれかに記載の電子供与性ガスの光検知方法。  6. The method for photodetecting an electron donating gas according to claim 1, wherein Ar is used as a rare gas and laser ablation is performed in a pressure range of 0.6 Pa to 15 kPa. 酸化コバルトの焼結体ターゲット若しくは単結晶の酸化コバルトターゲットを用いてレーザーアブレーションを行うことを特徴とする請求項1〜6のいずれかに記載の電子供与性ガスの光検知方法。  7. The method for photodetecting an electron donating gas according to claim 1, wherein laser ablation is performed using a sintered compact target of cobalt oxide or a single crystal cobalt oxide target. 電子供与性ガスが一酸化炭素又は一酸化窒素であることを特徴とする請求項1〜7のいずれかに記載の電子供与性ガスの光検知方法。  8. The method of photodetecting an electron donating gas according to claim 1, wherein the electron donating gas is carbon monoxide or nitric oxide.
JP2003075709A 2003-03-19 2003-03-19 Photodetection method for electron donating gas Expired - Lifetime JP3940796B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003075709A JP3940796B2 (en) 2003-03-19 2003-03-19 Photodetection method for electron donating gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003075709A JP3940796B2 (en) 2003-03-19 2003-03-19 Photodetection method for electron donating gas

Publications (2)

Publication Number Publication Date
JP2004286466A JP2004286466A (en) 2004-10-14
JP3940796B2 true JP3940796B2 (en) 2007-07-04

Family

ID=33290955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003075709A Expired - Lifetime JP3940796B2 (en) 2003-03-19 2003-03-19 Photodetection method for electron donating gas

Country Status (1)

Country Link
JP (1) JP3940796B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3940817B2 (en) 2005-05-30 2007-07-04 松下電器産業株式会社 Electrochemical electrode in which nickel-containing nanostructure having dendritic structure is applied to the active layer and method for producing the same
TWI412079B (en) 2006-07-28 2013-10-11 Semiconductor Energy Lab Method for manufacturing display device
US7994021B2 (en) * 2006-07-28 2011-08-09 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing semiconductor device
US7943287B2 (en) 2006-07-28 2011-05-17 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing display device
US8563431B2 (en) 2006-08-25 2013-10-22 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US8148259B2 (en) 2006-08-30 2012-04-03 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
JP2011187837A (en) * 2010-03-10 2011-09-22 Shinichiro Uekusa beta-IRON SILICIDE THIN FILM, METHOD OF MANUFACTURING THE SAME, AND DEVICE FOR MANUFACTURING THIN FILM

Also Published As

Publication number Publication date
JP2004286466A (en) 2004-10-14

Similar Documents

Publication Publication Date Title
JP5230206B2 (en) Composite material comprising porous matrix and metal or metal oxide nanoparticles
Peng et al. Optical and photocatalytic properties of spinel ZnCr2O4 nanoparticles synthesized by a hydrothermal route
Siddiqui et al. Optimization of process parameters and its effect on structure and morphology of CuO nanoparticle synthesized via the sol− gel technique
CN108396288B (en) Ultra-wide forbidden band ZrxSn1-xO2Alloy semiconductor epitaxial thin film material, preparation method, application and device thereof
Kim et al. Sol–gel growth and structural and optical investigation of manganese-oxide thin films: structural transformation by Zn doping
US20200287067A1 (en) (GaMe)2O3 ternary alloy material, its preparation method and application in solar-blind ultraviolet photodetector
JP3940796B2 (en) Photodetection method for electron donating gas
CN111293181B (en) MSM type alpha-Ga2O3Basic solar blind ultraviolet detector
Singh et al. Nanostructured cobalt antimonate: A fast responsive and highly stable sensing material for liquefied petroleum gas detection at room temperature
Ali et al. Structural, optical and sensing behavior of neodymium-doped vanadium pentoxide thin films
CN110568534A (en) structural color nano film with good angle robustness and preparation method thereof
Havlová et al. Effect of pulsed laser annealing on optical and structural properties of ZnO: Eu thin film
Mohaseb Effect of Co doping onto physical properties of ZnO films and its UV detection performance
Miedzinska et al. Optical properties and assignment of the absorption spectra of sputtered mixed valence nickel oxide films
Abed et al. Pulsed laser deposition of Pd/WO3 nanoparticles on Si nanostructure for highly sensitive room-temperature gas sensors
Yin et al. Gas absorption on nano-zinc oxide by electron transfer process
Her et al. Recording and readout mechanisms of super-resolution near-field structure disk with a silver oxide mask layer
Prabakar et al. Investigation on microstructure, energy gap, photoluminescence and magnetic studies of Co and Cu in situ doped ZnO nanostructures
Leonov et al. Unexpectedly large energy gap in ZnO nanoparticles on a fused quartz support
Della Gaspera et al. ZnO-NiO thin films containing Au nanoparticles for Co optical sensing
Yu et al. Diversity of electronic transitions and photoluminescence properties in nanocrystalline Mn/Fe-doped tin dioxide semiconductor films: An effect from oxygen pressure
Abed et al. Enhancing response characteristics of palladium-doped vanadium pentoxide on a porous silicon substrate as gas sensor synthesized by pulsed laser deposition
Vaz et al. Effect Synthesis Time of CeO2 Nanoparticles by Microwave-Assisted Hydrothermal as a Sensing Device on CO Gas Sensitivity
Venhryn et al. Investigation of photoluminescent properties of MgO and Ga2O3 nanopowders for gas sensor applications
Somjaijaroen et al. Improved Transparent Gas Sensor Properties of Cu-Doped SnO2 Films using O2 Plasma Treatment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061207

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070306

R150 Certificate of patent or registration of utility model

Ref document number: 3940796

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term