JP3939042B2 - Method for producing saturated ketone compound - Google Patents

Method for producing saturated ketone compound Download PDF

Info

Publication number
JP3939042B2
JP3939042B2 JP02108599A JP2108599A JP3939042B2 JP 3939042 B2 JP3939042 B2 JP 3939042B2 JP 02108599 A JP02108599 A JP 02108599A JP 2108599 A JP2108599 A JP 2108599A JP 3939042 B2 JP3939042 B2 JP 3939042B2
Authority
JP
Japan
Prior art keywords
reaction
ketone compound
group
mibk
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP02108599A
Other languages
Japanese (ja)
Other versions
JP2000219649A (en
Inventor
憲男 大野
正雪 武田
太香子 掛江
茂正 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP02108599A priority Critical patent/JP3939042B2/en
Publication of JP2000219649A publication Critical patent/JP2000219649A/en
Application granted granted Critical
Publication of JP3939042B2 publication Critical patent/JP3939042B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明はメシチルオキシド(MO)、ホロン(PHO)等の不飽和ケトン化合物を水添してメチルイソブチルケトン(MIBK)、ジイソブチルケトン(DIBK)等の飽和ケトン化合物を製造する方法に関する。
【0002】
【従来の技術】
MIBK、DIBK等の飽和ケトン化合物は、反応溶媒、塗料溶剤等として好適に用いられ、通常アセトン、ホロン(PHO)を原料として次のような方法によって、工業的に製造されている。
【0003】
【化1】

Figure 0003939042
MO、PHOの水添反応に用いる触媒としては、ニッケル系触媒、ルテニウム系触媒、パラジウム系触媒、白金系触媒等が知られている。
しかし、いずれの場合も不飽和ケトンの炭素間の二重結合への水添反応の他、カルボニル基への水添反応が起こり、メチルイソブチルカルビノール(MIBC)、ジイソブチルカルビノール(DIBC)等のアルコール類が副生するという問題がある。
【0004】
そこで、特開昭61-85343号公開公報では、水の共存下に、パラジウム触媒を用いてメシチルオキシドを水添することにより、MIBKの選択率を向上させることが提案されている。しかし、これには、MIBCの副生を抑制することについては開示されていない。
【0005】
【発明が解決しようとする課題】
本発明者らは、MIBCの副生を抑制しつつ、水添反応によりMIBKを製造する方法を探索し、その結果本発明の方法に到達した。
【0006】
【発明の概要】
即ち、本発明はアルカリ金属の水酸化物を濃度0.1〜1.0重量%の水溶液として添加することによりアルカリ金属の水酸化物を共存させて、下記一般式(I)
RCOR’ ・・・(I)
(ここで、Rはアルケニル基、R’はアルキル基またはアルケニル基を示す。)で示される不飽和ケトン化合物を水添することを特徴とする飽和ケトン化合物の製造方法である。
【0007】
【発明の具体的説明】
本発明において、不飽和ケトン化合物しては、下記一般式(I)
RCOR’ ・・・(I)
(ここで、Rはアルケニル基、R’はアルキル基またはアルケニル基を示す。)で示される化合物が挙げられる。
【0008】
一般式(I)のR、R’において、アルキル基としては、例えばメチル基、エチル基、n−プロピル基、i−プロピル基、n−ブチル基、i−ブチル基、t−ブチル基、n−ペンチル基、ネオペンチル基またはn−ヘキシル基等の炭素数1〜6の低級アルキル基が挙げられる。
アルケニル基としては、例えば炭素数2〜6のアルケニル基、具体的には、上記に例示したアルキル基の任意の位置に二重結合を1つ以上有する化合物が挙げられる。
【0009】
一般式(I)で示される不飽和ケトン化合物の具体例としては、MO、PHO等を挙げることができる。
本発明の水添方法により上記不飽和ケトン化合物を水添することにより、対応する飽和ケトン(MIBK、DIBK等)を選択的に製造し、かつ飽和アルコール(MIBC,DIBC等)の副生を抑制することができる。
【0010】
水添触媒としては、ラネーニッケルなどのニッケル触媒、ルテニウム触媒、パラジウム触媒、白金触媒等を挙げることができ、好ましくはパラジウム触媒、白金触媒を挙げることができる。
パラジウム触媒としては、パラジウムブラック又はパラジウム−アルミナ、パラジウム−カーボン等の担持パラジウム触媒が好ましく用いられる。
白金触媒としては、白金−アルミナ、白金−カーボン等の担持白金触媒が好ましく用いられる。
【0011】
反応形態は特に制限されないが、バッチ式または連続式の流動床反応方式、または固定床流通反応方式でもよく、液相反応が好ましい。
水素の供給量は、不飽和ケトン化合物1モルに対して通常、1〜10モル、好ましくは1.1〜5モルの範囲である。
水添反応温度は通常60℃以上、好ましくは60〜250℃、さらに好ましくは80〜220℃である。
圧力は通常、大気圧〜8MPa、好ましくは0.2〜5MPaの範囲である。
固定床流通方式の場合、LHSV(液空間速度)は特に制限されるものではないが、通常0.3〜10h-1、好ましくは0.5〜3h-1である。
【0012】
また、反応熱を効率よく除去するため、原料を希釈して使用するのが好ましい。この場合、フレッシュな飽和ケトン化合物を供給して希釈するか、または飽和ケトン化合物を主成分とする反応液を循環使用する。
希釈剤の量は、水添反応装置に供給するメシチルオキシドに対し、体積比で3〜12倍量供給するのが好ましい。
反応液を循環使用する場合には、反応液中の飽和アルコールの副生量が次第に増加する傾向がある。しかし、アルカリ共存下での水添反応により、飽和アルコールの副生を抑えることができる。従って反応液を循環しながら長時間連続運転する場合には、特にその効果が著しい.
【0013】
アルカリ成分としては、水酸化リチウム、水酸化カリウム、水酸化ナトリウム、炭酸ナトリウム、炭酸水素ナトリウム等のアルカリ金属化合物、水酸化カルシウム等のアルカリ土類金属化合物、アミン類、アンモニアを例示でき、特にアルカリ金属化合物が好ましい。
アルカリの添加量は不飽和ケトンに対して通常0.005〜1ミリモル倍、好ましくは0.01〜0.5ミリモル倍である。
アルカリは原料中に溶解させて添加してもよいが、水溶液にして系内に添加するのが好ましい。水溶液中のアルカリ濃度は通常0.1〜1.0重量%が好ましい。
【0014】
【発明の効果】
本発明によれば、MIBC,DIBC等の飽和アルコール類の副生を抑制しつつ、水添反応により高収率でMIBK、DIBK等の飽和ケトン化合物を製造することができる。
【0015】
【実施例】
以下実施例に基づいて本発明を説明するが、本発明はこれらの実施例に限られるものではない。
【0016】
実施例1
図1の装置を用い、粗メシチルオキシドを水添しMIBKの製造を行った。
水添反応器(直径25mmφ×長さ1007mm)にパラジウム−カーボン触媒(NEケムキャット社製:破砕状,粒径4〜8メッシュ,パラジウム担持量0.5%)100mlを仕込み、メシチルオキシド溶液(メシチルオキシド濃度90.4%)を100ml/hならびに反応熱除去のためMIBK(純度99.84%)を800ml/h供給しながら、反応圧力0.98MPa、メシチルオキシドに対するH2のモル比4、反応温度(触媒層中で最も高い温度)125℃の反応系へ0.5%NaOHaq.を1ml/h供給したところ、メシチルオキシド転化率99.96モル%で,MIBK選択率99.19モル%、MIBCの選択率は0.60モル%の反応成績が得られた。なお、この場合の反応液中の水分濃度は0.56%であった。
【0017】
(分析方法)
水分含量 :カールフィッシャー水分計
MO,MIBK、MIBC :ガスクロマトグラフィー
【0018】
実施例2
0.2%の NaOHaq.を供給した以外は実施例1と同じ方法でメシチルオキシドの水添を行ったところ、メシチルオキシド転化率99.98モル%で、MIBK選択率98.88モル%、MIBCの選択率は0.82モル%の反応成績が得られた。なお、この場合の反応液中の水分濃度は0.58%であった。
【0019】
比較例1
NaOHaq.を供給しない以外は実施例1と同じ方法でメシチルオキサイドの水添反応を行ったところ、メシチルオキシド転化率99.96モル%で、MIBK選択率98.50モル%、MIBCの選択率は1.50モル%の反応成績であった。なお、この場合の反応液中の水分濃度は0.45%であった。
【0020】
【図面の簡単な説明】
【図1】は実施例1で用いた装置の概要である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing saturated ketone compounds such as methyl isobutyl ketone (MIBK) and diisobutyl ketone (DIBK) by hydrogenating unsaturated ketone compounds such as mesityl oxide (MO) and holon (PHO).
[0002]
[Prior art]
Saturated ketone compounds such as MIBK and DIBK are suitably used as reaction solvents, coating solvents, and the like, and are usually produced industrially by the following method using acetone and holon (PHO) as raw materials.
[0003]
[Chemical 1]
Figure 0003939042
Known catalysts for the hydrogenation reaction of MO and PHO include nickel-based catalysts, ruthenium-based catalysts, palladium-based catalysts, and platinum-based catalysts.
However, in any case, hydrogenation reaction of unsaturated ketone to double bond between carbons, as well as hydrogenation reaction to carbonyl group occurs, such as methyl isobutyl carbinol (MIBC), diisobutyl carbinol (DIBC), etc. There is a problem that alcohols are by-produced.
[0004]
In view of this, Japanese Patent Application Laid-Open No. 61-85343 proposes to improve the selectivity of MIBK by hydrogenating mesityl oxide using a palladium catalyst in the presence of water. However, this does not disclose suppression of MIBC by-products.
[0005]
[Problems to be solved by the invention]
The present inventors searched for a method for producing MIBK by a hydrogenation reaction while suppressing the by-product of MIBC, and as a result, reached the method of the present invention.
[0006]
SUMMARY OF THE INVENTION
That is, in the present invention, an alkali metal hydroxide is added as an aqueous solution having a concentration of 0.1 to 1.0% by weight to allow the alkali metal hydroxide to coexist , and the following general formula (I)
RCOR '(I)
(Wherein R represents an alkenyl group, and R ′ represents an alkyl group or an alkenyl group) . A method for producing a saturated ketone compound is characterized by hydrogenating an unsaturated ketone compound represented by the formula:
[0007]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, the unsaturated ketone compound includes the following general formula (I):
RCOR '(I)
(Wherein R represents an alkenyl group, and R ′ represents an alkyl group or an alkenyl group).
[0008]
In R and R ′ of the general formula (I), examples of the alkyl group include a methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, t-butyl group, n -A lower alkyl group having 1 to 6 carbon atoms such as a pentyl group, a neopentyl group or an n-hexyl group.
Examples of the alkenyl group include alkenyl groups having 2 to 6 carbon atoms, specifically, compounds having one or more double bonds at any position of the alkyl groups exemplified above.
[0009]
Specific examples of the unsaturated ketone compound represented by the general formula (I) include MO and PHO.
By hydrogenating the unsaturated ketone compound by the hydrogenation method of the present invention, the corresponding saturated ketone (MIBK, DIBK, etc.) is selectively produced and the by-product of saturated alcohol (MIBC, DIBC, etc.) is suppressed. can do.
[0010]
Examples of the hydrogenation catalyst include a nickel catalyst such as Raney nickel, a ruthenium catalyst, a palladium catalyst, and a platinum catalyst, and preferably include a palladium catalyst and a platinum catalyst.
As the palladium catalyst, palladium black or a supported palladium catalyst such as palladium-alumina or palladium-carbon is preferably used.
As the platinum catalyst, a supported platinum catalyst such as platinum-alumina or platinum-carbon is preferably used.
[0011]
The reaction form is not particularly limited, but may be a batch or continuous fluid bed reaction system or a fixed bed flow reaction system, and a liquid phase reaction is preferred.
The supply amount of hydrogen is usually in the range of 1 to 10 mol, preferably 1.1 to 5 mol, per 1 mol of the unsaturated ketone compound.
The hydrogenation reaction temperature is usually 60 ° C. or higher, preferably 60 to 250 ° C., more preferably 80 to 220 ° C.
The pressure is usually in the range of atmospheric pressure to 8 MPa, preferably 0.2 to 5 MPa.
In the case of a fixed bed flow system, LHSV (liquid space velocity) is not particularly limited, but is usually 0.3 to 10 h −1 , preferably 0.5 to 3 h −1 .
[0012]
Moreover, in order to remove reaction heat efficiently, it is preferable to dilute and use a raw material. In this case, a fresh saturated ketone compound is supplied and diluted, or a reaction liquid mainly composed of a saturated ketone compound is circulated and used.
The amount of the diluent is preferably 3 to 12 times by volume with respect to the mesityl oxide supplied to the hydrogenation reactor.
When the reaction solution is circulated, the amount of saturated alcohol by-product in the reaction solution tends to increase gradually. However, a by-product of saturated alcohol can be suppressed by a hydrogenation reaction in the presence of an alkali. Therefore, the effect is particularly remarkable when operating continuously for a long time while circulating the reaction liquid.
[0013]
Examples of alkaline components include alkali metal compounds such as lithium hydroxide, potassium hydroxide, sodium hydroxide, sodium carbonate, and sodium hydrogen carbonate, alkaline earth metal compounds such as calcium hydroxide, amines, and ammonia. Metal compounds are preferred.
The amount of alkali added is usually 0.005 to 1 mmol times, preferably 0.01 to 0.5 mmol times the amount of the unsaturated ketone.
The alkali may be added after being dissolved in the raw material, but it is preferably added to the system as an aqueous solution. The alkali concentration in the aqueous solution is usually preferably from 0.1 to 1.0% by weight.
[0014]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, saturated ketone compounds, such as MIBK and DIBK, can be manufactured with a high yield by hydrogenation reaction, suppressing byproduct of saturated alcohols, such as MIBC and DIBC.
[0015]
【Example】
EXAMPLES The present invention will be described below based on examples, but the present invention is not limited to these examples.
[0016]
Example 1
Using the apparatus of FIG. 1, crude mesityl oxide was hydrogenated to produce MIBK.
A hydrogenation reactor (diameter 25 mmφ × length 1007 mm) was charged with 100 ml of palladium-carbon catalyst (manufactured by NE Chemcat: crushed, particle size 4-8 mesh, palladium loading 0.5%), and a mesityl oxide solution ( While supplying 100 ml / h of mesityl oxide (concentration 90.4%) and 800 ml / h of MIBK (purity 99.84%) to remove reaction heat, the reaction pressure was 0.98 MPa, and the molar ratio of H 2 to mesityl oxide. 4. When 1 ml / h of 0.5% NaOH aq. Was supplied to the reaction system at a reaction temperature (the highest temperature in the catalyst layer) of 125 ° C., the conversion of mesityl oxide was 99.96 mol% and the selectivity of MIBK was 99. A reaction result of 19 mol% and a selectivity of MIBC of 0.60 mol% was obtained. In this case, the water concentration in the reaction solution was 0.56%.
[0017]
(Analysis method)
Water content: Karl Fischer moisture meter MO, MIBK, MIBC: gas chromatography
Example 2
When hydrogenation of mesityl oxide was carried out in the same manner as in Example 1 except that 0.2% NaOHaq was supplied, the conversion of mesityl oxide was 99.98 mol% and the selectivity for MIBK was 98.88 mol%. The selectivity of MIBC was 0.82 mol%. In this case, the water concentration in the reaction solution was 0.58%.
[0019]
Comparative Example 1
When hydrogenation reaction of mesityl oxide was conducted in the same manner as in Example 1 except that NaOHaq was not supplied, the conversion of mesityl oxide was 99.96 mol%, the selectivity for MIBK was 98.50 mol%, and the selection of MIBC The rate was a reaction result of 1.50 mol%. In this case, the water concentration in the reaction solution was 0.45%.
[0020]
[Brief description of the drawings]
FIG. 1 is an outline of an apparatus used in Example 1. FIG.

Claims (1)

アルカリ金属の水酸化物を濃度0.1〜1.0重量%の水溶液として添加することによりアルカリ金属の水酸化物を共存させて、下記一般式(I)
RCOR’ ・・・(I)
(ここで、Rはアルケニル基、R’はアルキル基またはアルケニル基を示す。)で示される不飽和ケトン化合物を水添することを特徴とする飽和ケトン化合物の製造方法。
By adding an alkali metal hydroxide as an aqueous solution having a concentration of 0.1 to 1.0% by weight, the alkali metal hydroxide is allowed to coexist , and the following general formula (I)
RCOR '(I)
(Wherein R represents an alkenyl group, and R ′ represents an alkyl group or an alkenyl group) . A method for producing a saturated ketone compound, comprising hydrogenating an unsaturated ketone compound represented by the formula:
JP02108599A 1999-01-29 1999-01-29 Method for producing saturated ketone compound Expired - Lifetime JP3939042B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02108599A JP3939042B2 (en) 1999-01-29 1999-01-29 Method for producing saturated ketone compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02108599A JP3939042B2 (en) 1999-01-29 1999-01-29 Method for producing saturated ketone compound

Publications (2)

Publication Number Publication Date
JP2000219649A JP2000219649A (en) 2000-08-08
JP3939042B2 true JP3939042B2 (en) 2007-06-27

Family

ID=12045053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02108599A Expired - Lifetime JP3939042B2 (en) 1999-01-29 1999-01-29 Method for producing saturated ketone compound

Country Status (1)

Country Link
JP (1) JP3939042B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103755537A (en) * 2014-01-14 2014-04-30 浙江新化化工股份有限公司 Cogeneration method of methyl isobutyl ketone and diiso butyl ketone

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101717328B (en) * 2009-09-14 2014-09-24 广西万山香料有限责任公司 New method for synthesizing raspberry ketone by using natural equivalent anisic aldehyde
CN105732305B (en) * 2016-03-25 2018-05-25 中南大学 A kind of preparation method of synthesizing methyl isobutyl ketone and methyl isobutyl alcohol

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103755537A (en) * 2014-01-14 2014-04-30 浙江新化化工股份有限公司 Cogeneration method of methyl isobutyl ketone and diiso butyl ketone
CN103755537B (en) * 2014-01-14 2015-11-04 浙江新化化工股份有限公司 The co-production of a kind of hexone and diisobutyl ketone

Also Published As

Publication number Publication date
JP2000219649A (en) 2000-08-08

Similar Documents

Publication Publication Date Title
JPS5827642A (en) New rutenium/carbon-hydrogenation catalyst
JP2007070358A (en) Hydrogenation of acetone
JP2008074754A (en) METHOD FOR PRODUCING trans-1,4-DIAMINOCYCLOHEXANE
JPH0217944A (en) Catalyst composition, preparation thereof and hydrogenation of chlorofluoroalkene by the composition
JP2840085B2 (en) Catalyst compositions, methods for obtaining them, and methods for hydrogenating 1,1,2-trichloro-1,2,2-trifluoroethane using these compositions
JP3939042B2 (en) Method for producing saturated ketone compound
JPS61109782A (en) Manufacture of 1-alkyl- or 1-cycloalkyl- piperazine
KR20040086303A (en) Process for reducing α-haloketones to secondary α-haloalcohols
JP6005064B2 (en) Preparation of 4-acetoxy-2-methylbutanal by catalytic carbon-carbon double bond hydrogenation
JPH11236341A (en) Production of alcohol
EP3323801B1 (en) Methods of preparing cyclohexanone and derivatives
JP4862162B2 (en) Catalyst for hydrogenation of carbonyl group, method for producing the same, and method for producing unsaturated alcohol using the catalyst
JPH053861B2 (en)
JP2002255941A (en) Method for producing imidazole compound
JPH09221437A (en) Production of ethanol
JP4916612B2 (en) Method for producing compound having carboxyl group and / or carbonyl group
WO1998052893A1 (en) Process for producing 1,2-propanediol
JP2001158754A (en) Method for producing tetrafluorobenzenedimethanol
JPS60218330A (en) Dehalogenation
JP4069654B2 (en) Method for producing cycloalkene
JP2001288137A (en) Method for producing formic acid
JP3089772B2 (en) Method for producing diol compound having cyclohexane ring
JPH05148171A (en) Production of 1,1,1,2,2,3,4,5,5,5-decafluoropentane
JP2000229904A (en) Production of saturated ketone compound
JP3971875B2 (en) Process for producing trans-4- (4'-oxocyclohexyl) cyclohexanols

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061031

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070327

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070327

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110406

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120406

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120406

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140406

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term