JP3939860B2 - Resin molding method - Google Patents

Resin molding method Download PDF

Info

Publication number
JP3939860B2
JP3939860B2 JP19804998A JP19804998A JP3939860B2 JP 3939860 B2 JP3939860 B2 JP 3939860B2 JP 19804998 A JP19804998 A JP 19804998A JP 19804998 A JP19804998 A JP 19804998A JP 3939860 B2 JP3939860 B2 JP 3939860B2
Authority
JP
Japan
Prior art keywords
resin
molding
mirror
pieces
molded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19804998A
Other languages
Japanese (ja)
Other versions
JP2000015676A (en
Inventor
俊宏 金松
晋哉 妹尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP19804998A priority Critical patent/JP3939860B2/en
Publication of JP2000015676A publication Critical patent/JP2000015676A/en
Application granted granted Critical
Publication of JP3939860B2 publication Critical patent/JP3939860B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、樹脂成形方法及び樹脂成形用金型に関し、詳細には、レーザー方式のディジタル複写機、レーザープリンタやファクシミリ装置の光学走査系及びビデオカメラ等の光学機器や光ディスク等に適用されるプラスチック成形品等の樹脂成形品を成形する樹脂成形方法に関する。
【0002】
【従来の技術】
プラスチックレンズや導光阪等のプラスチック成形(樹脂成形)を行う方法としては、一般に、射出成形法と射出圧縮成形法がある。
【0003】
この射出成形法は、例えば、図12示すように、金型1の温度を成形用樹脂2の軟化温度未満にした状態で、金型1の一定容積のキャビティ3内に溶融樹脂2を射出充填し、保圧を制御しながら徐冷した後、金型1を開いて成形品を取り出す方法である。
【0004】
射出圧縮成形法は、金型内の転写面を形成する転写駒を可動可能にし、金型温度を成形用樹脂の軟化温度未満にした状態で、所定容積のキャビティ内に溶融樹脂を射出充填し、保圧を制御しながら徐冷するとき、樹脂が冷却時に体積収縮するのに対応して転写駒を摺動させて樹脂に圧力を付加して、成形品の形状をより高精度に形成する方法である。
【0005】
また、従来、特開平7−148857号公報に記載されているプラスチックレンズの製造方法が提案されている。開閉可能な一対のプレス板に夫々レンズ成形型を取り付け、前記一対のプレス板を開いた状態で両レンズ成形型の間に透光性樹脂板を挿入し、次いで、前記一対のプレス板を開いた状態で前記透光性樹脂板を成形可能な温度に加熱し、次いで、前記一対のプレス板を閉じて前記透光性樹脂板を加圧し、レンズ成形型により、透光性樹脂板の圧縮成型と冷却を同時に行うようにしたことを特徴としている。
【0006】
すなわち、この従来のプラスチックレンズの製造方法は、一対のプレス板を開いた状態で透光性樹脂板を成形可能な温度に加熱した後、一対のプレス板を閉じて、透光性樹脂板の圧縮成形と冷却を同時に行っている。
【0007】
【発明が解決しようとする課題】
しかしながら、このようなプラスチックの成形方法にあっては、鏡面が複数個アレイ状や2次元的にシート状に配置された成形品を成形することが非常に難しく、特に、成形品の鏡面の数が多くなるほど、成形することが困難となる。
【0008】
すなわち、射出成形法及び射出圧縮成形法は、所定容積のキャビティ内に溶融樹脂を射出充填しているため、成形品の鏡面の数が多くなると、図13に示すように、金型1のキャビティ3の長さが長くなり、また、面積が大きくなり、キャビティ3内に射出充填される溶融樹脂2の内圧が、入り口付近で大きく、奥になるほど小さくなって、キャビティ3内の面精度が不均一になり、また、キャビティ3内の全ての領域に適切に溶融樹脂2が充填されなかったりする。その結果、成形を適切に行うことが困難になる。また、成形品の形状寸法に応じて金型や成形機が大型化したり、金型の鏡面部に有する鏡面駒がレンズ面数と同数必要となり、成形コストが高くなるという問題があった。
【0009】
また、特開平7−148857号公報記載のプラスチックレンズの製造方法に代表されるプレスで製造する製造方法にあっては、射出成形法の場合と同様に、成形コストが高くなるという問題があった。
【0010】
そこで、請求項1記載の発明は、所定の面形状がアレイ状あるいはシート状に複数並んだ成形品を成形する際に、成形する面形状に対応する鏡面部を有し相対向する状態で近接・離隔可能に、かつ、成形する面形状の数よりも少ない数だけ、所定の初期位置から仕上げ位置まで所定方向に並んで当該方向に移動可能に複数対の鏡面駒が配設され、前記鏡面駒により前記面形状が成形される部分以外の領域に前記成形時の余分な樹脂を吸収する逃げ部としての空壁が形成された固体樹脂を連続して供給し、前記複数対の鏡面駒が前記固体樹脂を順次加圧しつつ初期位置から仕上げ位置まで所定速度で移動し、仕上げ位置まで移動すると、離隔して樹脂を離脱させて成形した後、初期位置まで移動して、樹脂の成形を再度行うことにより、成形する面形状の数よりも少ない数の鏡面駒で連続する面形状を有する成形品を高精度に成形し、安価にかつ高精度にアレイ状あるいはシート状に複数並んだ成形品を成形することのできる樹脂成形方法を提供することを目的としている。
【0014】
請求項2記載の発明は、所定の面形状がアレイ状あるいはシート状に複数並んだ成形品を成形する際に、成形する面形状に対応する鏡面部を有し相対向する状態で近接・離隔可能に、かつ、成形する面形状の数よりも少ない数だけ、所定の初期位置から仕上げ位置まで所定方向に並んで当該方向に所定速度で移動可能に複数対の鏡面駒が配設され、前記鏡面駒により前記面形状が成形される部分以外の領域に前記成形時の余分な樹脂を吸収する逃げ部としての空壁が形成された所定寸法の樹脂ブロックを所定方法で接合した後、複数対の鏡面駒の移動速度に応じて成形に必要とする量ずつ初期位置に供給し、複数対の鏡面駒が、当該供給される接合された樹脂ブロックを初期位置から仕上げ位置までガラス転移以上の温度に加熱・加圧しつつ移動し、仕上げ位置まで移動すると、離隔して樹脂を離脱させて成形した後、初期位置まで移動して、樹脂の成形を再度行うことにより、成形する面形状の数よりも少ない数の鏡面駒で順次移動しつつ接合された固体の樹脂ブロックを加熱・加圧して、連続する面形状を有する成形品を高精度に成形し、安価にかつ高精度にアレイ状あるいはシート状に複数並んだ成形品を成形することのできる樹脂成形方法を提供することを目的としている。
【0015】
請求項3記載の発明は、複数対の鏡面駒を、接合された樹脂ブロックをガラス転移以上の温度に加熱させつつ所定の厚みまで加圧を行わせながら、初期位置から仕上げ位置方向に移動し、その後、仕上げ位置まで移動する間に、樹脂を熱変形温度以下の温度まで冷却することにより、温度変化を滑らかにして、より一層高精度に連続する面形状を有する成形品を成形し、安価にかつより一層高精度にアレイ状あるいはシート状に複数並んだ成形品を成形することのできる樹脂成形方法を提供することを目的としている。
【0016】
請求項4記載の発明は、樹脂ブロックの接合を加熱溶着により行うことにより、樹脂ブロックを安価にかつ適切に接合して、安価にかつ高精度にアレイ状あるいはシート状に複数並んだ成形品を成形することのできる樹脂成形方法を提供することを目的としている。
【0017】
請求項5記載の発明は、樹脂ブロックの接合を超音波振動を利用して行うことにより、樹脂ブロックをより安価にかつ適切に接合して、安価にかつ高精度にアレイ状あるいはシート状に複数並んだ成形品を成形することのできる樹脂成形方法を提供することを目的としている。
【0018】
請求項6記載の発明は、樹脂ブロックの接合を接着剤を利用して行うことにより、樹脂ブロックをより安価にかつ適切に接合して、安価にかつ高精度にアレイ状あるいはシート状に複数並んだ成形品を成形することのできる樹脂成形方法を提供することを目的としている。
【0020】
【課題を解決するための手段】
請求項1記載の発明の樹脂成形方法は、所定の面形状がアレイ状あるいはシート状に複数並んだ成形品を成形する樹脂成形方法であって、前記成形する面形状に対応する鏡面部を有し相対向する状態で近接・離隔可能に配設された鏡面駒が、前記成形する面形状の数よりも少ない数だけ、所定の初期位置から仕上げ位置まで所定方向に並んで当該方向に移動可能に配設され、前記鏡面駒により前記面形状が成形される部分以外の領域に前記成形時の余分な樹脂を吸収する逃げ部としての空壁が形成された固体樹脂を連続して供給し、前記複数対の鏡面駒が前記固体樹脂を順次加圧しつつ前記初期位置から前記仕上げ位置まで所定速度で移動し、前記仕上げ位置まで移動すると、離隔して前記樹脂を離脱させて成形した後、前記初期位置まで移動して、前記樹脂の成形を再度行うことにより、上記目的を達成している。
【0021】
上記構成によれば、所定の面形状がアレイ状あるいはシート状に複数並んだ成形品を成形する際に、成形する面形状に対応する鏡面部を有し相対向する状態で近接・離隔可能に、かつ、成形する面形状の数よりも少ない数だけ、所定の初期位置から仕上げ位置まで所定方向に並んで当該方向に移動可能に複数対の鏡面駒が配設され、当該複数対の鏡面駒が、前記鏡面駒により前記面形状が成形される部分以外の領域に前記成形時の余分な樹脂を吸収する逃げ部としての空壁が形成され連続して供給される固体樹脂を順次加圧しつつ初期位置から仕上げ位置まで所定速度で移動し、仕上げ位置まで移動すると、離隔して樹脂を離脱させて成形した後、初期位置まで移動して、樹脂の成形を再度行うので、成形する面形状の数よりも少ない数の鏡面駒で連続する面形状を有する成形品を高精度に成形することができ、安価にかつ高精度にアレイ状あるいはシート状に複数並んだ成形品を成形することができる。
また、成形前の樹脂を、鏡面駒により面形状が成形される部分以外の領域に前記成形時の余分な樹脂を吸収する逃げ部としての空壁が形成された固体としているので、成形品に不要な樹脂がはみ出すことを防止することができ、成形品の品質をより一層向上させることができる。
【0028】
請求項2記載の発明の樹脂成形方法は、所定の面形状がアレイ状あるいはシート状に複数並んだ成形品を成形する樹脂成形方法であって、前記成形する面形状に対応する鏡面部を有し相対向する状態で近接・離隔可能に配設された鏡面駒が、前記成形する面形状の数よりも少ない数だけ、所定の初期位置から仕上げ位置まで所定方向に並んで当該方向に所定速度で移動可能に配設され、前記鏡面駒により前記面形状が成形される部分以外の領域に前記成形時の余分な樹脂を吸収する逃げ部としての空壁が形成された所定寸法の樹脂ブロックを所定方法で接合した後、前記複数対の鏡面駒の移動速度に応じて成形に必要とする量ずつ前記初期位置に供給し、前記複数対の鏡面駒が、当該供給される接合された樹脂ブロックを前記初期位置から前記仕上げ位置までガラス転移以上の温度に加熱・加圧しつつ前記移動速度で移動し、前記仕上げ位置まで移動すると、離隔して前記樹脂を離脱させて成形した後、前記初期位置まで移動して、前記樹脂の成形を再度行うことにより、上記目的を達成している。
【0029】
上記構成によれば、所定の面形状がアレイ状あるいはシート状に複数並んだ成形品を成形する際に、成形する面形状に対応する鏡面部を有し相対向する状態で近接・離隔可能に、かつ、成形する面形状の数よりも少ない数だけ、所定の初期位置から仕上げ位置まで所定方向に並んで当該方向に所定速度で移動可能に複数対の鏡面駒が配設され、前記鏡面駒により前記面形状が成形される部分以外の領域に前記成形時の余分な樹脂を吸収する逃げ部としての空壁が形成された所定寸法の樹脂ブロックを所定方法で接合した後、複数対の鏡面駒の移動速度に応じて成形に必要とする量ずつ初期位置に供給し、複数対の鏡面駒が、当該供給される接合された樹脂ブロックを初期位置から仕上げ位置までガラス転移以上の温度に加熱・加圧しつつ移動し、仕上げ位置まで移動すると、離隔して樹脂を離脱させて成形した後、初期位置まで移動して、樹脂の成形を再度行うので、成形する面形状の数よりも少ない数の鏡面駒で順次移動しつつ接合された固体の樹脂ブロックを加熱・加圧して、連続する面形状を有する成形品を高精度に成形することができ、安価にかつ高精度にアレイ状あるいはシート状に複数並んだ成形品を成形することができる。
また、成形前の樹脂を、鏡面駒により面形状が成形される部分以外の領域に前記成形時の余分な樹脂を吸収する逃げ部としての空壁が形成された固体としているので、成形品に不要な樹脂がはみ出すことを防止することができ、成形品の品質をより一層向上させることができる。
【0030】
この場合、例えば、請求項3に記載するように、前記複数対の鏡面駒は、前記接合された樹脂ブロックを前記ガラス転移以上の温度に加熱しつつ所定の厚みまで加圧を行いながら、前記初期位置から前記仕上げ位置方向に移動し、その後、前記仕上げ位置まで移動する間に、前記樹脂を熱変形温度以下の温度まで冷却してもよい。
【0031】
上記構成によれば、複数対の鏡面駒を、接合された樹脂ブロックをガラス転移以上の温度に加熱させつつ所定の厚みまで加圧を行わせながら、初期位置から仕上げ位置方向に移動し、その後、仕上げ位置まで移動する間に、樹脂を熱変形温度以下の温度まで冷却しているので、温度変化を滑らかにして、より一層高精度に連続する面形状を有する成形品を成形することができ、安価にかつより一層高精度にアレイ状あるいはシート状に複数並んだ成形品を成形することができる。
【0032】
また、例えば、請求項4に記載するように、前記樹脂ブロックの接合を加熱溶着により行ってもよい。
【0033】
上記構成によれば、樹脂ブロックの接合を加熱溶着により行っているので、樹脂ブロックを安価にかつ適切に接合することができ、安価にかつ高精度にアレイ状あるいはシート状に複数並んだ成形品を成形することができる。
【0034】
さらに、例えば、請求項5に記載するように、前記樹脂ブロックの接合を超音波振動を利用して行ってもよい。
【0035】
上記構成によれば、樹脂ブロックの接合を超音波振動を利用して行っているので、樹脂ブロックをより安価にかつ適切に接合することができ、安価にかつ高精度にアレイ状あるいはシート状に複数並んだ成形品を成形することができる。
【0036】
また、例えば、請求項6に記載するように、前記樹脂ブロックの接合を接着剤を利用して行ってもよい。
【0037】
上記構成によれば、樹脂ブロックの接合を接着剤を利用して行っているので、樹脂ブロックをより安価にかつ適切に接合することができ、安価にかつ高精度にアレイ状あるいはシート状に複数並んだ成形品を成形することができる。
【0040】
【発明の実施の形態】
以下、本発明の好適な実施の形態を添付図面に基づいて詳細に説明する。なお、以下に述べる実施の形態は、本発明の好適な実施の形態であるから、技術的に好ましい種々の限定が付されているが、本発明の範囲は、以下の説明において特に本発明を限定する旨の記載がない限り、これらの態様に限られるものではない。
【0041】
図1及び図2は、本発明の樹脂成形方法の鏡面駒の移動を説明するための図であり、その構成は、鏡面加工部に溶融樹脂を連続供給して、鏡面加工部で並んで配設された鏡面駒でアレイ状に複数の鏡面を有する成形品を成形するもので、請求項1に対応するものである。
ただし、供給する樹脂は説明の煩雑さを防ぐため、一般的な板状の樹脂を用いて説明してある。
【0042】
図1は、本発明の樹脂成形方法に用いる樹脂成形装置10の要部正面断面図である。
【0043】
図1において、樹脂成形装置10は、押し出し部11及び鏡面加工部12等を備えており、押し出し部11と鏡面加工部12とは、樹脂供給路13により接続されている。
【0044】
押し出し部11は、ガラス転移温度以上に加熱された溶融樹脂14を連続的に押し出し、樹脂供給路13を通して、鏡面加工部12に溶融樹脂14を連続的に供給する。
【0045】
鏡面加工部12は、複数の下部鏡面駒15a〜15fと複数の上部鏡面駒16a〜16fを備えており、下部鏡面駒15a〜15fと上部鏡面駒16a〜16fは、それぞれ対となって相対向する状態で配設されて、当該相対向する面が鏡面状に形成されている。各下部鏡面駒15a〜15fと上部鏡面駒16a〜16fは、それぞれ図示しない保持機構に保持されて、図1において鏡面加工部12の左端である初期位置(図1中▲2▼の位置)で相対向する状態に配置されて押し出し部11から供給される溶融樹脂14を鏡面に成形しつつ、図1に矢印で示すように左方向から右方向に順次所定の一定速度で移動されるとともに、図1において鏡面加工部12の右端の仕上げ位置(図1中▲6▼の位置)まで移動すると、保持機構により図1に矢印で示すようにそれぞれ下方向及び上方向に移動されて離隔し、離隔した状態で、再度、図1に矢印で示すように左端の初期位置に移動されて、上記同様に溶融樹脂14の成形を行う。
【0046】
次に、上記装置の作用を説明する。樹脂成形装置10は、成形時、押し出し部11から溶融樹脂14を連続的に押し出して樹脂供給路13を通して鏡面加工部12に供給する。この溶融樹脂14は、例えば、ポリカーボネート等であり、押し出し部11から押し出された直後では、約270℃に加熱されており、鏡面加工部12の直前では、約200℃になっていて、ガラス転移温度以上で、十分塑性加工が可能な温度となっている。
【0047】
鏡面加工部12は、押し出し部11から溶融樹脂14が樹脂供給路13を通して供給されると、初期位置の下部鏡面駒15a〜15fと上部鏡面駒16a〜16fで供給されてきた溶融樹脂14を加圧しつつ初期位置から、溶融樹脂14を正規のレンズの肉厚になるまで樹脂14を徐々に加圧しながら仕上げ位置方向に一定速度で移動し、初期位置の下部鏡面駒15a〜15fと上部鏡面駒16a〜16fが図1中▲3▼の位置に移動すると、▲7▼の位置の下部鏡面駒15a〜15fと上部鏡面駒16a〜16fが▲2▼の初期位置に移動して、押し出し部11から供給される溶融樹脂14を、上記同様に、加圧しつつ初期位置から仕上げ位置方向に一定速度で移動する。
【0048】
上記動作処理を連続して行い、下部鏡面駒15a〜15fと上部鏡面駒16a〜16fは、初期位置から仕上げ位置まで一定速度で移動する間に、溶融樹脂14を正規のレンズの肉厚になるまで徐々に加圧する。
【0049】
また、この場合、下部鏡面駒15a〜15f及び上部鏡面駒16a〜16fがガラス転移温度以上に加熱されているときには、初期位置から仕上げ位置まで移動する間に温度を徐々に下げて、仕上げ位置に到達する時点で、熱変形温度以下にまで冷却する。そして、押し出し部11が鏡面加工部12に供給する溶融樹脂14の供給量と下部鏡面駒15a〜15f及び上部鏡面駒16a〜16fが移動する速度とを、一定状態としている。
【0050】
鏡面加工部12の下部鏡面駒15a〜15fと上部鏡面駒16a〜16fは、上記動作を行って仕上げ位置まで移動すると、それぞれ下方及び上方に移動して、樹脂14から離れ、再度、初期位置に移動して、上記同様のレンズ加工動作処理を行う。そして、下部鏡面駒15a〜15f及び上部鏡面駒16a〜16fは、仕上げ位置で樹脂14から離れた後、初期位置に戻るまでの間に、再度、所定の温度まで加熱される。
【0051】
そして、上記動作処理において、樹脂14は、例えば、ポリカーボネートの場合、図2に示すように、押し出し部11から樹脂供給路13に押し出された直後である図1の▲1▼の位置では、ガラス転移温度以上である270℃程度に加熱されて溶融しており、鏡面加工部12の初期位置に供給された時点で、ガラス転移温度以上である約200℃になっている。ガラス転移温度以上の状態で下部鏡面駒15a〜15f及び上部鏡面駒16a〜16fにより加圧されて、一定速度で移動している間に、仕上げ位置の手前の位置である▲5▼の位置では、熱変形温度以下の温度である約130℃に冷却されている。そして、樹脂14は、仕上げ位置で下部鏡面駒15a〜15f及び上部鏡面駒16a〜16fから離脱されると、急激に温度が低下して室温まで低下する。
【0052】
したがって、溶融樹脂14は、鏡面加工部12で、下部鏡面駒15a〜15fと上部鏡面駒16a〜16fとにより正規のレンズの肉厚になるまで所定時間かけて初期位置から仕上げ位置まで移動する間に連続的に徐々に加圧されるとともに、熱変形温度以下の温度まで冷却される。その結果、樹脂成形装置10は、小型で安価な装置で、所定の長さを有したレンズ(鏡面)を有した成形品を連続して、精度良く成形することができる。
【0053】
そして、上記工程処理を順次繰り返し行うことにより、成形する鏡面の数よりも少ない数の下部鏡面駒15a〜15fと上部鏡面駒16a〜16fで多数のレンズ(鏡面)を有する成形品を成形することができ、小型で安価な樹脂成形装置20で精度良くレンズ(鏡面)を有した成形品を連続して成形することができる。
【0054】
この場合、下部鏡面駒15a〜15fと上部鏡面駒16a〜16fは、最低限度2個ずつあれば、成形を行うことができるが、下部鏡面駒15a〜15fと上部鏡面駒16a〜16fの数が少ないと樹脂14を十分冷却することができず、温度分布の影響からレンズ面を壊すおそれがあり、また、下部鏡面駒15a〜15fと上部鏡面駒16a〜16fの数が少ないと、生産性が低下し、下部鏡面駒15a〜15fと上部鏡面駒16a〜16fは、多いほど精度良くかつ効率的に成形することができる。例えば、1組の下部鏡面駒15a〜15fと上部鏡面駒16a〜16fでレンズ加工を行う時間が20秒であるとすると、200面のレンズを成形するのに、2組の下部鏡面駒15a〜15fと上部鏡面駒16a〜16fを用いて成形すると、成形時間は、2000秒かかることとなり、50組の下部鏡面駒15a〜15fと上部鏡面駒16a〜16fを用いて成形すると、成形時間は、80秒で済むことになる。
【0055】
したがって、下部鏡面駒15a〜15fと上部鏡面駒16a〜16fの数は、成形する鏡面の数と生産コストから適宜設定する。
【0056】
このように、樹脂成形装置10を用いると、成形品が連続的に得られるため、切断箇所で必要な鏡面の面数を自由に得ることができ、射出成形と比較すると、鏡面の面数に応じた金型や成形機を揃える必要がなく、成形コストを大幅に削減することができる。また、射出成形では、樹脂の冷却・固化の影響により樹脂の流動長や圧力分布が発生して、充填不良が生じたり、形状精度が悪化し、成形品の長さの限定を余儀なくされる。ところが、上記樹脂成形装置10は、樹脂14を順次連続して加工するため、形状精度の良好な長尺の成形を効率的に行うことができ、成形品の品質を向上させることができる。
【0057】
さらに、樹脂成形装置10は、下部鏡面駒15a〜15fと上部鏡面駒16a〜16fの温度上昇や冷却を穏やかに行うことができ、温度分布や圧力分布を低減して、内部歪や屈折率分布を低減させて、収縮率のバラツキを低減させることができる。その結果、成形品の品質をより一層向上させることができる。
【0058】
なお、樹脂成形装置10においては、下部鏡面駒15a〜15f及び上部鏡面駒16a〜16fを初期位置から仕上げ位置まで移動させる間に、徐々に冷却させているが、温度制御は、上記方法に限るものではなく、例えば、下部鏡面駒15a〜15fと上部鏡面駒16a〜16fの温度を、初期位置から所定の位置までは、ガラス転移温度に加熱し、その後、仕上げ位置まで移動する間に熱変形温度以下に冷却するようにしても良い。このようにすると、より一層高精度に鏡面を成形することができる。
【0059】
図3及び図4は、樹脂成形装置の他の態様を示す図であり、成形素材として、樹脂ブロックを繋ぎ合わせた後、アレイ状に複数の鏡面を有する成形品を成形するもので、請求項2から請求項6に対応するものである。
【0060】
図3は、本発明の樹脂成形方法に用いる樹脂成形装置20の正面断面図である。
【0061】
図3において、樹脂成形装置20は、樹脂ブロック供給部21、接合部22及び鏡面加工部23等を備えており、樹脂ブロック供給部21が接合部22に供給した樹脂ブロックを接合部22で接合して、鏡面加工部23で接合された樹脂を鏡面加工する。
【0062】
樹脂ブロック供給部21は、所定の大きさの固化状態の樹脂ブロック24を順次接合部22に供給する。この樹脂ブロック24は、樹脂ブロック24の繋ぎ目がレンズ面(鏡面)とならないようにするために、成形するレンズのピッチの倍数の長さを有していることが望ましい。
【0063】
接合部22は、加熱押圧部25a、25bを備えており、樹脂ブロック供給部21から供給される樹脂ブロック24の端面を加熱押圧部25a、25bで加熱溶着により順次接合して、樹脂ブロック24を連続した樹脂26として、鏡面加工部23に供給する。
【0064】
この接合部22は、樹脂ブロック24を加熱溶着により接合するものに限るものではなく、例えば、超音波振動を利用した超音波溶着あるいは接着剤による接着等で接合するものであっても良い。
【0065】
鏡面加工部23は、上記樹脂成形装置10の鏡面加工部12と同様に、複数の下部鏡面駒27a〜27fと複数の上部鏡面駒28a〜28fを備えており、下部鏡面駒27a〜27fと上部鏡面駒28a〜28fは、それぞれ対となって相対向する状態で配設されて、当該相対向する面が鏡面状に形成されている。各下部鏡面駒27a〜27fと上部鏡面駒28a〜28fは、それぞれ図示しない保持機構に保持されて、図3において鏡面加工部23の左端である初期位置(図3中(3)の位置)で相対向する状態に配置されて接合部22から供給される樹脂26を鏡面に成形しつつ、図3に矢印で示すように、左方向から右方向に順次所定の一定速度で移動されるとともに、図3において鏡面加工部23の右端である仕上げ位置(図3中(7)の位置)まで移動すると、図3に矢印で示すように、保持機構によりそれぞれ下方向及び上方向に移動されて離隔し、離隔した状態で、再度、図3に矢印で示すように左端の初期位置に移動されて、上記同様に樹脂26の成形を行う。
【0066】
また、鏡面加工部23は、図示しないが、下部鏡面駒27a〜27fと上部鏡面駒28a〜28fを個別に温度制御する温度制御機構を備えており、温度制御機構は、各下部鏡面駒27a〜27fと上部鏡面駒28a〜28fを、初期位置で所定のガラス転移温度以上の温度に加熱するとともに、所定量移動する間は当該ガラス転移温度以上の温度に保持して、その後仕上げ位置まで移動する間に冷却し、再度、当該下部鏡面駒27a〜27fと上部鏡面駒28a〜28fが初期位置に移動されるまでの間にガラス転移温度以上の温度に加熱する。
【0067】
次に、上記装置の作用を説明する。樹脂成形装置20は、成形時、樹脂ブロック供給部21が樹脂ブロック24を順次接合部22に供給し、接合部22は、樹脂ブロック供給部21から供給される樹脂ブロック24の端面を接合して、連続した樹脂26として鏡面加工部23に供給する。この樹脂ブロック24は、例えば、ポリカーボネート等であり、接合部22で加熱溶着により180℃のガラス転移温度以上に加熱されて溶着される。
【0068】
鏡面加工部23は、接合部22から連続した樹脂26が供給されると、初期位置の下部鏡面駒27a〜27fと上部鏡面駒28a〜28fで供給されてきた樹脂26をガラス転移温度以上の温度まで加熱しつつ加圧しして、初期位置(図3中▲3▼の位置)から、樹脂26を正規のレンズの肉厚になるまで樹脂26を加熱保温しつつ徐々に加圧しながら仕上げ位置(図3中▲7▼の位置)方向に一定速度で移動し、図3中▲5▼の位置を通過すると、温度制御機構により下部鏡面駒27a〜27fと上部鏡面駒28a〜28fを冷却して徐々に温度を低下させて、仕上げ位置の手前の位置である▲6▼の位置では、熱変形温度以下の温度に低下させる。
【0069】
その後、鏡面加工部23は、下部鏡面駒27a〜27fと上部鏡面駒28a〜28fを、冷却しつつ移動させて、仕上げ位置に移動させると、下部鏡面駒27a〜27fと上部鏡面駒28a〜28fを、図3に矢印で示すように、下方向及び上方向に移動させて樹脂26から離し、図3に▲8▼で示す位置を経由して初期位置に戻す。このとき、鏡面加工部23は、下部鏡面駒27a〜27fと上部鏡面駒28a〜28fを仕上げ位置から初期位置に戻す間に、下部鏡面駒27a〜27fと上部鏡面駒28a〜28fをガラス転移温度以上の温度に加熱する。
【0070】
上記動作処理を連続して行い、下部鏡面駒27a〜27fと上部鏡面駒28a〜28fは、初期位置から仕上げ位置まで一定速度で移動する間に、樹脂26を正規のレンズの肉厚になるまで徐々に加圧する。また、この場合、下部鏡面駒27a〜27f及び上部鏡面駒28a〜28fを初期位置においてガラス転移温度以上に加熱して、初期位置から▲5▼の位置までガラス転移温度以上の温度に維持し、その後、仕上げ位置まで移動する間に冷却して、仕上げ位置に到達する時点で、熱変形温度以下にまで冷却する。そして、樹脂ブロック供給部21から接合部22に供給した樹脂ブロック24を接合部22で接合して樹脂と26として鏡面加工部23に供給する樹脂26の供給量と下部鏡面駒27a〜27f及び上部鏡面駒28a〜28fが移動する速度とを、一定状態としている。
【0071】
そして、上記動作処理において、樹脂26は、例えば、ポリカーボネートの場合、図4に示すように、樹脂ブロック供給部21から接合部22に供給される▲1▼の位置で、室温であり、接合部22では、図4に▲2▼の位置の温度として示すように、加熱溶着により一時ガラス転移温度以上に加熱されるが、鏡面加工部23に搬送される間に室温に低下する。その後、鏡面加工部23の初期位置の下部鏡面駒27a〜27f及び上部鏡面駒28a〜28fがガラス転移温度以上に加熱されているため、図4に▲3▼の位置の温度として示しているように、樹脂26は、ガラス転移温度以上に加熱され、図3の▲5▼の位置を通過するまでガラス転移温度以上に保持される。その後、樹脂26は、図4に▲5▼の位置の温度から▲6▼の位置の温度として示すように、熱変形温度以下の温度である約130℃に冷却され、さらに、冷却されて、図4に▲7▼の位置の温度として示すように、仕上げ位置で下部鏡面駒27a〜27f及び上部鏡面駒28a〜28fから離脱される時点では、熱変形温度と室温の間の温度にまで低下する。
【0072】
したがって、樹脂26は、鏡面加工部23で、下部鏡面駒27a〜27fと上部鏡面駒28a〜28fとにより正規のレンズの肉厚になるまで所定時間かけて初期位置から仕上げ位置まで移動する間に連続的に徐々に加圧されるとともに、ガラス転移温度以上に加熱された後、熱変形温度以下の温度まで徐々に冷却される。その結果、樹脂成形装置20は、小型で安価な装置で、所定の長さを有したレンズ(鏡面)を有した成形品を連続して、精度良く成形することができる。
【0073】
そして、上記工程処理を順次繰り返し行うことにより、鏡面の数よりも少ない数の下部鏡面駒27a〜27fと上部鏡面駒28a〜28fで多数のレンズ(鏡面)を有する成形品を成形することができ、小型安価な樹脂成形装置20で精度良くレンズを有した成形品を連続して成形することができる。
【0074】
この場合も、上記樹脂成形装置10と同様に、下部鏡面駒27a〜27fと上部鏡面駒28a〜28fは、最低限度2個ずつあれば、成形を行うことができるが、下部鏡面駒27a〜27fと上部鏡面駒28a〜28fの数が少ないと樹脂26を十分冷却することができず、温度分布の影響から鏡面を壊すおそれがあり、また、下部鏡面駒27a〜27fと上部鏡面駒28a〜28fの数が少ないと、生産性が低下し、下部鏡面駒27a〜27fと上部鏡面駒28a〜28fは、多いほど精度良くかつ効率的に成形することができる。
【0075】
したがって、下部鏡面駒27a〜27fと上部鏡面駒28a〜28fの数は、成形する鏡面の面数と生産コストから適宜設定する。
【0076】
このように、樹脂成形装置20を用いると、成形品が連続的に得られるため、切断箇所で必要な鏡面の面数を自由に得ることができ、射出成形と比較すると、鏡面の面数に応じた金型や成形機を揃える必要がなく、成形コストを大幅に削減することができる。また、射出成形では、樹脂の冷却・固化の影響により樹脂の流動長や圧力分布が発生して、充填不良が生じたり、形状精度が悪化し、成形品の長さの限定を余儀なくされる。ところが、上記樹脂成形装置20は、樹脂26を順次連続して加工するため、形状精度の良好な長尺の成形を効率的に行うことができ、成形品の品質を向上させることができる。
【0077】
さらに、樹脂成形装置20は、下部鏡面駒27a〜27fと上部鏡面駒28a〜28fの温度上昇や冷却を穏やかに行うことができ、温度分布や圧力分布を低減して、内部歪や屈折率分布を低減させて、収縮率のバラツキを低減させることができる。その結果、成形品の品質をより一層向上させることができる。
【0078】
図5〜図8は、本発明の樹脂成形方法の実施の形態を示す図であり、本実施の形態は、樹脂ブロックに鏡面を有する成形品を形成する際に、当該樹脂ブロックに余分な樹脂を逃がすための逃げ部として空壁を形成したもので、請求項1および請求項2に対応するものである。
【0079】
図5は、本発明の樹脂成形方法の実施の形態を適用した樹脂成形装置30の要部斜視図である。
【0080】
図5において、樹脂成形装置30は、図示しない樹脂ブロック供給部と相対向する位置に配設された複数の下部鏡面駒31と上部鏡面駒32を備えた鏡面加工部33とを備えており、樹脂ブロック供給部は、シート状の樹脂ブロック34を鏡面加工部33に供給する。
【0081】
このシート状樹脂ブロック34は、鏡面形成部34aと鏡面形成部34aの間に、成型時の余分な樹脂を逃がすための空壁(逃げ部)35が形成されている。
【0082】
この樹脂成形装置30は、鏡面形成部34aと鏡面形成部34aの間に空壁35の形成されたシート状樹脂ブロック34を樹脂ブロック供給部から鏡面加工部33に搬送し、鏡面加工部33が、図6に示すように、相対向する下部鏡面駒31と上部鏡面駒32によりシート状樹脂ブロック34を加圧・加熱して、シート状樹脂ブロック34に鏡面を成形する。
【0083】
このとき、シート状樹脂ブロック34には、この鏡面の成形される鏡面形成部34aと鏡面形成部34aの間に、成型時の余分な樹脂を逃がすための空壁35が形成されているため、図7に示すように、鏡面形成部34aと鏡面形成部34aの間に余分な樹脂が空壁35に逃げて、盛り上がらず、成形品の品質を向上させることができる。
【0084】
すなわち、図8に示すように、シート状樹脂ブロック36が、鏡面形成部36aと鏡面形成部36aの間に、余分な成型時の樹脂を逃がすための空壁が形成されていないと、このシート状樹脂ブロック36を、図9に示すように、下部鏡面駒31と上部鏡面駒32により加熱加圧して鏡面を形成する際、図10に示すように、合い隣接する下部鏡面駒31と上部鏡面駒32の間に余分な樹脂37が溜まって、成形品の鏡面形成部36aと鏡面形成部36bの間に、余分な樹脂37が盛り上がった状態となる。そのため、成形品の光学特性に影響を与えたり、組み付け時に邪魔になるおそれがある。
【0085】
ところが、本実施の形態の樹脂成形装置30は、シート状樹脂ブロック34の鏡面形成部34aと鏡面形成部34aの間に空壁35を形成しているため、上述のように、鏡面加工部33で下部鏡面駒31と上部鏡面駒32により加熱加圧した際、余分な樹脂が空壁35ないに逃げ、余分な樹脂が盛り上がることを防止することができる。その結果、成形品の光学特性を向上させることができるとともに、組み付け時の邪魔になることを防止して、組み付け作業の作業性を向上させることができる。
【0086】
なお、上記実施の形態においては、球面を成形する場合について説明したが、成形する面は、球面に限るものではなく、例えば、図11に示すように、下部鏡面駒41が角形状を形成する角型鏡面駒であり、上部鏡面駒42が球面を成形する球型鏡面駒であってもよく、さらに、他の形状であっても良い。
【0087】
以上、本発明者によってなされた発明を好適な実施の形態に基づき具体的に説明したが、本発明は上記のものに限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。
【0088】
【発明の効果】
請求項1記載の発明の樹脂成形方法によれば、所定の面形状がアレイ状あるいはシート状に複数並んだ成形品を成形する際に、成形する面形状に対応する鏡面部を有し相対向する状態で近接・離隔可能に、かつ、成形する面形状の数よりも少ない数だけ、所定の初期位置から仕上げ位置まで所定方向に並んで当該方向に移動可能に複数対の鏡面駒が配設され、前記鏡面駒により前記面形状が成形される部分以外の領域に前記成形時の余分な樹脂を吸収する逃げ部としての空壁が形成された固体樹脂を連続して供給し、前記複数対の鏡面駒が前記固体樹脂を順次加圧しつつ初期位置から仕上げ位置まで所定速度で移動し、仕上げ位置まで移動すると、離隔して樹脂を離脱させて成形した後、初期位置まで移動して、樹脂の成形を再度行うので、成形する面形状の数よりも少ない数の鏡面駒で連続する面形状を有する成形品を高精度に成形することができ、安価にかつ高精度にアレイ状あるいはシート状に複数並んだ成形品を成形することができる。
また、成形前の樹脂を、鏡面駒により面形状が成形される部分以外の領域に前記成形時の余分な樹脂を吸収する逃げ部としての空壁が形成された固体としているので、成形品に不要な樹脂がはみ出すことを防止することができ、成形品の品質をより一層向上させることができる。
【0092】
請求項2記載の発明の樹脂成形方法によれば、所定の面形状がアレイ状あるいはシート状に複数並んだ成形品を成形する際に、成形する面形状に対応する鏡面部を有し相対向する状態で近接・離隔可能に、かつ、成形する面形状の数よりも少ない数だけ、所定の初期位置から仕上げ位置まで所定方向に並んで当該方向に所定速度で移動可能に複数対の鏡面駒が配設され、前記鏡面駒により前記面形状が成形される部分以外の領域に前記成形時の余分な樹脂を吸収する逃げ部としての空壁が形成された所定寸法の樹脂ブロックを所定方法で接合した後、複数対の鏡面駒の移動速度に応じて成形に必要とする量ずつ初期位置に供給し、複数対の鏡面駒が、当該供給される接合された樹脂ブロックを初期位置から仕上げ位置までガラス転移以上の温度に加熱・加圧しつつ移動し、仕上げ位置まで移動すると、離隔して樹脂を離脱させて成形した後、初期位置まで移動して、樹脂の成形を再度行うので、成形する面形状の数よりも少ない数の鏡面駒で順次移動しつつ接合された固体の樹脂ブロックを加熱・加圧して、連続する面形状を有する成形品を高精度に成形することができ、安価にかつ高精度にアレイ状あるいはシート状に複数並んだ成形品を成形することができる。
また、成形前の樹脂を、鏡面駒により面形状が成形される部分以外の領域に前記成形時の余分な樹脂を吸収する逃げ部としての空壁が形成された固体としているので、成形品に不要な樹脂がはみ出すことを防止することができ、成形品の品質をより一層向上させることができる。
【0093】
請求項3記載の発明の樹脂成形方法によれば、複数対の鏡面駒を、接合された樹脂ブロックをガラス転移以上の温度に加熱させつつ所定の厚みまで加圧を行わせながら、初期位置から仕上げ位置方向に移動し、その後、仕上げ位置まで移動する間に、樹脂を熱変形温度以下の温度まで冷却しているので、温度変化を滑らかにして、より一層高精度に連続する面形状を有する成形品を成形することができ、安価にかつより一層高精度にアレイ状あるいはシート状に複数並んだ成形品を成形することができる。
【0094】
請求項4記載の発明の樹脂成形方法によれば、樹脂ブロックの接合を加熱溶着により行っているので、樹脂ブロックを安価にかつ適切に接合することができ、安価にかつ高精度にアレイ状あるいはシート状に複数並んだ成形品を成形することができる。
【0095】
請求項5記載の発明の樹脂成形方法によれば、樹脂ブロックの接合を超音波振動を利用して行っているので、樹脂ブロックをより安価にかつ適切に接合することができ、安価にかつ高精度にアレイ状あるいはシート状に複数並んだ成形品を成形することができる。
【0096】
請求項6記載の発明の樹脂成形方法によれば、樹脂ブロックの接合を接着剤を利用して行っているので、樹脂ブロックをより安価にかつ適切に接合することができ、安価にかつ高精度にアレイ状あるいはシート状に複数並んだ成形品を成形することができる。
【図面の簡単な説明】
【図1】本発明の樹脂成形方法に用いる樹脂成形装置の要部正面断面図。
【図2】図1の射出成形装置の各部での樹脂の温度変化を示す図。
【図3】本発明の樹脂成形方法に用いる樹脂成形装置の要部正面断面図。
【図4】図3の射出成形装置の各部での樹脂の温度変化を示す図。
【図5】本発明の樹脂成形方法の実施の形態を適用した樹脂成形装置の要部斜視図。
【図6】図5の樹脂成形装置により空壁の形成されているシート状樹脂ブロックの加熱・加圧を開始した状態の要部拡大正面断面図。
【図7】図6の樹脂成形装置により空壁の形成されているシート状樹脂ブロックの加熱・加圧を完了した状態の要部拡大正面断面図。
【図8】図5の樹脂成形装置により空壁の形成されていないシート状樹脂ブロックの成形を行う状態の要部斜視図。
【図9】図8の樹脂成形装置より空壁の形成されていないシート状樹脂ブロックの加熱・加圧を開始した状態の要部拡大正面断面図。
【図10】図9の樹脂成形装置により空壁の形成されていないシート状樹脂ブロックの加熱・加圧を完了した状態の要部拡大正面断面図。
【図11】鏡面形状の異なる鏡面駒の他の例を示す要部拡大正面断面図。
【図12】従来の射出成形装置の正面断面図。
【図13】従来の大型化した射出成形装置の正面断面図。
【符号の説明】
10 樹脂成形装置
11 押し出し部
12 鏡面加工部
13 樹脂供給路
14 溶融樹脂
15a〜15f 下部鏡面駒
16a〜16f 上部鏡面駒
20 樹脂成形装置
21 樹脂ブロック供給部
22 接合部
23 鏡面加工部
24 樹脂ブロック
25a、25b 加熱押圧部
26 樹脂
27a〜27f 下部鏡面駒
28a〜28f 上部鏡面駒
30 樹脂成形装置
31 下部鏡面駒
32 上部鏡面駒
33 鏡面加工部
34a 鏡面形成部
35 空壁
[0001]
BACKGROUND OF THE INVENTION
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a resin molding method and a resin molding die, and more specifically, a plastic applied to a laser digital copying machine, an optical scanning system of a laser printer or a facsimile machine, an optical device such as a video camera, an optical disk, or the like. The present invention relates to a resin molding method for molding a resin molded product such as a molded product.
[0002]
[Prior art]
Generally, there are an injection molding method and an injection compression molding method as a method of plastic molding (resin molding) such as plastic lenses and light guides.
[0003]
In this injection molding method, for example, as shown in FIG. 12, the molten resin 2 is injected and filled into the cavity 3 of a fixed volume of the mold 1 with the temperature of the mold 1 being lower than the softening temperature of the molding resin 2. Then, after gradually cooling while controlling the holding pressure, the mold 1 is opened and the molded product is taken out.
[0004]
In the injection compression molding method, the transfer piece that forms the transfer surface in the mold is movable, the molten resin is injected and filled into a cavity of a predetermined volume with the mold temperature being lower than the softening temperature of the molding resin. When slowly cooling while controlling the holding pressure, the shape of the molded product is formed with higher accuracy by applying pressure to the resin by sliding the transfer piece in response to the volume shrinkage of the resin during cooling. Is the method.
[0005]
Conventionally, a method for manufacturing a plastic lens described in Japanese Patent Laid-Open No. 7-148857 has been proposed. A lens mold is attached to each of the pair of press plates that can be opened and closed. With the pair of press plates open, a translucent resin plate is inserted between both lens molds, and then the pair of press plates is opened. The translucent resin plate is heated to a temperature at which the translucent resin plate can be molded, and then the pair of press plates are closed to pressurize the translucent resin plate, and the translucent resin plate is compressed by a lens mold. It is characterized by performing molding and cooling at the same time.
[0006]
That is, in this conventional method for producing a plastic lens, a pair of press plates is opened and heated to a temperature at which the translucent resin plate can be molded, and then the pair of press plates are closed to form a translucent resin plate. Compression molding and cooling are performed simultaneously.
[0007]
[Problems to be solved by the invention]
However, in such a plastic molding method, it is very difficult to mold a molded product in which a plurality of mirror surfaces are arranged in an array or two-dimensionally in the form of a sheet, and in particular, the number of mirror surfaces of the molded product. As the amount increases, it becomes more difficult to mold.
[0008]
That is, in the injection molding method and the injection compression molding method, since the molten resin is injected and filled into the cavity of a predetermined volume, when the number of mirror surfaces of the molded product increases, as shown in FIG. 3 becomes longer, the area becomes larger, and the internal pressure of the molten resin 2 injected and filled in the cavity 3 becomes larger near the entrance and becomes smaller toward the back, resulting in poor surface accuracy in the cavity 3. It becomes uniform, and the molten resin 2 may not be properly filled in all areas in the cavity 3. As a result, it becomes difficult to perform molding appropriately. In addition, there is a problem that a mold or a molding machine is increased in size according to the shape and size of the molded product, or the same number of specular pieces as the number of lens surfaces is provided on the mirror surface portion of the mold, which increases the molding cost.
[0009]
In addition, in the manufacturing method manufactured by a press represented by the manufacturing method of a plastic lens described in JP-A-7-148857, there is a problem that the molding cost becomes high as in the case of the injection molding method. .
[0010]
  Therefore, the invention described in claim 1 has a mirror surface portion corresponding to the shape of the surface to be formed and faces each other when forming a molded product in which a plurality of predetermined surface shapes are arranged in an array or a sheet. A plurality of pairs of specular pieces are disposed so as to be separable and movable in a predetermined direction from a predetermined initial position to a finishing position by a number smaller than the number of surface shapes to be molded,Continuously supplying a solid resin in which an empty wall is formed as an escape portion that absorbs excess resin during molding in a region other than the portion where the surface shape is molded by the mirror piece,Multiple pairs of mirror piecesIs the solidMove the resin from the initial position to the finishing position at a predetermined speed while sequentially pressurizing the resin, move to the finishing position, move away to form the resin, move to the initial position, and re-mold the resin Can form a molded product with a continuous surface shape with a smaller number of mirror pieces than the number of surface shapes to be molded with high accuracy, and form a plurality of molded products arranged in an array or a sheet with high accuracy at low cost. It aims at providing the resin molding method which can do.
[0014]
  Claim 2In the described invention, when molding a molded product in which a plurality of predetermined surface shapes are arranged in an array shape or a sheet shape, it has a mirror surface portion corresponding to the surface shape to be molded, and can be approached and separated in a state of facing each other. In addition, a plurality of pairs of specular pieces are arranged in a predetermined direction from a predetermined initial position to a finishing position by a number smaller than the number of surface shapes to be molded so as to be movable at a predetermined speed in the direction,An empty wall is formed as an escape portion that absorbs excess resin at the time of molding in a region other than the portion where the surface shape is molded by the mirror piece.After joining the resin blocks of a predetermined size by a predetermined method, the amount required for molding is supplied to the initial position according to the moving speed of the plurality of pairs of mirror surface pieces, and the plurality of pairs of mirror surface pieces are joined to be supplied When the resin block is moved from the initial position to the finishing position while heating and pressurizing to a temperature higher than the glass transition, and moved to the finishing position, the resin is separated and released to form, and then moved to the initial position to move the resin block. By re-molding, heat and pressurize the solid resin blocks that are joined while sequentially moving with a smaller number of mirror pieces than the number of surface shapes to be molded, resulting in highly accurate molded products with continuous surface shapes. It is an object of the present invention to provide a resin molding method capable of molding a plurality of molded products arranged in an array or a sheet at low cost and with high accuracy.
[0015]
  Claim 3The described invention moves a plurality of pairs of mirror pieces from the initial position toward the finishing position while applying pressure to a predetermined thickness while heating the bonded resin block to a temperature above the glass transition, While moving to the finishing position, the resin is cooled to a temperature equal to or lower than the thermal deformation temperature, thereby smoothing the temperature change and molding a molded product having a continuous surface shape with higher accuracy. It is an object of the present invention to provide a resin molding method capable of molding a plurality of molded products arranged in an array or a sheet with higher accuracy.
[0016]
  Claim 4In the described invention, by joining the resin blocks by heat welding, the resin blocks are joined at low cost and appropriately, and a plurality of molded products arranged in an array or a sheet are formed at low cost and with high accuracy. It aims at providing the resin molding method which can be performed.
[0017]
  Claim 5In the described invention, the resin blocks are joined by using ultrasonic vibration, so that the resin blocks are joined more inexpensively and appropriately, and a plurality of arrays or sheets are formed at low cost and with high accuracy. It aims at providing the resin molding method which can shape | mold a product.
[0018]
  Claim 6The described invention is a molded product in which a plurality of resin blocks are arranged in an array or a sheet at a low cost and with high accuracy by joining resin blocks more inexpensively and appropriately by using an adhesive. It aims at providing the resin molding method which can shape | mold.
[0020]
[Means for Solving the Problems]
  The resin molding method according to claim 1 is a resin molding method for molding a molded product in which a plurality of predetermined surface shapes are arranged in an array shape or a sheet shape, and has a mirror surface portion corresponding to the surface shape to be molded. However, the mirror pieces arranged so as to be able to approach and separate from each other in a state of being opposed to each other can be moved in the predetermined direction from the predetermined initial position to the finishing position by a smaller number than the number of the surface shapes to be formed. Arranged inContinuously supplying a solid resin in which an empty wall is formed as an escape portion that absorbs excess resin during molding in a region other than the portion where the surface shape is molded by the mirror piece,Multiple pairs of mirror piecesIs the solidThe resin moves at a predetermined speed from the initial position to the finishing position while sequentially pressurizing the resin. After moving to the finishing position, the resin is separated and separated from the resin, and then moved to the initial position. The above object is achieved by performing the molding again.
[0021]
  According to the above configuration, when molding a molded product in which a plurality of predetermined surface shapes are arranged in an array shape or a sheet shape, it has a mirror surface portion corresponding to the surface shape to be molded and can be close to and separated from each other. In addition, a plurality of pairs of mirror surfaces are arranged in a predetermined direction from a predetermined initial position to a finishing position and movable in that direction by a number smaller than the number of surface shapes to be molded, and the plurality of pairs of mirror surfaces But,A solid wall that is continuously supplied with an empty wall formed as an escape portion that absorbs excess resin at the time of molding in a region other than a portion where the surface shape is molded by the mirror piece.Since the resin is moved at a predetermined speed from the initial position to the finishing position while sequentially pressurizing the resin, and moved to the finishing position, the resin is separated and molded after being moved, and then moved to the initial position and the resin is molded again. A molded product having a continuous surface shape with a smaller number of mirror pieces than the number of surface shapes to be molded can be formed with high precision, and a plurality of molded products arranged in an array or a sheet with high accuracy at low cost Can be molded.
  In addition, since the resin before molding is a solid in which a hollow wall is formed as a relief portion that absorbs excess resin at the time of molding in a region other than the portion where the surface shape is molded by the mirror piece, Unnecessary resin can be prevented from protruding, and the quality of the molded product can be further improved.
[0028]
  Claim 2The resin molding method according to the invention is a resin molding method for molding a molded product in which a plurality of predetermined surface shapes are arranged in an array shape or a sheet shape, and has a mirror surface portion corresponding to the surface shape to be molded. The number of mirror pieces arranged so that they can be moved close to and separated from each other can be moved in a predetermined direction from a predetermined initial position to a finishing position in a predetermined direction by a number smaller than the number of surface shapes to be molded. Arranged inAn empty wall is formed as an escape portion that absorbs excess resin at the time of molding in a region other than the portion where the surface shape is molded by the mirror piece.After the resin blocks having a predetermined size are joined by a predetermined method, an amount necessary for molding is supplied to the initial position according to the moving speed of the plurality of pairs of mirror pieces, and the plurality of pairs of mirror pieces are supplied. The bonded resin block was moved from the initial position to the finishing position while being heated and pressurized at a temperature higher than the glass transition at the moving speed, and when moved to the finishing position, the resin was separated and molded. Thereafter, the object is achieved by moving to the initial position and molding the resin again.
[0029]
  According to the above configuration, when molding a molded product in which a plurality of predetermined surface shapes are arranged in an array shape or a sheet shape, it has a mirror surface portion corresponding to the surface shape to be molded and can be close to and separated from each other. In addition, a plurality of pairs of specular pieces are arranged so as to be movable at a predetermined speed in a predetermined direction along a predetermined direction from a predetermined initial position to a finishing position by a number smaller than the number of surface shapes to be molded,An empty wall is formed as an escape portion that absorbs excess resin at the time of molding in a region other than the portion where the surface shape is molded by the mirror piece.After joining the resin blocks of a predetermined size by a predetermined method, the amount required for molding is supplied to the initial position according to the moving speed of the plurality of pairs of mirror surface pieces, and the plurality of pairs of mirror surface pieces are joined to be supplied When the resin block is moved from the initial position to the finishing position while heating and pressurizing to a temperature higher than the glass transition, and moved to the finishing position, the resin is separated and released to form, and then moved to the initial position to move the resin block. Since molding is performed again, the solid resin blocks that are joined while moving sequentially with a smaller number of mirror pieces than the number of surface shapes to be molded are heated and pressurized to accurately form molded products with continuous surface shapes. A plurality of molded products arranged in an array or a sheet can be molded at low cost and with high accuracy.
  In addition, since the resin before molding is a solid in which a hollow wall is formed as a relief portion that absorbs excess resin at the time of molding in a region other than the portion where the surface shape is molded by the mirror piece, Unnecessary resin can be prevented from protruding, and the quality of the molded product can be further improved.
[0030]
  In this case, for example,Claim 3As described in the above, the plurality of pairs of specular pieces are pressed from the initial position toward the finishing position while pressing the bonded resin block to a predetermined thickness while heating the bonded resin block to a temperature equal to or higher than the glass transition. The resin may be cooled to a temperature equal to or lower than the thermal deformation temperature while moving to the finishing position.
[0031]
According to the above configuration, the plurality of pairs of mirror pieces are moved from the initial position toward the finishing position while being pressed to a predetermined thickness while heating the bonded resin block to a temperature higher than the glass transition, and then Since the resin is cooled to a temperature equal to or lower than the heat distortion temperature while moving to the finishing position, it is possible to smooth the temperature change and mold a molded product having a continuous surface shape with higher accuracy. Thus, a plurality of molded products arranged in an array or a sheet can be formed at low cost and with higher accuracy.
[0032]
  For example,Claim 4As described in the above, the resin block may be joined by heat welding.
[0033]
According to the above configuration, since the resin blocks are joined by heat welding, the resin blocks can be joined inexpensively and appropriately, and a plurality of molded products arranged in an array or a sheet at a low cost and with high accuracy. Can be molded.
[0034]
  In addition, for example,Claim 5As described in (1), the resin block may be joined using ultrasonic vibration.
[0035]
According to the above configuration, since the resin blocks are joined using ultrasonic vibration, the resin blocks can be joined more inexpensively and appropriately, and at low cost and with high accuracy in an array shape or a sheet shape. A plurality of molded products can be molded.
[0036]
  For example,Claim 6As described in (1), the resin block may be joined using an adhesive.
[0037]
According to the above configuration, since the resin blocks are joined using the adhesive, the resin blocks can be joined more inexpensively and appropriately, and a plurality of inexpensively and accurately arrayed or sheet-shaped. Lined molded products can be molded.
[0040]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of the invention will be described in detail with reference to the accompanying drawings. The embodiments described below are preferred embodiments of the present invention, and thus various technically preferable limitations are given. However, the scope of the present invention is particularly limited in the following description. As long as there is no description which limits, it is not restricted to these aspects.
[0041]
  1 and 2 show the resin molding method of the present invention.To explain the movement of the mirror pieceFigureIts configuration isThe molten resin is continuously supplied to the mirror surface processing portion, and a molded product having a plurality of mirror surfaces in an array shape is formed by mirror surface pieces arranged side by side in the mirror surface processing portion.Claim 1Corresponding.
  However, the resin to be supplied is described using a general plate-like resin in order to prevent the explanation from being complicated.
[0042]
  FIG. 1 shows a resin molding method of the present invention.Used for2 is a front cross-sectional view of a main part of a resin molding apparatus 10. FIG.
[0043]
In FIG. 1, the resin molding apparatus 10 includes an extrusion unit 11 and a mirror surface processing unit 12. The extrusion unit 11 and the mirror surface processing unit 12 are connected by a resin supply path 13.
[0044]
The extruding unit 11 continuously extrudes the molten resin 14 heated to the glass transition temperature or higher, and continuously supplies the molten resin 14 to the mirror surface processing unit 12 through the resin supply path 13.
[0045]
The mirror surface processing unit 12 includes a plurality of lower mirror surface pieces 15a to 15f and a plurality of upper mirror surface pieces 16a to 16f. The lower mirror surface pieces 15a to 15f and the upper mirror surface pieces 16a to 16f are opposed to each other in pairs. The surfaces facing each other are formed in a mirror shape. Each of the lower specular pieces 15a to 15f and the upper specular pieces 16a to 16f is held by a holding mechanism (not shown), and is at the initial position (the position indicated by (2) in FIG. 1), which is the left end of the mirror processing unit 12 in FIG. While being formed in a mirror surface with the molten resin 14 disposed in a state of being opposed to each other and fed from the extruding part 11, it is sequentially moved from the left direction to the right direction at a predetermined constant speed as indicated by an arrow in FIG. In FIG. 1, when it moves to the finishing position at the right end of the mirror surface processing part 12 (position 6 in FIG. 1), it is moved downward and upward as indicated by arrows in FIG. In the separated state, it is moved again to the initial position at the left end as shown by the arrow in FIG. 1, and the molten resin 14 is molded in the same manner as described above.
[0046]
  next,Of the above equipmentThe operation will be described. The resin molding apparatus 10 continuously extrudes the molten resin 14 from the extrusion unit 11 and supplies it to the mirror surface processing unit 12 through the resin supply path 13 during molding. The molten resin 14 is, for example, polycarbonate or the like, and is heated to about 270 ° C. immediately after being extruded from the extrusion portion 11, and is about 200 ° C. immediately before the mirror-finishing portion 12, so that the glass transition Above the temperature, the temperature is sufficiently plastic working.
[0047]
When the molten resin 14 is supplied from the extrusion unit 11 through the resin supply path 13, the mirror surface processing unit 12 adds the molten resin 14 supplied by the lower mirror surface pieces 15a to 15f and the upper mirror surface pieces 16a to 16f at the initial position. While pressing, the molten resin 14 is moved at a constant speed in the direction of the finishing position while gradually pressing the resin 14 until the thickness of the regular lens is reached, and the lower mirror piece 15a to 15f and the upper mirror piece at the initial position are moved. When 16a to 16f are moved to the position (3) in FIG. 1, the lower mirror piece 15a to 15f and the upper mirror piece 16a to 16f at the position (7) are moved to the initial position (2), and the pushing portion 11 is moved. In the same manner as described above, the molten resin 14 supplied from is moved from the initial position to the finishing position at a constant speed while being pressurized.
[0048]
The above-described operation processing is continuously performed, and the lower mirror surface pieces 15a to 15f and the upper mirror surface pieces 16a to 16f move the molten resin 14 to the thickness of the regular lens while moving at a constant speed from the initial position to the finishing position. Gradually pressurize.
[0049]
In this case, when the lower specular pieces 15a to 15f and the upper specular pieces 16a to 16f are heated to the glass transition temperature or higher, the temperature is gradually lowered while moving from the initial position to the finishing position, so that the finishing position is reached. When it reaches, it cools below the heat distortion temperature. And the supply amount of the molten resin 14 which the extrusion part 11 supplies to the mirror surface process part 12 and the speed which the lower mirror surface pieces 15a-15f and the upper mirror surface pieces 16a-16f move are made into the constant state.
[0050]
When the lower specular pieces 15a to 15f and the upper specular pieces 16a to 16f of the mirror surface processing unit 12 move to the finishing position by performing the above operation, they move downward and upward, respectively, move away from the resin 14, and return to the initial position again. The lens processing operation process similar to the above is performed. Then, the lower mirror surface pieces 15a to 15f and the upper mirror surface pieces 16a to 16f are heated to a predetermined temperature again after being separated from the resin 14 at the finishing position and before returning to the initial position.
[0051]
In the above operation process, for example, in the case of polycarbonate, the resin 14 is glass at the position (1) in FIG. 1 immediately after being pushed out from the pushing portion 11 to the resin supply path 13 as shown in FIG. It is heated and melted to about 270 ° C., which is higher than the transition temperature, and is about 200 ° C., which is higher than the glass transition temperature, when it is supplied to the initial position of the mirror finish portion 12. In the state of (5), which is a position before the finishing position, while being pressed by the lower specular pieces 15a to 15f and the upper specular pieces 16a to 16f and moving at a constant speed in the state above the glass transition temperature. It is cooled to about 130 ° C., which is a temperature below the heat distortion temperature. When the resin 14 is detached from the lower specular pieces 15a to 15f and the upper specular pieces 16a to 16f at the finishing position, the temperature rapidly decreases to room temperature.
[0052]
Therefore, while the molten resin 14 moves from the initial position to the finishing position in the mirror surface processing portion 12 over a predetermined time until the thickness of the regular lens is reached by the lower mirror surface pieces 15a to 15f and the upper mirror surface pieces 16a to 16f. The pressure is continuously and gradually increased and the temperature is lowered to a temperature equal to or lower than the heat distortion temperature. As a result, the resin molding apparatus 10 is a small and inexpensive apparatus that can continuously and accurately mold a molded product having a lens (mirror surface) having a predetermined length.
[0053]
Then, by repeatedly performing the above process steps, a molded product having a large number of lenses (mirror surfaces) is formed with the lower mirror surface pieces 15a to 15f and the upper mirror surface pieces 16a to 16f which are smaller than the number of mirror surfaces to be formed. Therefore, a molded product having a lens (mirror surface) can be continuously formed with high accuracy by the small and inexpensive resin molding apparatus 20.
[0054]
In this case, the lower mirror piece 15a to 15f and the upper mirror piece 16a to 16f can be formed as long as there are at least two pieces, but the number of the lower mirror pieces 15a to 15f and the upper mirror pieces 16a to 16f is the same. If the amount is small, the resin 14 cannot be sufficiently cooled, and the lens surface may be broken due to the influence of the temperature distribution, and if the number of the lower specular pieces 15a to 15f and the upper specular pieces 16a to 16f is small, the productivity is increased. The lower mirror surface pieces 15a to 15f and the upper mirror surface pieces 16a to 16f can be formed more accurately and efficiently as the number of the lower mirror surface pieces 15a to 15f and the upper mirror surface pieces 16a to 16f increases. For example, if the time for lens processing with one set of lower specular pieces 15a to 15f and upper specular pieces 16a to 16f is 20 seconds, two sets of lower specular pieces 15a to 15 are formed to form a 200-side lens. If molding is performed using 15f and upper mirror pieces 16a to 16f, the molding time will be 2000 seconds. If molding is performed using 50 sets of lower mirror pieces 15a to 15f and upper mirror pieces 16a to 16f, the molding time is It will take 80 seconds.
[0055]
Therefore, the number of the lower specular pieces 15a to 15f and the upper specular pieces 16a to 16f is appropriately set based on the number of mirror surfaces to be molded and the production cost.
[0056]
  As described above, when the resin molding apparatus 10 is used, a molded product can be continuously obtained. Therefore, the number of mirror surfaces required at the cutting portion can be freely obtained. Compared with injection molding, the number of mirror surfaces can be increased. There is no need to prepare suitable molds and molding machines, and molding costs can be greatly reduced. Further, in injection molding, the flow length and pressure distribution of the resin are generated due to the cooling and solidification of the resin, resulting in poor filling, and the shape accuracy is deteriorated, and the length of the molded product is inevitably limited. However,the aboveSince the resin molding apparatus 10 processes the resin 14 sequentially and continuously, it can efficiently perform long molding with good shape accuracy and improve the quality of the molded product.
[0057]
Further, the resin molding apparatus 10 can gently raise and cool the lower mirror pieces 15a to 15f and the upper mirror pieces 16a to 16f, reduce temperature distribution and pressure distribution, and reduce internal strain and refractive index distribution. And the variation in shrinkage rate can be reduced. As a result, the quality of the molded product can be further improved.
[0058]
  In addition,Resin molding device 10, While the lower mirror pieces 15a to 15f and the upper mirror pieces 16a to 16f are gradually cooled from the initial position to the finishing position, the temperature control is not limited to the above method. The temperature of the lower specular pieces 15a to 15f and the upper specular pieces 16a to 16f is heated to the glass transition temperature from the initial position to a predetermined position, and then cooled to the heat deformation temperature or lower while moving to the finishing position. Anyway. In this way, the mirror surface can be formed with higher accuracy.
[0059]
  3 and 4 areOther aspects of resin molding equipmentIs a diagram showingAs a molding material,After joining the resin blocks, the molded product having a plurality of mirror surfaces in an array shape is formed.Claims 2 to 6It corresponds to.
[0060]
  FIG. 3 shows the resin molding method of the present invention.Used for2 is a front sectional view of a resin molding device 20. FIG.
[0061]
In FIG. 3, the resin molding apparatus 20 includes a resin block supply unit 21, a bonding unit 22, a mirror surface processing unit 23, and the like, and the resin block supplied to the bonding unit 22 by the resin block supply unit 21 is bonded at the bonding unit 22. Then, the resin bonded by the mirror surface processing unit 23 is mirror-finished.
[0062]
The resin block supply unit 21 sequentially supplies a solid state resin block 24 having a predetermined size to the joint unit 22. The resin block 24 preferably has a length that is a multiple of the pitch of the lens to be molded so that the joint of the resin block 24 does not become a lens surface (mirror surface).
[0063]
The joining portion 22 includes heating and pressing portions 25a and 25b. The end faces of the resin block 24 supplied from the resin block supply portion 21 are sequentially joined by heat welding at the heating pressing portions 25a and 25b. The continuous resin 26 is supplied to the mirror processing unit 23.
[0064]
This joining part 22 is not restricted to what joins the resin block 24 by heat welding, For example, it may join by ultrasonic welding using ultrasonic vibration, adhesion | attachment by an adhesive agent, etc.
[0065]
  The mirror surface processing unit 23 isResin molding device 10Similarly to the mirror surface processing section 12, a plurality of lower mirror surface pieces 27a to 27f and a plurality of upper mirror surface pieces 28a to 28f are provided, and the lower mirror surface pieces 27a to 27f and the upper mirror surface pieces 28a to 28f are respectively paired. The surfaces facing each other are formed in a mirror shape. Each of the lower specular pieces 27a to 27f and the upper specular pieces 28a to 28f are respectively held by a holding mechanism (not shown), and at an initial position (position (3) in FIG. 3) which is the left end of the mirror finish portion 23 in FIG. While being arranged in a state of being opposed to each other and molding the resin 26 supplied from the joint portion 22 into a mirror surface, as shown by arrows in FIG. 3, the resin is moved sequentially from the left direction to the right direction at a predetermined constant speed, In FIG. 3, when it moves to the finishing position (position (7) in FIG. 3) which is the right end of the mirror surface processing portion 23, it is moved downward and upward by the holding mechanism as shown by arrows in FIG. Then, in the separated state, the resin 26 is moved again to the initial position at the left end as shown by the arrow in FIG. 3, and the resin 26 is molded in the same manner as described above.
[0066]
Although not shown, the mirror surface processing unit 23 includes a temperature control mechanism for individually controlling the temperature of the lower mirror surface pieces 27a to 27f and the upper mirror surface pieces 28a to 28f. The temperature control mechanism includes the lower mirror surface pieces 27a to 27f. 27f and the upper mirror pieces 28a to 28f are heated to a temperature equal to or higher than a predetermined glass transition temperature at an initial position, and maintained at a temperature equal to or higher than the glass transition temperature while moving a predetermined amount, and then moved to a finishing position. Then, the lower mirror surface pieces 27a to 27f and the upper mirror surface pieces 28a to 28f are heated again to a temperature equal to or higher than the glass transition temperature until they are moved to the initial positions.
[0067]
  next,The above deviceThe operation of will be described. In the resin molding apparatus 20, during molding, the resin block supply unit 21 sequentially supplies the resin block 24 to the joint unit 22, and the joint unit 22 joins the end surface of the resin block 24 supplied from the resin block supply unit 21. Then, it is supplied as a continuous resin 26 to the mirror surface processing unit 23. The resin block 24 is, for example, polycarbonate or the like, and is heated and welded to a glass transition temperature of 180 ° C. or more by heat welding at the joint portion 22.
[0068]
When the continuous resin 26 is supplied from the joint 22 to the mirror surface processing unit 23, the resin 26 supplied by the lower mirror surface pieces 27a to 27f and the upper mirror surface pieces 28a to 28f at the initial position is heated to a temperature equal to or higher than the glass transition temperature. And pressurizing while heating until the resin 26 is heated and kept warm until it reaches the thickness of the regular lens from the initial position (position 3 in FIG. 3). After moving at a constant speed in the direction (7) in FIG. 3 and passing the position (5) in FIG. 3, the temperature control mechanism cools the lower mirror pieces 27a to 27f and the upper mirror pieces 28a to 28f. The temperature is gradually lowered to a temperature equal to or lower than the heat distortion temperature at the position {circle around (6)} which is the position before the finishing position.
[0069]
After that, when the mirror surface processing unit 23 moves the lower mirror surface pieces 27a to 27f and the upper mirror surface pieces 28a to 28f to the finishing position while cooling, the lower mirror surface pieces 27a to 27f and the upper mirror surface pieces 28a to 28f are moved. 3 is moved downward and upward as indicated by arrows in FIG. 3 to be separated from the resin 26, and returned to the initial position via the position indicated by (8) in FIG. At this time, the mirror surface processing unit 23 sets the lower mirror surface pieces 27a to 27f and the upper mirror surface pieces 28a to 28f to the glass transition temperature while returning the lower mirror surface pieces 27a to 27f and the upper mirror surface pieces 28a to 28f from the finishing position to the initial position. Heat to the above temperature.
[0070]
The above-described operation process is continuously performed, and while the lower specular pieces 27a to 27f and the upper specular pieces 28a to 28f move at a constant speed from the initial position to the finishing position, the resin 26 is changed to the thickness of the regular lens. Apply pressure gradually. In this case, the lower specular pieces 27a to 27f and the upper specular pieces 28a to 28f are heated to the glass transition temperature or higher at the initial position, and maintained at the glass transition temperature or higher from the initial position to the position (5). Then, it cools while moving to a finishing position, and when reaching a finishing position, it cools to below a heat deformation temperature. Then, the resin block 24 supplied from the resin block supply part 21 to the joint part 22 is joined at the joint part 22, and the supply amount of the resin 26 to be supplied to the mirror-finishing part 23 as the resin 26 and the lower mirror pieces 27 a to 27 f and the upper part The speed at which the mirror pieces 28a to 28f move is set to a constant state.
[0071]
In the above operation process, for example, in the case of polycarbonate, the resin 26 is at room temperature at the position {circle around (1)} that is supplied from the resin block supply part 21 to the joint part 22 as shown in FIG. At 22, as shown by the temperature at position (2) in FIG. 4, it is heated to a temperature higher than the temporary glass transition temperature by heat welding, but falls to room temperature while being transported to the mirror finishing section 23. Thereafter, the lower specular pieces 27a to 27f and the upper specular pieces 28a to 28f at the initial position of the mirror surface processing unit 23 are heated to the glass transition temperature or higher, so that the temperature shown in FIG. In addition, the resin 26 is heated to a temperature higher than the glass transition temperature, and is maintained at the glass transition temperature or higher until it passes the position (5) in FIG. Thereafter, the resin 26 is cooled to about 130 ° C., which is equal to or lower than the thermal deformation temperature, as shown in FIG. 4 from the temperature at the position (5) to the temperature at the position (6). As shown in FIG. 4 as the temperature at position (7), at the time of separation from the lower specular pieces 27a to 27f and the upper specular pieces 28a to 28f at the finishing position, the temperature drops to a temperature between the thermal deformation temperature and room temperature. To do.
[0072]
Therefore, the resin 26 is moved from the initial position to the finishing position in the mirror surface processing unit 23 over a predetermined time until the thickness of the regular lens is reached by the lower mirror surface pieces 27a to 27f and the upper mirror surface pieces 28a to 28f. While being gradually and gradually pressurized, after being heated above the glass transition temperature, it is gradually cooled to a temperature below the heat distortion temperature. As a result, the resin molding apparatus 20 is a small and inexpensive apparatus that can continuously and accurately mold a molded product having a lens (mirror surface) having a predetermined length.
[0073]
Then, by sequentially repeating the above process, a molded product having a large number of lenses (mirror surfaces) can be formed with the lower mirror pieces 27a to 27f and the upper mirror pieces 28a to 28f, which are smaller than the number of mirror surfaces. The molded product having the lens can be continuously molded with high accuracy by the small and inexpensive resin molding apparatus 20.
[0074]
  Again, the aboveResin molding device 10Similarly to the above, the lower mirror piece 27a to 27f and the upper mirror piece 28a to 28f can be formed as long as there are at least two pieces, but the number of the lower mirror pieces 27a to 27f and the upper mirror pieces 28a to 28f is the same. If the amount of resin is small, the resin 26 cannot be cooled sufficiently, and the mirror surface may be broken due to the influence of the temperature distribution, and if the number of the lower mirror surface pieces 27a to 27f and the upper mirror surface pieces 28a to 28f is small, the productivity is increased. The lower mirror surface pieces 27a to 27f and the upper mirror surface pieces 28a to 28f can be formed more accurately and efficiently as the number of lower mirror surface pieces 27a to 27f and upper mirror surface pieces 28a to 28f increases.
[0075]
Therefore, the number of the lower specular pieces 27a to 27f and the upper specular pieces 28a to 28f is appropriately set based on the number of mirror surfaces to be molded and the production cost.
[0076]
  As described above, when the resin molding apparatus 20 is used, a molded product can be continuously obtained. Therefore, the number of mirror surfaces necessary at the cut portion can be freely obtained. Compared with injection molding, the number of mirror surfaces can be increased. There is no need to prepare suitable molds and molding machines, and molding costs can be greatly reduced. Further, in injection molding, the flow length and pressure distribution of the resin are generated due to the cooling and solidification of the resin, resulting in poor filling, and the shape accuracy is deteriorated, and the length of the molded product is inevitably limited. However,the aboveResin molding equipment20Since the resin 26 is processed sequentially and continuously, it is possible to efficiently perform long molding with good shape accuracy and improve the quality of the molded product.
[0077]
Furthermore, the resin molding apparatus 20 can gently raise and cool the temperature of the lower specular pieces 27a to 27f and the upper specular pieces 28a to 28f, reduce the temperature distribution and pressure distribution, and reduce the internal strain and refractive index distribution. And the variation in shrinkage rate can be reduced. As a result, the quality of the molded product can be further improved.
[0078]
  5 to 8,BookInvention resin molding methodThe fruitIn this embodiment, when a molded product having a mirror surface is formed on a resin block, an empty wall is formed as an escape portion for allowing excess resin to escape in the resin block. ,Claims 1 and 2It corresponds to.
[0079]
  FIG. 5 shows the resin molding method of the present invention.The fruitIt is a principal part perspective view of the resin molding apparatus 30 to which embodiment is applied.
[0080]
In FIG. 5, the resin molding apparatus 30 includes a plurality of lower mirror surface pieces 31 and a mirror surface processing portion 33 provided with upper mirror surface pieces 32 disposed at positions opposed to a resin block supply unit (not shown). The resin block supply unit supplies the sheet-like resin block 34 to the mirror surface processing unit 33.
[0081]
In this sheet-like resin block 34, an empty wall (escape portion) 35 is formed between the mirror surface forming portion 34a and the mirror surface forming portion 34a for releasing excess resin during molding.
[0082]
This resin molding apparatus 30 conveys the sheet-like resin block 34 in which the empty wall 35 is formed between the mirror surface forming part 34a and the mirror surface forming part 34a from the resin block supply part to the mirror surface processing part 33, and the mirror surface processing part 33 As shown in FIG. 6, the sheet-shaped resin block 34 is pressurized and heated by the lower mirror surface piece 31 and the upper mirror surface piece 32 facing each other, and a mirror surface is formed on the sheet-shaped resin block 34.
[0083]
At this time, the sheet-like resin block 34 is formed with an empty wall 35 for releasing excess resin during molding between the mirror surface forming portion 34a and the mirror surface forming portion 34a on which the mirror surface is formed. As shown in FIG. 7, excess resin escapes to the empty wall 35 between the mirror surface forming portion 34 a and the mirror surface forming portion 34 a and does not rise, so that the quality of the molded product can be improved.
[0084]
That is, as shown in FIG. 8, if the sheet-like resin block 36 is not formed with an empty wall between the mirror surface forming portion 36a and the mirror surface forming portion 36a for releasing excess resin during molding, this sheet is used. 9, when forming a mirror surface by heating and pressing the lower mirror piece 31 and the upper mirror piece 32 as shown in FIG. 9, the lower mirror piece 31 and the upper mirror surface adjacent to each other as shown in FIG. Excess resin 37 accumulates between the pieces 32, and the excess resin 37 rises between the mirror surface forming portion 36a and the mirror surface forming portion 36b of the molded product. For this reason, there is a risk of affecting the optical characteristics of the molded product or obstructing the assembly.
[0085]
However, since the resin molding apparatus 30 according to the present embodiment forms the empty wall 35 between the mirror surface forming portion 34a and the mirror surface forming portion 34a of the sheet-like resin block 34, as described above, the mirror surface processing portion 33 is formed. Thus, when the lower mirror surface piece 31 and the upper mirror surface piece 32 are heated and pressurized, it is possible to prevent the excess resin from escaping without the empty wall 35 and rising. As a result, it is possible to improve the optical characteristics of the molded product and to prevent the hindrance during the assembly, thereby improving the workability of the assembly work.
[0086]
  The aboveRealIn the embodiment, the case where the spherical surface is formed has been described. However, the surface to be molded is not limited to the spherical surface. For example, as shown in FIG. 11, a rectangular mirror surface in which the lower mirror piece 41 forms a square shape. The upper mirror surface piece 42 may be a spherical mirror surface piece that forms a spherical surface, and may have another shape.
[0087]
The invention made by the present inventor has been specifically described based on the preferred embodiments. However, the present invention is not limited to the above, and various modifications can be made without departing from the scope of the invention. Needless to say.
[0088]
【The invention's effect】
  According to the resin molding method of the first aspect of the present invention, when molding a molded product in which a plurality of predetermined surface shapes are arranged in an array shape or a sheet shape, the mirror surface portion corresponding to the surface shape to be molded is opposed to each other. A plurality of pairs of specular pieces are arranged so that they can be moved close to and separated from each other in a state that is smaller than the number of surface shapes to be molded in a predetermined direction from a predetermined initial position to a finishing position. AndContinuously supplying a solid resin in which an empty wall is formed as an escape portion that absorbs excess resin during molding in a region other than the portion where the surface shape is molded by the mirror piece,Multiple pairs of mirror piecesIs the solidSince the resin is moved at a predetermined speed from the initial position to the finishing position while sequentially pressurizing the resin, and moved to the finishing position, the resin is separated and molded after being moved, and then moved to the initial position and the resin is molded again. A molded product having a continuous surface shape with a smaller number of mirror pieces than the number of surface shapes to be molded can be formed with high precision, and a plurality of molded products arranged in an array or a sheet with high accuracy at low cost Can be molded.
  In addition, since the resin before molding is a solid in which a hollow wall is formed as a relief portion that absorbs excess resin at the time of molding in a region other than the portion where the surface shape is molded by the mirror piece, Unnecessary resin can be prevented from protruding, and the quality of the molded product can be further improved.
[0092]
  Claim 2According to the resin molding method of the described invention, when molding a molded product in which a plurality of predetermined surface shapes are arranged in an array shape or a sheet shape, it has a mirror surface portion corresponding to the surface shape to be molded and faces each other. Plural pairs of mirror pieces are arranged so that they can be moved close to and separated from each other and less than the number of surface shapes to be molded, aligned in a predetermined direction from a predetermined initial position to a finishing position and moved in that direction at a predetermined speed. AndAn empty wall is formed as an escape portion that absorbs excess resin at the time of molding in a region other than the portion where the surface shape is molded by the mirror piece.After joining the resin blocks of a predetermined size by a predetermined method, the amount required for molding is supplied to the initial position according to the moving speed of the plurality of pairs of mirror surface pieces, and the plurality of pairs of mirror surface pieces are joined to be supplied When the resin block is moved from the initial position to the finishing position while heating and pressurizing to a temperature higher than the glass transition, and moved to the finishing position, the resin is separated and released to form, and then moved to the initial position to move the resin block. Since molding is performed again, the solid resin blocks that are joined while moving sequentially with a smaller number of mirror pieces than the number of surface shapes to be molded are heated and pressurized to accurately form molded products with continuous surface shapes. A plurality of molded products arranged in an array or a sheet can be molded at low cost and with high accuracy.
  In addition, since the resin before molding is a solid in which a hollow wall is formed as a relief portion that absorbs excess resin at the time of molding in a region other than the portion where the surface shape is molded by the mirror piece, Unnecessary resin can be prevented from protruding, and the quality of the molded product can be further improved.
[0093]
  Claim 3According to the resin molding method of the described invention, a plurality of pairs of mirror pieces are heated from the initial position to the finishing position direction while pressing the bonded resin blocks to a predetermined thickness while heating them to a temperature above the glass transition. Since the resin is cooled to a temperature equal to or lower than the thermal deformation temperature while moving to the finishing position, a molded product having a continuous surface shape with smoother temperature changes and higher accuracy. A plurality of molded products arranged in an array or a sheet can be molded at low cost and with higher accuracy.
[0094]
  Claim 4According to the resin molding method of the described invention, since the resin blocks are joined by heat welding, the resin blocks can be joined inexpensively and appropriately, and at low cost and with high accuracy in an array shape or a sheet shape. A plurality of molded products can be molded.
[0095]
  Claim 5According to the resin molding method of the described invention, since the resin blocks are joined using ultrasonic vibration, the resin blocks can be joined more inexpensively and appropriately, and the array can be made inexpensively and with high accuracy. It is possible to mold a plurality of molded products arranged in a sheet shape or a sheet shape.
[0096]
  Claim 6According to the resin molding method of the described invention, since the resin blocks are joined using an adhesive, the resin blocks can be joined more inexpensively and appropriately, and the array shape can be made inexpensively and with high accuracy. Alternatively, a plurality of molded products arranged in a sheet shape can be formed.
[Brief description of the drawings]
FIG. 1 shows a resin molding method of the present invention.Used forThe principal part front sectional view of a resin molding device.
FIG. 2 is a view showing a temperature change of a resin in each part of the injection molding apparatus of FIG.
FIG. 3 shows a resin molding method of the present invention.Used forThe principal part front sectional view of a resin molding device.
4 is a view showing a temperature change of a resin in each part of the injection molding apparatus in FIG. 3;
FIG. 5 shows a resin molding method of the present invention.The fruitThe principal part perspective view of the resin molding apparatus to which embodiment is applied.
6 is an enlarged front cross-sectional view of a main part in a state in which heating and pressurization of a sheet-like resin block in which empty walls are formed by the resin molding apparatus of FIG. 5 are started.
7 is an enlarged front cross-sectional view of a main part in a state where heating and pressurization of a sheet-like resin block in which an empty wall is formed by the resin molding apparatus of FIG. 6 is completed.
8 is a perspective view of a principal part in a state where a sheet-shaped resin block in which no empty wall is formed is molded by the resin molding apparatus of FIG.
9 is an enlarged front cross-sectional view of a main part in a state where heating and pressurization of a sheet-like resin block in which no empty wall is formed are started from the resin molding apparatus of FIG.
10 is an enlarged front cross-sectional view of a main part in a state where heating and pressurization of a sheet-like resin block in which no empty wall is formed by the resin molding apparatus of FIG. 9 is completed.
FIG. 11 is an enlarged front cross-sectional view of a main part showing another example of specular pieces having different specular shapes.
FIG. 12 is a front sectional view of a conventional injection molding apparatus.
FIG. 13 is a front sectional view of a conventional large-sized injection molding apparatus.
[Explanation of symbols]
10 Resin molding equipment
11 Extruding part
12 Mirror surface processing part
13 Resin supply path
14 Molten resin
15a to 15f Lower mirror piece
16a-16f Upper mirror piece
20 Resin molding equipment
21 Resin block supply section
22 joints
23 Mirror surface processing part
24 resin block
25a, 25b Heating press part
26 Resin
27a-27f Lower mirror piece
28a-28f Upper mirror piece
30 Resin molding equipment
31 Lower mirror piece
32 Upper mirror face piece
33 Mirror surface processing part
34a Mirror surface forming part
35 empty wall

Claims (6)

所定の面形状がアレイ状あるいはシート状に複数並んだ成形品を成形する樹脂成形方法であって、前記成形する面形状に対応する鏡面部を有し相対向する状態で近接・離隔可能に配設された鏡面駒が、前記成形する面形状の数よりも少ない数だけ、所定の初期位置から仕上げ位置まで所定方向に並んで当該方向に移動可能に配設され、前記鏡面駒により前記面形状が成形される部分以外の領域に前記成形時の余分な樹脂を吸収する逃げ部としての空壁が形成された固体樹脂を連続して供給し、前記複数対の鏡面駒が前記固体樹脂を順次加圧しつつ前記初期位置から前記仕上げ位置まで所定速度で移動し、前記仕上げ位置まで移動すると、離隔して前記樹脂を離脱させて成形した後、前記初期位置まで移動して、前記樹脂の成形を再度行うことを特徴とする樹脂成形方法。A resin molding method for molding a molded product in which a plurality of predetermined surface shapes are arranged in an array shape or a sheet shape, and has a mirror surface portion corresponding to the surface shape to be molded, and is arranged so as to be close to and separated from each other. set by specular piece is, the number smaller than the number of surface shapes to the shaped, disposed for movement in the direction aligned in a predetermined direction from a predetermined initial position to the final position, the surface shape by the optical insert A solid resin in which empty walls are formed as relief portions for absorbing excess resin during molding is continuously supplied to a region other than the portion to be molded, and the plurality of pairs of mirror surface pieces sequentially supply the solid resin. When the pressure is applied, the resin moves from the initial position to the finishing position at a predetermined speed, and moves to the finishing position, and after separating and molding the resin, the mold moves to the initial position to mold the resin. To do again Resin molding method according to claim. 所定の面形状がアレイ状あるいはシート状に複数並んだ成形品を成形する樹脂成形方法であって、前記成形する面形状に対応する鏡面部を有し相対向する状態で近接・離隔可能に配設された鏡面駒が、前記成形する面形状の数よりも少ない数だけ、所定の初期位置から仕上げ位置まで所定方向に並んで当該方向に所定速度で移動可能に配設され、前記鏡面駒により前記面形状が成形される部分以外の領域に前記成形時の余分な樹脂を吸収する逃げ部としての空壁が形成された所定寸法の樹脂ブロックを所定方法で接合した後、前記複数対の鏡面駒の移動速度に応じて成形に必要とする量ずつ前記初期位置に供給し、前記複数対の鏡面駒が、当該供給される接合された樹脂ブロックを前記初期位置から前記仕上げ位置までガラス転移以上の温度に加熱・加圧しつつ前記移動速度で移動し、前記仕上げ位置まで移動すると、離隔して前記樹脂を離脱させて成形した後、前記初期位置まで移動して、前記樹脂の成形を再度行うことを特徴とする樹脂成形方法。A resin molding method for molding a molded product in which a plurality of predetermined surface shapes are arranged in an array shape or a sheet shape, and has a mirror surface portion corresponding to the surface shape to be molded, and is arranged so as to be close to and separated from each other. set by specular piece is, the number smaller than the number of surface shapes to the shaped, is disposed movably at a predetermined speed in the direction aligned in a predetermined direction from a predetermined initial position to the finishing position, by said optical insert The plurality of pairs of mirror surfaces are formed by joining a resin block having a predetermined dimension in which a hollow wall is formed as a relief portion that absorbs excess resin at the time of molding in a region other than a portion where the surface shape is molded, by a predetermined method. An amount required for molding is supplied to the initial position in accordance with the moving speed of the piece, and the plurality of pairs of mirror-finished pieces are not less than a glass transition from the initial position to the finishing position. temperature While applying heat and pressure to move with the moving speed, when moved to the finishing position, characterized in that after the molding is detached the resin to be separated and moved to the initial position, the molding of the resin again Resin molding method. 前記複数対の鏡面駒は、前記接合された樹脂ブロックを前記ガラス転移以上の温度に加熱しつつ所定の厚みまで加圧を行いながら、前記初期位置から前記仕上げ位置方向に移動し、その後、前記仕上げ位置まで移動する間に、前記樹脂を熱変形温度以下の温度まで冷却することを特徴とする請求項2記載の樹脂成形方法。Said plurality of pairs of optical insert while performing pressurization up to a predetermined thickness while heating the bonded resin blocks to the glass transition temperatures above moves from the initial position to the finishing position direction, then the The resin molding method according to claim 2, wherein the resin is cooled to a temperature equal to or lower than a thermal deformation temperature while moving to a finishing position. 前記樹脂ブロックの接合を加熱溶着により行うことを特徴とする請求項2または請求項3記載の樹脂成形方法。4. The resin molding method according to claim 2, wherein the resin blocks are joined by heat welding. 前記樹脂ブロックの接合を超音波振動を利用して行うことを特徴とする請求項2または請求項3記載の樹脂成形方法。4. The resin molding method according to claim 2, wherein the resin blocks are joined using ultrasonic vibration. 前記樹脂ブロックの接合を接着剤を利用して行うことを特徴とする請求項2または請求項3記載の樹脂成形方法。4. The resin molding method according to claim 2, wherein the resin blocks are joined using an adhesive.
JP19804998A 1998-06-29 1998-06-29 Resin molding method Expired - Fee Related JP3939860B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19804998A JP3939860B2 (en) 1998-06-29 1998-06-29 Resin molding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19804998A JP3939860B2 (en) 1998-06-29 1998-06-29 Resin molding method

Publications (2)

Publication Number Publication Date
JP2000015676A JP2000015676A (en) 2000-01-18
JP3939860B2 true JP3939860B2 (en) 2007-07-04

Family

ID=16384690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19804998A Expired - Fee Related JP3939860B2 (en) 1998-06-29 1998-06-29 Resin molding method

Country Status (1)

Country Link
JP (1) JP3939860B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101295551B1 (en) * 2006-07-14 2013-08-12 삼성디스플레이 주식회사 Light controlling assembly and fabrication method of the same and liquid crystal display having the same
JP5725958B2 (en) * 2011-04-22 2015-05-27 キヤノン株式会社 Focus detection apparatus and optical instrument
WO2015062933A1 (en) * 2013-10-30 2015-05-07 Evonik Industries Ag Continuous production of profiles in a sandwich type of construction with foam cores and rigid-foam-filled profile
DE102013226753A1 (en) * 2013-12-19 2015-06-25 Airbus Operations Gmbh Apparatus and method for the continuous production of structural components made of fiber-reinforced composite materials and mold set
US10232572B2 (en) * 2014-08-27 2019-03-19 The Boeing Company Composite filler forming apparatus

Also Published As

Publication number Publication date
JP2000015676A (en) 2000-01-18

Similar Documents

Publication Publication Date Title
JP4267820B2 (en) Optical product manufacturing method and manufacturing apparatus
US5603871A (en) Method for manufacturing molded resin product and plastic mirror
JP3512595B2 (en) Molding method of plastic molded article and mold for molding plastic molded article
JPH0152119B2 (en)
US20080067704A1 (en) Micro-Molding Equipment and Micro-Molding Method
US7820084B2 (en) Minute shape molding method and apparatus thereof
JP3939860B2 (en) Resin molding method
JP5653362B2 (en) Production of optical smooth light guide
US10974475B2 (en) Prism, forming mold, and method of producing prism
CN207224484U (en) A kind of injection compression moulding mould
JP3571803B2 (en) Lens blank molding method, plastic optical element compression molding method, and molding system therefor
JPH06892A (en) Fresnel lens molding method and apparatus
JP3130099B2 (en) Manufacturing method of plastic molded products
JP3719512B2 (en) Light guide plate injection molding method and injection mold
JP3350581B2 (en) In-mold vibration processing method and apparatus
JPH10286858A (en) Injection molding device
JP2842709B2 (en) Manufacturing method of plastic molded products
JP3701444B2 (en) Injection molding method and injection mold
JP2799253B2 (en) Plastic molding equipment
US20220126491A1 (en) Method for manufacturing an optical lens
JP2005074700A (en) Method and apparatus for molding resin molded product
JP6888422B2 (en) Injection molding equipment
JP3719757B2 (en) Mold and molding method
JPH0566245B2 (en)
JPH02158314A (en) Method of molding optical plastic component and apparatus therefor

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040903

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041224

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20050126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060829

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070320

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070329

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100406

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110406

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120406

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140406

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees