JP3939322B2 - Method and apparatus for controlling an optical amplifier for optically amplifying wavelength multiplexed signals - Google Patents

Method and apparatus for controlling an optical amplifier for optically amplifying wavelength multiplexed signals Download PDF

Info

Publication number
JP3939322B2
JP3939322B2 JP2004280496A JP2004280496A JP3939322B2 JP 3939322 B2 JP3939322 B2 JP 3939322B2 JP 2004280496 A JP2004280496 A JP 2004280496A JP 2004280496 A JP2004280496 A JP 2004280496A JP 3939322 B2 JP3939322 B2 JP 3939322B2
Authority
JP
Japan
Prior art keywords
wavelength
control light
optical
doped fiber
controlling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004280496A
Other languages
Japanese (ja)
Other versions
JP2005005745A (en
Inventor
宣文 宿南
真也 稲垣
憲治 田川
暢洋 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2004280496A priority Critical patent/JP3939322B2/en
Publication of JP2005005745A publication Critical patent/JP2005005745A/en
Application granted granted Critical
Publication of JP3939322B2 publication Critical patent/JP3939322B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Lasers (AREA)

Description

本発明は、波長多重信号を光増幅する希土類ドープファイバを含む光増幅器を制御するための方法と装置に関する。   The present invention relates to a method and apparatus for controlling an optical amplifier including a rare earth-doped fiber that optically amplifies wavelength multiplexed signals.

現在、エルビウムドープファイバによる光増幅器を使った光増幅システムが実用化され、さらに伝送速度を上げるため、光増幅器を含めた光線路に複数の波長の光を多重化した波長多重信号を伝送する多波長一括増幅システムの実用化が進められている。そのための光増幅器として複数の信号波長の利得を制御することが必要になる。通常一波の場合には励起光を制御することにより、実現できたが、多波長一括増幅の場合、これに加えてそれぞれの信号の利得を制御するため複数の信号間の利得の差を制御することが必要となる。   Currently, an optical amplification system using an optical amplifier based on an erbium-doped fiber has been put into practical use, and in order to further increase the transmission speed, a multi-wavelength signal in which multiple wavelengths of light are multiplexed on an optical line including the optical amplifier is transmitted. The practical application of the wavelength batch amplification system is underway. Therefore, it is necessary to control gains of a plurality of signal wavelengths as an optical amplifier for that purpose. In the case of a single wave, this can be realized by controlling the pumping light. However, in the case of multi-wavelength amplification, in addition to this, the gain difference between multiple signals is controlled to control the gain of each signal. It is necessary to do.

特願平6−229164号には、0.98μm帯の励起光と1.48μm帯の励起光という互いに相補的な利得特性(信号光波長と利得の関係)を与える2つの励起光を同時に使用して利得特性を平坦にすることによって2波長の信号光の利得差を小さくすることが提案されている。しかしながら、利得差の制御及びそれに基づく個々の光信号の出力の制御に関しては何ら提案されていない。   In Japanese Patent Application No. 6-229164, two excitation lights that give complementary gain characteristics (relationship between signal light wavelength and gain) of 0.98 μm band excitation light and 1.48 μm band excitation light are used simultaneously. Thus, it has been proposed to reduce the gain difference between the signal lights of two wavelengths by flattening the gain characteristics. However, no proposal has been made regarding the control of the gain difference and the control of the output of individual optical signals based thereon.

したがって本発明の目的は、波長多重信号を光増幅する光増幅器における光信号間の利得差の制御及びそれに基づく個々の光信号の出力の制御のための方法と装置を提供することにある。   Accordingly, it is an object of the present invention to provide a method and apparatus for controlling a gain difference between optical signals in an optical amplifier for optically amplifying a wavelength multiplexed signal and controlling the output of individual optical signals based thereon.

本発明によれば、波長が異なる複数の光信号を含む波長多重信号を光増幅する希土類ドープファイバを含む光増幅器を制御する方法であって、該希土類ドープファイバが光増幅作用を呈する波長領域内の波長を有する制御光を該希土類ドープファイバに注入し、注入される制御光のパワー又は波長を制御し、それによって前記複数の光信号間の利得差を制御する各段階を具備する方法が提供される。   According to the present invention, there is provided a method for controlling an optical amplifier including a rare earth doped fiber that optically amplifies a wavelength multiplexed signal including a plurality of optical signals having different wavelengths, wherein the rare earth doped fiber has an optical amplification function. There is provided a method comprising the steps of injecting control light having a predetermined wavelength into the rare earth-doped fiber, controlling the power or wavelength of the injected control light, and thereby controlling the gain difference between the plurality of optical signals. Is done.

本発明によれば、波長が異なる複数の光信号を含む波長多重信号を光増幅する希土類ドープファイバを含む光増幅器を制御するための装置であって、該希土類ドープファイバが増幅作用を呈する波長領域内の波長を有する制御光を該希土類ドープ光ファイバに注入する手段と、注入される制御光のパワー又は波長を制御し、それによって前記複数の光信号間の利得差を制御する手段とを具備する装置もまた提供される。   According to the present invention, an apparatus for controlling an optical amplifier including a rare earth-doped fiber that optically amplifies a wavelength multiplexed signal including a plurality of optical signals having different wavelengths, the wavelength region in which the rare earth-doped fiber exhibits an amplifying function. Means for injecting control light having a wavelength within the rare earth-doped optical fiber, and means for controlling the power or wavelength of the injected control light, thereby controlling the gain difference between the plurality of optical signals. An apparatus is also provided.

本発明によれば、波長多重信号を光増幅する光増幅器の出力を波長毎に制御することができる。   According to the present invention, the output of the optical amplifier that optically amplifies the wavelength multiplexed signal can be controlled for each wavelength.

図1は本発明第1の具体例に係る制御が適用された光増幅器の構成を示す。図1において、波長λ1 及びλ2 からなる信号光(λ1 <λ2 とする)は光合波器10において光源14からの励起光(例えば波長0.98μm)と合波されエルビウムドープファイバ12へ導入される。光源16からの波長λ3 の励起光(例えばλ3 =1.48μm)は、光合波器18により、信号光とは逆の方向にエルビウムドープファイバ12へ導入される。エルビウムドープファイバ12で増幅された光信号の一部が光カプラ20で分岐され、光分波器22で波長λ1 とλ2 とに分波され、光検出器24,26においてそれぞれの光パワーが検出される。制御回路28は、光検出器24,26の検出出力に基づき、光源14及び16の駆動電流を制御して光パワーを制御する。 FIG. 1 shows a configuration of an optical amplifier to which control according to a first specific example of the present invention is applied. In FIG. 1, signal light having wavelengths λ 1 and λ 212 ) is combined with excitation light (for example, wavelength 0.98 μm) from a light source 14 in an optical multiplexer 10 and erbium-doped fiber 12. Introduced into. Excitation light having a wavelength λ 3 (for example, λ 3 = 1.48 μm) from the light source 16 is introduced into the erbium-doped fiber 12 by the optical multiplexer 18 in the direction opposite to the signal light. Part of the optical signal amplified by the erbium-doped fiber 12 is branched by the optical coupler 20 and demultiplexed into wavelengths λ 1 and λ 2 by the optical demultiplexer 22, and the respective optical powers are detected by the photodetectors 24 and 26. Is detected. The control circuit 28 controls the optical power by controlling the drive currents of the light sources 14 and 16 based on the detection outputs of the photodetectors 24 and 26.

励起光の導入の方向は図示した例に限られないのは勿論である。また、光源14,16の駆動電流を制御することによって励起光の注入パワーを制御する代わりに、図2に示すように光源14,16と光合波器10,18の間に可変アッテネータ15,17を設け、可変アッテネータ15,17の減衰量を制御することによって励起光の注入パワーを制御しても良い。   Of course, the direction of introduction of the excitation light is not limited to the illustrated example. Further, instead of controlling the pumping light injection power by controlling the drive currents of the light sources 14, 16, the variable attenuators 15, 17 are provided between the light sources 14, 16 and the optical multiplexers 10, 18 as shown in FIG. And the pumping light injection power may be controlled by controlling the attenuation of the variable attenuators 15 and 17.

特願平6−229164号の図15に示されるように、0.98μm帯の励起光を使用したときは長波長側よりも短波長側の利得が大きく、1.48μm帯の励起光を使用したときは短波長側よりも長波長側の利得が大きくなる。制御回路28は、光検出器24,26の出力からλ1 ,λ2 の各光出力を算出し、もし、短波長側のλ1 の光の出力パワーP1 が長波長側の光の出力パワーP2 よりも大きければ、短波長側の利得を上げる効果のある0.98μm帯励起光パワーを小さくし、長波長側の利得を上げる効果のある1.48μm帯励起光パワーを大きくする。逆に、P1 よりもP2 の方が大きければ0.98μm帯励起光パワーを大きくし、1.48μm帯励起光パワーを小さくする。また各信号光の光出力の合計が所望の出力以下である場合は、0.98μm帯/1.48μm帯励起光の両方のパワーを上げ、所定の光出力以上である場合は、両方のパワーを下げ、所望の光出力が得られるようにする。 As shown in FIG. 15 of Japanese Patent Application No. 6-229164, when 0.98 μm band excitation light is used, the gain on the short wavelength side is larger than that on the long wavelength side, and the 1.48 μm band excitation light is used. In this case, the gain on the long wavelength side becomes larger than that on the short wavelength side. The control circuit 28 calculates the light outputs of λ 1 and λ 2 from the outputs of the photodetectors 24 and 26, and the output power P 1 of the light of λ 1 on the short wavelength side is the output of the light on the long wavelength side. If it is larger than the power P 2 , the 0.98 μm band pumping light power effective to increase the short wavelength side gain is decreased, and the 1.48 μm band pumping light power effective to increase the long wavelength side gain is increased. Conversely, if P 2 is larger than P 1 , the 0.98 μm band pumping light power is increased and the 1.48 μm band pumping light power is decreased. If the total optical output of each signal light is less than or equal to the desired output, both powers of 0.98 μm band / 1.48 μm band pumping light are increased. To obtain a desired light output.

以上のように、本発明の第1の具体例においては、各光信号の出力を監視しながら、各光信号とも所望の出力が得られるように0.98μm帯/1.48μm帯励起光パワーが調節される。
図3に入力信号光パワーがそれぞれ−8.1dBm 、入力信号光の波長λ1 ,λ2 がλ1 =1535nm、λ2 =1558nmの時の実験結果を示す。図3中には利得差ΔG(=P1558−P1535)が0及び+1dBで一定という条件、及び総出力(=P1558+P1535)が11,12,13,13.5及び14で一定という条件のもとでの0.98μm帯励起光パワーと1.48μm帯励起パワーの関係が示されている。例えばΔG=0のもとでは、(0.98μm帯励起光パワー、1.48μm帯励起光パワー)=(40mW,15mW)とすれば総出力13dBm が得られ、(30mW,35mW)とすれば総出力13.5dBm が得られるといったように、ΔG=0の曲線に沿って0.98μm帯励起光パワーと1.48μm帯励起光パワーを変えることで利得差0を保ちつつ光出力を変えることができる。
As described above, in the first specific example of the present invention, 0.98 μm band / 1.48 μm band pumping light power is obtained so that a desired output can be obtained for each optical signal while monitoring the output of each optical signal. Is adjusted.
FIG. 3 shows the experimental results when the input signal light power is −8.1 dBm, and the input signal light wavelengths λ 1 and λ 2 are λ 1 = 1535 nm and λ 2 = 1558 nm. In FIG. 3, the condition that the gain difference ΔG (= P 1558 −P 1535 ) is constant at 0 and +1 dB, and the total output (= P 1558 + P 1535 ) is constant at 11, 12, 13, 13.5 and 14. The relationship between the 0.98 μm band pumping light power and the 1.48 μm band pumping power under the conditions is shown. For example, under ΔG = 0, if (0.98 μm band pumping light power, 1.48 μm band pumping light power) = (40 mW, 15 mW), a total output of 13 dBm can be obtained, and (30 mW, 35 mW). By changing the 0.98 μm band pumping light power and the 1.48 μm band pumping light power along the ΔG = 0 curve so as to obtain a total output of 13.5 dBm, the light output is changed while maintaining a gain difference of 0. Can do.

図4はエルビウムドープファイバの放射確率(放出遷移の確率)、吸収確率(吸収遷移の確率)、及び吸収確率に対する放射確率の割合の波長依存性を示すグラフである。図4において、1.48μm(1480nm)では放射が起こっており、励起率(励起状態にあるエルビウム原子の割合)が低下していることがわかる。しかし、放射の割合は小さいため、この波長の光は増幅されない。一方、波長が長くなればなる程放射の割合が増え、励起率が一層低下することがわかる。   FIG. 4 is a graph showing the wavelength dependence of the emission probability (probability of emission transition), the absorption probability (probability of absorption transition), and the ratio of the emission probability to the absorption probability of the erbium-doped fiber. In FIG. 4, it can be seen that radiation occurs at 1.48 μm (1480 nm), and the excitation rate (ratio of erbium atoms in the excited state) decreases. However, since the proportion of radiation is small, light of this wavelength is not amplified. On the other hand, it can be seen that the longer the wavelength, the greater the proportion of radiation and the lower the excitation rate.

図5は種々の励起率における利得係数の波長依存性の変化を表わすグラフである。図5によれば、励起率1.0に近い程短波長側(例えばλ1 =1.54μm)の利得が相対的に大きくなり、励起率が低下すればする程、長波長側(例えばλ2 =1.55μm)の利得が相対的に大きくなることがわかる。
以上のことから、前述の0.98μm/1.48μmによるハイブリッド励起で利得差の制御が可能であったのは、1.48μmにおいて放射が起こっており、そのために励起率が低下するためであると推定される。しかしながら、1.48μm帯のようにエルビウムドープファイバ内で増幅されない波長を使用する限り、励起率の低下には限界があるため制御範囲が広くならないこともわかる。
FIG. 5 is a graph showing changes in the wavelength dependence of the gain coefficient at various excitation rates. According to FIG. 5, the gain on the short wavelength side (for example, λ 1 = 1.54 μm) becomes relatively larger as the pumping rate is closer to 1.0, and the longer the wavelength side (for example, λ It can be seen that the gain of 2 = 1.55 μm is relatively large.
From the above, the reason why the gain difference can be controlled by the above-described 0.98 μm / 1.48 μm hybrid excitation is that radiation occurs at 1.48 μm, and the pumping rate decreases. It is estimated to be. However, as long as a wavelength that is not amplified in the erbium-doped fiber such as the 1.48 μm band is used, it can be seen that the control range is not widened because the pumping rate is limited.

したがって本発明の第2の具体例においては、希土類ドープファイバが増幅作用を呈する波長領域内の波長、好ましくは放射確率が吸収確率より大である波長領域内の波長、さらに好ましくは1520nmより短かくない波長を制御光の波長として用い、この制御光の光パワー又は波長を制御することにより励起率を制御し、もって信号間の利得差を制御する。   Therefore, in the second embodiment of the present invention, the wavelength in the wavelength region in which the rare earth-doped fiber exhibits an amplifying action, preferably the wavelength in the wavelength region in which the radiation probability is larger than the absorption probability, more preferably shorter than 1520 nm. A non-wavelength is used as the wavelength of the control light, and the pumping rate is controlled by controlling the optical power or wavelength of the control light, thereby controlling the gain difference between signals.

図6は本発明の第2の具体例に係る制御が適用された光増幅器の構成を示す。図6において、波長λ1 及びλ2 からなる信号光(例えば図5に示すように、λ1 =1.54μm,λ2 =1.55μm)は光合波器10において光源14からの励起光(例えば波長0.98μm)と合波されエルビウムドープファイバ12へ導入される。光源40からの波長λ3 の制御光(例えば図5に示すようにλ3 =1.57μm)は、光合波器18により、信号光とは逆の方向にエルビウムドープファイバ12へ導入される。エルビウムドープファイバ12で増幅された光信号の一部が光カプラ20で分岐され、光分波器22で波長λ1 とλ2 とに分波され、光検出器24,26においてそれぞれの光パワーが検出される。制御回路28は、光検出器24,26の検出出力に基づき、光源40の光パワー又は発光波長を制御することによって利得差を制御し、かつ、光源14の光パワーを制御することによって全体の(平均の)利得を制御する。これによって、信号光λ1 及びλ2 の出力レベルをそれぞれ一定に制御することができる。 FIG. 6 shows a configuration of an optical amplifier to which the control according to the second specific example of the present invention is applied. In FIG. 6, signal light having wavelengths λ 1 and λ 2 (for example, λ 1 = 1.54 μm, λ 2 = 1.55 μm as shown in FIG. 5) is pumped from the light source 14 in the optical multiplexer 10 ( For example, a wavelength of 0.98 μm is combined and introduced into the erbium-doped fiber 12. Control light of wavelength λ 3 from the light source 40 (for example, λ 3 = 1.57 μm as shown in FIG. 5) is introduced into the erbium-doped fiber 12 by the optical multiplexer 18 in the direction opposite to the signal light. Part of the optical signal amplified by the erbium-doped fiber 12 is branched by the optical coupler 20 and demultiplexed into wavelengths λ 1 and λ 2 by the optical demultiplexer 22, and the respective optical powers are detected by the photodetectors 24 and 26. Is detected. The control circuit 28 controls the gain difference by controlling the light power or the light emission wavelength of the light source 40 based on the detection outputs of the photodetectors 24 and 26, and controls the light power of the light source 14 to control the entire light power. Controls the (average) gain. As a result, the output levels of the signal lights λ 1 and λ 2 can be controlled to be constant.

励起光及び制御光の導入の方向は図示した例に限られないのは勿論である。また、制御光λ3 を除去する必要がある場合には出力に光フィルタを設けることにより除去することができる。制御光の光パワーを制御する場合は、例えば、光源40としてのレーザダイオードの駆動電流を制御する。制御光の波長を制御する場合は、例えば、光源40として波長可変レーザを用いる。 Of course, the direction of introduction of the excitation light and the control light is not limited to the illustrated example. Further, when it is necessary to remove the control light λ 3 , it can be removed by providing an optical filter at the output. When controlling the optical power of the control light, for example, the drive current of the laser diode as the light source 40 is controlled. When controlling the wavelength of the control light, for example, a wavelength tunable laser is used as the light source 40.

信号光とは別に制御光を導入する代わりに、図7に示すようにエルビウムドープファイバを有する光増幅器30へ入力される光信号のパワーを可変アッテネータ32を用いて制御することによっても信号間の利得差を制御することができる。信号光の波長は当然或る程度の放射確率を呈する波長に設定されるから、信号光自身の入射パワーを制御することによっても利得差の制御が可能である。また、図8に示すように、光伝送路34の受信側に設けられた光増幅器30へ入射する信号光のパワーを送信側に設けられた可変アッテネータ32で制御しても良い。   Instead of introducing the control light separately from the signal light, the power of the optical signal input to the optical amplifier 30 having the erbium-doped fiber is controlled using the variable attenuator 32 as shown in FIG. The gain difference can be controlled. Since the wavelength of the signal light is naturally set to a wavelength that exhibits a certain radiation probability, the gain difference can also be controlled by controlling the incident power of the signal light itself. As shown in FIG. 8, the power of the signal light incident on the optical amplifier 30 provided on the receiving side of the optical transmission line 34 may be controlled by a variable attenuator 32 provided on the transmitting side.

さらに、図6において、制御光を伝送路の監視のためのSV(supervisory)信号で変調して信号光λ1 ,λ2 とともに伝送することも可能である。この場合は、制御光は信号光と同じ方向でエルビウムドープファイバへ導入することが好ましい。 Furthermore, in FIG. 6, it is also possible to modulate the control light with an SV (supervision) signal for monitoring the transmission path and transmit it together with the signal lights λ 1 and λ 2 . In this case, the control light is preferably introduced into the erbium-doped fiber in the same direction as the signal light.

本発明の第1の具体例を示すブロック図である。It is a block diagram which shows the 1st example of this invention. 本発明の第2の具体例の一変形を示すブロック図である。It is a block diagram which shows one modification of the 2nd example of this invention. 図1の回路の動作を説明するグラフである。It is a graph explaining operation | movement of the circuit of FIG. エルビウムドープファイバ中のエルビウム原子の放射確率、吸収確率、及び放射確率/吸収確率の波長依存性を示すグラフである。It is a graph which shows the wavelength dependence of the radiation probability of the erbium atom in an erbium doped fiber, the absorption probability, and the radiation probability / absorption probability. 種々の励起率における利得係数の波長依存性を示すグラフである。It is a graph which shows the wavelength dependence of the gain coefficient in various excitation rates. 本発明の第2の具体例を示すブロック図である。It is a block diagram which shows the 2nd example of this invention. 本発明の第2の具体例の一変形を示すブロック図である。It is a block diagram which shows one modification of the 2nd example of this invention. 本発明の第2の具体例の他の変形を示すブロック図である。It is a block diagram which shows the other modification of the 2nd example of this invention.

符号の説明Explanation of symbols

10,18 光合波器
14,16 励起光光源
20 光カプラ
22 光分波器
24,26 光検出器
40 制御光光源
10, 18 Optical multiplexer 14, 16 Excitation light source 20 Optical coupler 22 Optical demultiplexer 24, 26 Photo detector 40 Control light source

Claims (18)

波長が異なる複数の光信号を含む波長多重信号を光増幅する希土類ドープファイバを含む光増幅器を制御する方法であって、
該希土類ドープファイバが光増幅作用を呈する波長領域内の波長を有する制御光を該希土類ドープファイバに注入し、
制御光の注入パワー又は波長を制御し、それによって前記複数の光信号間の利得差を制御する各段階を具備する方法。
A method for controlling an optical amplifier including a rare earth-doped fiber that optically amplifies a wavelength multiplexed signal including a plurality of optical signals having different wavelengths,
Injecting control light having a wavelength in a wavelength region in which the rare earth-doped fiber exhibits an optical amplification action into the rare earth-doped fiber,
A method comprising the steps of controlling the injection power or wavelength of the control light and thereby controlling the gain difference between the plurality of optical signals.
前記制御光の波長は前記複数の光信号の波長のいずれとも異なる波長である請求項1記載の方法。   The method according to claim 1, wherein a wavelength of the control light is a wavelength different from any of wavelengths of the plurality of optical signals. 前記制御光の波長は、前記希土類ドープファイバにおける放射確率が吸収確率よりも大である波長領域内の波長である請求項2記載の方法。   The method according to claim 2, wherein the wavelength of the control light is a wavelength in a wavelength region in which a radiation probability in the rare earth-doped fiber is larger than an absorption probability. 前記希土類ドープファイバはエルビウムドープファイバであり、前記制御光の波長は1520nmに等しいかそれより長い請求項3記載の方法。   4. The method of claim 3, wherein the rare earth doped fiber is an erbium doped fiber and the wavelength of the control light is equal to or longer than 1520 nm. 前記複数の光信号の波長は1530乃至1565nmの範囲にあり、前記制御光の波長は1565nmに等しいかそれより長い請求項4記載の方法。   The method of claim 4, wherein the wavelengths of the plurality of optical signals are in a range of 1530 to 1565 nm, and the wavelength of the control light is equal to or longer than 1565 nm. 前記光増幅器の出力側において前記制御光を除去する段階をさらに具備する請求項2記載の方法。   The method of claim 2, further comprising removing the control light at an output side of the optical amplifier. 前記制御光は伝送路の監視のための監視信号で変調される請求項2記載の方法。   The method according to claim 2, wherein the control light is modulated with a monitoring signal for monitoring a transmission line. 前記制御光は前記波長多重信号自身である請求項1記載の方法。   The method according to claim 1, wherein the control light is the wavelength-multiplexed signal itself. 光増幅器の出力における前記複数の光信号のパワーをそれぞれ検出する段階をさらに具備し、
前記制御する段階において、検出された光信号のパワーに応じて前記制御光の注入パワー又は波長が制御される請求項1記載の方法。
Detecting the power of each of the plurality of optical signals at the output of the optical amplifier,
The method according to claim 1, wherein in the controlling step, an injection power or a wavelength of the control light is controlled in accordance with the detected power of the optical signal.
波長が異なる複数の光信号を含む波長多重信号を光増幅する希土類ドープファイバを含む光増幅器を制御するための装置であって、
該希土類ドープファイバが増幅作用を呈する波長領域内の波長を有する制御光を該希土類ドープ光ファイバに注入する手段と、
制御光の注入パワー又は波長を制御し、それによって前記複数の光信号間の利得差を制御する手段とを具備する装置。
An apparatus for controlling an optical amplifier including a rare earth-doped fiber that optically amplifies a wavelength multiplexed signal including a plurality of optical signals having different wavelengths,
Means for injecting control light having a wavelength in a wavelength region in which the rare earth doped fiber exhibits an amplifying action into the rare earth doped optical fiber;
Means for controlling the injection power or wavelength of the control light and thereby controlling the gain difference between the plurality of optical signals.
前記制御光の波長は前記複数の光信号の波長のいずれとも異なる波長である請求項10記載の装置。   The device according to claim 10, wherein a wavelength of the control light is different from any of wavelengths of the plurality of optical signals. 前記制御光の波長は、前記希土類ドープファイバにおける放射確率が吸収確率よりも大である波長領域内の波長である請求項11記載の装置。   The apparatus according to claim 11, wherein the wavelength of the control light is a wavelength in a wavelength region in which a radiation probability in the rare earth-doped fiber is larger than an absorption probability. 前記希土類ドープファイバはエルビウムドープファイバであり、前記制御光の波長は1520nmに等しいかそれより長い請求項12記載の装置。   13. The apparatus of claim 12, wherein the rare earth doped fiber is an erbium doped fiber and the wavelength of the control light is equal to or longer than 1520 nm. 前記複数の光信号の波長は1530乃至1565nmの範囲にあり、前記制御光の波長は1565nmに等しいかそれより長い請求項13記載の装置。   The apparatus of claim 13, wherein the wavelengths of the plurality of optical signals are in a range of 1530 to 1565 nm, and the wavelength of the control light is equal to or longer than 1565 nm. 前記光増幅器の出力側において前記制御光を除去する手段をさらに具備する請求項11記載の装置。   The apparatus of claim 11, further comprising means for removing the control light at an output side of the optical amplifier. 前記制御光は伝送路の監視のための監視信号で変調される請求項11記載の装置。   12. The apparatus according to claim 11, wherein the control light is modulated with a monitoring signal for monitoring a transmission line. 前記制御光は前記波長多重信号自身である請求項10記載の装置。   The apparatus according to claim 10, wherein the control light is the wavelength-multiplexed signal itself. 光増幅器の出力における前記複数の光信号のパワーをそれぞれ検出する手段をさらに具備し、
前記制御手段は、検出された光信号のパワーに応じて前記制御光の注入パワー又は波長を制御する請求項10記載の装置。
Further comprising means for detecting the power of each of the plurality of optical signals at the output of the optical amplifier,
The apparatus according to claim 10, wherein the control unit controls the injection power or wavelength of the control light in accordance with the detected power of the optical signal.
JP2004280496A 1995-08-23 2004-09-27 Method and apparatus for controlling an optical amplifier for optically amplifying wavelength multiplexed signals Expired - Fee Related JP3939322B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004280496A JP3939322B2 (en) 1995-08-23 2004-09-27 Method and apparatus for controlling an optical amplifier for optically amplifying wavelength multiplexed signals

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP21460295 1995-08-23
JP2004280496A JP3939322B2 (en) 1995-08-23 2004-09-27 Method and apparatus for controlling an optical amplifier for optically amplifying wavelength multiplexed signals

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP30290795A Division JP4036489B2 (en) 1995-08-23 1995-11-21 Method and apparatus for controlling an optical amplifier for optically amplifying wavelength multiplexed signals

Publications (2)

Publication Number Publication Date
JP2005005745A JP2005005745A (en) 2005-01-06
JP3939322B2 true JP3939322B2 (en) 2007-07-04

Family

ID=34106062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004280496A Expired - Fee Related JP3939322B2 (en) 1995-08-23 2004-09-27 Method and apparatus for controlling an optical amplifier for optically amplifying wavelength multiplexed signals

Country Status (1)

Country Link
JP (1) JP3939322B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2426169B (en) * 2005-05-09 2007-09-26 Sony Comp Entertainment Europe Audio processing

Also Published As

Publication number Publication date
JP2005005745A (en) 2005-01-06

Similar Documents

Publication Publication Date Title
JP4036489B2 (en) Method and apparatus for controlling an optical amplifier for optically amplifying wavelength multiplexed signals
JP3739453B2 (en) Optical amplifier and optical communication system provided with the optical amplifier
JP2788327B2 (en) Automatic gain control optical amplifier and gain control method
EP0812078B1 (en) Optical communication system and optical amplifier
US5600481A (en) Optical fiber amplifier and optical transmission system using the same
US6862134B2 (en) Distributed optical amplifier, amplifying method, and optical communication system
JP4388705B2 (en) Optical amplifier
US6212001B1 (en) Method and system for controlling optical amplification in wavelength division multiplex optical transmission
CA2326315C (en) Optical fiber amplifier having a gain flattening filter
EP1376904B1 (en) Optical amplifier and control method therefor
JP3655508B2 (en) Raman amplifier and optical communication system
CA2326224A1 (en) Optical fibre amplifier having a controlled gain
JPH11275027A (en) Optical amplifier and its method adjusting output power per channel constant
JP2001196671A (en) Optical fiber amplifier for wavelength multiplex transmission
KR100276756B1 (en) Gain Flattened Fiber Optic Amplifier
JP3939322B2 (en) Method and apparatus for controlling an optical amplifier for optically amplifying wavelength multiplexed signals
US6483634B1 (en) Optical amplifier
EP0943192A2 (en) Method and apparatus for saturating an optical amplifier chain to prevent over amplification of a wavelength division multiplexed signal
JP2004301991A (en) Optical amplification control unit and optical amplification control process
JP2001036174A (en) Optical amplifying device
JP3983510B2 (en) Optical amplifier
KR100201009B1 (en) Oscillating loop for optical control of erbium doped optical fiber amplifier gain
KR100282656B1 (en) Multi-wavelength Output Light Generator Using Fiber Bragg Grating Filter
JPH08250785A (en) Optical amplifier/repeater
KR100564745B1 (en) Optical amplifier and gain control method using optical delay

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070327

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees