JP3940740B2 - Crack detection system, adhesive and linear detector available in this system - Google Patents

Crack detection system, adhesive and linear detector available in this system Download PDF

Info

Publication number
JP3940740B2
JP3940740B2 JP2004323538A JP2004323538A JP3940740B2 JP 3940740 B2 JP3940740 B2 JP 3940740B2 JP 2004323538 A JP2004323538 A JP 2004323538A JP 2004323538 A JP2004323538 A JP 2004323538A JP 3940740 B2 JP3940740 B2 JP 3940740B2
Authority
JP
Japan
Prior art keywords
crack
detection
detection line
detected
detection system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004323538A
Other languages
Japanese (ja)
Other versions
JP2005156552A (en
Inventor
裕一 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sharyo Ltd
Central Japan Railway Co
Original Assignee
Nippon Sharyo Ltd
Central Japan Railway Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sharyo Ltd, Central Japan Railway Co filed Critical Nippon Sharyo Ltd
Priority to JP2004323538A priority Critical patent/JP3940740B2/en
Publication of JP2005156552A publication Critical patent/JP2005156552A/en
Application granted granted Critical
Publication of JP3940740B2 publication Critical patent/JP3940740B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、亀裂検出システムに関する。 The present invention also relates to the crack detection system.

橋梁・車両・船舶・航空機・機械等の機械的な振動を受ける構造物は、金属疲労による亀裂が発生することがある。この亀裂は、構造物の内部から発生するものや、表面から発生するもの、ある程度成長すると成長が止まるもの、成長速度が次第に速くなっていくものなど様々であるが、いずれの亀裂も構造物の安全管理の観点から早期発見と対策が必要である。   Structures that are subjected to mechanical vibration such as bridges, vehicles, ships, aircraft, and machines may crack due to metal fatigue. There are various types of cracks, such as those generated from the inside of the structure, those generated from the surface, those that stop growing when grown to some extent, and those that gradually increase in growth rate. Early detection and countermeasures are necessary from the viewpoint of safety management.

そのため従来は、亀裂の発見のため、定期的または不定期に目視による検査を行っていた。
しかし、目視による検査は、検査員の能力や注意力によるので、亀裂を見逃してしまうおそれがある。また、検査周期の間に疲労亀裂が成長して、構造物の破壊等に至ることがある。さらに、検査員の給与、検査足場の敷設など、検査コストがかかってしまう。
Therefore, in the past, visual inspection was performed regularly or irregularly to detect cracks.
However, since visual inspection is based on the ability and attention of the inspector, there is a risk of missing a crack. In addition, fatigue cracks may grow during the inspection cycle, leading to destruction of the structure. In addition, inspection costs such as inspector salary and inspection scaffolding will be required.

そのため近年では、橋梁の亀裂を発見するための様々なモニタリングシステムが開発されている。
(1)「橋梁連続性ヘルスモニタリングシステム、及び方法」では、図6に示すように、一方の端部側の橋梁5から各橋梁5まで複数の光ファイバー6を設置し、各光ファイバーの他方側の端部に反射鏡60を備え、橋梁5が折れるなどして光ファイバー6も折れ、入光器62から光ファイバー6に入光した光が反射して帰ってこなくなったら、橋梁5が折れたと判定するものである(特許文献1)。
(2)「亀裂検知装置」は、図7に示すように、構造部材7の内部7aに気体を圧送入し密封する機構70と、内部気圧を表示する圧力センサー72と、内部気圧を表示する表示部74を備えている。構造部材7は、圧力センサー72によって測定された構造部材7の内部空気圧の測定値Pを監視する。構造部材7に亀裂が発生し、亀裂が板圧を貫通すると内部の空気圧が低下し、内部空気圧の測定値Pが低下する。表示部74に表示されたPの変化が生じたことを表示部74の表示から判定することにより、亀裂発生を検知する(特許文献2)。
特願2000−133206 特願2000−026169
In recent years, therefore, various monitoring systems have been developed to detect bridge cracks.
(1) In the “Bridge Continuity Health Monitoring System and Method”, as shown in FIG. 6, a plurality of optical fibers 6 are installed from the bridge 5 on one end side to each bridge 5, and the other side of each optical fiber is installed. It is determined that the bridge 5 is broken when the reflection mirror 60 is provided at the end, and the optical fiber 6 is also bent due to the bridge 5 being bent or the like, and the light incident on the optical fiber 6 from the light entrance 62 is not reflected and returned. (Patent Document 1).
(2) The “crack detection device”, as shown in FIG. 7, displays a mechanism 70 for pressure-feeding gas into the interior 7a of the structural member 7 and sealing it, a pressure sensor 72 for displaying the internal pressure, and an internal pressure. A display unit 74 is provided. The structural member 7 monitors the measured value P of the internal air pressure of the structural member 7 measured by the pressure sensor 72. When a crack occurs in the structural member 7 and the crack penetrates the plate pressure, the internal air pressure decreases, and the measured value P of the internal air pressure decreases. The occurrence of a crack is detected by determining from the display on the display unit 74 that a change in P displayed on the display unit 74 has occurred (Patent Document 2).
Japanese Patent Application 2000-133206 Japanese Patent Application 2000-026169

しかし、(1)「橋梁連続性ヘルスモニタリングシステム、及び方法」では、橋梁の破壊が起こってはじめて検出が行われるので、安全管理の点では問題がある。
また、(2)「亀裂検知装置」では、構造部材を密閉空間にせねばならないためコストがかかり、しかも、構造部材に穴が開くほどの亀裂が発生しないと亀裂を検出できないため、亀裂の検出タイミングが遅れてしまい、さらに、どこで空気が漏れているかわからないので亀裂が発生した場所を特定するのが困難であるという問題がある。
However, (1) “Bridge Continuity Health Monitoring System and Method” has a problem in terms of safety management because detection is performed only after a bridge is broken.
In addition, (2) the “crack detection device” is costly because the structural member has to be in a sealed space, and the crack cannot be detected unless there is a crack that causes a hole in the structural member. In addition, there is a problem that it is difficult to specify the location where the crack has occurred because it is not known where the air is leaking.

そこで本発明では、上述した問題点を解決し、亀裂の発生とその場所を早期に発見でき、しかも簡単な構造の亀裂検出システムを提供することを目的とする。 In this invention, to solve the problems described above, cracks occur and be found their place early, yet an object to provide a crack detection system having a simple structure.

上述した問題点を解決するためになされた請求項1に記載の亀裂検出システムは、被検出物の表面に沿って並ぶように、前記被検出物の表面上に積層された状態で配線された2本の検出線あるいはこの検出線を備えた線状検出具と、前記検出線の両端から常時通電し、前記検出線の通電不能により前記検出線の断線の有無を検出することによって前記被検出物の金属疲労による亀裂の有無を検出する亀裂検出手段とを備え、前記亀裂検出手段は、前記検出線にかけた電流が、前記検出線が断線することによって遮断されると、異常を示す動作をして、この動作後の状態を保持する保持手段を備え、前記被検出物に亀裂が発生し、前記検出線の通電が切れて前記保持手段が保持されているか否かにより、前記被検出物の亀裂の有無を検出することを特徴とする。 The crack detection system according to claim 1, which has been made to solve the above-described problems, is wired in a state of being stacked on the surface of the detected object so as to be arranged along the surface of the detected object. The detection target is detected by detecting the presence or absence of disconnection of the detection line when two detection lines or a linear detector provided with the detection line are constantly energized from both ends of the detection line and the detection line is not energized. Crack detecting means for detecting the presence or absence of a crack due to metal fatigue of an object, and the crack detecting means performs an operation indicating an abnormality when the current applied to the detection line is interrupted by the disconnection of the detection line. And a holding means for holding the state after the operation, wherein the detection object is cracked, the detection line is de-energized, and the detection means is held to determine whether the holding means is held. this to detect the presence or absence of crack The features.

本発明の亀裂検出システムでは、被検出物の表面に沿って並ぶように配線された2本の検出線あるいはこの検出線を備えた線状検出具を被検出物の表面上に積層しておき、亀裂検出手段により検出線を常に通電し、その検出線が通電不能になったことを検出することをもって、被検出物の亀裂の発生を検出している。In the crack detection system of the present invention, two detection lines wired so as to be arranged along the surface of the object to be detected or a linear detector equipped with the detection lines are stacked on the surface of the object to be detected. The detection of the crack in the detected object is detected by constantly energizing the detection line by the crack detection means and detecting that the detection line is not energized.

そのためこの亀裂検出システムを用いると、被検出物の亀裂の発生を迅速に検出することができる。Therefore, if this crack detection system is used, the occurrence of cracks in the detected object can be detected quickly.

請求項2に記載の亀裂検出システムでは、この亀裂検出手段が被検出物の亀裂の有無を検出したら、亀裂場所特定手段により、TDR法を用いて検出線の断線位置を特定することにより被検出物の亀裂の発生位置を特定している。そのため、本発明の亀裂検出システムでは、TDR法を用いることにより被検出物の亀裂の発生場所を適格に把握することができる。しかも本発明の亀裂検出システムは、検出線あるいは線状検出具を被検出物の表面上に積層するだけの簡単な構造なので、低コストで導入できる。 In the crack detection system according to claim 2, when the crack detection means detects the presence or absence of a crack in the detected object, the crack detection means specifies the disconnection position of the detection line using the TDR method. The location of the crack in the object is specified. Therefore, in the crack detection system of the present invention, it is possible to properly grasp the occurrence location of the crack of the detected object by using the TDR method. Moreover, the crack detection system of the present invention can be introduced at a low cost because it has a simple structure in which detection lines or linear detectors are simply stacked on the surface of an object to be detected.

尚、本発明の亀裂検出システムにおいて、2本の検出線を使用している理由は、TDR In the crack detection system of the present invention, the reason for using two detection lines is that the TDR
方式の原理が、2本の検出線間に電位差をパルス状に伝播させ、破断点等の測定対象物のThe principle of the method is that the potential difference is propagated in a pulsed manner between the two detection lines, and the measurement object such as the breaking point
表面で反射し戻ってくるまでの時間を測っているためで、電位差を与えるためには2つのBecause it measures the time it takes to reflect off the surface and return,
絶縁された検出線が必要だからである。This is because an insulated detection line is required.
また尚、請求項3に記載したように、保持手段は、リレースイッチを用いるとよい。In addition, as described in claim 3, the holding means may use a relay switch.

次に、請求項4に記載したように、被検出物の表面に沿って並ぶように、前記被検出物の表面上に積層された状態で配線された2本の検出線あるいはこの検出線を備えた線状検出具と、前記検出線の両端から常時通電し、前記検出線の通電不能により前記検出線の断線の有無を検出することによって前記被検出物の亀裂の有無を検出する亀裂検出手段と、この亀裂検出手段が前記被検出物の亀裂の有無を検出したら、TDR法により前記検出線の断線位置を検出して、前記被検出物の亀裂発生場所を特定する亀裂場所特定手段とを備え、前記検出線は、長手方向に垂直な断面の形状が長方形状に形成された硬銅線からなり、前記断面の長尺な辺の一辺側の表面が前記被検出物の表面に対向する状態で配線されることが好ましい。Next, as described in claim 4, the two detection lines or the detection lines wired in a state of being stacked on the surface of the object to be detected are arranged so as to be aligned along the surface of the object to be detected. A crack detector for detecting the presence or absence of a crack in the detected object by detecting the presence or absence of disconnection of the detection line due to inability to energize the detection line. And a crack location specifying means for detecting a break position of the detection line by a TDR method and identifying a crack occurrence location of the detection object when the crack detection means detects the presence or absence of a crack in the detection object. The detection line is made of a hard copper wire whose cross section perpendicular to the longitudinal direction is formed in a rectangular shape, and the surface on one side of the long side of the cross section faces the surface of the object to be detected. It is preferable that wiring is performed in such a state.
例えば、断面円状の検出線は、被検出物の表面から被検出物に対向する面までの垂直な距離が大きくなるが、本発明のように構成すると、検出線は断面積に対して垂直距離を小さくすることができ、被検出物の亀裂に精度よく呼応して断線する。そのため、断面長方形状の検出線を用いると、被検出物の亀裂を精度よく検出することができる。For example, a detection line having a circular cross section has a large vertical distance from the surface of the object to be detected to the surface facing the object to be detected, but when configured as in the present invention, the detection line is perpendicular to the cross sectional area. The distance can be reduced, and the wire breaks in response to a crack in the detected object with high accuracy. Therefore, if a detection line having a rectangular cross section is used, a crack in the detection object can be detected with high accuracy.

請求項5に記載したように、検出線は、直径0.30mm以下の被覆銅線で形成されていることが好ましい。この被覆銅線を用いれば、橋梁の亀裂に反応よく断線するので、被検出物の亀裂の発生を感度よく検出することができる。As described in claim 5, the detection line is preferably formed of a coated copper wire having a diameter of 0.30 mm or less. If this coated copper wire is used, it breaks in response to a crack in the bridge, so that the occurrence of a crack in the detected object can be detected with high sensitivity.

請求項6に記載したように、2本の検出線あるいはこの検出線を備えた前記線状検出具は、被検出物上に一筆書状に亀裂想定箇所を通って配線することが好ましい。被検出物の亀裂想定箇所(溶接部の始終端部や形状変化部など)のそれぞれに検出線等を配線して亀裂を検出することも考えられるが、被検出物の表面上に一筆書状に亀裂想定箇所を通って配線したほうがコストがかからず、しかもTDR法により亀裂発生箇所の特定が可能なので、被検出物の亀裂の発生場所も正確に検出できる。 As described in claim 6, it is preferable that the two detection lines or the linear detection tool provided with the detection lines are wired on the detection object in a one-stroke manner through the assumed crack. Although it is conceivable to detect a crack by wiring a detection line etc. to each of the cracks that are supposed to be detected (such as the start and end of the welded part or the shape change part), It is less costly to wire through the assumed crack location and the location of the crack occurrence can be specified by the TDR method, so that the location of the crack occurrence in the detected object can also be detected accurately.

請求項7に記載したように、前記2本の検出線あるいはこの検出線を備えた前記線状検出具は、硬化時に縦弾性係数が300MPa以上となる接着剤を用いて被検出物に積層するのが好ましい。この接着剤を用いると、被検出物に亀裂が生ずると、これに呼応して亀裂が生じるので、縦弾性係数が300MPa以下の接着剤を用いた場合に比べ、被検出物の亀裂を非常に感度よく検出することができる。尚、300MPa以上の接着剤としては、エポキシ系接着剤、シアノアクリレート系接着剤などがある As described in claim 7, the two detection lines or the linear detection tool including the detection lines are laminated on an object to be detected using an adhesive having a longitudinal elastic modulus of 300 MPa or more when cured. Is preferred. When this adhesive is used, if a crack occurs in the detected object, a crack is generated correspondingly. Therefore, compared with the case where an adhesive having a longitudinal elastic modulus of 300 MPa or less is used, the crack of the detected object is greatly reduced. It can be detected with high sensitivity. Examples of the adhesive of 300 MPa or more include an epoxy adhesive and a cyanoacrylate adhesive .

以下、本発明が適用された実施の形態について図面を用いて説明する。
[第1実施形態]
図1は第1実施形態の亀裂検出システムが適用された橋脚の全体図で、(a)〜(e)で亀裂の測定手順を時系列的に説明したものである。図2は、使用する接着剤を特定するための実験結果を説明するためのグラフで、縦弾性係数と亀裂通過距離とをパラメータとするグラフである。
Embodiments to which the present invention is applied will be described below with reference to the drawings.
[First embodiment]
FIG. 1 is an overall view of a pier to which the crack detection system according to the first embodiment is applied. In FIG. 1, (a) to (e) illustrate a crack measurement procedure in time series. FIG. 2 is a graph for explaining the experimental results for specifying the adhesive to be used, and is a graph with longitudinal elastic modulus and crack passage distance as parameters.

第1実施形態の亀裂検出システム1は、図1に示すように、被検出物である橋梁5の亀裂を検出するためのシステムであって、橋梁5の表面に沿って並べられた2本の検出線10と、亀裂場所特定装置20とを備えている。   As shown in FIG. 1, the crack detection system 1 of the first embodiment is a system for detecting a crack in a bridge 5 that is an object to be detected, and includes two lines arranged along the surface of the bridge 5. A detection line 10 and a crack location identification device 20 are provided.

検出線10は、硬銅線(JIS C 3002の電気用銅線及びアルミニウム線の試験方法で規定された硬銅線)を被覆した直径0.30mmの被覆電線である。そして、図1(a)に示すように、並行に並べられた2本の検出線10を、橋梁5の亀裂想定箇所を通るように橋梁5の表面上に一筆書状に配線し、硬化すると300MPa以上の硬さとなるエポキシ樹脂系の接着剤で橋梁5の表面上に接着する。   The detection wire 10 is a covered electric wire having a diameter of 0.30 mm covered with a hard copper wire (a hard copper wire defined by the electrical copper wire and aluminum wire test method of JIS C 3002). Then, as shown in FIG. 1 (a), two detection lines 10 arranged in parallel are wired in a single stroke on the surface of the bridge 5 so as to pass through the assumed crack portion of the bridge 5, and when cured, 300 MPa. It adhere | attaches on the surface of the bridge 5 with the epoxy resin-type adhesive agent used as the above hardness.

亀裂場所特定装置20は、TDR(Time Domain Refectometory)方式の検出器である。ここでTDR方式とは、電子回路で間欠的に発信したマイクロパルスを検出線10に伝播させ、破断点等の測定対象物の表面で反射し再び検出線10を伝わるマイクロパルスを受信し、マイクロパルスの測定対象物までの往復時間を計測することで発信点から破断点までの距離を計測するものである。本実施形態ではMEGGER社製のCFL535F TDR2000/2を用いている。   The crack location identification device 20 is a TDR (Time Domain Reflectometry) type detector. Here, the TDR method propagates micropulses intermittently transmitted by an electronic circuit to the detection line 10, receives the micropulses reflected on the surface of the measurement object such as the breaking point and transmitted again through the detection line 10, The distance from the transmission point to the breaking point is measured by measuring the round-trip time to the measurement object of the pulse. In the present embodiment, CFL535F TDR2000 / 2 manufactured by MEGGER is used.

本実施形態の亀裂検出システム1を用いて橋梁5の亀裂を検出する場合、以下のような手順で行う。
図1(b)に示すように、列車が橋梁5を何度も通過すると、溶接部分などの構造上脆い亀裂想定箇所で(図中×印を売った部分)亀裂が発生することがある。この亀裂想定箇所で亀裂が発生すると、検出線10が亀裂に伴って断線する
橋梁5に亀裂が発生していないか検査する場合、図1(c)に示すように、亀裂場所特定装置20を検出線10に接続し、検出線10にマイクロパルスを間欠的に発信して亀裂の発生の有無を検出する。
When detecting a crack in the bridge 5 using the crack detection system 1 of the present embodiment, the following procedure is used.
As shown in FIG. 1B, when the train passes through the bridge 5 many times, a crack may occur at a portion where the crack is assumed to be structurally brittle, such as a welded portion (the portion where the symbol x is sold). When a crack occurs at the assumed crack location, the detection line 10 is disconnected along with the crack. When inspecting whether a crack has occurred in the bridge 5, as shown in FIG. Connected to the detection line 10, micro pulses are intermittently transmitted to the detection line 10 to detect the presence or absence of cracks.

もし橋梁5に複数の亀裂が発生していると、亀裂場所特定装置20から見て、検出線10の配線方向に沿った一番近い亀裂発生箇所で、検出線10の断線が発生しているので、そこでマイクロパルスが反射して、その亀裂発生箇所が亀裂場所特定装置20により特定される。   If a plurality of cracks are generated in the bridge 5, the detection line 10 is disconnected at the closest crack generation position along the wiring direction of the detection line 10 as viewed from the crack location identification device 20. Therefore, the micro pulse is reflected there, and the crack occurrence location is specified by the crack location specifying device 20.

亀裂が発生している場所が特定できたら、作業員は、図1(d)に示すように、断線した検出線10をジャンパー線10aで接続する。すると、亀裂場所特定装置から見て一番近い亀裂発生箇所よりも、さらに遠い亀裂発生箇所も検出される。   When the location where the crack is generated can be identified, the worker connects the disconnected detection line 10 with the jumper line 10a as shown in FIG. Then, a crack occurrence location farther than the closest crack occurrence location as seen from the crack location identification device is also detected.

そして最後に、図1(e)に示すように、遠い亀裂検出発生箇所にもジャンパー線10bを設置し、もう一度亀裂が発生していないか検出したら、検出を終了する。
尚、亀裂を検出する場合、図1(c)(d)(e)に示すように、載荷用列車・車両等を橋梁5に載せておくと、橋梁5に荷重がかかって亀裂が開口し、一度断線した検出線10が再び接触することがないので、検出線10の断線箇所、すなわち橋梁5の亀裂発生箇所を適格に把握することができる
以上説明した亀裂検出システム1を用いると、次のような効果がある。
Finally, as shown in FIG. 1 (e), the jumper wire 10b is also installed at a distant crack detection occurrence location, and once another crack is detected, the detection is terminated.
When detecting a crack, as shown in FIGS. 1C, 1D, and 1E, if a loading train / vehicle or the like is placed on the bridge 5, a load is applied to the bridge 5 and the crack opens. Since the detection line 10 that has been disconnected once does not come into contact again, the disconnection point of the detection line 10, that is, the crack generation point of the bridge 5 can be properly grasped. There is an effect like this.

この亀裂検出システムでは、橋梁5の表面に沿って並ぶように配線された2本の検出線10を橋梁5の表面上に積層しておき、亀裂場所特定装置20により、TDR法を用いて検出線10の断線位置を特定することにより橋梁5の亀裂の発生位置を特定している。そのため、本実施形態の亀裂検出システム1では、TDR法を用いることにより橋梁5の亀裂の発生場所を適格に把握することができる。しかも本実施形態の亀裂検出システム1は、検出線10を橋梁5の表面上に積層するだけの簡単な構造なので、低コストで導入できる。   In this crack detection system, two detection lines 10 wired so as to be arranged along the surface of the bridge 5 are stacked on the surface of the bridge 5 and detected by the crack location identification device 20 using the TDR method. The occurrence position of the crack in the bridge 5 is specified by specifying the disconnection position of the line 10. Therefore, in the crack detection system 1 of the present embodiment, it is possible to properly grasp the crack occurrence location of the bridge 5 by using the TDR method. Moreover, since the crack detection system 1 of the present embodiment has a simple structure in which the detection line 10 is simply stacked on the surface of the bridge 5, it can be introduced at a low cost.

検出線10として直径0.30mm以下の被覆銅線を用いれば、橋梁5の亀裂に呼応して断線するので、橋梁5の亀裂の発生を感度よく検出することができる。
橋梁5の亀裂の発生を検出するには、橋梁5の亀裂想定箇所(溶接部の始終端部や形状変化部など)のそれぞれに検出線10を配線して亀裂を検出することも考えられるが、橋梁5上に一筆書状に亀裂想定箇所を通って配線したほうがコストがかからず、しかもTDR法により亀裂発生箇所の特定が可能なので、橋梁5の亀裂の発生場所も正確に検出できる。
If a coated copper wire having a diameter of 0.30 mm or less is used as the detection line 10, it breaks in response to a crack in the bridge 5, so that the occurrence of a crack in the bridge 5 can be detected with high sensitivity.
In order to detect the occurrence of cracks in the bridge 5, it is conceivable to detect the cracks by wiring the detection lines 10 to each of the assumed cracks of the bridge 5 (such as the start and end portions of the welded portion and the shape change portion). In addition, it is less costly to wire the bridge 5 through the assumed crack location in a single stroke, and the location of the crack occurrence in the bridge 5 can be accurately detected because the crack occurrence location can be specified by the TDR method.

本実施形態では、検出線10は、硬化時に縦弾性係数が300MPa以上となる接着剤を用いて橋梁5に積層している。この接着剤は橋梁5に亀裂が発生すると、亀裂に呼応して亀裂が生じるので、縦弾性係数が300MPa以下の接着剤を用いた場合に比べ、橋梁5の亀裂を非常に感度よく検出することができる。   In the present embodiment, the detection line 10 is laminated on the bridge 5 using an adhesive having a longitudinal elastic modulus of 300 MPa or more when cured. When this adhesive is cracked in the bridge 5, cracks are generated in response to the crack. Therefore, the crack in the bridge 5 should be detected very sensitively compared to the case where an adhesive having a longitudinal elastic modulus of 300 MPa or less is used. Can do.

ところで、上記実施形態では、縦弾性係数が300MPaの接着剤を用いたが、これは以下のような理由による。
図2は、図2中に丸で囲って記載したモデル図にあるように、直径0.08mmの検出線を接着剤である樹脂中に、被検出対象物(本実施形態では橋梁)から所定(0.08mmと0.58mm)高さに埋めて、亀裂通過距離(亀裂が検出線10を横切って通過した距離)と縦弾性係数との関係を調べたものである。この図2の実験によると、300MPa付近で、グラフの傾きが急となっているので、本実施形態では硬化時に縦弾性係数が300MPa以上の接着剤を用いていた。
By the way, in the said embodiment, although the longitudinal elastic modulus used the adhesive agent of 300 Mpa, this is based on the following reasons.
As shown in the model diagram circled in FIG. 2, FIG. 2 shows a detection line having a diameter of 0.08 mm in a resin as an adhesive from a target to be detected (a bridge in the present embodiment). (0.08 mm and 0.58 mm) It was buried in the height, and the relationship between the crack passage distance (the distance that the crack passed across the detection line 10) and the longitudinal elastic modulus was examined. According to the experiment of FIG. 2, since the slope of the graph is steep at around 300 MPa, in this embodiment, an adhesive having a longitudinal elastic modulus of 300 MPa or more was used during curing.

尚、金属構造物に疲労亀裂が発生した場合、初期は荷重が繰り返される度にわずかずつ亀裂が進展し、ある長さに至った時突然急激に破壊が生じる。このある長さを「限界亀裂長」と呼ぶ。よって、構造物を維持管理する立場からすると、限界亀裂長まで亀裂が進展する前に亀裂を発見する必要がある。今回の実施形態にこのことを当てはめると、亀裂の開始点が想定される位置から、検出線設置位置を過ぎて亀裂通過距離までの総長さを限界亀裂長以下にすれば、安全に亀裂を発見できることになる。図2のパラメータは(1)亀裂通過距離(縦軸)(2)縦弾性係数(横軸)(3)樹脂厚であるため、(1)が限界亀裂長との関係から最初に設定され、(2)、(3)の組み合わせは任意に変更できる。なお、通常の鋼材や使用条件下で限界亀裂長は20mm以上あると考えられている。一方縦弾性係数が300MPaを下回ると亀裂通過距離が5.0mm以上と急激に長くなるため、安全をみて、縦弾性係数が300MPaを上回る材料を使うのがよいと考えた。   When a fatigue crack occurs in a metal structure, the crack progresses little by little each time the load is repeated, and suddenly breaks down when it reaches a certain length. This certain length is called “limit crack length”. Therefore, from the standpoint of maintaining the structure, it is necessary to find a crack before the crack progresses to the limit crack length. When this is applied to the present embodiment, if the total length from the position where the crack start point is assumed to the crack passing distance past the detection line installation position is less than the limit crack length, the crack can be detected safely. It will be possible. The parameters in FIG. 2 are (1) crack passage distance (vertical axis), (2) longitudinal elastic modulus (horizontal axis), and (3) resin thickness, so (1) is initially set in relation to the limit crack length, The combination of (2) and (3) can be arbitrarily changed. In addition, it is thought that the limit crack length is 20 mm or more under normal steel materials and use conditions. On the other hand, when the longitudinal elastic modulus is less than 300 MPa, the crack passage distance is abruptly increased to 5.0 mm or more. For safety reasons, it was considered that a material having a longitudinal elastic modulus exceeding 300 MPa should be used.

[第2実施形態]
次に、本発明の第2実施形態について説明する。尚、この実施形態については、第1実施形態と異なる点のみ説明する。
[Second Embodiment]
Next, a second embodiment of the present invention will be described. In addition, about this embodiment, only a different point from 1st Embodiment is demonstrated.

ここで、図3は、第2実施形態の亀裂検出システムが適用された橋脚の全体図で、(a)〜(f)で亀裂の測定方法を時系列的に説明したものである。
この第2実施形態では、図3(a)に示すように、亀裂想定箇所を通して一筆書状に2本の検出線10を並行に敷設している点までは第1実施形態とは同様だが、亀裂場所特定装置20を用いる前に、亀裂検出装置30を用いる点が異なる。
Here, FIG. 3 is an overall view of the pier to which the crack detection system of the second embodiment is applied, and illustrates a crack measurement method in time series in (a) to (f).
In the second embodiment, as shown in FIG. 3 (a), the two detection lines 10 are laid in parallel in one stroke through the assumed crack, but the crack is the same as in the first embodiment. Before using the place identification apparatus 20, the point which uses the crack detection apparatus 30 differs.

この亀裂検出装置30は、2本ある検出線10のうち、いずれか一方の検出線10の一端側から他端側に向かって常時通電し、検出線10にかけた電流が、検出線10が断線することによって遮断されると、リレースイッチが異常を示す動作をし、その動作後の状態を保持するよう構成されている。   In this crack detection device 30, one of the two detection lines 10 is always energized from one end side to the other end side, and the current applied to the detection line 10 is disconnected from the detection line 10. When the relay switch is cut off, the relay switch performs an operation indicating an abnormality and maintains the state after the operation.

この亀裂検出装置30は、図3(b)に示すように、1箇所でも橋脚5に亀裂が発生すると、検出線10の通電が切れて、図3(c)に示すように、リレースイッチが保持される。従って、この亀裂検出装置30は、検出線10が通電不能になったかいなかにより、橋梁5の亀裂の発生を検出しているので、橋梁5の亀裂を迅速に検出することができる。   As shown in FIG. 3 (b), when the crack is generated in the pier 5 as shown in FIG. 3 (b), the detection wire 10 is turned off and the relay switch is turned on as shown in FIG. 3 (c). Retained. Therefore, since this crack detection device 30 detects the occurrence of a crack in the bridge 5 depending on whether or not the detection line 10 becomes unenergized, the crack in the bridge 5 can be detected quickly.

以下は、第1実施形態と同様に、検出線10に亀裂場所特定装置20を取り付け、図3(d)に示すように、2箇所の亀裂のうち一箇所を特定したら、図3(e)に示すように、検出線10が断線した部分にジャンパー線10aを接続して、もう一箇所を特定し、図3(f)に示すように、ジャンパー線10bを接続して、亀裂が検出されなくなったことを確認し、亀裂の検出作業を終了する。   In the following, as in the first embodiment, the crack location identification device 20 is attached to the detection line 10 and, as shown in FIG. As shown in FIG. 3, the jumper wire 10a is connected to the portion where the detection line 10 is disconnected, and another location is specified. As shown in FIG. 3 (f), the jumper wire 10b is connected, and a crack is detected. After confirming that it has disappeared, the crack detection work is finished.

尚、亀裂場所特定装置20でも亀裂の有無は検出できるが、TDR法は、そのための装置がリレー方式の亀裂検出装置30に比べ高価であること、現在用意に入手できる機器であるTDR2000/2等は、仕様上1秒間に3回の測定しかできず、列車等が通過した際に生じる一瞬の断線を見逃す恐れがある(機器を改良すればこの欠点は除くことができる)ため、リレー回路を用いる方法も提案したものである。
[第3実施形態]
次に、本発明の第3実施形態について説明する。尚、この実施形態については、第1実施形態及び第2実施形態と異なる点のみ説明する。
Although the crack location identifying device 20 can detect the presence or absence of a crack, the TDR method is more expensive than the relay-type crack detection device 30 and the TDR2000 / 2 is a device that is currently available. Can only be measured three times per second due to the specifications, and there is a risk of missing a momentary disconnection that occurs when a train or the like passes (this fault can be eliminated by improving the equipment), so the relay circuit The method used is also proposed.
[Third embodiment]
Next, a third embodiment of the present invention will be described. In addition, about this embodiment, only a different point from 1st Embodiment and 2nd Embodiment is demonstrated.

ここで図4は、線状検出具の断面図、図5はその平面図である。
本実施形態では、検出線10そのものを橋梁5に積層するのではなく、線状検出具40を橋梁5に積層する点が、第1及び第2実施形態とは異なる。
4 is a cross-sectional view of the linear detector, and FIG. 5 is a plan view thereof.
This embodiment is different from the first and second embodiments in that the detection line 10 itself is not laminated on the bridge 5 but the linear detector 40 is laminated on the bridge 5.

この線状検出具40は、図4に示すように、橋梁5に発生する亀裂を検出するため、この橋梁5の表面に沿って配線される並行な検出線11と、橋梁5に対向する橋梁5側及びその反対側に配置された一対のフィルム41とを備え、一対のフィルム41の間に、硬化時に縦弾性係数が300MPa以上の材料からなる接着剤42を注入して、一対のフィルム41と検出線11とを一体に接着したものである。尚、フィルム41も300MPa以上の縦弾性係数を有する。この線状検出具40は、第1実施形態と同様、硬化したときに縦弾性係数が300MPa以上となる接着剤を用いて橋梁5に接着して、亀裂検出を行う。   As shown in FIG. 4, the linear detector 40 detects parallel cracks generated in the bridge 5, and the parallel detection lines 11 wired along the surface of the bridge 5 and the bridge facing the bridge 5. And a pair of films 41 disposed on the opposite side, and an adhesive 42 made of a material having a longitudinal elastic modulus of 300 MPa or more is injected between the pair of films 41 at the time of curing. And the detection line 11 are bonded together. The film 41 also has a longitudinal elastic modulus of 300 MPa or more. Similar to the first embodiment, the linear detection tool 40 is bonded to the bridge 5 using an adhesive having a longitudinal elastic modulus of 300 MPa or more when cured, and performs crack detection.

この線状検出具40は、検出線11がフィルム41によって保護されているので、雨にぬれて錆びることなどを防止することができ、検出線11そのものを橋梁5に積層する場合くらべ、耐候性が向上する。また、この線状検出具40は、検出線11をフィルム41で挟む構造になっており、図5に示すように、折り返してもいずれか一方のフィルム41が検出線11を保護するので、自由に折り曲げて配線し貼り付け方向を自由に変えることが出来、一筆書きで配線するのに適している。さらに本実施形態の線状検出具40を用いると、2本の検知線を独立に積層するのに比べ、1回の積層で検知線を並列に積層することができる。また、2本の検出線を単独で扱うより、積層作業中に誤って切ることが少なくなり扱いが簡単である。   Since the detection line 11 is protected by the film 41, the linear detection tool 40 can prevent rusting by being wet with rain, and is more resistant to weathering than when the detection line 11 itself is laminated on the bridge 5. Will improve. In addition, the linear detection tool 40 has a structure in which the detection line 11 is sandwiched between films 41, and as shown in FIG. It is suitable for wiring with a single stroke, because it can be bent and wired to change the direction of attachment. Furthermore, when the linear detection tool 40 of the present embodiment is used, it is possible to stack the detection lines in parallel by one stacking as compared to stacking the two detection lines independently. In addition, it is easier to handle than two detection lines, because it is less likely to accidentally cut during the stacking operation.

ところで、本実施形態の線状検出具40は、検出線11としては、長手方向に垂直な断面の形状が長方形状に形成された硬銅線が用いられており、この検出線11は、線状検出具40が橋梁5に積層された際、断面の長尺な辺の一辺側の表面が橋梁5の表面に対向する状態で配線される。断面円状の検出線11は、被検出物の表面から被検出物に対向する面までの垂直な距離が大きくなるが、この検出線11は断面積に対して垂直距離を小さくすることが出来、被検出物の亀裂に精度よく呼応して断線する。そのため、断面長方形状の検出線11を用いると、橋梁5の亀裂を精度よく検出することができる。   By the way, in the linear detection tool 40 of the present embodiment, a hard copper wire having a rectangular cross section perpendicular to the longitudinal direction is used as the detection line 11. When the shape detector 40 is laminated on the bridge 5, the surface on one side of the long side of the cross section is wired in a state of facing the surface of the bridge 5. The detection line 11 having a circular cross section has a large vertical distance from the surface of the detection object to the surface facing the detection object, but the detection line 11 can reduce the vertical distance with respect to the cross-sectional area. The wire breaks in response to a crack in the object to be detected with high accuracy. Therefore, if the detection line 11 having a rectangular cross section is used, a crack in the bridge 5 can be detected with high accuracy.

尚、本発明の実施の形態は、上記実施形態に何ら限定されるものではなく、本発明の技術的範囲に属する限り種々の形態を採り得ることはいうまでもない。
例えば、上記実施形態では、橋梁5の亀裂を検出する場合について説明したが、航空機の隔壁や、ボディ、建物の壁面など、あらゆる種類の構造物の亀裂を検出するためのシステムとして用いることができることはもちろんである。
The embodiment of the present invention is not limited to the above-described embodiment, and it goes without saying that various forms can be adopted as long as it belongs to the technical scope of the present invention.
For example, in the above-described embodiment, the case of detecting a crack in the bridge 5 has been described. However, the present invention can be used as a system for detecting a crack in any type of structure such as an aircraft partition wall, body, or building wall. Of course.

また、上記実施形態では、接着剤として、エポキシ系の接着剤を用いたが、300MPa以上の接着剤としては、他にシアノアクリレート系接着剤などがある。
また、上記実施形態では、検出線として、硬銅線を被覆した被覆電線を用いたが、エナメル線(軟銅線を被覆した被覆銅線)、裸の硬銅線及び軟銅線等でもよい。また、アルミニウム線でもよく、本実施形態の検出線として利用できるものであれば、材質はどのようなものでもよい。
Moreover, in the said embodiment, although the epoxy-type adhesive agent was used as an adhesive agent, there exist a cyanoacrylate type adhesive agent etc. as an adhesive agent of 300 Mpa or more.
Moreover, in the said embodiment, although the covered electric wire which coat | covered the hard copper wire was used as a detection wire, an enamel wire (covered copper wire which coat | covered the soft copper wire), a bare hard copper wire, an annealed copper wire, etc. may be sufficient. Further, an aluminum wire may be used, and any material may be used as long as it can be used as the detection wire of the present embodiment.

また、形状についても、リボン線でもよいし、角線でもよいし、本実施形態の機能を果すのであればどのような形状のものでもよい。   Further, the shape may be a ribbon line, a square line, or any shape as long as the function of the present embodiment is achieved.

第1実施形態の亀裂検出システムが適用された橋脚の全体図で、(a)〜(e)で亀裂の測定手順を時系列的に説明したものである。BRIEF DESCRIPTION OF THE DRAWINGS It is the whole figure of the pier to which the crack detection system of 1st Embodiment was applied, (a)-(e) demonstrates the measurement procedure of a crack time-sequentially. 使用する接着剤を特定するための実験結果を説明するためのグラフで、縦弾性係数と亀裂通過距離とをパラメータとするグラフである。It is a graph for demonstrating the experimental result for specifying the adhesive agent to be used, and is a graph which uses a longitudinal elastic modulus and a crack passage distance as parameters. 第2実施形態の亀裂検出システムが適用された橋脚の全体図で、(a)〜(f)で亀裂の測定手順を時系列的に説明したものである。It is a general view of the pier to which the crack detection system of a 2nd embodiment was applied, and (a)-(f) explains the measurement procedure of a crack time-sequentially. 線状検出具の断面図である。It is sectional drawing of a linear detection tool. 線状検出具を折り曲げた様子を示す平面図である。It is a top view which shows a mode that the linear detection tool was bent. 従来の技術の説明図である。It is explanatory drawing of a prior art. 従来の技術の説明図である。It is explanatory drawing of a prior art.

符号の説明Explanation of symbols

1・・・亀裂検出システム、5・・・橋梁、10、11・・・検出線、20・・・亀裂場所特定装置、30・・・亀裂検出装置、40・・・線状検出具、41・・・フィルム、42・・・接着剤 DESCRIPTION OF SYMBOLS 1 ... Crack detection system, 5 ... Bridge, 10, 11 ... Detection line, 20 ... Crack location identification device, 30 ... Crack detection device, 40 ... Linear detection tool, 41 ... Film, 42 ... Adhesive

Claims (7)

被検出物の表面に沿って並ぶように、前記被検出物の表面上に積層された状態で配線された2本の検出線あるいはこの検出線を備えた線状検出具と、
前記検出線の両端から常時通電し、前記検出線の通電不能により前記検出線の断線の有無を検出することによって前記被検出物の金属疲労による亀裂の有無を検出する亀裂検出手段と
を備え、
前記亀裂検出手段は、
前記検出線にかけた電流が、前記検出線が断線することによって遮断されると、異常を示す動作をして、この動作後の状態を保持する保持手段を備え、
前記被検出物に亀裂が発生し、前記検出線の通電が切れて前記保持手段が保持されているか否かにより、前記被検出物の亀裂の有無を検出することを特徴とする亀裂検出システム。
Two detection lines wired in a state of being stacked on the surface of the object to be detected so as to be aligned along the surface of the object to be detected, or a linear detector provided with this detection line,
Crack detection means for detecting the presence or absence of cracks due to metal fatigue of the detected object by constantly energizing from both ends of the detection line and detecting the presence or absence of disconnection of the detection line due to the inability to energize the detection line;
With
The crack detection means includes
When the current applied to the detection line is interrupted by the disconnection of the detection line, an operation indicating an abnormality is performed, and holding means for holding the state after the operation is provided.
A crack detection system for detecting the presence or absence of a crack in the detected object based on whether or not the detected object is cracked and the detection line is de-energized and the holding means is held .
請求項1に記載の亀裂検出システムにおいて、
前記亀裂検出手段が前記被検出物の亀裂の有無を検出したら、TDR法により前記検出線の断線位置を検出して、前記被検出物の亀裂発生場所を特定する亀裂場所特定手段
を備えることを特徴とする亀裂検出システム。
The crack detection system according to claim 1,
If the crack detection means detects the presence or absence of a crack in the detected object, the crack location specifying means for detecting the breakage position of the detection line by the TDR method and specifying the crack occurrence position of the detected object
Crack detection system comprising: a.
請求項1,2のいずれかに記載の亀裂検出システムにおいて、In the crack detection system according to any one of claims 1 and 2,
前記保持手段は、リレースイッチであることを特徴とする亀裂検出システム。  The crack detection system, wherein the holding means is a relay switch.
被検出物の表面に沿って並ぶように、前記被検出物の表面上に積層された状態で配線された2本の検出線あるいはこの検出線を備えた線状検出具と、
前記検出線の両端から常時通電し、前記検出線の通電不能により前記検出線の断線の有無を検出することによって前記被検出物の亀裂の有無を検出する亀裂検出手段と、
この亀裂検出手段が前記被検出物の亀裂の有無を検出したら、TDR法により前記検出線の断線位置を検出して、前記被検出物の亀裂発生場所を特定する亀裂場所特定手段と
を備え、
前記検出線は、長手方向に垂直な断面の形状が長方形状に形成された硬銅線からなり、前記断面の長尺な辺の一辺側の表面が前記被検出物の表面に対向する状態で配線されることを特徴とする亀裂検出システム。
Two detection lines wired in a state of being stacked on the surface of the detection object so as to be aligned along the surface of the detection object, or a linear detector provided with the detection lines;
A crack detection means for detecting the presence or absence of cracks in the detected object by constantly energizing from both ends of the detection line and detecting the presence or absence of disconnection of the detection line due to the inability to energize the detection line;
When the crack detection means detects the presence or absence of a crack in the detected object, a crack location specifying means for detecting the break position of the detection line by the TDR method and specifying the crack occurrence location of the detected object;
With
The detection line is made of a hard copper wire having a cross section perpendicular to the longitudinal direction formed in a rectangular shape, and the surface on one side of the long side of the cross section faces the surface of the object to be detected. A crack detection system characterized by being wired.
請求項1〜4のいずれかに記載の亀裂検出システムにおいて、
前記検出線は、直径0.30mm以下の被覆銅線で形成されていることを特徴とする亀裂検出システム。
In the crack detection system in any one of Claims 1-4 ,
The crack detection system, wherein the detection line is formed of a coated copper wire having a diameter of 0.30 mm or less.
請求項1〜5のいずれかに記載の亀裂検出システムにおいて、
前記2本の検出線あるいはこの検出線を備えた前記線状検出具を、前記被検出物の亀裂想定箇所を通って前記被検出物上に一筆書状に配線したことを特徴とする亀裂検出システム。
In the crack detection system according to any one of claims 1 to 5 ,
The crack detection system characterized in that the two detection lines or the linear detection tool provided with the detection lines are wired on the detected object in a single stroke through the assumed crack portion of the detected object. .
請求項1〜6のいずれかに記載の亀裂検出システムにおいて、
前記2本の検出線あるいはこの検出線を備えた前記線状検出具を、硬化時に縦弾性係数が300MPa以上となる接着剤を用いて被検出物に積層したことを特徴とする亀裂検出システム。
In the crack detection system in any one of Claims 1-6 ,
A crack detection system, wherein the two detection lines or the linear detection tool having the detection lines are laminated on a detection object using an adhesive having a longitudinal elastic modulus of 300 MPa or more when cured.
JP2004323538A 2003-11-07 2004-11-08 Crack detection system, adhesive and linear detector available in this system Active JP3940740B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004323538A JP3940740B2 (en) 2003-11-07 2004-11-08 Crack detection system, adhesive and linear detector available in this system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003378723 2003-11-07
JP2004323538A JP3940740B2 (en) 2003-11-07 2004-11-08 Crack detection system, adhesive and linear detector available in this system

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007038342A Division JP3974162B2 (en) 2003-11-07 2007-02-19 Linear detector and adhesive

Publications (2)

Publication Number Publication Date
JP2005156552A JP2005156552A (en) 2005-06-16
JP3940740B2 true JP3940740B2 (en) 2007-07-04

Family

ID=34741523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004323538A Active JP3940740B2 (en) 2003-11-07 2004-11-08 Crack detection system, adhesive and linear detector available in this system

Country Status (1)

Country Link
JP (1) JP3940740B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108931348A (en) * 2018-09-29 2018-12-04 鲁东大学 A kind of efficient bridge structure fatigue experimental device

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008092625A (en) * 2006-09-29 2008-04-17 Toto Ltd Electrical apparatus and sanitary cleaning device
JP4712777B2 (en) * 2007-08-29 2011-06-29 日本車輌製造株式会社 Crack detection system
JP4801651B2 (en) * 2007-10-25 2011-10-26 日本車輌製造株式会社 Linear detector
JP4620101B2 (en) * 2007-10-25 2011-01-26 日本車輌製造株式会社 Fatigue crack detection device and fatigue crack detection system
JP2009102557A (en) * 2007-10-25 2009-05-14 Nippon Sharyo Seizo Kaisha Ltd Adhering method of film member
JP4700717B2 (en) * 2008-08-18 2011-06-15 日本車輌製造株式会社 Detection tool construction sheet and construction method
JP4660576B2 (en) * 2008-08-18 2011-03-30 日本車輌製造株式会社 Crack detection system for movable objects
JP2012037537A (en) * 2011-11-24 2012-02-23 Mitsubishi Electric Corp Pipe diagnostic device, and air conditioner
CN112198172B (en) * 2020-09-30 2022-06-07 中铁大桥局集团有限公司 Bridge inhaul cable steel wire damage detection method and detection device
WO2022097280A1 (en) 2020-11-06 2022-05-12 株式会社岡崎製作所 Crack detection device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108931348A (en) * 2018-09-29 2018-12-04 鲁东大学 A kind of efficient bridge structure fatigue experimental device

Also Published As

Publication number Publication date
JP2005156552A (en) 2005-06-16

Similar Documents

Publication Publication Date Title
JP3940740B2 (en) Crack detection system, adhesive and linear detector available in this system
US8525979B2 (en) Monitoring device for detecting stress strain and method for using same
US20040206187A1 (en) Performance monitoring of offshore petroleum risers using optical strain sensors
WO1997048994A1 (en) Sensing optical fiber and sensor system
WO1993025866A1 (en) Sensing patches utilising incorporated waveguide sensor
US9032810B2 (en) Method and assembly for sensing permanent deformation of a structure
JP3457894B2 (en) Optical fiber laying method and strain detecting device using optical fiber
WO2011046463A1 (en) Fluid pipe and method for detecting a deformation on the fluid pipe
EP4118407A1 (en) Conductor for bare overhead power line with composite material core and real-time monitoring system for monitoring the structural integrity of the conductor during production, laying and installation
JP3974162B2 (en) Linear detector and adhesive
RU2246068C9 (en) Pipe, method and device for enhancement of reliability of pipelines
CN210063006U (en) Broken rail monitoring system
JP6267720B2 (en) Indicator pins for monitoring structural joints
JP4013149B2 (en) Structure soundness judgment device
JP2010112942A (en) Method for monitoring of steel structure
CN112986119A (en) Pipeline corrosion monitoring system and method
RU2293249C9 (en) Pipe and method of its repairing
Kuang et al. Plastic optical fibre sensor for damage detection in offshore structures
KR100317535B1 (en) optical fiber cable using concrete construction crack monitoring system
KR100317536B1 (en) optical fiber cable using wilding part crack monitoring system
Hale The application of optical fibres to structural integrity monitoring
KR20040004263A (en) Monitoring system of continuous welded rail(CWR) using TDR(Time Domain Reflectometry) or OTDR(Optical Time Domain Reflectometry)
JP4012956B2 (en) Verification method for structures embedded with optical fiber for soundness evaluation
Hussels et al. AGIFAMOR—Application of distributed acoustic and fibre optic sensors for continuous monitoring of pipes
US10662535B1 (en) Damage sensing of a bonded composite repair

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070313

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070402

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3940740

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110406

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140406

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250