JP3940498B2 - Reinforced optical fiber cord - Google Patents

Reinforced optical fiber cord Download PDF

Info

Publication number
JP3940498B2
JP3940498B2 JP14007398A JP14007398A JP3940498B2 JP 3940498 B2 JP3940498 B2 JP 3940498B2 JP 14007398 A JP14007398 A JP 14007398A JP 14007398 A JP14007398 A JP 14007398A JP 3940498 B2 JP3940498 B2 JP 3940498B2
Authority
JP
Japan
Prior art keywords
optical fiber
sheath
reinforced
core
fiber cord
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14007398A
Other languages
Japanese (ja)
Other versions
JPH11337787A (en
Inventor
徳 石井
隆義 中曽根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Exsymo Co Ltd
Original Assignee
Ube Nitto Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Nitto Kasei Co Ltd filed Critical Ube Nitto Kasei Co Ltd
Priority to JP14007398A priority Critical patent/JP3940498B2/en
Publication of JPH11337787A publication Critical patent/JPH11337787A/en
Application granted granted Critical
Publication of JP3940498B2 publication Critical patent/JP3940498B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、光ファイバを繊維強化した光ファイバコードに係り、特に着色識別性を有する単心状またはテープ状の強化光ファイバコードに関する。
【0002】
【従来の技術】
所内配線の高密度化に対応した細径強化光ファイバコードとして、光ファイバ素線の外周を繊維強化プラスチックで被覆した光ファイバコードが、特開平9−80276号公報に提案されている。
【0003】
また、本出願人は、特願平10−42237で、光ファイバ素線の外周を被覆する補強繊維が、抗張力性を有するもので、補強繊維間の間隙に、熱可塑性樹脂がマトリックスとして存在する、強化光ファイバコードないしテープ状強化光ファイバコードを提案した。
【0004】
これらの、繊維強化熱硬化性樹脂(以下「FRP」という)被覆あるいは繊維強化熱可塑性樹脂(以下「FRTP」という)被覆光ファイバコードは、従来のルース型強化光ファイバコードに見られる諸問題点を解決することができる。
【0005】
また、これらの被覆光ファイバコードは、従来の光ファイバコードと比較して、大幅な細径化が可能となっており、例えば、単心タイプコードの外径を、一般的な光ファイバ素線とほぼ同じ250μm程度にすることも可能である。
【0006】
一方、これらの細径強化光ファイバコードは、更に一括被覆してテープ状強化光コードとするなどして一度に多数本を使用する場合、1本1本を識別できるよう違った色に着色できることが望ましい。
【0007】
このような着色を施す際には、従来、光ファイバ素線の着色は、光ファイバ素線の外周に着色層として紫外線硬化性樹脂を5〜20μmの厚みでコーティングした後、紫外線を照射して硬化形成することが多く、あるいは特開平10−10381号に記載の如く、前記細径強化光ファイバコードにも前記同様の手段を用いて着色することが多かったが、この場合以下に述べる問題があった。
【0008】
【発明が解決しようとする課題】
すなわち、紫外線硬化性樹脂で着色層を形成した場合、強化光ファイバコードの接続作業等で薬品を使用する場合や、テープ状強化光ファイバコードの一括被覆層を除去する際に、着色層が剥がれてしまう場合があった。
【0009】
また、補強繊維に使用されている高弾性繊維には、アラミド繊維、ポリアリレート繊維、ポリベンツフェノールビスオキサゾール(PBO)繊維など黄褐色系の繊維固有の色を元々呈しているものが多く、薄肉の着色層では色の識別が困難になるという問題があった。
【0010】
加えて、FRPマトリックス樹脂の固有の色や着色層の偏肉による厚み斑等により、識別が更に困難になる場合があった。
【0011】
なお、紫外線硬化性樹脂着色層が厚い場合には、細径強化光ファイバコードの限られた断面積に占めるFRP断面積を減らすこととなるため、抗張力性能を低下させるという問題があり、また、紫外線を十分に照射しないと硬化が不完全となるため、製造速度を上げることが出来ず、生産性に限界があった。
【0012】
そこで、本発明者らは、容易に脱落ないし脱色することなく、明確な着色が可能で、識別性に優れる繊維強化単心光ファイバコードないしはテープ状強化光ファイバコードの提供を目的として鋭意研究し本発明を完成した。
【0013】
【課題を解決するための手段】
上記目的を達成するために、本発明は、光ファイバ素線と、この光ファイバ素線の外周を被覆する強化被覆層とを備えた強化光ファイバコードにおいて、
前記強化被覆層は、鞘芯型複合繊維の芯部からなる補強繊維と、前記鞘芯型複合繊維の着色鞘部のみを溶融して、前記補強繊維の周囲を結着した着色熱可塑性樹脂マトリックスとからなり、前記鞘芯型複合繊維は、異なる2色以上に着色された鞘部を備えた着色鞘芯型複合繊維束であって、前記強化被覆層を異なる2色以上の配色とした
請求項2の発明では、前記強化被覆層は、前記鞘芯型複合繊維の鞘部の融点が芯部の融点より20℃以上低いものであって、前記鞘部のみを溶融して前記着色熱可塑性樹脂マトリックスとした。
請求項3の発明では、前記鞘芯型複合繊維は、芯部の引張弾性率が6000kg/mm2以上になるようにした。
請求項4の発明では、前記鞘芯型複合繊維を、前記芯部が液晶性ポリマーで構成した。
請求項5の発明では、前記光ファイバ素線を単心で構成した。
請求項6の発明では、前記強化光ファイバコードは、前記光ファイバ素線を複数本並列に配置し、前記マトリックスでこれらを一体的に決着してテープ状に形成した。
【0014】
【発明の実施の形態】
以下に、本発明の好適な実施の形態について説明する。
【0015】
本発明においては、光ファイバ素線の外周の強化被覆層の補強繊維には、芯部とその外周を包囲する鞘部とからなる合成樹脂製の鞘芯型複合繊維であって、鞘部を構成する樹脂成分が着色されたものを使用する。
【0019】
一方、強化被覆層は、補強繊維は鞘芯型複合繊維の芯部のみを補強繊維とし、熱可塑性樹脂マトリックスは、着色された鞘部を熱融着して形成することもできる。その場合、鞘部の熱可塑性樹脂が芯部の樹脂の融点より低く、鞘部を溶融しても、芯部は繊維形態を保ち、強度を保持しているものを選択することが必要である。
【0020】
この点から、芯部の融点を鞘部の融点より20℃以上高い鞘芯型複合繊維が望ましい。この理由は、融点差が20℃未満では、鞘部のみを溶融し、芯部の繊維性能を保持することが強化被覆層の形成において難しいからである。
【0021】
また、前記強化被覆層の前記鞘芯型複合繊維は、それぞれ異なる2色以上に着色された鞘部からなる着色鞘芯型複合繊維束であって、前記強化被覆層が2色以上に配色された強化光ファイバコードとすることができる。
【0022】
この場合、通常補強繊維は、所定本数のフィラメントを集束した繊維束を、FRPあるいはFRTPとして要求される強度から決定される強化繊維の含有率に応じた複数の本数が使用されるので、これらの複数本について、2色あるいはそれ以上に色分けし、強化被覆層の円周方向に配置すれば、混色状の被覆層となって、色の組合わせで識別が可能となる。
【0023】
また、前記鞘芯型複合繊維は、芯部の引張弾性率が6000kg/mm2以上であることが望ましい。かかる引張弾性率を有する繊維としては、芳香族ポリアミド(アラミド)繊維、ポリアリレート繊維、PBO繊維、溶融液晶性樹脂製繊維等が挙げられ、これらを使用すれば、光ファイバの保護性能の高い高強度の強化光ファイバコードが得られる。
【0024】
これらの繊維のうち、特に、高強度性を満足する繊維として液晶性ポリマーからなるものが好ましい。
液晶性ポリマーとしては、剛直分子鎖を有する高分子が溶液・溶融状態で示す液晶が流動場で強く配向するもので、アラミド、ポリアリレート、ヘテロ環等が挙げられる。
【0025】
本発明の強化光ファイバコードは、単心の光ファイバ素線を環状に被覆したもののみならず、光ファイバ素線を複数本平行に並べ、これらの周囲を保護被覆してテープ状に形成することもできる。
【0026】
実施例
以下本発明について好適な実施例により説明する。
【0027】
参考例1
図1に示す本実施例の強化光ファイバコード1は、石英系光ファイバ10の外周にウレタンアクリレート被覆11を施した光ファイバ素線12の外周に、溶融液晶性ポリエステルの芯部13及びポリフェニレンサルファイド(PPS)の着色された鞘部14を有する鞘芯型複合繊維15を補強繊維16として、その周りを結着するマトリックス17としてビニルエステル系熱硬化性樹脂を使用して強化被覆層18を形成した。
【0028】
以下、その詳細について説明する。
Φ125μmの石英系光ファイバ10の外周にUV樹脂としてウレタンアクリレート被覆11を施した外径0.18mmの光ファイバ素線12をボビンクリールから供給し、その外周に鞘部14が融点270℃のポリフェニレンサルファイド(PPS)、芯部13が融点310℃の溶融液晶性ポリエステルで鞘部14と芯部13の断面積比が20/80で単糸径が22.4μm、25デニール/5フィラメントの鞘芯型複合繊維15を7本縦添えし、それにメタクリル酸エステル系単量体含有ノボラック型ビニルエステル樹脂(三井化学(株)製 エスター2000V)を含浸し、金型中で引抜成形して硬化したマトリックス17とで強化被覆層18を形成して、外径250μmの強化光ファイバコード1を得た。
【0029】
なお、図2に示すように鞘芯型複合繊維15の鞘部14は、紡糸時にPPSに微粉末状顔料Pを混合分散して、青色、白色、桃色の3色に着色されたものを使用し、上記25デニール/5フィラメントの7本の繊維を同一色として、青、白、桃色の3色の強化光ファイバコード1を得た。
【0030】
次いで、図3に示すように、これらの強化光ファイバコード1を、青B、白W、白W、桃色Pの順に4本平行に配列し、その外周を透明な紫外線硬化性樹脂18で一括被覆して、厚さ0.4mm、幅1.1mmのテープ状強化光ファイバコード2を得た。
【0031】
このテープ状強化光ファイバコードを、接続作業時を考慮して5ルクスの照度下で、青、白、桃色の識別性を確認したところ、明瞭に識別できた。
【0032】
また、着色部の堅牢性を確認するため、光ファイバ接続時のエチルアルコールによる洗浄作業での色落ちおよび、紫外線硬化性樹脂被覆の剥離作業による鞘部樹脂の剥離現象がないかを確認したが、20回のテストではその様な現象はなく、着色部は色落ちがなく、鞘部の剥離もない堅牢なものであった。
【0033】
なお、得られた単心強化光ファイバコードの抗張力は、0.65%伸張時応力が1.6kgで、良好な引張性能を有していた。
また、本実施例に用いた鞘芯型複合繊維の芯部の引張弾性率は、8300kg/mm2であった。
【0034】
実施例1
図4に示すように、石英系光ファイバ10の外周にウレタンアクリレートでUV樹脂被覆11を施した光ファイバ素線12の外周の強化被覆層3として、鞘芯型複合繊維15の芯部13を補強繊維16とし、マトリックス樹脂17は鞘部14を溶融した構成の強化光ファイバコード3を得た。
【0035】
本実施例について、詳細に説明すると、Φ125μmの石英系光ファイバ10の外周にUV樹脂被覆11を施した外径0.18mmの光ファイバ素線12をボビンクリールから供給し、その外周に鞘部14が融点270℃のポリフェニレンサルファイド(PPS)、芯部13が融点310℃の溶融液晶性ポリエステルで鞘部と芯部の断面積比が40/60で単糸径が22.4μm、25デニール/5フィラメントの鞘芯型複合繊維15を9本縦添えし、290℃に設定された内径0.25mmの金属ノズルに30m/minで挿通させて鞘部樹脂14のみを加熱融着し、参考例1と同様に、青、白、桃色の外観色を呈する直径240μmの強化光ファイバコード3を得た。
【0036】
この強化光ファイバコード3を実施例1と同様に、青B、白W、白W、桃色Pの順に4本平行に配列し、その外周を透明な紫外線硬化性樹脂18で一括被覆して、厚さ0.4mm、幅1.1mmのテープ状強化光ファイバコード4を得た。
【0037】
得られた強化光ファイバコードは、識別性が良好で、着色部の剥離現象がなく、0.65%伸張時の応力は1.6kgであった。
これらの性能を表1にまとめて示す。
【0038】
実施例2
参考例1と同じ鞘芯型複合繊維を使用し、これも参考例1と同じ180μmの光ファイバ素線の外周に、1.白の鞘芯型複合繊維3本と青の鞘芯型複合繊維4本を縦添えした組合わせ、2.白の鞘芯型複合繊維3本と桃色の鞘芯型複合繊維4本を縦添えした組合わせて、つまり、外周の4/7周が青ないし桃色、3/7が白色とし、実施例1と同じ熱硬化性樹脂で結着した外径250μmの強化光ファイバコード5を得た。
【0039】
得られたコードは、青/白色(図5)、桃/白色(図6)で構成されていることが明瞭に識別できるものであって、識別用のカラーバリエーションとして採用可能であった。
他の性能については、表1にまとめて示す。
【0040】
比較例1
鞘部に着色を行っていない以外は参考例1と同様の鞘芯型複合繊維を使用し、これも参考例1と同様の方法で外径250μmの強化光ファイバコードを得た。
【0041】
この、単心強化光ファイバコードをボビンから繰り出し、その外周に着色された紫外線硬化性の樹脂をコートして内径270μmのダイに通し紫外線照射装置に通して表面の着色樹脂を硬化した。
【0042】
着色は、白、青、桃の3色としたが、得られた強化光ファイバコードの外径は260μmで着色層厚みは約5μmであった。
【0043】
次いで、参考例1と同様の方法でテープ状強化光ファイバコードを得、その性能を同様に評価したが、識別性は不良で、着色部が容易に剥離しやすいもので、実用には問題があるものであった。
【0044】
比較例2
鞘部に着色を行っていない以外は実施例2と同様の鞘芯型複合繊維を使用し、これも実施例1と同様の方法で外径240μmの強化光ファイバコードを得た。
【0045】
続いて、比較例1と同様にして単心強化光ファイバコードの外周に着色された紫外線硬化性の樹脂をコートして内径270μmのダイに通し紫外線照射装置に通して表面の着色樹脂を硬化した。
【0046】
着色は、白、青、桃の3色としたが、得られた強化光ファイバコードの外径は260μmで着色層厚みは約10μmであった。
【0047】
次いで、参考例1と同様の方法でテープ状強化光ファイバコードを得、その性能を同様に評価したが、識別性は不良で、着色部が容易に剥離しやすいもので、実用には問題があるものであった。
【0048】
比較例3
25デニール/5フィラメント鞘芯型複合繊維の使用本数を4本とした以外は比較例1と同様の方法で、外径220μmの強化光ファイバコードを得た。
【0049】
引続いて、単心強化光ファイバコードの外周に着色された紫外線硬化性の樹脂をコートして内径270μmのダイに通し紫外線照射装置に通して表面の着色樹脂を硬化した。
【0050】
着色は、白、青、桃の3色としたが、得られた強化光ファイバコードの外径は260μmで着色層厚みは約20μmであった。
【0051】
次いで、参考例1と同様の方法でテープ状強化光ファイバコードを得、その性能を同様に評価したが、識別性は、着色層厚みが厚いので良好であり、着色部の剥離もないが、補強繊維の含有率が少ないため、0.65%伸張時の応力が1.2kgと低く、実用上、抗張力性に問題があるものであった。
【0052】
【表1】

Figure 0003940498
【0053】
【発明の効果】
以上、実施例で詳細に説明したように、本発明の強化光ファイバコードは、鞘芯型複合繊維の鞘部の着色により識別可能としているので、接続作業等での着色部の剥離や脱色がなく実用性の高い単心強化光ファイバコードあるいは、この単心強化光ファイバコードを複数本並列に配置したテープ状強化光ファイバコードを提供できる。又、使用する鞘芯型複合繊維の鞘部の着色の異なるものの組合わせによって、強化光ファイバコードの外周に複数の配色をすることが、比較的簡単にできるので、カラーバリエーションを増やすことが出来、多芯の強化光ファイバコードの識別が容易出来る。
【図面の簡単な説明】
【図1】 本発明の参考例1による強化光ファイバコードの断面図である。
【図2】 本発明の参考例1に用いた鞘芯型複合繊維の断面説明図である。
【図3】 本発明の実施例の強化光ファイバコードを用いたテープ状強化光ファイバコードの例を示す断面図である。
【図4】 本発明の実施例1による強化光ファイバコードの断面図である。
【図5】 本発明の実施例2による強化光ファイバコードの断面図である。
【図6】 本発明の実施例2による強化光ファイバコードの断面図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an optical fiber cord in which an optical fiber is fiber reinforced, and more particularly to a single-core or tape-shaped reinforced optical fiber cord having color discrimination.
[0002]
[Prior art]
An optical fiber cord in which the outer periphery of an optical fiber is covered with a fiber reinforced plastic is proposed in Japanese Patent Application Laid-Open No. 9-80276 as a small-diameter reinforced optical fiber cord corresponding to a higher density of in-house wiring.
[0003]
In addition, in Japanese Patent Application No. 10-42237, the applicant of the present invention is that the reinforcing fiber covering the outer periphery of the optical fiber has tensile strength, and a thermoplastic resin exists as a matrix in the gap between the reinforcing fibers. A reinforced optical fiber cord or a tape-shaped reinforced optical fiber cord was proposed.
[0004]
These fiber-reinforced thermosetting resin (hereinafter referred to as “FRP”)-coated or fiber-reinforced thermoplastic resin (hereinafter referred to as “FRTP”)-coated optical fiber cords are problems associated with conventional loose-type reinforced optical fiber cords. Can be solved.
[0005]
In addition, these coated optical fiber cords can be significantly reduced in diameter compared with conventional optical fiber cords. For example, the outer diameter of a single-core type cord can be reduced by using a general optical fiber strand. It is also possible to make it about 250 μm, which is almost the same as the above.
[0006]
On the other hand, these small-diameter reinforced optical fiber cords can be colored in different colors so that they can be identified one by one when they are used at once, for example, by covering them all together to form a tape-like reinforced optical cord. Is desirable.
[0007]
When applying such coloring, conventionally, the optical fiber strand is colored by coating the outer periphery of the optical fiber strand with an ultraviolet curable resin as a colored layer in a thickness of 5 to 20 μm, and then irradiating with ultraviolet rays. In many cases, it is hardened, or as described in JP-A-10-10381, the fine-diameter reinforced optical fiber cord is often colored using the same means as described above. there were.
[0008]
[Problems to be solved by the invention]
In other words, when the colored layer is formed with an ultraviolet curable resin, when the chemical is used for connecting the reinforced optical fiber cord, or when the batch covering layer of the tape-shaped reinforced optical fiber cord is removed, the colored layer is peeled off. There was a case.
[0009]
Many of the high-elasticity fibers used for the reinforcing fibers originally have the inherent color of yellowish-brown fibers such as aramid fibers, polyarylate fibers, and polybenzphenol bisoxazole (PBO) fibers. There is a problem that it is difficult to identify colors in the colored layer.
[0010]
In addition, the identification may become more difficult due to the inherent color of the FRP matrix resin and the thickness variation due to uneven thickness of the colored layer.
[0011]
In addition, when the ultraviolet curable resin colored layer is thick, the FRP cross-sectional area occupying the limited cross-sectional area of the small diameter reinforced optical fiber cord is reduced, and thus there is a problem that the tensile strength performance is lowered. If the ultraviolet rays are not sufficiently irradiated, the curing becomes incomplete, so that the production rate cannot be increased and the productivity is limited.
[0012]
Therefore, the present inventors have intensively studied for the purpose of providing a fiber-reinforced single-core optical fiber cord or a tape-shaped reinforced optical fiber cord that can be clearly colored without being easily dropped or discolored and has excellent discrimination. The present invention has been completed.
[0013]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a reinforced optical fiber cord comprising an optical fiber and a reinforced coating layer that covers an outer periphery of the optical fiber.
The reinforcing coating layer is a colored thermoplastic resin matrix in which only the reinforcing fiber composed of the core portion of the sheath-core type composite fiber and the colored sheath portion of the sheath-core type composite fiber are melted and bound around the reinforcing fiber. The sheath-core type conjugate fiber is a colored sheath-core type conjugate fiber bundle having sheath portions colored in two or more different colors, and the reinforcing coating layer has two or more different colors .
In the invention according to claim 2, the reinforcing coating layer has a melting point of the sheath part of the sheath-core type composite fiber that is 20 ° C. or more lower than the melting point of the core part, and melts only the sheath part to produce the coloring heat. A plastic resin matrix was obtained.
In the invention of claim 3, the sheath-core type composite fiber has a core having a tensile elastic modulus of 6000 kg / mm 2 or more.
In invention of Claim 4 , the said core part comprised the liquid crystalline polymer as for the said sheath-core type composite fiber.
In the invention of claim 5, the optical fiber is constituted by a single core.
According to a sixth aspect of the present invention, the reinforced optical fiber cord is formed in a tape shape by arranging a plurality of the optical fiber strands in parallel and integrally fixing them with the matrix.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a preferred embodiment of the present invention will be described.
[0015]
In the present invention, the reinforcing fiber of the reinforcing coating layer on the outer periphery of the optical fiber strand is a sheath-core type composite fiber made of a synthetic resin comprising a core portion and a sheath portion surrounding the outer periphery, and the sheath portion is A colored resin component is used.
[0019]
On the other hand, the reinforcing coating layer can be formed by reinforcing the reinforcing fiber only in the core portion of the sheath-core type composite fiber and reinforcing the thermoplastic resin matrix by heat-sealing the colored sheath portion. In that case, the thermoplastic resin of the sheath part is lower than the melting point of the resin of the core part, and even if the sheath part is melted, it is necessary to select the core part that maintains the fiber form and maintains the strength. .
[0020]
From this point, a sheath-core type composite fiber having a melting point of the core part higher than the melting point of the sheath part by 20 ° C. or more is desirable. This is because, when the difference in melting point is less than 20 ° C., it is difficult to form the reinforced coating layer by melting only the sheath and maintaining the fiber performance of the core.
[0021]
Further, the sheath-core type composite fiber of the reinforcing coating layer is a colored sheath-core type composite fiber bundle made of sheath portions colored in two or more different colors, and the reinforcing coating layer is arranged in two or more colors. Reinforced optical fiber cord.
[0022]
In this case, since a plurality of fibers corresponding to the reinforcing fiber content determined from the strength required for FRP or FRTP is used for the normal reinforcing fiber, a bundle of fibers obtained by focusing a predetermined number of filaments is used. If a plurality of colors are color-coded into two colors or more and arranged in the circumferential direction of the reinforcing coating layer, it becomes a mixed-colored coating layer and can be identified by a combination of colors.
[0023]
The sheath-core type composite fiber preferably has a tensile modulus of the core portion of 6000 kg / mm 2 or more. Examples of the fibers having such a tensile elastic modulus include aromatic polyamide (aramid) fibers, polyarylate fibers, PBO fibers, fibers made of molten liquid crystalline resin, and the like. A strengthened optical fiber cord can be obtained.
[0024]
Among these fibers, those made of a liquid crystalline polymer are particularly preferable as fibers satisfying high strength.
As the liquid crystalline polymer, a liquid crystal in which a polymer having a rigid molecular chain is in a solution / molten state is strongly aligned in a flow field, and examples thereof include aramid, polyarylate, and heterocycle.
[0025]
The reinforced optical fiber cord of the present invention is formed not only in the form of a single-core optical fiber coated in a ring shape, but also in a plurality of optical fiber strands arranged in parallel and protectively coated around these to form a tape. You can also.
[0026]
Examples Hereinafter, the present invention will be described with reference to preferred examples.
[0027]
Reference example 1
A reinforced optical fiber cord 1 of the present embodiment shown in FIG. 1 includes a fused liquid crystalline polyester core 13 and polyphenylene sulfide on an outer periphery of an optical fiber strand 12 in which an outer periphery of a silica-based optical fiber 10 is coated with a urethane acrylate coating 11. A reinforced coating layer 18 is formed by using a sheath-core type composite fiber 15 having a sheath portion 14 colored with (PPS) as a reinforcing fiber 16 and using a vinyl ester thermosetting resin as a matrix 17 for binding around the reinforcing fiber 16. did.
[0028]
The details will be described below.
An optical fiber strand 12 having an outer diameter of 0.18 mm, which is coated with urethane acrylate coating 11 as a UV resin, is supplied from a bobbin creel to the outer circumference of a quartz optical fiber 10 having a diameter of 125 .mu.m. Polyphenylene having a melting point of 270.degree. Sulfide (PPS), core 13 is liquid crystalline polyester having a melting point of 310 ° C., sheath area ratio of sheath 14 to core 13 is 20/80, single yarn diameter is 22.4 μm, sheath core of 25 denier / 5 filament 7 matrix composite fibers are vertically attached, impregnated with a methacrylate monomer-containing novolac vinyl ester resin (Ester 2000V manufactured by Mitsui Chemicals, Inc.), pultruded and cured in a mold 17 and the reinforcing coating layer 18 was formed to obtain a reinforced optical fiber cord 1 having an outer diameter of 250 μm.
[0029]
In addition, as shown in FIG. 2, the sheath part 14 of the sheath-core type composite fiber 15 is used in which fine powder pigment P is mixed and dispersed in PPS and colored in three colors of blue, white, and pink at the time of spinning. Then, the reinforced optical fiber cord 1 of three colors of blue, white and pink was obtained by using the seven fibers of 25 denier / 5 filaments as the same color.
[0030]
Next, as shown in FIG. 3, four of these reinforced optical fiber cords 1 are arranged in parallel in the order of blue B, white W, white W, and pink P, and the outer periphery thereof is collectively formed with a transparent ultraviolet curable resin 18. Coating was performed to obtain a tape-like reinforced optical fiber cord 2 having a thickness of 0.4 mm and a width of 1.1 mm.
[0031]
When this tape-like reinforced optical fiber cord was identified for blue, white, and pink under an illuminance of 5 lux in consideration of connection work, it could be clearly identified.
[0032]
In addition, in order to confirm the fastness of the colored part, it was confirmed that there was no color fading in the washing operation with ethyl alcohol when connecting the optical fiber and the peeling phenomenon of the sheath resin due to the peeling work of the UV curable resin coating. In 20 tests, such a phenomenon was not observed, and the colored part was robust without any color fading and peeling of the sheath part.
[0033]
In addition, the tensile strength of the obtained single-core reinforced optical fiber cord had a tensile strength of 0.6 kg at 0.65% elongation, and had good tensile performance.
Moreover, the tensile elastic modulus of the core part of the sheath-core type composite fiber used in this example was 8300 kg / mm 2 .
[0034]
Example 1
As shown in FIG. 4, the core portion 13 of the sheath-core type composite fiber 15 is used as the reinforcing coating layer 3 on the outer periphery of the optical fiber 12 in which the outer periphery of the silica-based optical fiber 10 is coated with the UV resin coating 11 with urethane acrylate. The reinforcing fiber 16 and the matrix resin 17 obtained the reinforced optical fiber cord 3 in which the sheath portion 14 was melted.
[0035]
The present embodiment will be described in detail. An optical fiber strand 12 having an outer diameter of 0.18 mm in which a UV resin coating 11 is applied to the outer periphery of a quartz optical fiber 10 having a diameter of 125 μm is supplied from a bobbin creel, and a sheath portion is provided on the outer periphery. 14 is polyphenylene sulfide (PPS) having a melting point of 270 ° C., the core 13 is a melted liquid crystalline polyester having a melting point of 310 ° C., the cross-sectional area ratio of the sheath to the core is 40/60, the single yarn diameter is 22.4 μm, 25 denier / 5 sheath-core type composite fibers 15 filaments was served nine vertical, heated fusing only sheath resin 14 is passed through the metal nozzle of the set internal diameter 0.25mm to 290 ° C. at 30 m / min, reference example In the same manner as in Example 1, a reinforced optical fiber cord 3 having a diameter of 240 μm and having blue, white, and pink appearance colors was obtained.
[0036]
As in Example 1, the reinforced optical fiber cord 3 is arranged in parallel in the order of blue B, white W, white W, pink P, and the outer periphery thereof is collectively covered with a transparent ultraviolet curable resin 18, A tape-shaped reinforced optical fiber cord 4 having a thickness of 0.4 mm and a width of 1.1 mm was obtained.
[0037]
The obtained reinforced optical fiber cord had good discrimination, no peeling phenomenon of the colored portion, and the stress at 0.65% elongation was 1.6 kg.
These performances are summarized in Table 1.
[0038]
Example 2
The same sheath-core type composite fiber as in Reference Example 1 is used, and this is also applied to the outer periphery of the same 180 μm optical fiber as in Reference Example 1. 1. Three white sheath-core type composite fibers and blue sheath-core type composite fiber A combination of 4 vertically, 2. A combination of 3 white sheath-core composite fibers and 4 pink sheath-core composite fibers, that is, 4/7 laps of blue or pink 3/7 was white, and a reinforced optical fiber cord 5 having an outer diameter of 250 μm bound with the same thermosetting resin as in Example 1 was obtained.
[0039]
The obtained code can clearly be identified as being composed of blue / white (FIG. 5) and peach / white (FIG. 6), and can be adopted as a color variation for identification.
Other performance is summarized in Table 1.
[0040]
Comparative Example 1
A reinforced optical fiber cord having an outer diameter of 250 μm was obtained in the same manner as in Reference Example 1 except that the sheath was not colored, and the same sheath-core type composite fiber as in Reference Example 1 was used.
[0041]
This single-core reinforced optical fiber cord was unwound from a bobbin, coated with a colored ultraviolet curable resin on the outer periphery thereof, passed through a die having an inner diameter of 270 μm, and passed through an ultraviolet irradiation device to cure the colored resin on the surface.
[0042]
The coloring was white, blue, and peach, but the outer diameter of the obtained reinforced optical fiber cord was 260 μm and the thickness of the colored layer was about 5 μm.
[0043]
Next, a tape-like reinforced optical fiber cord was obtained by the same method as in Reference Example 1 and its performance was evaluated in the same manner. However, the discrimination was poor and the colored part was easily peeled off, which was problematic in practical use. There was something.
[0044]
Comparative Example 2
A reinforced optical fiber cord having an outer diameter of 240 μm was obtained in the same manner as in Example 1 except that the sheath was not colored, and the same sheath-core type composite fiber as in Example 2 was used.
[0045]
Subsequently, in the same manner as in Comparative Example 1, the outer periphery of the single-core reinforced optical fiber cord was coated with a colored ultraviolet curable resin, passed through a die having an inner diameter of 270 μm, passed through an ultraviolet irradiation device, and the colored resin on the surface was cured. .
[0046]
The coloring was white, blue, and peach, but the outer diameter of the obtained reinforced optical fiber cord was 260 μm and the thickness of the colored layer was about 10 μm.
[0047]
Next, a tape-like reinforced optical fiber cord was obtained by the same method as in Reference Example 1 and its performance was evaluated in the same manner. However, the discrimination was poor and the colored part was easily peeled off, which was problematic in practical use. There was something.
[0048]
Comparative Example 3
A reinforced optical fiber cord having an outer diameter of 220 μm was obtained in the same manner as in Comparative Example 1 except that the number of 25 denier / 5 filament sheath core type composite fibers was changed to four.
[0049]
Subsequently, a colored ultraviolet curable resin was coated on the outer periphery of the single-core reinforced optical fiber cord, passed through a die having an inner diameter of 270 μm, and passed through an ultraviolet irradiation device to cure the colored resin on the surface.
[0050]
The coloring was three colors of white, blue, and peach. The outer diameter of the obtained reinforced optical fiber cord was 260 μm, and the thickness of the colored layer was about 20 μm.
[0051]
Subsequently, a tape-like reinforced optical fiber cord was obtained in the same manner as in Reference Example 1, and its performance was evaluated in the same manner, but the discrimination was good because the colored layer thickness was thick, and there was no peeling of the colored part, Since the content of the reinforcing fiber is small, the stress at 0.65% elongation is as low as 1.2 kg, and there was a problem in tensile strength practically.
[0052]
[Table 1]
Figure 0003940498
[0053]
【The invention's effect】
As described above in detail in the examples, the reinforced optical fiber cord of the present invention is identifiable by coloring the sheath part of the sheath-core type composite fiber, so that the colored part is peeled off or decolored in connection work or the like. Therefore, it is possible to provide a single-fiber reinforced optical fiber cord having high practicality or a tape-shaped reinforced optical fiber cord in which a plurality of single-core reinforced optical fiber cords are arranged in parallel. In addition, it is relatively easy to arrange multiple colors on the outer periphery of the reinforced optical fiber cord by combining differently colored sheath parts of the sheath-core type composite fiber to be used, so the color variation can be increased. The multi-core reinforced optical fiber cord can be easily identified.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a reinforced optical fiber cord according to Reference Example 1 of the present invention.
FIG. 2 is a cross-sectional explanatory view of a sheath-core type composite fiber used in Reference Example 1 of the present invention.
FIG. 3 is a cross-sectional view showing an example of a tape-shaped reinforced optical fiber cord using the reinforced optical fiber cord according to the embodiment of the present invention.
FIG. 4 is a cross-sectional view of a reinforced optical fiber cord according to Embodiment 1 of the present invention.
FIG. 5 is a cross-sectional view of a reinforced optical fiber cord according to Embodiment 2 of the present invention.
FIG. 6 is a cross-sectional view of a reinforced optical fiber cord according to a second embodiment of the present invention.

Claims (6)

光ファイバ素線と、この光ファイバ素線の外周を被覆する強化被覆層とを備えた強化光ファイバコードにおいて、
前記強化被覆層は、鞘芯型複合繊維の芯部からなる補強繊維と、前記鞘芯型複合繊維の着色鞘部のみを溶融して、前記補強繊維の周囲を結着した着色熱可塑性樹脂マトリックスとからなり、
前記鞘芯型複合繊維は、異なる2色以上に着色された鞘部を備えた着色鞘芯型複合繊維束であって、
前記強化被覆層を異なる2色以上の配色としたことを特徴とする強化光ファイバコード。
In a reinforced optical fiber cord comprising an optical fiber and a reinforced coating layer covering the outer periphery of the optical fiber,
The reinforcing coating layer is a colored thermoplastic resin matrix in which only the reinforcing fiber composed of the core portion of the sheath-core type composite fiber and the colored sheath portion of the sheath-core type composite fiber are melted and bound around the reinforcing fiber. And consist of
The sheath-core type conjugate fiber is a colored sheath-core type conjugate fiber bundle having sheath portions colored in two or more different colors,
A reinforced optical fiber cord, wherein the reinforced coating layer has two or more different colors .
前記強化被覆層は、前記鞘芯型複合繊維の鞘部の融点が芯部の融点より20℃以上低いものであって、The reinforcing coating layer has a melting point of the sheath part of the sheath-core type composite fiber that is 20 ° C. or lower than the melting point of the core part,
前記鞘部のみを溶融して前記着色熱可塑性樹脂マトリックスとしたことを特徴とする請求項1記載の強化光ファイバコード。  The reinforced optical fiber cord according to claim 1, wherein only the sheath portion is melted to form the colored thermoplastic resin matrix.
前記鞘芯型複合繊維は、芯部の引張弾性率が6000kg/mm2以上であることを特徴とする請求項1または2記載の強化光ファイバコード。The reinforced optical fiber cord according to claim 1 or 2, wherein the sheath-core type composite fiber has a tensile elastic modulus of a core portion of 6000 kg / mm2 or more. 前記鞘芯型複合繊維は、前記芯部が液晶性ポリマーであることを特徴とする請求項1ないし3記載の強化光ファイバコード。4. The reinforced optical fiber cord according to claim 1, wherein the core part of the sheath-core type composite fiber is a liquid crystalline polymer. 前記光ファイバ素線が、単心であることを特徴とする請求項1ないし4記載の強化光ファイバコード。5. The reinforced optical fiber cord according to claim 1, wherein the optical fiber is a single core. 前記強化光ファイバコードは、前記光ファイバ素線を複数本並列に配置し、前記マトリックスでこれらを一体的に決着してテープ状に形成したことを特徴とする請求項1ないし5記載の強化光ファイバコード。6. The reinforced light according to claim 1, wherein the reinforced optical fiber cord is formed in a tape shape by arranging a plurality of the optical fiber strands in parallel and integrally fixing them with the matrix. Fiber cord.
JP14007398A 1998-05-21 1998-05-21 Reinforced optical fiber cord Expired - Fee Related JP3940498B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14007398A JP3940498B2 (en) 1998-05-21 1998-05-21 Reinforced optical fiber cord

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14007398A JP3940498B2 (en) 1998-05-21 1998-05-21 Reinforced optical fiber cord

Publications (2)

Publication Number Publication Date
JPH11337787A JPH11337787A (en) 1999-12-10
JP3940498B2 true JP3940498B2 (en) 2007-07-04

Family

ID=15260349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14007398A Expired - Fee Related JP3940498B2 (en) 1998-05-21 1998-05-21 Reinforced optical fiber cord

Country Status (1)

Country Link
JP (1) JP3940498B2 (en)

Also Published As

Publication number Publication date
JPH11337787A (en) 1999-12-10

Similar Documents

Publication Publication Date Title
JP7052727B2 (en) Intermittent connection type optical fiber tape core wire, its manufacturing method, optical fiber cable and optical fiber cord
US5165003A (en) Optical fiber cable including interlocking stitch binder
CN100520468C (en) Drop optical fiber cable and FRP tension member used for the cable
JP5272066B2 (en) Optical fiber unit, optical fiber unit manufacturing method, optical fiber cable using optical fiber unit
EP0879804B1 (en) Improved black appearing color coating for optical fiber
JP2585823B2 (en) Optical fiber unit
JP3940498B2 (en) Reinforced optical fiber cord
JP5200094B2 (en) Optical fiber unit, optical fiber unit manufacturing method, optical fiber cable using optical fiber unit
JPH09113773A (en) Coated optical fiber ribbon
JP3166602B2 (en) Optical fiber manufacturing method
JP3940500B2 (en) Reinforced optical fiber cord and manufacturing method thereof
JPH06242355A (en) Coated optical fiber core and coated optical fiber unit
JP2928723B2 (en) Optical fiber manufacturing method
JP2018180126A (en) Optical fiber cable and method of manufacturing optical fiber cable
US20240302615A1 (en) Reconfigurable optical fiber lumen having optical fibers attached to lumen membrane
JPH11302039A (en) Production of colored optical fiber
WO2019172214A1 (en) Optical fiber ribbon, optical unit, and optical fiber cable
KR100897539B1 (en) Ripcord of optic cables and method of manufacturing the same
JPH08171033A (en) Spacer type optical fiber cable
JPH06194549A (en) Colored element fiber for coated optical fiber ribbon and its production
JPH1010381A (en) Optical fiber cord
JP3176389B2 (en) Method of manufacturing waterproof fiber-reinforced thermosetting resin twisted structure for optical cable
JP2004012680A (en) Colored and coated optical fiber and method for coloring the same, optical unit, and optical cable
JPH07270659A (en) Manufacture of coated optical fiber ribbons
KR100888787B1 (en) Ripcord of optic cables and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070327

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070402

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100406

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110406

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110406

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110406

Year of fee payment: 4

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110406

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110406

Year of fee payment: 4

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110406

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110406

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120406

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140406

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees