JP3936532B2 - Large spherical induction heating method and heating coil - Google Patents

Large spherical induction heating method and heating coil Download PDF

Info

Publication number
JP3936532B2
JP3936532B2 JP2000355360A JP2000355360A JP3936532B2 JP 3936532 B2 JP3936532 B2 JP 3936532B2 JP 2000355360 A JP2000355360 A JP 2000355360A JP 2000355360 A JP2000355360 A JP 2000355360A JP 3936532 B2 JP3936532 B2 JP 3936532B2
Authority
JP
Japan
Prior art keywords
coil
quenching
hardened
heating
circumference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000355360A
Other languages
Japanese (ja)
Other versions
JP2002161311A (en
Inventor
宏 長谷川
尚之 平岩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Neturen Co Ltd
Original Assignee
Neturen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Neturen Co Ltd filed Critical Neturen Co Ltd
Priority to JP2000355360A priority Critical patent/JP3936532B2/en
Publication of JP2002161311A publication Critical patent/JP2002161311A/en
Application granted granted Critical
Publication of JP3936532B2 publication Critical patent/JP3936532B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • General Induction Heating (AREA)
  • Heat Treatment Of Articles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、大型の球面を有する部材、例えばトンネル掘削機に使用するグリッパージャッキなどの500mmφの大型の球面部を有する大型部材の球面部を焼入れする大型球面の誘導加熱焼入方法および加熱コイルに関するものである。
【0002】
【従来の技術】
通常の球面部材の表面焼入れにおいては、軸方向に球面に沿った曲線の導体を有する1個の加熱コイルを用いて、被加熱体を回転しながら誘導加熱して、加熱後冷却して焼入れする方法がとられている。これを改良したものとして、本出願人は先に実公昭52−49162号公報や実公平1−41192号公報の発明を開示した。
【0003】
このような加熱方法では、加熱部を均等に加熱するためには被処理材の回転にある程度の高速回転が必要である。しかし、例えば前記グリッパージャッキ部材のように重量が8トンもある軸部材では、回転加熱するために高速回転させることは困難である。そのために、このような大型部材では、被処理部位を加熱冷却しながら移動して焼入れする移動焼入れが採用される。
【0004】
【発明が解決しようとする課題】
しかしながら、前記のような大型部材では、移動焼入れによっても、全球面を一つのコイルで一度に加熱するためには、非常に大きな電力設備を要することになり、十分な加熱負荷をかけることが困難である。そのため、加熱温度の部分的むらが生じたり、加熱時間が長くなり熱効率が低下するという問題点があり、通常設備では誘導加熱焼入れは不可能に近いものであった。また、大型球面の広い面を一度に均等な温度に加熱することは難しく、均等な表面硬さを得ることが困難であった。
【0005】
さらに、前記実公平1−41192号公報の球面の頭頂部と側面部が一体の導体のコイルで球面を移動焼入れすると、球面の頭頂部の小径の円周より側面部の大径の円周の加熱速度が遅いために、一度焼入れされた頭頂部が再加熱されて焼戻しされることになり、頭頂部に高い硬さが得られないという問題点がある。
【0006】
また、一般に移動焼入れにおいては、焼入れ始めと焼入れ終わりとの間にソフトゾーンを形成させて焼入れ始め部が再加熱されないようにされる。このソフトゾーンは、図6X−X線上部に示すように平行な等幅のゾーン1a,2aの形が望ましい。しかし、図6のX−X線下部に破線で示す従来の直線型コイルで球面を焼入れすると、図に示すように等幅にならず扇形のソフトゾーン1a´,2a´が形成される。
【0007】
一方、大型球面の焼入れにおいては、全面焼入れでなくても耐力を支える部分が焼入れされていれば良い場合が多い。そこで本発明は、大型の球面焼入れにおいて、小容量の電力設備で焼入れができ、かつ等幅のソフトゾーンができる大型球面の誘導加熱焼入方法と加熱コイルを提供することを目的とする。
【0008】
【課題を解決するための手段】
上記目的を達成するために本発明の大型球面の誘導加熱焼入方法は、大型球面を有する被焼入部材を回転して移動焼入れする際に、被焼入球面を頭頂部円周、頭頂部と側面部の中間部円周及び側面部円周に3分割し、該加熱面に向けて被焼入球面に沿った曲線の導体を有する3個の平面加熱型コイルを使用して、第1コイルで前記頭頂部円周を焼入れし、第2コイルにより前記頭頂部と側面部の中間部円周を焼入れし、第3コイルにより前記側面部円周を焼入れする3分割焼入れをすることを特徴とするものである。
【0009】
即ち、このように頭頂部と中間部と側面部などを少なくも2以上に分割して移動焼入れすることにより、小さい電力設備で大型の球面の加熱焼入れができる。また、前記のような頭頂部の再加熱による軟化を防止して均等な球面焼入れが可能になる。
【0010】
前記の大型球面を加熱焼入れする3個の誘導加熱コイルは、いずれも加熱面に向けて被焼入球面に沿った曲線の導体を有する平面加熱型コイルであり、前記第1および第2コイルは、球面の経度線に沿う短弧状曲線の2本の軸方向導体と焼入部の緯度線に沿い前記2本の軸方向導体の経度線間を結ぶ短弧状曲線の円周方向導体により形成される底辺と頂辺とを有する扇形コイルであることを特徴とするものである。
【0011】
通常の平面の誘導加熱に使用される角型のコイルにより前記頭頂部と中間部の球面を加熱焼入れすると、前述のように図6のX−X線下部に示す扇形に開いたソフトゾーン1a´が生ずる。これに対し本発明の扇形コイルによれば、円周方向導体の底辺と頂辺の長さが軸方向導体がなす経度線の間隔に相当する長さの扇形をなしているので、図6のX−X線上部に示すように等幅のソフトゾーン1aの形状になる。なお、実用的には、第3コイルは扇形でなく被焼入球面に沿った矩形の形状の導体のコイルでも良い。
【0012】
また、前記第1コイルは、大径の扇形コイルの内周側に小径の扇形コイルを配設して両コイルを直列に接続した2巻コイルであることが望ましい。こうすれば、磁束密度を上げることができて、加熱効率を上げることができる。
【0013】
また、前記加熱コイルの少なくも一つ以上のコイルには、コイルの内周側に磁束集中材が設けられることが望ましい。こうすれば、磁束集中材を適切に配設することにより、加熱むらをなくすることができる。
【0014】
さらに、前記磁束集中材には、冷却液が導入される中空部と、該中空部に導入された冷却液を被焼入球面に噴射する噴射口とが設けられることが望ましい。このようにすれば、加熱直後に加熱面に直接かつ均一に冷却液を噴射できるので、急冷が容易で均一な焼入れ硬さが得られる。
【0015】
また、前記加熱コイルの移動する後方側に冷却液を噴射する冷却ジャケットを設けることにより、移動焼入れにおいて、加熱後の急冷が一層容易になり均一な焼入れ硬さが得られる。
【0016】
【発明の実施の形態】
以下、本発明を図示の一実施形態について具体的に説明する。図1は本発明の誘導加熱焼入れについて説明する図、図2は被焼入球面の頭頂部円周を加熱する第1コイルの斜視図、図3はその頭頂部と側面部の中間部円周を加熱する第2コイルの斜視図、図4は同様側面部円周を加熱する第3コイルの斜視図である。図5は本発明の磁束集中材の構造を示す一部断面図、図6は本発明と従来焼入れにおけるソフトゾーンの形状の比較を示す図、図7は冷却手段の1例を示す図、図8は本発明実施例に使用した被焼入部材の形状を示す図である。
【0017】
図1について説明すると、本発明の誘導加熱焼入れは、被焼入部材(以下ワークという)Wの頭部W1の被焼入球面を焼入れするものである。ワークの一例は図8に示すように球面径590mmφで長さ3300mm、8tonという大型の部材である。
【0018】
焼入方法は、まずワークWの被焼入球面の頭頂部を第1コイル10により加熱・冷却しながらワークWを1回転して頭頂部を移動焼入れして焼入面1を形成させる。次に頭頂部と側面部の中間部を第2コイル20により加熱・冷却しながら同様にワークWを回転して中間部を移動焼入れして焼入面2を形成させた後、側面部3を第3コイル30により加熱・冷却しながら同様にワークWを回転して移動焼入れして焼入面3を形成させる。
【0019】
このとき、1回転した位置では、焼入れ始めの部分に熱影響を与えないようにソフトゾーン1a,2a等を形成させる。図1に示す本実施形態では、ワークの球面部に貫通孔Pが設けられているので、貫通孔Pの両側にソフトゾーン3aが形成される。また、頭頂部の焼入面1と中間部の焼入面2との間、中間部の焼入面2と側面部の焼入面3の間にもソフトゾーンが形成される。これらの頭頂部、中間部、側面部の焼入面1、2、3のソフトゾーン1a,2a,3aの位置は図のように円周方向にずらすことが望ましい。このソフトゾーンについては詳細を後述する。
【0020】
図2に示す本発明の第1コイル10は扇形のコイルをなし、円周方向導体11a,11bと13および軸方向導体12,14とが交互に接続された大径扇形コイルと、その内周側に配設された円周方向導体15a,15bと17および軸方向導体16,18とが交互に接続された相似形の小径扇形コイルとが11bと15aにより直列に接続された2巻コイルからなる。そして、大径コイルの円周方向導体11aに接続されたリード部L11にターミナルT11が接続され、小径コイルの円周方向導体15bに接続されたリード部L12にターミナルT12が接続されて、ターミナルT11,T12から電力が入力されるようになっている。
【0021】
これらのコイルの導体は、ワークの球面との間に所定の隙間を形成するような球面に沿った曲線をなす。大径コイルと小径コイルの軸方向導体12,14および16,18は、図の破線に示すようにそれぞれ球面の経度線に沿った曲線の短弧状導体からなり、所定の間隔におかれる。
【0022】
また、大径コイルと小径コイルの円周方向導体11a,11bと13および15a,15bと17は、同様に破線で示すようにそれぞれの位置の球面上の緯度線に沿った曲線の短弧状導体からなり、焼入面の幅の間隔におかれ、両端が前記軸方向導体と接続される。これにより円周方向導体の長さは、それぞれ軸方向導体がなす経度線の間隔に相当する長さになり、コイルは扇形を形成する。そして、それぞれの導体は、電流が矢印のようにリードL11から導体11a−12−13−14−11b−15a−16−17−18−15bを通ってリードL12に流れるように接続される。
【0023】
図3に示す第2コイル20も第1コイルと同様であるが、第2コイル20は1巻コイルである。軸方向導体22,24は、それぞれ球面の中間面の経度線に沿った曲線の短弧状導体からなる。また、円周方向導体21a,21bと23は、球面の中間面2の緯度線に沿った曲線の短弧状導体からなり、それぞれの円周方向導体の長さは、それぞれ軸方向導体がなす経度線の間隔に相当する長さにされている。これにより第2コイル20も扇形のコイルをなす。そして、それぞれの導体は、電流が図の矢印に流れるように接続されている。
【0024】
図4に示す球面側面を加熱する第3コイル30も、第2コイル20と同様であるが、軸方向導体32,34が上半球と下半球にまたがるようにされており、実用上矩形コイルで良い。その他は第2コイル20と同様である。
【0025】
第2コイル20には、図5に示すようにコイルの内周側に磁束集中材が装着されている。図5(a)は第2コイル20に装着された磁束集中材の平面の一部断面図、(b)は図(a)のY−Y断面図である。
【0026】
図において、磁束集中材40は、ベース体41と蓋42からなる。ベース体41には中空部41aが掘り込まれ、中空部41aからワークに向けて冷却液を噴射する多数の噴射口41bが貫通されている。ベース体41の上に磁性体の蓋42が接着され、中空部41aが空洞を形成するようになっている。蓋42には導入管43が接着されている。これにより、ワークを加熱後、導入管43から中空部41aに導入された冷却液を噴射口41bからワーク表面に噴射して急冷する。
【0027】
冷却手段としては、上記磁束集中材から冷却する他に、一例を図7に示す冷却ジャケットが装着されている。図7は第3コイル30に装着された冷却ジャケットを示す図であるが、第1、第2コイルにおいても同様である。即ち、第3コイル30の導体32、34の進行方向の後方に冷却ジャケット45を配設して、ワークを移動しながら第3コイルで加熱した直後に冷却ジャケット45により急冷して焼入れするものである。
【0028】
冷却ジャケット45は、第3コイル30の進行方向後方に導体34に平行に配設された三角形断面の中空管46に噴射口47が設けられ、導水管48から中空管46の中空部に導入された冷却液を噴射口47からワークに噴射して冷却するようになっている。
【0029】
以下、上記構成の焼入コイルによる焼入作業について図1、2を用いて説明する。まず第1コイル10のターミナルT11,T12を図示しない高周波電源に接続し、その導体11a,11b,12,13,14…などがワークWの被焼入球面と所定の間隔を有するように頭頂部の所定位置に配設する。そして、ターミナルT11,T12に電力を入力して頭頂部を誘導加熱する。被焼入面が焼入温度に上昇するとワークを回転して冷却ジャケット45により加熱された面を冷却して焼入れする。以後は焼入面が焼入温度に加熱されるような速度でワークを回転させ、連続して回転移動させながら加熱・冷却して焼入れしていく。ワークを1回転すると、図1、6に示すようなソフトゾーン1aを形成させてワークの回転を止める。これにより、図6のX−X線上部に示すような焼入硬化面が形成されるが、本発明では、扇形の加熱コイルを使用するので、図に示すようにソフトゾーン1aが等幅になる。なお、冷却の際に、第2コイルでは磁束集中材40の噴射口41bからも冷却液を噴射して冷却するので一層急冷効果が得られる。
【0030】
頭頂部の焼入面1が形成されると、次に中間部の焼入面2を形成させる。第1コイルと同様に、第2コイル20を図示しない高周波電源に接続して、ワークの中間部の所定位置に配設する。そして、前記頭頂部の焼入面1と同様の動作で中間部の焼入面2を形成させる。この場合もソフトゾーン2aは等幅になる。なお、前述したように頭頂部の焼入面1のソフトゾーン1aと中間部の焼入面2のソフトゾーン2aの位置は円周方向にずらすことが望ましい。
【0031】
頭頂部の焼入面1および中間部の焼入面2を形成させると、次に同様の動作で第3コイルにより側面部の焼入面3を形成させる。図1の本実施形態のワークは球面部に貫通ピン孔Pが設けられているので、孔の両側にソフトゾーン3aを形成させてある(図6では孔のない場合を示してある)。
【0032】
上記方法により焼入面1、2、3を焼入れして焼入作業が完了する。焼入面の形状は、図に示すように前記ソフトゾーンの他、頭頂部の焼入面1と中間部の焼入面2の間と、中間部の焼入面2と側面部の焼入面3との間にもソフトゾーンが形成された形になる。
【0033】
[実施例]
上記方法により下記の条件で焼入れを行った実施例について説明する。
ワークの形状寸法: 図8に示す590mmφの球状頭部に貫通ピン孔Pを有する長さ3300mmの部材、約8トン
ワークの材質:SCM440
加熱条件: 表1に示す通り
【0034】
【表1】

Figure 0003936532
【0035】
焼入れの結果を図9、図10および表2、表3に示す。図9は焼入面の側面形状の詳細を示す図、図10は図9のZ視図である。表2は図9、図10の焼入面の寸法の規格値と実測値を示す。表から分かるように、本発明の方法によれば焼入面の所定の幅と目標としたソフトゾーンが得られた。
【0036】
【表2】
Figure 0003936532
【0037】
また、表3は図9、図10の各位置における焼入硬さの実測値を示すが、焼入硬さも規格値を満足する。以上、これらの表から分かるように、本発明によれば、焼入面寸法、焼入硬さともに十分規格を満足し、予定のソフトゾーンが得られることが分かった。
【0038】
【表3】
Figure 0003936532
【0039】
なお、本実施形態では、球面を頭頂部、中間部、側面部に3分割して分割焼入れしたが、球面の大きさによっては頭頂部と中間部を一度に焼入れし側面部と併せて2分割焼入れすることもでき、さらに4分割以上の分割焼入れすることもできる。
【0040】
【発明の効果】
以上説明したように、本発明の大型球面の誘導加熱焼入方法及び加熱コイルによれば、被焼入部材を回転しながら第1コイル、第2コイル、第3コイルにより被焼入球面の頭頂部円周、中間部円周、側面部円周を分割焼入れするので、大型球面を小さい容量の設備で誘導加熱焼入れすることができる。
【0041】
また、使用コイルは加熱面に向けて被焼入球面に沿った曲線の導体を有する平面加熱型コイルであり、この第1および第2コイルは、扇形コイルであるので、従来の矩形コイルのように、扇形のソフトゾーンを生ずることなく等幅のソフトゾーンを得ることができる。
【0042】
また、第1コイルは2巻コイルを使用し、少なくも一つ以上のコイルには磁束集中材が設けられる(本実施例では第2コイル)ので、加熱面を均一加熱する適正な磁束が得られ、かつこの磁束集中材には、冷却液を被焼入球面に噴射する噴射口が設けられているので、急冷が容易であり均一な焼入硬さが得られる。さらに加熱コイルの後方側に冷却液を噴射する冷却ジャケットが設けられて噴射冷却されるので、一層完全な焼入れ冷却を行うことができる。
【0043】
以上により、従来焼入れが困難であった大型球面の誘導加熱焼入れが比較的小容量の設備で簡易に行うことができ、大型球面部材の原価低減に寄与できる。
【図面の簡単な説明】
【図1】本発明実施形態の誘導加熱焼入れについて説明する図である。
【図2】被焼入球面の頭頂部円周を加熱する第1コイルの斜視図である。
【図3】被焼入球面の中間部円周を加熱する第2コイルの斜視図である。
【図4】被焼入球面の側面部円周を加熱する第3コイルの斜視図である。
【図5】本発明実施形態の磁束集中材の構造を示す一部断面図である。
【図6】本発明と従来焼入れにおけるソフトゾーンの形状の比較を示す図である。
【図7】本発明実施形態の冷却手段の1例を示す図である。
【図8】本発明実施例に使用した被焼入部材の形状を示す図である。
【図9】本発明実施例の焼入面の側面形状の詳細を示す図である。
【図10】図9のY視図である。
【符号の説明】
1 頭頂部焼入面、2 中間部焼入面、3 側面部焼入面、1a,2a,3a,ソフトゾーン、10 第1コイル、11a,11b、15a,15b、13、17 円周方向導体、12、14、16、18 軸方向導体、L11,L12 リード、20 第2コイル、21a,21b、23 円周方向導体、22、24軸方向導体、L21,L22 リード、30 第3コイル、31a,31b、33 円周方向導体、32、34 軸方向導体、L31,L32 リード、40磁束集中材、41 ベース体、41a 中空部、41b 噴射口、42蓋、43 導入管、45 冷却ジャケット、46 中空管、47 噴射口、48 導入管 W ワーク(被焼入部材)、P 貫通ピン孔[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a large spherical induction heating method and a heating coil for quenching a large spherical surface member, for example, a large spherical member having a large spherical surface portion of 500 mmφ such as a gripper jack used in a tunnel excavator. Is.
[0002]
[Prior art]
In normal surface hardening of a spherical member, induction heating is performed while rotating the object to be heated using a single heating coil having a curved conductor along the spherical surface in the axial direction. The method is taken. As an improvement of this, the present applicant has previously disclosed the inventions of Japanese Utility Model Publication No. 52-49162 and Japanese Utility Model Publication No. 1-41912.
[0003]
In such a heating method, a certain amount of high-speed rotation is required for rotation of the material to be processed in order to uniformly heat the heating unit. However, for example, a shaft member having a weight of 8 tons, such as the gripper jack member, is difficult to rotate at a high speed because it rotates and heats. Therefore, in such a large-sized member, moving quenching is adopted in which the part to be treated is moved and quenched while being heated and cooled.
[0004]
[Problems to be solved by the invention]
However, in the case of the large-sized member as described above, it is difficult to apply a sufficient heating load to heat the entire spherical surface at once with one coil even by moving quenching. It is. For this reason, there is a problem that partial unevenness of the heating temperature occurs, or the heating time becomes long and the thermal efficiency is lowered, and induction heating and quenching is almost impossible with normal equipment. In addition, it is difficult to heat a wide surface of a large spherical surface to a uniform temperature at a time, and it is difficult to obtain a uniform surface hardness.
[0005]
Further, when the spherical head is moved and quenched by a coil of a conductor having a spherical surface, the spherical head of the Japanese Utility Model Publication No. 1-41922 is integrated with a coil having an integral conductor, the circumference of the large diameter of the side surface is smaller than that of the small diameter of the top of the spherical surface. Since the heating rate is slow, the crown that has been quenched once is reheated and tempered, and there is a problem that high hardness cannot be obtained at the crown.
[0006]
In general, in the transfer quenching, a soft zone is formed between the start of quenching and the end of quenching so that the quenching start portion is not reheated. The soft zones are preferably in the form of parallel equal-width zones 1a and 2a as shown in the upper portion of FIG. 6X-X. However, when the spherical surface is quenched with a conventional linear coil indicated by a broken line below the line XX in FIG. 6, fan-shaped soft zones 1a ′ and 2a ′ are formed without equal width as shown in the figure.
[0007]
On the other hand, in the case of quenching a large spherical surface, it is often sufficient that the portion supporting the yield strength is quenched even if it is not the entire surface quenching. Therefore, an object of the present invention is to provide a large spherical induction heating and quenching method and a heating coil which can be quenched with a small capacity electric power facility and have a uniform soft zone in large spherical quenching.
[0008]
[Means for Solving the Problems]
In order to achieve the above-described object, the large spherical induction heating and quenching method of the present invention is configured such that when a hardened member having a large spherical surface is rotated and moved and quenched, the hardened spherical surface is arranged on the circumference of the top and the top of the head. And three side-heating coils having curved conductors along the to-be-hardened spherical surface toward the heating surface . quenching the parietal region circumferential coil, the second coil quenching the intermediate portion circumference of the top portion and side portions, characterized in that the three-part hardening for hardening the side portions circumference by the third coil It is what.
[0009]
That is, a large spherical surface can be heated and hardened with a small electric power equipment by dividing the top part, the intermediate part, the side part and the like into at least two pieces and moving and quenching in this way. Moreover, the softening due to reheating of the top of the head as described above can be prevented, and uniform spherical hardening can be performed.
[0010]
The three induction heating coils for heating and hardening the large spherical surface are all planar heating type coils having curved conductors along the hardened spherical surface toward the heating surface, and the first and second coils are: , Formed by two circumferential conductors of a short arc-shaped curve that connects between two longitudinal conductors of a short arc-shaped curve along the longitude line of the spherical surface and a longitude line of the two axial conductors along the latitude line of the quenching portion. It is a sector coil having a bottom side and a top side.
[0011]
When the top and middle spherical surfaces are heated and hardened by a rectangular coil used for normal planar induction heating, the soft zone 1a 'opened in a fan shape shown at the bottom of line XX in FIG. 6 as described above. Will occur. On the other hand, according to the sector coil of the present invention, the length of the base and the top of the circumferential conductor is a sector having a length corresponding to the interval between the longitude lines formed by the axial conductor. As shown in the upper part of the XX line, the soft zone 1a has a uniform width. Practically, the third coil may be a coil of a conductor having a rectangular shape along the to-be-hardened spherical surface instead of a sector shape.
[0012]
The first coil is preferably a two-turn coil in which a small-diameter sector coil is disposed on the inner peripheral side of a large-diameter sector coil and both coils are connected in series. In this way, the magnetic flux density can be increased and the heating efficiency can be increased.
[0013]
In addition, at least one of the heating coils is preferably provided with a magnetic flux concentrating material on the inner peripheral side of the coil. By so doing, uneven heating can be eliminated by appropriately arranging the magnetic flux concentrating material.
[0014]
Further, it is desirable that the magnetic flux concentrating material is provided with a hollow portion into which the cooling liquid is introduced and an injection port for injecting the cooling liquid introduced into the hollow portion onto the hardened spherical surface. In this way, since the coolant can be sprayed directly and uniformly onto the heating surface immediately after heating, rapid quenching is easy and uniform quenching hardness is obtained.
[0015]
In addition, by providing a cooling jacket for injecting a coolant on the rear side of the heating coil, rapid quenching after heating is further facilitated in moving quenching, and uniform quenching hardness is obtained.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be specifically described with reference to an illustrated embodiment. FIG. 1 is a diagram for explaining induction heating and quenching according to the present invention, FIG. 2 is a perspective view of a first coil for heating the circumference of the top of the spherical surface to be hardened, and FIG. 3 is a circumference of the middle between the top and side portions. FIG. 4 is a perspective view of the third coil for heating the circumference of the side surface portion. FIG. 5 is a partial cross-sectional view showing the structure of the magnetic flux concentrating material of the present invention, FIG. 6 is a diagram showing a comparison of the shape of the soft zone in the present invention and conventional quenching, and FIG. 7 is a diagram showing an example of cooling means. 8 is a figure which shows the shape of the to-be-hardened member used for this invention Example.
[0017]
Referring to FIG. 1, the induction heating quenching of the present invention quenches the to-be-quenched spherical surface of the head W1 of a member to be quenched (hereinafter referred to as a workpiece) W. An example of the workpiece is a large member having a spherical diameter of 590 mm, a length of 3300 mm, and 8 tons as shown in FIG.
[0018]
In the quenching method, first, the top of the spherical surface of the workpiece W to be hardened is heated and cooled by the first coil 10, and the workpiece W is rotated once to move and quench the top of the workpiece W to form the quenching surface 1. Next, after heating and cooling the intermediate part between the top part and the side part by the second coil 20, the workpiece W is similarly rotated to move and quench the intermediate part to form the quenching surface 2, and then the side part 3 is moved. The workpiece W is rotated and moved and quenched in the same manner while being heated and cooled by the third coil 30 to form the quenched surface 3.
[0019]
At this time, the soft zones 1a, 2a, etc. are formed at the position rotated once so as not to affect the heat at the beginning of quenching. In the present embodiment shown in FIG. 1, since the through hole P is provided in the spherical surface portion of the workpiece, the soft zones 3 a are formed on both sides of the through hole P. Soft zones are also formed between the quenching surface 1 at the top and the quenching surface 2 at the intermediate portion, and between the quenching surface 2 at the intermediate portion and the quenching surface 3 at the side portion. It is desirable to shift the positions of the soft zones 1a, 2a and 3a of the quenching surfaces 1, 2 and 3 at the top, middle and side portions in the circumferential direction as shown in the figure. Details of this soft zone will be described later.
[0020]
A first coil 10 of the present invention shown in FIG. 2 is a fan-shaped coil, and has a large-diameter sector coil in which circumferential conductors 11a, 11b and 13 and axial conductors 12, 14 are alternately connected, and an inner circumference thereof. A similar small-diameter sector coil in which circumferential conductors 15a, 15b and 17 and axial conductors 16 and 18 are alternately connected to each other from a two-turn coil connected in series by 11b and 15a Become. The terminal T11 is connected to the lead portion L11 connected to the circumferential conductor 11a of the large-diameter coil, the terminal T12 is connected to the lead portion L12 connected to the circumferential conductor 15b of the small-diameter coil, and the terminal T11. , T12 is used to input power.
[0021]
The conductors of these coils form a curve along the spherical surface that forms a predetermined gap with the spherical surface of the workpiece. The axial conductors 12, 14 and 16, 18 of the large-diameter coil and the small-diameter coil are each composed of a short arc-shaped conductor having a curved line along a spherical longitude line as shown by broken lines in the figure, and are arranged at predetermined intervals.
[0022]
Further, the circumferential conductors 11a, 11b and 13 and 15a, 15b and 17 of the large-diameter coil and the small-diameter coil are similarly short arc-shaped conductors along the latitude line on the spherical surface at the respective positions as indicated by broken lines. The both ends of the hardened surface are connected to the axial conductor. Thereby, the length of the circumferential conductor becomes a length corresponding to the interval between the longitude lines formed by the axial conductors, and the coil forms a sector. The respective conductors are connected such that current flows from the lead L11 to the lead L12 through the conductors 11a-12-13-14-11b-15a-16-17-18-15b as indicated by arrows.
[0023]
The second coil 20 shown in FIG. 3 is similar to the first coil, but the second coil 20 is a one-turn coil. The axial conductors 22 and 24 are each composed of a short arc-shaped conductor having a curve along the longitude line of the intermediate surface of the spherical surface. Further, the circumferential conductors 21a, 21b and 23 are composed of short arc-shaped conductors along the latitude line of the spherical intermediate surface 2, and the length of each circumferential conductor is the longitude formed by the axial conductor. The length corresponds to the interval between the lines. Thereby, the 2nd coil 20 also makes a fan-shaped coil. And each conductor is connected so that an electric current may flow into the arrow of a figure.
[0024]
The third coil 30 for heating the spherical side surface shown in FIG. 4 is the same as the second coil 20, but the axial conductors 32 and 34 extend over the upper and lower hemispheres, and are practically rectangular coils. good. Others are the same as those of the second coil 20.
[0025]
As shown in FIG. 5, the magnetic flux concentrating material is attached to the second coil 20 on the inner peripheral side of the coil. FIG. 5A is a partial cross-sectional view of the plane of the magnetic flux concentrating material attached to the second coil 20, and FIG. 5B is a YY cross-sectional view of FIG.
[0026]
In the figure, the magnetic flux concentrating member 40 includes a base body 41 and a lid 42. A hollow portion 41a is dug in the base body 41, and a large number of injection ports 41b for injecting a coolant from the hollow portion 41a toward the workpiece are penetrated. A magnetic lid 42 is bonded onto the base body 41 so that the hollow portion 41a forms a cavity. An introduction tube 43 is bonded to the lid 42. Thereby, after heating a workpiece | work, the cooling fluid introduce | transduced into the hollow part 41a from the introductory tube 43 is injected to the workpiece | work surface from the injection port 41b, and it cools rapidly.
[0027]
As a cooling means, in addition to cooling from the magnetic flux concentrating material, a cooling jacket shown in FIG. 7 is mounted as an example. FIG. 7 is a view showing a cooling jacket mounted on the third coil 30, but the same applies to the first and second coils. That is, a cooling jacket 45 is disposed behind the conductors 32 and 34 of the third coil 30 in the traveling direction, and immediately after being heated by the third coil while moving the workpiece, the cooling jacket 45 is rapidly cooled and quenched. is there.
[0028]
The cooling jacket 45 is provided with an injection port 47 in a triangular cross-section hollow tube 46 disposed in parallel to the conductor 34 behind the third coil 30 in the traveling direction, and from the water conduit 48 to the hollow portion of the hollow tube 46. The introduced cooling liquid is jetted onto the work from the jet 47 to cool it.
[0029]
Hereinafter, a quenching operation using the quenching coil having the above-described configuration will be described with reference to FIGS. First, the terminals T11 and T12 of the first coil 10 are connected to a high-frequency power source (not shown), and the top of the head so that the conductors 11a, 11b, 12, 13, 14. Is disposed at a predetermined position. And electric power is input into terminal T11, T12, and a top part is induction-heated. When the surface to be quenched rises to the quenching temperature, the workpiece is rotated and the surface heated by the cooling jacket 45 is cooled and quenched. Thereafter, the workpiece is rotated at a speed at which the quenching surface is heated to the quenching temperature, and the workpiece is quenched by heating and cooling while continuously rotating. When the workpiece is rotated once, a soft zone 1a as shown in FIGS. 1 and 6 is formed to stop the rotation of the workpiece. As a result, a hardened and hardened surface as shown in the upper part of line XX in FIG. 6 is formed. However, in the present invention, since a fan-shaped heating coil is used, the soft zone 1a has a uniform width as shown in the figure. Become. During cooling, the second coil cools by injecting the cooling liquid from the injection port 41b of the magnetic flux concentrating material 40, so that a further rapid cooling effect can be obtained.
[0030]
When the top hardened surface 1 is formed, the intermediate hardened surface 2 is then formed. Similarly to the first coil, the second coil 20 is connected to a high-frequency power source (not shown) and disposed at a predetermined position in the intermediate portion of the workpiece. Then, an intermediate hardened surface 2 is formed by the same operation as the top hardened surface 1. Also in this case, the soft zone 2a has the same width. As described above, it is desirable that the positions of the soft zone 1a of the quenching surface 1 at the top and the soft zone 2a of the quenching surface 2 at the intermediate portion are shifted in the circumferential direction.
[0031]
When the quenching surface 1 at the top and the quenching surface 2 at the intermediate portion are formed, the quenching surface 3 at the side surface is formed by the third coil by the same operation. Since the work of the present embodiment in FIG. 1 is provided with through-pin holes P in the spherical portion, soft zones 3a are formed on both sides of the holes (FIG. 6 shows a case without holes).
[0032]
The quenching surfaces 1, 2, and 3 are quenched by the above method to complete the quenching operation. As shown in the figure, the shape of the hardened surface includes the soft zone, the top hardened surface 1 and the intermediate hardened surface 2, and the intermediate hardened surface 2 and the side hardened surface. A soft zone is formed between the surface 3 and the surface 3.
[0033]
[Example]
The Example which hardened on the following conditions by the said method is demonstrated.
Shape of work: A member having a length of 3300 mm having a penetrating pin hole P on a spherical head of 590 mmφ shown in FIG. 8 and a material of about 8 tons work: SCM440
Heating conditions: As shown in Table 1
[Table 1]
Figure 0003936532
[0035]
The results of quenching are shown in FIGS. 9 and 10 and Tables 2 and 3. FIG. 9 is a diagram showing details of the side surface shape of the hardened surface, and FIG. 10 is a Z view of FIG. Table 2 shows the standard value and the actual measurement value of the dimension of the hardened surface in FIGS. 9 and 10. As can be seen from the table, according to the method of the present invention, a predetermined width of the hardened surface and a target soft zone were obtained.
[0036]
[Table 2]
Figure 0003936532
[0037]
Table 3 shows the measured values of the quenching hardness at the respective positions in FIGS. 9 and 10, and the quenching hardness also satisfies the standard value. As described above, as can be seen from these tables, it was found that according to the present invention, the hardened surface dimensions and the hardened hardness sufficiently satisfy the standards, and a planned soft zone can be obtained.
[0038]
[Table 3]
Figure 0003936532
[0039]
In this embodiment, the spherical surface is divided into three parts, the top part, the intermediate part, and the side part, and is divided and hardened. However, depending on the size of the spherical surface, the top part and the intermediate part are quenched at one time and divided into two parts together with the side part. Quenching can also be performed, and further, four or more divided quenching can be performed.
[0040]
【The invention's effect】
As explained above, according to the large spherical induction heating and hardening method and heating coil of the present invention, the head of the hardened spherical surface is rotated by the first coil, the second coil, and the third coil while rotating the hardened member. Since the top circumference, the middle circumference, and the side circumference are divided and quenched, the large spherical surface can be induction-heat quenched with equipment having a small capacity.
[0041]
The coil used is a plane heating type coil having a curved conductor along the hardened spherical surface toward the heating surface. Since the first and second coils are fan coils, they are like conventional rectangular coils. In addition, a uniform soft zone can be obtained without generating a sector-shaped soft zone.
[0042]
In addition, since the first coil uses a two-turn coil and at least one coil is provided with a magnetic flux concentrating material (in this embodiment, the second coil), an appropriate magnetic flux for uniformly heating the heating surface is obtained. In addition, since the magnetic flux concentrating material is provided with an injection port for injecting the cooling liquid onto the hardened spherical surface, it is easy to rapidly cool and uniform hardening hardness is obtained. Furthermore, since a cooling jacket for injecting a cooling liquid is provided on the rear side of the heating coil to perform injection cooling, more complete quenching cooling can be performed.
[0043]
As described above, induction heating and quenching of a large spherical surface, which has conventionally been difficult to quench, can be easily performed with a relatively small capacity facility, and can contribute to cost reduction of the large spherical member.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating induction heating quenching according to an embodiment of the present invention.
FIG. 2 is a perspective view of a first coil that heats the top circumference of a hardened spherical surface.
FIG. 3 is a perspective view of a second coil that heats the circumference of an intermediate portion of a hardened spherical surface.
FIG. 4 is a perspective view of a third coil that heats the circumference of the side surface portion of the hardened spherical surface.
FIG. 5 is a partial cross-sectional view showing a structure of a magnetic flux concentrating material according to an embodiment of the present invention.
FIG. 6 is a diagram showing a comparison of soft zone shapes between the present invention and conventional quenching.
FIG. 7 is a diagram showing an example of cooling means according to an embodiment of the present invention.
FIG. 8 is a view showing the shape of a member to be hardened used in an embodiment of the present invention.
FIG. 9 is a diagram showing details of the side surface shape of the hardened surface of the embodiment of the present invention.
10 is a Y view of FIG. 9. FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Head part hardened surface, 2 Middle part hardened surface, 3 Side part hardened surface, 1a, 2a, 3a, Soft zone, 10 1st coil, 11a, 11b, 15a, 15b, 13, 17 Circumferential conductor 12, 14, 16, 18 Axial conductor, L11, L12 lead, 20 Second coil, 21a, 21b, 23 Circumferential conductor, 22, 24 Axial conductor, L21, L22 lead, 30 Third coil, 31a , 31b, 33 Circumferential conductor, 32, 34 Axial conductor, L31, L32 lead, 40 magnetic flux concentrating material, 41 base body, 41a hollow part, 41b injection port, 42 lid, 43 introduction pipe, 45 cooling jacket, 46 Hollow tube, 47 injection port, 48 Introductory tube W Workpiece (hardened member), P Through pin hole

Claims (6)

大型球面を有する被焼入部材を回転して移動焼入れする際に、被焼入球面を頭頂部円周、頭頂部と側面部の中間部円周及び側面部円周に3分割し、該加熱面に向けて被焼入球面に沿った曲線の導体を有する3個の平面加熱型コイルを使用して、第1コイルで前記頭頂部円周を焼入れし、第2コイルにより前記頭頂部と側面部の中間部円周を焼入れし、第3コイルにより前記側面部円周を焼入れする3分割焼入れをすることを特徴とする大型球面の誘導加熱焼入方法。When rotating and quenching a hardened member having a large spherical surface, the hardened spherical surface is divided into a top circumference, a middle circumference between the top and the side and a side circumference, and the heating. Using three planar heating type coils having curved conductors along the hardened sphere toward the surface, the top coil periphery is quenched with a first coil and the top and side surfaces with a second coil A large spherical induction heating method characterized by quenching an intermediate part circumference of the part and quenching the side part circumference by a third coil . 大型球面を有する被焼入部材を回転して移動焼入れする際に、第1コイルで被焼入球面の頭頂部円周を焼入れし、第2コイルにより該頭頂部と側面部の中間部円周を焼入れし、第3コイルにより側面部円周を焼入れする3分割焼入れをする誘導加熱コイルにおいて、前記3個の加熱コイルは、加熱面に向けて被焼入球面に沿った曲線の導体を有する平面加熱型コイルであり、前記第1および第2コイルは、球面の経度線に沿う短弧状曲線の2本の軸方向導体と、焼入部の緯度線に沿い前記2本の軸方向導体の経度線間を結ぶ短弧状曲線の円周方向導体により形成される底辺と頂辺とを有する扇形コイルであることを特徴とする大型球面の誘導加熱コイル。When rotating and quenching a hardened member having a large spherical surface, the circumference of the top of the hardened spherical surface is quenched by the first coil, and the circumference of the intermediate portion between the top and the side by the second coil. In the induction heating coil that performs the three-part quenching in which the side surface circumference is quenched by the third coil, the three heating coils have curved conductors along the hardened spherical surface toward the heating surface. The first and second coils are planar heating coils, and the first and second coils have two axial conductors having a short arc shape along a spherical longitude line and the longitudes of the two axial conductors along a latitudinal line of a hardened portion. A large spherical induction heating coil characterized in that it is a sector coil having a bottom and a top formed by a short arc-shaped circumferential conductor connecting between the lines. 前記第1コイルは、大径の扇形コイルの内周側に小径の扇形コイルを配設して両コイルを直列に接続した2巻コイルであることを特徴とする請求項に記載の大型球面の誘導加熱コイル。 3. The large spherical surface according to claim 2 , wherein the first coil is a two-turn coil in which a small-diameter fan coil is disposed on an inner peripheral side of a large-diameter fan coil and both coils are connected in series. Induction heating coil. 前記加熱コイルの少なくも一つ以上のコイルには、コイルの内周側に磁束集中材が設けられることを特徴とする請求項2又は3に記載の大型球面の誘導加熱コイル。The large spherical induction heating coil according to claim 2 or 3 , wherein at least one of the heating coils is provided with a magnetic flux concentrating material on an inner peripheral side of the coil. 前記磁束集中材には、冷却液が導入される中空部と、該中空部に導入された冷却液を被焼入球面に噴射する噴射口とが設けられたことを特徴とする請求項に記載の大型球面の誘導加熱コイル。Wherein the flux concentration member includes a hollow portion in which the cooling liquid is introduced, a cooling liquid introduced into the hollow portion to claim 4, characterized in that the injection port for injecting the target hardening sphere is provided Large spherical induction heating coil as described. 前記加熱コイルには、移動する後方側に冷却液を噴射する冷却ジャケットが設けられたことを特徴とする請求項2から5のいずれかに記載の大型球面の誘導加熱コイル。The large spherical induction heating coil according to any one of claims 2 to 5 , wherein the heating coil is provided with a cooling jacket for injecting a cooling liquid on a moving rear side.
JP2000355360A 2000-11-22 2000-11-22 Large spherical induction heating method and heating coil Expired - Fee Related JP3936532B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000355360A JP3936532B2 (en) 2000-11-22 2000-11-22 Large spherical induction heating method and heating coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000355360A JP3936532B2 (en) 2000-11-22 2000-11-22 Large spherical induction heating method and heating coil

Publications (2)

Publication Number Publication Date
JP2002161311A JP2002161311A (en) 2002-06-04
JP3936532B2 true JP3936532B2 (en) 2007-06-27

Family

ID=18827782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000355360A Expired - Fee Related JP3936532B2 (en) 2000-11-22 2000-11-22 Large spherical induction heating method and heating coil

Country Status (1)

Country Link
JP (1) JP3936532B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6108602B2 (en) * 2013-01-11 2017-04-05 富士電子工業株式会社 Induction hardening method and coil for induction heating of half open type
CN112481452B (en) * 2020-10-15 2022-10-18 渤海造船厂集团有限公司 T30C-specification flat-bulb steel heat treatment induction device and heat treatment method
JP7318981B2 (en) * 2021-11-26 2023-08-01 ティーケーエンジニアリング株式会社 Heating coil for high frequency heating equipment

Also Published As

Publication number Publication date
JP2002161311A (en) 2002-06-04

Similar Documents

Publication Publication Date Title
JP4674932B2 (en) Crawler belt bush, manufacturing method and manufacturing apparatus thereof
JP4235336B2 (en) Induction hardening method of rack bar and induction hardening apparatus thereof
CN106544487A (en) A kind of tripod universal joint alley annealing device and heat treatment method
JP3936532B2 (en) Large spherical induction heating method and heating coil
KR100557309B1 (en) High frequency induction heating coil
JPH06200326A (en) Method for hardening bearing ring
CN109317631B (en) Production method for improving texture uniformity of continuous casting square billet
CN105324496B (en) Inductor for single-shot induction heating of complex workpieces
JP3582783B2 (en) High frequency moving hardening method for inner peripheral surface of cylindrical housing member of tripod constant velocity joint and high frequency coil used in the method
JP2572238B2 (en) Inner and outer peripheral surface hardening method for small bore cylinder
JP2004131823A (en) Method and apparatus for induction-hardening rack bar
JPH03274221A (en) Method and apparatus for high-frequency shifting quenching and tempering
JPH10302956A (en) Induction heat treatment device for nonlinear rod material
JPH0712462U (en) High frequency moving quenching coil body for round bar work
JP2596779Y2 (en) High-frequency transfer heat treatment equipment for rod-shaped workpieces
JPH03119681A (en) Peripheral groove quenching device in cylinder
CN219536348U (en) Intermediate frequency inductor of universal joint handle
JP2632106B2 (en) High frequency heating coil
JP2002167618A5 (en) Induction heating coil and quenching device for spherical body with shaft
WO2024057406A1 (en) Mobile hardening method and mobile hardening device
JP2513054Y2 (en) High frequency heating coil body
JP3548523B2 (en) High frequency induction heating coil
JPH0553844B2 (en)
JPH0144770B2 (en)
JPH0662499U (en) High frequency heating coil

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070320

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070323

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3936532

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140330

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees