JP3939989B2 - Coal exotherm test method - Google Patents

Coal exotherm test method Download PDF

Info

Publication number
JP3939989B2
JP3939989B2 JP2002014399A JP2002014399A JP3939989B2 JP 3939989 B2 JP3939989 B2 JP 3939989B2 JP 2002014399 A JP2002014399 A JP 2002014399A JP 2002014399 A JP2002014399 A JP 2002014399A JP 3939989 B2 JP3939989 B2 JP 3939989B2
Authority
JP
Japan
Prior art keywords
temperature
coal
gas
test
heat insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002014399A
Other languages
Japanese (ja)
Other versions
JP2003215078A (en
Inventor
寛司 松平
勝 西村
雅人 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Coke and Chemicals Co Ltd
Original Assignee
Kansai Coke and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Coke and Chemicals Co Ltd filed Critical Kansai Coke and Chemicals Co Ltd
Priority to JP2002014399A priority Critical patent/JP3939989B2/en
Publication of JP2003215078A publication Critical patent/JP2003215078A/en
Application granted granted Critical
Publication of JP3939989B2 publication Critical patent/JP3939989B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、石炭の酸化による石炭層内の温度上昇の程度を、銘柄ごとに短時間で評価する方法に関するものである。
【0002】
【従来の技術】
〈石炭層の蓄熱と自然発火〉
コークス製造現場においては、ヤード(貯炭場)に各種銘柄の石炭を野積みしておき、コークス製造に際しては、所定の配合処方に従って必要な銘柄を選択し、コークス炉に装入して乾留を行う。野積みされた石炭は、使用に供されるまでに長期間貯蔵されることになるが、採掘後の石炭は貯炭中に空気中の酸素により酸化されて発熱し、場合によっては発火に至ることもあるので、防災上の観点から、銘柄間の発熱性の差を管理把握しておくことが必要となる。ヤードに野積みされた石炭に限らず、空気と接触する石炭層は、蓄熱、発火のおそれがある。
【0003】
「日本鉱業会誌/85 969(’69−1)」(1969年)の15〜20頁には、「石炭の自然発火初期現象と空気中の酸素濃度との関係」と題する論文が掲載されており、(a) 酸素濃度と自然発火性との関係、(b) 酸素消費量、CO2 、CO発生量、CO/O2 、CO2 /O2 と酸素濃度との関係、(c) 自然発火所要日数と酸素濃度との関係などを調べている。
【0004】
「技ダイ、昭和57年12月号」の13〜22頁には、「貯炭の酸化昇温−石炭の自然発火に関する研究(その1)−」と題する論文が掲載されており、酸化と蓄熱に関する現象としては、堆積圧密作用、酸化発熱作用、熱伝導作用、通風作用、水分の蒸発と凝縮作用、大気環境、石炭の性質(石炭化度、微細組織構造等)が関係すること、酸化反応熱測定装置についての実験(試料をマホービンに装入して、酸素ガスを通気したときの上昇温度の測定などにつき、基礎的な研究が示されている。
【0005】
「四国総合研究所研究期報 第54号」(1989年)の48〜65頁には、「サイロ内に貯蔵した石炭の昇温特性の評価」と題する論文が掲載されており、石炭自然発火装置を用いる実験的手法や、コンピュータを活用して数値計算を行うシミュレーション手法により、石炭の昇温特性を評価している。
【0006】
「日本エネルギー学会誌、第75巻第11号(1996)」の963〜969頁には、「石炭の貯蔵およびハンドリング技術」と題する総説が掲載されており、その964〜965頁の「自然発熱」の項の図3および図4には、自然発熱性測定装置と結果についての例が示されている。
【0007】
〈自然発火性の評価〉
特開平11−344456号公報には、微粉炭を充填する空間を有するケースと、該ケースの下端側に装着された加熱装置と、これらを収納する密閉容器と、該密閉容器内の雰囲気を加熱するヒータとを具備した微粉炭の自然発火性評価装置が示されている。
【0008】
市販の自然発火評価装置(たとえば、株式会社島津製作所製の「島津自然発火試験装置SIT−2」)を用いて、発火性を測定することも可能である。
【0009】
「日立造船技報、第43巻第1号」(昭和57年3月)」の13〜19頁には、市販の自然発火試験装置(株式会社島津製作所製の「島津自然発火試験装置SIT−1」)を用い、41種の石炭を対象に20〜200℃の温度域での昇温特性について実験検討した結果についての報告があり、酸素濃度の影響、石炭の粒径の影響、炭種の影響、石炭の物性(O/C比、揮発分)との関係などが示されている。
【0010】
【発明が解決しようとする課題】
石炭の酸化による石炭層内の温度上昇の程度を銘柄ごとに短時間で評価する方法としては、
・石炭を5mm以下に粉砕して石炭と酸素との反応表面を増加させることにより、温度上昇を速くする方法、
・加速条件で温度上昇の程度を評価するために、石炭試料を所定の温度にまで予熱しておく方法
が実際的であると考えられる。
【0011】
しかしながら、石炭の銘柄によっては、石炭の表面および付着水分のみならず、石炭に包蔵された水分を有するものもあり、乾燥機で乾燥させる程度の条件では、そのような石炭に包蔵された水分を取り除くことは困難である。従って、石炭の発熱性の試験を行う場合、この包蔵された水分が残ったままで評価すれば、温度を上昇させるためのエネルギーが水分を温度上昇させる熱エネルギーにも使用されることで、温度上昇速度の程度を短時間で評価する妨げとなる。
【0012】
〈発明の目的〉
本発明は、このような背景下において、各銘柄の石炭層内温度上昇の程度を短時間で評価することのできる石炭の発熱性の試験方法を提供することを目的とするものである。
【0013】
【課題を解決するための手段】
本発明の石炭の発熱性の試験方法は、
石炭の酸化による石炭層内の温度上昇の程度を、石炭の銘柄ごとに評価する方法であって、
(イ)ガス導入チューブ(9) およびガス排出チューブ(10)を付設した断熱容器(14)を収容してある加熱機(15)を予熱して、試験装置系内の温度を試験開始温度Tに見合う温度T1 に保持しておくこと、ここで前記のガス導入チューブ (9) は、ガス供給共通チューブ (5) を介して不活性ガス用切替バルブ (1) および酸化性ガス用切替バルブ (2) に接続しておくこと、
(ロ)一方、所定の粒度以下に粉砕した石炭試料を、開放容器(16)に装填した状態で、真空手段と加熱手段とを備えた真空乾燥機(19)を用いて真空下に温度T' で乾燥することにより、その石炭試料の表面水分および包蔵水分を除去し、ついでその開放容器(16)内の石炭試料を前記の試験開始温度Tに見合う温度T2 にまで温度調節しておくこと、ここで前記の温度T ' が、真空下において石炭試料の全水分を 0.5 %以下にまで低減することができる温度であること、
(ハ)水分が除去されかつ温度調節された前記の石炭試料を、前記加熱機(15)内の断熱容器(14)に移し替え、その断熱容器(14)内の雰囲気を不活性ガスに置換すると共に、試験開始温度Tに温度調節してから、その断熱容器(14)内に酸化性ガスを供給し、断熱容器(14)内の石炭試料の温度または温度変化を温度データ収集装置(12)により追跡すること、ここで前記の試験開始温度Tが、50〜70℃の範囲内の所定の温度であること、
を特徴とするものである。
【0014】
【発明の実施の形態】
以下本発明を詳細に説明する。
【0015】
本発明の試験方法にあっては、石炭の酸化による石炭層内の温度上昇の程度を、石炭の銘柄ごとに評価する。後述の実施例のように、貯炭中の石炭の蓄熱性は銘柄によって大きく相違するので、各種銘柄につき評価を行っておくことは、ヤードにおける野積み石炭(銘柄ごとに山にしてある)の管理上有益である。
【0016】
〈要件(イ)〉
本発明においては、ガス導入チューブ(9) およびガス排出チューブ(10)を付設した断熱容器(14)を収容してある加熱機(15)を予熱して、試験装置系内の温度を試験開始温度Tに見合う温度T1 に保持しておく。
【0017】
ここでガス導入チューブ (9) は、ガス供給共通チューブ (5) を介して不活性ガス用切替バルブ (1) および酸化性ガス用切替バルブ (2) に接続しておく。すなわち、ガス導入チューブ(9) は、窒素のような不活性ガス、空気のような酸化性ガスを導入するためのものであるが、不活性ガス(窒素)用切替バルブ(1) 、酸化性ガス(空気)用切替バルブ(2) からの配管を合して、ガス供給共通チューブ(5) とし、そのガス供給共通チューブ(5) に加熱用ヒーター(3) を付設すると共に、それを断熱容器(14)内に導くように配管しておく。
【0018】
ガス排出チューブ(10)は、断熱容器(14)内に供給した不活性ガスや酸化性ガスを系外に排出するための配管である。
【0019】
加熱機(15)としては、加熱手段とファンとを備えた通常の乾燥機を用いることができる。他のタイプの加熱機を用いることも可能である。
【0020】
断熱容器(14)としては、断熱瓶のような断熱性を有する容器が用いられる。その断熱容器(14)には、たとえば、ガス導入チューブ(9) 、ガス排出チューブ(10)、石炭層内温度測定用手段(11)を挿通した密栓(13)を装着できるようにしておく。石炭層内温度測定用手段(11)としては、たとえば熱電対を用いることができる。
【0021】
そして、これらのガス導入チューブ(9) 、ガス排出チューブ(10)、石炭層内温度測定用手段(11)、密栓(13)、断熱容器(14)を含めて、加熱機(15)を予熱して、試験装置系内の温度を試験開始温度Tに見合う温度T1 に保持する。
【0022】
〈要件(ロ)〉
一方、本発明においては、所定の粒度以下に粉砕した石炭試料を、開放容器(16)に装填した状態で、真空手段と加熱手段とを備えた真空乾燥機(19)を用いて真空下に温度T' で乾燥することにより、その石炭試料の表面水分および包蔵水分を除去し、ついでその開放容器(16)内の石炭試料を前記の試験開始温度Tに見合う温度T2 にまで温度調節しておく。
【0023】
石炭試料としては、石炭を銘柄ごとに所定の粒度以下に粉砕したものを用いる。所定の粒度とは、石炭と酸化性ガスとの反応表面を増加させるために、たとえば10mm篩下、殊に5mm篩下のものが適当である。なお、試料中の微粉部分をカットする必要はないが、微粉がガス導入チューブ(9) に詰まってガスの流れに支障を来たすおそれがあるときは、試料粒子の最小径がそのガス導入チューブ(9) の内径よりも小さくならないようにするなどして、試料粒子がガス導入チューブ(9) に詰まらないような工夫を講じることができる(たとえば、ガス導入チューブ(9) の内径が3mmであれば、試料粒子を3mm篩上とするというように)。
【0024】
開放容器(16)としては、たとえば硬質ガラス製パイプのようなものが用いられる。容器を開放容器とするのは、石炭試料の表面水分および包蔵水分の除去路を確保するためである。
【0025】
真空乾燥機(19)は、真空手段と加熱手段とを備えた乾燥機である。加熱だけでは石炭試料の表面水分は除去できても包蔵水分を除去することが難しいため、真空手段を併用することが必要である。
【0026】
真空乾燥機(19)による真空度は、たとえば系内が−700mmHg以下、殊に−750mmHg以下となるように設定する(なお、1mmHgは国際単位で表わせば 1.3×102 Paである)。そして本発明においては、真空下での乾燥温度T' を、真空下において石炭試料の全水分を 0.5%以下、好ましくは 0.1%以下にまで低減することができる温度、たとえば100〜107℃程度、殊に100〜102℃程度に設定する。
【0027】
石炭試料の表面水分および包蔵水分を除去した後は、開放容器(16)内の石炭試料を、先に述べた試験開始温度Tに見合う温度T2 にまで温度調節しておく。
【0028】
〈要件(ハ)〉
上記で準備が整ったので、さらに本発明においては、水分が除去されかつ温度調節された前記の石炭試料を、前記加熱機(15)内の断熱容器(14)に移し替える。そして、その断熱容器(14)内の雰囲気を不活性ガスに置換すると共に、試験開始温度Tに温度調節してから、その断熱容器(14)内に酸化性ガスを供給し、断熱容器(14)内の石炭試料の温度または温度変化を温度データ収集装置(12)により追跡する。
【0029】
不活性ガスとしてはたとえば窒素ガスが用いられ、酸化性ガスとしてはたとえば空気が用いられる。不活性ガス、酸化性ガスは、加熱機(15)内の断熱容器(14)に供給する前に、加熱用ヒーター(3) で試験開始温度Tに見合う温度にまで加熱しておくことが好ましい。
【0030】
温度データ収集装置(12)においては、石炭試料の温度を測定するか、石炭試料の試験開始温度Tからの温度差を測定する。
【0031】
そして本発明においては、上述の試験開始温度Tを、50〜70℃の範囲内の所定の温度(たとえば60℃)に設定する。温度T1 および温度T2 は、実質的に試験開始温度Tと同一にすることが望ましい。
【0032】
〈その他〉
開放容器(16)と断熱容器(14)とは、各1セットによるシングルタイプとしてもよいが、それらを複数セット設けることによってマルチシステムとすることにより、試験を実施することもできる。
【0033】
【実施例】
次に実施例をあげて本発明をさらに説明する。
【0034】
〈試験装置〉
図1は、本発明の石炭の発熱性の試験方法を実施するために用いる装置の一例を示した説明図である。
【0035】
(1) は不活性ガス(窒素)用切替バルブ、(2) は酸化性ガス(空気)用切替バルブ、(3) は加熱用ヒーター、(4) は制御信号線、(5) はガス供給共通チューブ、(6) はチューブジョイント、(7) は制御ユニットである。これらは、加熱機の外部に配置してある。
【0036】
(8) は供給ガスの温度制御手段(制御用熱電対)、(9) はガス導入チューブ、(10)はガス排出チューブ、(11)は石炭層内温度測定用手段(熱電対)、(13)は密栓、(14)は断熱容器(断熱瓶)である。これらは、加熱機(15)内に装備してある(ただし、(8), (9), (10), (11)は、系外にも一部が出ている)。(12)は温度データ収集装置である。
【0037】
(16)は開放容器(硬質ガラス製パイプ)、(17)は水トラップ装置、(18)は真空ポンプ、(19)は真空乾燥機である。開放容器(16)は、真空乾燥機(19)内に収容してある。
【0038】
〈測定手順〉
測定手順は次の通りである。
1.5mm未満(5mm篩下)で3mm以上(3mm篩上)の大きさに粉砕した各銘柄の石炭試料の約340g(乾燥基準重量)を、内径40mmの開放容器(硬質ガラス製パイプ)(16)に均一に装填する。
2.真空ポンプ(18)により、真空乾燥機(19)内の圧力を10mmHg(−750mmHg)まで負圧としながら、真空乾燥機(19)内の温度をT' (100℃)まで上昇させる。
3.石炭試料の表面水分および包蔵水分を気化させ、水トラップ装置(17)でその水分を捕獲、除去する。
4.上記操作を水トラップ装置(17)で捕獲する水分がなくなるまで(石炭試料の全水分が 0.1%以下になるまで)継続し、その後、真空乾燥機(19)を試験開始温度T(60℃)に設定し、試料温度T2 をTに調節する。
5.上記4の真空乾燥機(19)を試験開始温度T(60℃)に設定するタイミングと並行して、供給ガスの温度制御手段(制御用熱電対)(8) 、ガス導入チューブ(9) 、ガス排出チューブ(10)、石炭層内温度測定用手段(熱電対)(11)、密栓(13)および断熱容器(断熱瓶)(14)を、加熱機(15)を用いて予熱し、試験装置系内の温度T1 を試験開始温度T(60℃)に保持する。
6.試料温度が試験開始温度Tに到達したところで、上記4で準備した開放容器(硬質ガラス製パイプ)(16)を真空乾燥機(19)から取り出して、その内部の試料を、加熱機(15)から取り出した断熱容器(断熱瓶)(14)内に素早く装填し、その断熱容器(断熱瓶)(14)に、供給ガスの温度制御手段(制御用熱電対)(8) 、ガス導入チューブ(9) 、ガス排出チューブ(10)および石炭層内温度測定用手段(熱電対)(11)が挿通された密栓(13)をする。
7.供給ガスの温度制御手段(制御用熱電対)(8) を制御ユニット(7) に、石炭層内温度測定用手段(熱電対)(11)を温度データ収集装置(12)に、ガス導入チューブ(ガス供給共通チューブ)(9) をチューブジョイント(6) に、それぞれつなぎ込む。
8.不活性ガス(窒素)用切替バルブ(1) を開き、窒素を供給する。このとき、供給ガス温度が供給ガスの温度制御手段(制御用熱電対)(8) で60℃になるように制御ユニット(7) で調整する。
9.石炭層内温度測定用手段(熱電対)(11)の表示が試験開始温度Tの60℃になった時点で不活性ガス(窒素)用切替バルブ(1) を閉じ、酸化性ガス(空気)用切替バルブ(2) を開いて酸化用の空気を10〜100ml/minの範囲の速度(この実施例では25ml/min)で供給する。なお、供給ガス温度が供給ガスの温度制御手段(制御用熱電対)(8) で60℃になるように制御ユニット(7) で調整する。
10.石炭を酸化させ始めた後は、加熱機(15)および供給ガス温度は、一定の値(60℃)に保持する。
11.酸化用の空気を供給している間、石炭層内の温度上昇の程度(温度または温度変化)を温度データ収集装置(12)を用いて記録する。
12.約3時間酸化用の空気を導入すれば、温度上昇の程度が確認できるので、その後、試験を完了する。
【0039】
〈測定結果〉
上述の測定手順に従い、産地や全水分の異なる4銘柄の石炭について評価試験を行った。結果を図2に示す。図2において、横軸は「酸化性ガス(空気)用切替バルブ(2) を開き酸化用の空気を供給開始してからの経過時間」、縦軸は「温度データ収集装置(12)で1秒間隔で収集した石炭層内の温度(熱電対(11))」である。また、図2からの所定時間(200分、400分、600分、660分)経過後の石炭層温度の読み取り値を表1に示す。
【0040】
【表1】

石炭の 全水分 石炭層温度(℃)
銘柄 (%) 初期設定 200 分後 400 分後 600 分後 660 分後
Coal A 24.6 60 73 87 95 98
Coal B 9.0 60 65 66 66 66
Coal C 9.0 60 61 62 62 62
Coal D 8.0 60 61 62 62 62
【0041】
図2から、試験に供した4銘柄の中では、Coal Aが一定温度状態(この場合60℃)に保った系からの温度上昇が著しく、発熱性の評価としては、「Coal A<<Coal C<Coal B≦Coal D」の順に発熱しやすいという結果となる。従って、Coal Aの銘柄の石炭を貯蔵するときは、その銘柄が発熱しやすいということに留意して、貯炭管理を行うべきであることがわかる。また、図2から、最初の3時間弱で、各銘柄についての発熱性の大小の傾向を知ることができることがわかる。
【0042】
【発明の効果】
本発明の試験方法によれば、各銘柄の石炭の温度上昇の程度を短時間で評価することができる。従って、石炭をヤード等に野積みしたときに自然発火を起こす度合いを知ることができ、安全な貯炭管理が可能になる。
【0043】
また、試験中に石炭層内の急激な温度上昇によって、石炭が発火した場合でも、酸化性ガス(空気)用切替バルブ(2) を閉じ、不活性ガス(窒素)用切替バルブ(1) を開くことで、窒息消火できるので、すみやかな対応を図ることができる。
【図面の簡単な説明】
【図1】 本発明の石炭の発熱性の試験方法を実施するために用いる装置の一例を示した説明図である。
【図2】 実施例における4銘柄の石炭について評価試験を行ったときの結果を示したグラフである。
【符号の説明】
(1) …不活性ガス(窒素)用切替バルブ、
(2) …酸化性ガス(空気)用切替バルブ、
(3) …加熱用ヒーター、
(4) …制御信号線、
(5) …ガス供給共通チューブ、
(6) …チューブジョイント、
(7) …制御ユニット、
(8) …供給ガスの温度制御手段(制御用熱電対)、
(9) …ガス導入チューブ、
(10)…ガス排出チューブ、
(11)…石炭層内温度測定用手段(熱電対)、
(12)…温度データ収集装置、
(13)…密栓、
(14)…断熱容器(断熱瓶)、
(15)…加熱機、
(16)…開放容器(硬質ガラス製パイプ)、
(17)…水トラップ装置、
(18)…真空ポンプ、
(19)…真空乾燥機
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for evaluating the degree of temperature rise in a coal bed due to oxidation of coal in a short time for each brand.
[0002]
[Prior art]
<Coal reservoir heat storage and spontaneous ignition>
At the coke production site, various brands of coal are piled up in the yard (coal storage), and when producing coke, the necessary brands are selected according to the prescribed formulation and charged into the coke oven for dry distillation. . The piled coal will be stored for a long time before it is used, but the mined coal will be oxidized by oxygen in the air during the storage and generate heat, and in some cases it will ignite. Therefore, from the viewpoint of disaster prevention, it is necessary to manage and understand the difference in exothermicity between brands. Not only the coal piled up in the yard, but the coal layer in contact with the air may cause heat storage and ignition.
[0003]
On the 15th to 20th pages of “The Journal of the Japan Mining Association / 85 969 ('69 -1)” (1969), a paper entitled “Relationship between Pyrophoric Pyrophoric Phenomena and Oxygen Concentration in the Air” was published. (A) Relationship between oxygen concentration and pyrophoricity, (b) Oxygen consumption, CO 2 , CO generation, CO / O 2 , relationship between CO 2 / O 2 and oxygen concentration, (c) Nature We are investigating the relationship between the number of days required for ignition and oxygen concentration.
[0004]
Pages 13-22 of "Gi-Dai, December 1982 issue" include a paper titled "Oxidation temperature rise of coal storage-Study on spontaneous combustion of coal (Part 1)-". Oxidation and heat storage Phenomena related to sedimentation, oxidation heat generation, heat conduction, ventilation, moisture evaporation and condensation, atmospheric environment, coal properties (degree of coalification, microstructure, etc.), oxidation reaction Experiments on heat measurement devices (basic research has been shown for measuring the temperature rise when a sample is inserted into mahobin and aerated with oxygen gas.
[0005]
On pages 48-65 of "Shikoku Research Institute Research Bulletin No. 54" (1989), a paper entitled "Evaluation of temperature rise characteristics of coal stored in silos" is published. The temperature rise characteristics of coal are evaluated by an experimental method using an apparatus and a simulation method that uses a computer to perform numerical calculations.
[0006]
A review titled “Coal Storage and Handling Technology” is published in pages 963-969 of “The Journal of the Japan Institute of Energy, Vol. 75, No. 11 (1996)”. FIG. 3 and FIG. 4 in the section of FIG. 3 show examples of the spontaneous exothermic measuring device and results.
[0007]
<Evaluation of spontaneous ignition>
Japanese Patent Application Laid-Open No. 11-344456 discloses a case having a space filled with pulverized coal, a heating device mounted on the lower end side of the case, a sealed container for storing them, and heating the atmosphere in the sealed container. An apparatus for evaluating the pyrophoric property of pulverized coal having a heater is provided.
[0008]
It is also possible to measure the ignitability using a commercially available spontaneous ignition evaluation device (for example, “Shimadzu spontaneous ignition test device SIT-2” manufactured by Shimadzu Corporation).
[0009]
On pages 13-19 of "Hitachi Shipbuilding Technical Report, Vol. 43 No. 1" (March 1982), a commercially available spontaneous ignition test device ("Shimadzu spontaneous ignition test device SIT- manufactured by Shimadzu Corporation") is shown. 1)), there are reports on the results of experimental investigations on the temperature rise characteristics in the temperature range of 20 to 200 ° C. for 41 types of coal, the influence of oxygen concentration, the influence of coal particle size, the type of coal And the relationship with the physical properties (O / C ratio, volatile content) of coal.
[0010]
[Problems to be solved by the invention]
As a method to evaluate the degree of temperature rise in the coal seam due to coal oxidation in a short time for each brand,
-A method of speeding up the temperature increase by increasing the reaction surface between coal and oxygen by crushing coal to 5 mm or less,
-In order to evaluate the degree of temperature rise under acceleration conditions, it is considered practical to preheat a coal sample to a predetermined temperature.
[0011]
However, some brands of coal have not only the surface of the coal and the moisture adhering to it, but also moisture contained in the coal. Under conditions such as drying with a dryer, the moisture contained in such coal may be reduced. It is difficult to remove. Therefore, when conducting the exothermic test of coal, if the contained moisture is evaluated while remaining, the energy for raising the temperature is also used for the thermal energy for raising the temperature, so that the temperature rises. This hinders the speed of evaluation in a short time.
[0012]
<Object of invention>
An object of the present invention is to provide a test method for the exothermic property of coal, which can evaluate the degree of temperature rise in the coal bed of each brand in a short time under such a background.
[0013]
[Means for Solving the Problems]
The coal exothermic test method of the present invention is:
A method for evaluating the degree of temperature rise in a coal bed due to coal oxidation for each brand of coal,
(B) Preheating the heater (15) containing the heat insulating container (14) provided with the gas introduction tube (9) and the gas discharge tube (10), and setting the temperature in the test apparatus system to the test start temperature T be held to temperatures T 1 commensurate with, wherein said gas introducing tube (9), a gas supply common tube (5) an inert gas switching valve via the (1) and oxidizing gas switching valve Connect to (2) ,
(B) On the other hand, in a state where a coal sample pulverized to a predetermined particle size or less is loaded in an open container (16), a temperature T is applied under vacuum using a vacuum dryer (19) equipped with vacuum means and heating means. The surface moisture and the stored moisture of the coal sample are removed by drying with ′, and then the temperature of the coal sample in the open container (16) is adjusted to a temperature T 2 corresponding to the test start temperature T. The temperature T is a temperature at which the total moisture of the coal sample can be reduced to 0.5 % or less under vacuum ,
(C) The coal sample from which moisture has been removed and the temperature adjusted is transferred to the heat insulating container (14) in the heater (15), and the atmosphere in the heat insulating container (14) is replaced with an inert gas. At the same time, after adjusting the temperature to the test start temperature T, an oxidizing gas is supplied into the heat insulating container (14), and the temperature or temperature change of the coal sample in the heat insulating container (14) is detected by the temperature data collecting device (12 ) , Where the test start temperature T is a predetermined temperature within a range of 50 to 70 ° C.,
It is characterized by.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described in detail below.
[0015]
In the test method of the present invention, the degree of temperature rise in the coal bed due to the oxidation of coal is evaluated for each brand of coal. As in the examples described later, the heat storage performance of coal during storage varies greatly depending on the brand, so it is important to evaluate various brands to manage piled coal in the yard. It is useful on top.
[0016]
<Requirements (I)>
In the present invention, the heater (15) containing the heat insulating container (14) provided with the gas introduction tube (9) and the gas discharge tube (10) is preheated, and the temperature inside the test apparatus system is started. It is kept at a temperature T 1 commensurate with the temperature T.
[0017]
Here, the gas introduction tube (9) is connected to the inert gas switching valve (1) and the oxidizing gas switching valve (2) via the gas supply common tube (5) . In other words, the gas introducing tube (9), an inert gas such as nitrogen, is used to introduce an oxidizing gas such as air, the switching valve for the inert gas (nitrogen) (1), oxidizing Combine the piping from the gas (air) switching valve (2) into a gas supply common tube (5), and attach a heater (3) to the gas supply common tube (5) and insulate it. A pipe is provided so as to guide it into the container (14) .
[0018]
The gas discharge tube (10) is a pipe for discharging the inert gas and the oxidizing gas supplied into the heat insulating container (14) out of the system.
[0019]
As the heater (15), a normal dryer provided with a heating means and a fan can be used. Other types of heaters can also be used.
[0020]
As the heat insulating container (14), a heat insulating container such as a heat insulating bottle is used. For example, a gas plug (9), a gas discharge tube (10), and a sealing plug (13) through which the coal bed temperature measuring means (11) is inserted can be attached to the heat insulating container (14). As the coal bed temperature measuring means (11), for example, a thermocouple can be used.
[0021]
The heater (15) is preheated including the gas introduction tube (9), the gas discharge tube (10), the means for measuring the coal bed temperature (11), the hermetic plug (13), and the heat insulating container (14). Then, the temperature in the test apparatus system is maintained at a temperature T 1 corresponding to the test start temperature T.
[0022]
<Requirements (b)>
On the other hand, in the present invention, a coal sample pulverized to a predetermined particle size or less is loaded in an open container (16), and is vacuumed using a vacuum dryer (19) provided with vacuum means and heating means. By drying at the temperature T ′, the surface moisture and the stored moisture of the coal sample are removed, and then the temperature of the coal sample in the open vessel (16) is adjusted to a temperature T 2 corresponding to the test start temperature T. Keep it.
[0023]
As a coal sample, what grind | pulverized coal to the predetermined particle size or less for every brand is used. In order to increase the reaction surface between the coal and the oxidizing gas, the predetermined particle size is, for example, 10 mm, especially 5 mm. Although it is not necessary to cut the fine powder portion in the sample, if there is a risk that the fine powder will clog the gas introduction tube (9) and interfere with the gas flow, the minimum diameter of the sample particles is the gas introduction tube ( It is possible to take measures to prevent the sample particles from clogging the gas introduction tube (9) by making it not smaller than the inner diameter of 9) (for example, if the inner diameter of the gas introduction tube (9) is 3 mm). For example, the sample particles are placed on a 3 mm sieve).
[0024]
As the open container (16), for example, a hard glass pipe is used. The reason why the container is an open container is to secure a removal path for the surface moisture and the stored moisture of the coal sample.
[0025]
The vacuum dryer (19) is a dryer provided with vacuum means and heating means. Even if the surface moisture of the coal sample can be removed only by heating, it is difficult to remove the stored moisture, so it is necessary to use a vacuum means in combination.
[0026]
The degree of vacuum by the vacuum drier (19) is set so that, for example, the inside of the system is −700 mmHg or less, particularly −750 mmHg or less (1 mmHg is 1.3 × 10 2 Pa in international units). And in the present invention, the drying temperature T 'under vacuum, 0.5% total water in the coal sample under vacuum below the temperature that preferably can be reduced to 0.1% or less, for example 100 to 107 ° C. approximately, In particular, the temperature is set to about 100 to 102 ° C.
[0027]
After removing the surface moisture and the stored moisture of the coal sample, the temperature of the coal sample in the open container (16) is adjusted to a temperature T 2 that matches the test start temperature T described above.
[0028]
<Requirement (C)>
Now that the preparation has been completed, in the present invention, the coal sample from which moisture has been removed and the temperature has been adjusted is transferred to the heat insulating container (14) in the heater (15). Then, the atmosphere in the heat insulating container (14) is replaced with an inert gas, and the temperature is adjusted to the test start temperature T, and then an oxidizing gas is supplied into the heat insulating container (14), and the heat insulating container (14 The temperature or temperature change of the coal sample in) is tracked by the temperature data collection device (12).
[0029]
For example, nitrogen gas is used as the inert gas, and air is used as the oxidizing gas. Before supplying the inert gas and oxidizing gas to the heat insulating container (14) in the heater (15), the heating heater (3) is preferably heated to a temperature corresponding to the test start temperature T. .
[0030]
In the temperature data collection device (12), the temperature of the coal sample is measured, or the temperature difference from the test start temperature T of the coal sample is measured.
[0031]
And in this invention, the above-mentioned test start temperature T is set to the predetermined temperature (for example, 60 degreeC) in the range of 50-70 degreeC . It is desirable that the temperature T 1 and the temperature T 2 are substantially the same as the test start temperature T.
[0032]
<Others>
The open container (16) and the heat insulating container (14) may be of a single type by one set, but a test can also be performed by providing a plurality of sets to form a multi-system.
[0033]
【Example】
The following examples further illustrate the invention.
[0034]
<Test equipment>
FIG. 1 is an explanatory view showing an example of an apparatus used for carrying out the method for testing the exothermic property of coal of the present invention.
[0035]
(1) is a switching valve for inert gas (nitrogen) , (2) is a switching valve for oxidizing gas (air) , (3) is a heater, (4) is a control signal line, (5) is a gas supply Common tube, (6) is the tube joint, and (7) is the control unit. These are arranged outside the heater.
[0036]
(8) is the supply gas temperature control means (control thermocouple), (9) is the gas inlet tube, (10) is the gas discharge tube, (11) is the means for measuring the coal bed temperature (thermocouple), ( 13) is a sealing stopper, and (14) is an insulated container (insulated bottle). These are installed in the heater (15) (however, (8), (9), (10), (11) are partly out of the system). (12) is a temperature data collection device.
[0037]
(16) is an open container (hard glass pipe), (17) is a water trap device, (18) is a vacuum pump, and (19) is a vacuum dryer. The open container (16) is accommodated in the vacuum dryer (19).
[0038]
<Measurement procedure>
The measurement procedure is as follows.
Approximately 340 g (dry basis weight) of each brand of coal sample ground to a size of 3 mm or more (3 mm sieve top) with a size of less than 1.5 mm (5 mm sieve bottom) and an open container (hard glass pipe) with an inner diameter of 40 mm ( 16) Load uniformly.
2. The temperature in the vacuum dryer (19) is increased to T ′ (100 ° C.) while the pressure in the vacuum dryer (19) is reduced to 10 mmHg (−750 mmHg) by the vacuum pump (18).
3. The surface moisture and the stored moisture of the coal sample are vaporized, and the moisture is captured and removed by the water trap device (17).
4). The above operation is continued until the water trapped by the water trap device (17) runs out (until the total water content of the coal sample is 0.1% or less), and then the vacuum dryer (19) is connected to the test start temperature T (60 ° C). And the sample temperature T 2 is adjusted to T.
5). In parallel with the timing for setting the vacuum dryer (19) in 4 above to the test start temperature T (60 ° C.), the temperature control means (control thermocouple) for the supply gas (8), the gas introduction tube (9), Preheat the gas discharge tube (10), the means for measuring the coal bed temperature (thermocouple) (11), the sealed plug (13) and the insulated container (insulated bottle) (14) using the heater (15) and test The temperature T 1 in the apparatus system is maintained at the test start temperature T (60 ° C.).
6). When the sample temperature reaches the test start temperature T, the open container (hard glass pipe) (16) prepared in 4 above is removed from the vacuum dryer (19), and the sample inside is heated to the heater (15). The insulated container (insulated bottle) (14) taken out from the container is quickly loaded, and the insulated container (insulated bottle) (14) is supplied with temperature control means (control thermocouple) (8), gas introduction tube ( 9) The gas stopper tube (13) into which the gas discharge tube (10) and the means for measuring the temperature in the coal seam (thermocouple) (11) are inserted is inserted.
7). Supply gas temperature control means (control thermocouple) (8) to control unit (7), coal bed temperature measurement means (thermocouple) (11) to temperature data collection device (12), gas inlet tube Connect the gas supply common tube (9) to the tube joint (6).
8). Open the switching valve (1) for inert gas (nitrogen) and supply nitrogen. At this time, the supply gas temperature is adjusted by the control unit (7) so as to be 60 ° C. by the temperature control means (control thermocouple) (8) of the supply gas.
9. When the temperature on the coal bed temperature measuring means (thermocouple) (11) reaches the test start temperature T of 60 ° C, the switching valve (1) for the inert gas (nitrogen ) is closed and the oxidizing gas (air) The switching valve (2) is opened and oxidizing air is supplied at a rate in the range of 10 to 100 ml / min (25 ml / min in this embodiment). The supply gas temperature is adjusted by the control unit (7) so as to be 60 ° C. by the temperature control means (control thermocouple) (8) of the supply gas.
10. After starting to oxidize the coal, the heater (15) and the feed gas temperature are kept at a constant value (60 ° C.).
11. While supplying air for oxidation, the degree of temperature rise (temperature or temperature change) in the coal bed is recorded using the temperature data collection device (12).
12 If the air for oxidation is introduced for about 3 hours, the degree of temperature rise can be confirmed, and then the test is completed.
[0039]
<Measurement result>
In accordance with the measurement procedure described above, an evaluation test was performed on four brands of coal with different origins and total moisture. The results are shown in FIG. In FIG. 2, the abscissa indicates “elapsed time since opening of the oxidizing gas (air) switching valve (2) and supply of oxidant air”, and the ordinate indicates “temperature data collection device (12) 1”. It is the temperature in the coal bed (thermocouple (11)) collected at intervals of seconds. Table 1 shows the readings of the coal bed temperature after elapse of a predetermined time (200 minutes, 400 minutes, 600 minutes, 660 minutes) from FIG.
[0040]
[Table 1]

Total water coal coal bed temperature (℃)
Brand (%) Initial setting 200 minutes 400 minutes 600 minutes later 660 minutes later
Coal A 24.6 60 73 87 95 98
Coal B 9.0 60 65 66 66 66
Coal C 9.0 60 61 62 62 62
Coal D 8.0 60 61 62 62 62
[0041]
From FIG. 2, among the four brands used in the test, the temperature rise from the system in which Coal A was kept at a constant temperature (in this case 60 ° C.) was remarkable, and the exothermic evaluation was “Coal A << Coal As a result, heat is likely to be generated in the order of C <Coal B ≦ Coal D ”. Therefore, when storing Coal A brand coal, it should be understood that the coal storage management should be performed in consideration of the fact that the brand tends to generate heat. In addition, it can be seen from FIG. 2 that the tendency of the exothermicity of each brand can be known in the first less than 3 hours.
[0042]
【The invention's effect】
According to the test method of the present invention, the degree of temperature rise of each brand of coal can be evaluated in a short time. Therefore, it is possible to know the degree of spontaneous combustion when coal is piled up in a yard or the like, and safe coal storage management becomes possible.
[0043]
Also, even if coal is ignited due to a rapid temperature rise in the coal bed during the test, the switching valve (2) for oxidizing gas (air ) is closed and the switching valve (1) for inert gas (nitrogen) is closed. Opening can extinguish suffocation, so you can respond quickly.
[Brief description of the drawings]
FIG. 1 is an explanatory view showing an example of an apparatus used for carrying out the method for testing the exothermic property of coal of the present invention.
FIG. 2 is a graph showing results when an evaluation test is performed on four brands of coal in Examples.
[Explanation of symbols]
(1)… Switching valve for inert gas (nitrogen) ,
(2)… Switching valve for oxidizing gas (air) ,
(3)… heater for heating,
(4)… control signal line,
(5)… Common gas supply tube,
(6)… Tube joint,
(7)… Control unit,
(8) ... temperature control means (control thermocouple) of the supply gas,
(9)… gas introduction tube,
(10) Gas exhaust tube,
(11)… Coal bed temperature measurement means (thermocouple),
(12)… Temperature data collection device,
(13)… Seal plug,
(14)… Insulated container (insulated bottle),
(15)… Heating machine,
(16)… Open container (hard glass pipe),
(17)… Water trap device,
(18)… Vacuum pump,
(19)… Vacuum dryer

Claims (2)

石炭の酸化による石炭層内の温度上昇の程度を、石炭の銘柄ごとに評価する方法であって、
(イ)ガス導入チューブ(9) およびガス排出チューブ(10)を付設した断熱容器(14)を収容してある加熱機(15)を予熱して、試験装置系内の温度を試験開始温度Tに見合う温度T1 に保持しておくこと、ここで前記のガス導入チューブ (9) は、ガス供給共通チューブ (5) を介して不活性ガス用切替バルブ (1) および酸化性ガス用切替バルブ (2) に接続しておくこと、
(ロ)一方、所定の粒度以下に粉砕した石炭試料を、開放容器(16)に装填した状態で、真空手段と加熱手段とを備えた真空乾燥機(19)を用いて真空下に温度T' で乾燥することにより、その石炭試料の表面水分および包蔵水分を除去し、ついでその開放容器(16)内の石炭試料を前記の試験開始温度Tに見合う温度T2 にまで温度調節しておくこと、ここで前記の温度T ' が、真空下において石炭試料の全水分を 0.5 %以下にまで低減することができる温度であること、
(ハ)水分が除去されかつ温度調節された前記の石炭試料を、前記加熱機(15)内の断熱容器(14)に移し替え、その断熱容器(14)内の雰囲気を不活性ガスに置換すると共に、試験開始温度Tに温度調節してから、その断熱容器(14)内に酸化性ガスを供給し、断熱容器(14)内の石炭試料の温度または温度変化を温度データ収集装置(12)により追跡すること、ここで前記の試験開始温度Tが、50〜70℃の範囲内の所定の温度であること、
を特徴とする石炭の発熱性の試験方法。
A method for evaluating the degree of temperature rise in a coal bed due to coal oxidation for each brand of coal,
(B) Preheating the heater (15) containing the heat insulating container (14) provided with the gas introduction tube (9) and the gas discharge tube (10), and setting the temperature in the test apparatus system to the test start temperature T be held to temperatures T 1 commensurate with, wherein said gas introducing tube (9), a gas supply common tube (5) an inert gas switching valve via the (1) and oxidizing gas switching valve Connect to (2) ,
(B) On the other hand, in a state where a coal sample pulverized to a predetermined particle size or less is loaded in an open container (16), a temperature T is applied under vacuum using a vacuum dryer (19) equipped with vacuum means and heating means. The surface moisture and the stored moisture of the coal sample are removed by drying with ′, and then the temperature of the coal sample in the open container (16) is adjusted to a temperature T 2 corresponding to the test start temperature T. The temperature T is a temperature at which the total moisture of the coal sample can be reduced to 0.5 % or less under vacuum ,
(C) The coal sample from which moisture has been removed and the temperature adjusted is transferred to the heat insulating container (14) in the heater (15), and the atmosphere in the heat insulating container (14) is replaced with an inert gas. At the same time, after adjusting the temperature to the test start temperature T, an oxidizing gas is supplied into the heat insulating container (14), and the temperature or temperature change of the coal sample in the heat insulating container (14) is detected by the temperature data collecting device (12 ) , Where the test start temperature T is a predetermined temperature within a range of 50 to 70 ° C.,
A test method for exothermic properties of coal.
前記の温度T1 および温度T2 が実質的に前記の試験開始温度Tであり、前記の温度T' が100〜107℃である請求項1記載の試験方法。 Wherein the the temperature T 1 and temperature T 2 is substantially the start of the test the temperature T, the method of testing according to claim 1, wherein the temperature T 'is 100 to 107 ° C. for.
JP2002014399A 2002-01-23 2002-01-23 Coal exotherm test method Expired - Lifetime JP3939989B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002014399A JP3939989B2 (en) 2002-01-23 2002-01-23 Coal exotherm test method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002014399A JP3939989B2 (en) 2002-01-23 2002-01-23 Coal exotherm test method

Publications (2)

Publication Number Publication Date
JP2003215078A JP2003215078A (en) 2003-07-30
JP3939989B2 true JP3939989B2 (en) 2007-07-04

Family

ID=27651093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002014399A Expired - Lifetime JP3939989B2 (en) 2002-01-23 2002-01-23 Coal exotherm test method

Country Status (1)

Country Link
JP (1) JP3939989B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105606645A (en) * 2016-01-28 2016-05-25 西安交通大学 High-temperature step combination-performance testing device for phase-change heat storage device and testing method

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103217455A (en) * 2013-04-23 2013-07-24 湖南三德科技股份有限公司 Method of testing coal spontaneous combustion tendentiousness by water bath heat insulation
CN103308550B (en) * 2013-05-31 2016-04-06 中国建筑材料科学研究总院 The relative Determination of conductive coefficients method of phase-change energy-storage composite material
CN103454307B (en) * 2013-09-05 2015-08-26 中国矿业大学(北京) Full stage coal spontaneous combustion experimental system
CN104483350A (en) * 2014-11-21 2015-04-01 中国矿业大学(北京) Device for simulating programmed temperature rising and adiabatic oxidation of coal
JP6586836B2 (en) * 2015-09-15 2019-10-09 日本製鉄株式会社 Evaluation method of pyrophoricity of coal
CN106370696B (en) * 2016-09-12 2023-10-31 西安科技大学 Temperature programming coal oxidation experimental device
CN107941690B (en) * 2017-12-20 2023-12-19 中国矿业大学(北京) Method and device for testing CO generated by coal body aiming at impact crushing effect
CN108168978A (en) * 2018-01-12 2018-06-15 西安科技大学 Coal sample manual humidification's quantification control method and device
CN110220935B (en) * 2019-07-16 2024-01-30 山西省交通规划勘察设计院有限公司 Gangue spontaneous combustion test device
CN111024757B (en) * 2019-12-10 2022-11-22 山东科技大学 Method for testing heat production characteristic of coal spontaneous combustion in pure oxidation process
CN118209587B (en) * 2024-05-22 2024-08-06 山东科技大学 Preparation method and tracing method of trace material for judging spontaneous combustion position of coal

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5011492A (en) * 1973-06-04 1975-02-05
JPS58140633A (en) * 1981-07-24 1983-08-20 Central Res Inst Of Electric Power Ind Method for monitoring spontaneous combustion of coal
JPS58150847A (en) * 1982-03-04 1983-09-07 Mitsui Mining Co Ltd Method and device for measuring heat of oxidizing reaction
JP2891648B2 (en) * 1995-03-31 1999-05-17 工業技術院長 Preparation method of coal slurry
JPH09127036A (en) * 1995-10-27 1997-05-16 Agency Of Ind Science & Technol Contact burning-type gas sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105606645A (en) * 2016-01-28 2016-05-25 西安交通大学 High-temperature step combination-performance testing device for phase-change heat storage device and testing method
CN105606645B (en) * 2016-01-28 2018-03-13 西安交通大学 A kind of high temperature step phase-transition heat-storage equipment complex performance testing device and method of testing

Also Published As

Publication number Publication date
JP2003215078A (en) 2003-07-30

Similar Documents

Publication Publication Date Title
JP3939989B2 (en) Coal exotherm test method
Vance et al. The rate of temperature rise of a subbituminous coal during spontaneous combustion in an adiabatic device: The effect of moisture content and drying methods
Küçük et al. A study of spontaneous combustion characteristics of a Turkish lignite: particle size, moisture of coal, humidity of air
Nomura et al. The mechanism of coking pressure generation I: Effect of high volatile matter coking coal, semi-anthracite and coke breeze on coking pressure and plastic coal layer permeability
TWI629102B (en) Process and device for burn-off of precious metal-containing materials
JP4086508B2 (en) Evaluation method of oxidation heat generation of coal
BRPI0618018A2 (en) process and system for the preparation of a passive carbonaceous material, processes for reducing inherent moisture and / or increasing specific energy of a carbonaceous material, for perfecting the coking characteristics of non-coking carbonaceous material, for abruptly cooling hot passive carbonized material and apparatus to passivate carbonaceous material
US20150027872A1 (en) Modified coal production equipment
JPH09157671A (en) Method for forming passivated charr by treating noncaking coal
JPS63210192A (en) Method of heat treating coal
Addai et al. Experimental investigation of limiting oxygen concentration of hybrid mixtures
JP2006520443A (en) Apparatus and method for suppressing the decomposition of germane
KR100621713B1 (en) Upgrading solid material
Jones et al. Continuity of kinetics between sub-and supercritical regimes in the oxidation of a high-volatile solid substrate
JP3706507B2 (en) Coal mill inerting method and apparatus
JP6972863B2 (en) Spontaneous combustion of coal evaluation device and evaluation method
AU2018378746B2 (en) Method for producing reformed coal
JP3935553B2 (en) Aging method of reformed coal and aged reformed coal
US9029445B2 (en) Method and composition for preventing oxidation
TW201502441A (en) Flow treatments in evaporative desorption processes
EP1101811A2 (en) Process and apparatus for regenerating waste products of high molecular compounds
RU2706935C1 (en) Blast furnace operation method
Cronauer et al. Liquefaction of partially dried and oxidized coals: 1. Coal drying and oxidation
Hirajima et al. Vacuum and atmospheric pressure TGA on an eastern Canadian coal
RU2098450C1 (en) Continuous method for processing non-coking coal to produce stable semicoke (versions)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070329

R150 Certificate of patent or registration of utility model

Ref document number: 3939989

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110406

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110406

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110406

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120406

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120406

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6