JP3935080B2 - Sound pressure analysis device for frequency of propagation sound, frequency analysis device, and frequency analysis method - Google Patents

Sound pressure analysis device for frequency of propagation sound, frequency analysis device, and frequency analysis method Download PDF

Info

Publication number
JP3935080B2
JP3935080B2 JP2003004789A JP2003004789A JP3935080B2 JP 3935080 B2 JP3935080 B2 JP 3935080B2 JP 2003004789 A JP2003004789 A JP 2003004789A JP 2003004789 A JP2003004789 A JP 2003004789A JP 3935080 B2 JP3935080 B2 JP 3935080B2
Authority
JP
Japan
Prior art keywords
frequency
signal
sound
sound pressure
propagation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003004789A
Other languages
Japanese (ja)
Other versions
JP2004219168A (en
Inventor
秀晴 斎藤
雅己 市川
佳功 若杉
理恵 岩本
裕司 山崎
Original Assignee
株式会社Ctiサイエンスシステム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ctiサイエンスシステム filed Critical 株式会社Ctiサイエンスシステム
Priority to JP2003004789A priority Critical patent/JP3935080B2/en
Publication of JP2004219168A publication Critical patent/JP2004219168A/en
Application granted granted Critical
Publication of JP3935080B2 publication Critical patent/JP3935080B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Description

【0001】
【発明の属する技術分野】
伝播音の帯域別音圧解析装置と周波数解析装置及び解析方法に関する。
【0002】
【従来の技術】
従来、音源解析等において、1/3オクターブバンドフィルタ等を用いた分析では周波数の分解能が十分でない場合、FFT(高速フーリエ)変換を使用した解析が用いられるのが一般的である。また、従来の音響測定では、たとえば測定対象の周囲に配置された複数本のマイクロホンより、多チャンネル録音テープに規定の時間同時録音を行い、次いで録音データを各チャンネル毎に再生し、騒音計または周波数分析器より時間平均音圧レベルを求め、得られた値より、測定表面の空間的平均音圧レベルを求め、その値を所定の算出式を用いて、所望の音響出力を算出するようになっている。この算出にはパーソナルコンピュータ等が用いられ、その結果はプリンター等に出力されていた(たとえば特許文献1の従来技術参照)。
【0003】
一方、音源測定の一適用例として、建設現場等において、作業員が作業を行うに当たって発生する作業音に着目し、作業によって異なる特有の作業音の性質を、音圧レベルの変化や周波数特性で把握し、作業内容を自動的に判別するようにした技術が開発されている(特許文献2参照)。
【0004】
【特許文献1】
特開平8−219866号公報
【特許文献2】
特開2002−56050公報
【0005】
ところで、たとえば、土木・建築施設やプラント等のような動きがほとんどない剛体構造や、地盤内や構造物の部材内での不可視な変化状態において、作用荷重による構造物の異常変位の検知、損傷の探知、疲労等による劣化進行の監視、崩壊・倒壊等の把握を可能にするために、特に固体(液体)を媒質として伝播する伝播音(特に低周波音)の取り扱いについての検討がなされている。コンクリート、鋼材を始めとした部材の亀裂探知や疲労チェックを、AE(アコースティック・エミッション)計測と呼ばれる計測手法により、内部発生音を測定することで識別する技術が、航空機、原子力プラント、大型土木施設等で使用されている。しかし、AEの場合は、人間の可聴帯域(80〜16,000Hz)及び可聴帯域よりも高い超音波域の周波数が使用されている。
【0006】
【発明が解決しようとする課題】
上述したFFT分析器を用いた周波数分析の場合、特性周波数が明確でない非予測性の高い信号では解析が困難になることがある。また、一旦、録音してからデータを処理する場合には、録音再生のため測定のリアルタイム性が失われ、測定結果に基づく測定条件の変更、対象機器の改善など必要な再測定の機会が失われることが多い。また、録音再生による時間平均音圧レベルの測定は各チャンネル毎に膨大な情報量のデータ処理が必要となり、一定の時間を要し、さらに録音時間分だけ余分にかかる。さらに、一般的なFFT分析器を備えた測定装置は電源消費量が大きく、電池駆動ではフィールド観測等の長期間にわたる連続記録に適さないなどの問題があった。
【0007】
また、作業内容を、音圧レベルの変化を検知して自動的に判別しようという技術では、作業員が収音手段としてのマイクロホンを直接身につけて、作業時の発生音を拾うようになっており、またその作業も決まった時間内での限られた作業内容との照会によって実現するものである。また、この技術では、上述した固体及び液体を媒質として伝わる伝播音を連続的に測定、判別するという伝播音の判別、把握に対する解析機能は果たすことができない。
【0008】
そこで、上述の問題点を解消し、フィールドでの長期使用が可能で、従来可聴帯域音と振動領域音の間で微弱な強度で変動している伝播音としての超低周波音の連続モニタリングを可能とし、さらに得られた所定の音圧レベルでの卓越周波数をもとに伝播音の音源としての自然事象の変化、構造物内に発生している変化、状態を判別、把握できる装置およびその解析手法を提供することにある。
【0009】
【課題を解決するための手段】
上記目的を達成するために、本発明の帯域別音圧解析装置は、
それぞれ特定の通過帯域特性を有し、通過帯域が互いに重なり合い、伝播信号をフィルタリングする複数の帯域フィルタと、
前記複数の帯域フィルタを通過した信号を、該信号の音圧レベルを示す信号に変換する変換手段と、
前記変換手段で変換された複数の帯域別音圧値の比と各広帯域フィルタの特性とに基づいて、前記伝播信号の所定周波数領域における概算周波数を求める周波数解析部と、
を備えたことを特徴とする。
【0010】
また、この発明の周波数解析方法は、
それぞれ特定の通過帯域特性を有し、通過帯域が互いに重なり合う複数の帯域フィルタを用いて入力信号をフィルタリングし、
前記複数の帯域フィルタを通過した信号を、入力信号の信号レベルを示す信号に変換し、
前記変換手段で変換された複数の帯域別の信号レベルの比と各広帯域フィルタの特性とに基づいて、前記入力信号の所定周波数領域における概算周波数を求める、
ことを特徴とする。
【0011】
例えば、前記帯域フィルタは、その通過帯域の中心周波数をピークとする2次減衰特性を示し、前記周波数解析部は、前記変換手段から出力された音圧レベルを示す信号の各組み合わせについて、音圧レベルの比の平方根を基め、求めた平方根に所定の係数を乗算することにより、伝播音の周波数を概算する。
【0012】
また、前記広帯域フィルタは、中心周波数1,10,100及び1kHzを山形のピークとする2次減衰特性を示すようにすることが好ましい。
【0013】
また、この発明の周波数解析装置は、
それぞれ特定の通過帯域特性を有し、通過帯域が互いに重なり合う複数のフィルタを用いて入力信号をフィルタリングし、
前記複数のフィルタを通過した信号の信号レベルを判別する信号レベル判別手段と、
前記判別手段で判別された複数の信号レベルの比と各フィルタの特性とに基づいて、前記入力信号の概算周波数を求める周波数解析部と、
を備えたことを特徴とする。
【0014】
また、この発明に係る周波数解析方法は、
それぞれ特定の通過帯域特性を有し、通過帯域が互いに重なり合う複数のフィルタを用いて入力信号をフィルタリングし、
前記複数のフィルタを通過した信号の信号レベルを判別し、
判別した複数の信号レベルと各フィルタの特性とに基づいて、前記入力信号の概算周波数を求める、
ことを特徴とする。
【0015】
【発明の実施の形態】
以下、本発明の伝播音の帯域別音圧解析装置及び解析方法について、添付図面を参照して説明する。まず、本発明の伝播音の帯域別音圧解析装置及び同装置を用いた解析方法において、伝播音の判別は、可聴帯域及び超低周波音を広く利用しての判別を行うことを対象としている。そしてその測定対象(音源)としては、固体(コンクリート構造物、鋼構造物、自然地盤、人工地盤等)、液体(水、油類等)及びその中間の物である水分含有率の高い樹木、生体等をも想定し、それらを音源として伝播された媒質音についての判別、把握を図るものである。媒質音を周波数で分類したとき、超低周波音(5〜100Hz)、振動領域音(1〜10数Hz)、及び1Hz以下の振動とをその範疇としている。
【0016】
図1は、本実施の形態の伝播音の帯域別音圧解析装置のブロック構成図を示している。同図に示したように、本装置10は入力部としてのマイクロホン11から得られた音響信号を高感度増幅回路12を介して増幅し、その音圧信号を複数本の広帯域フィルタ20により、数種類の周波数帯域別にレベル変換し、A/D変換器14によりデジタル化した後に、周波数、音圧算定解析式による解析を行う演算回路15を経て、所定の周波数信号群として、各種の出力形態で出力部16から出力される構成からなる。
【0017】
マイクロホン11としては設置フィールドに適合した仕様のマイクロホン、たとえば耐水性、防水性等を備えた媒質マイクロホンを使用することが好ましい。マイクロホンを介してのデータ入力(収音)は、所定の計測間隔(たとえば0.2,1,15,60秒ごと)で行うことで、記録する情報量を十分少なくすることができ、また消費電力を抑えることにより、フィールド等において長時間での計測を行える。また、計測間隔は必要データの用途、観測期間に応じて連続計測から60分程度の間の適切な間隔を設定することができる。
【0018】
本実施の形態では、演算回路15には演算ソフトウェアがROM化されて搭載されている。これにより装置10は小型化、低消費電力化、高信頼性が果たされ、フィールドでの長期使用が可能になっている。演算ソフトウェアとしては必須のOS,BIOS,計測制御ソフト、周波数換算アプリケーションの他、ユーザーの用途に応じてカスタマイズした各種のアプリケーションを搭載することができる。
【0019】
出力部のオプションとしては、LCD表示、外部記録媒体としてのマルチメディアカード記録、パーソナルコンピュータへの転送(RS232C)、携帯電話等の通信媒体による外部送信、リレー信号を介しての外部制御装置への出力を可能としている。
【0020】
また、帯域別音圧値と演算(換算)値を記録(後述する)するようにしているので、記録情報量を少なくでき、消費電力も抑えることができるが、本実施の形態では、装置10は内蔵あるいは外付けのバッテリー(鉛蓄電池、太陽電池)電源が使用されている。このため音響測定の他、振動計、地震計などの広範囲の観測への応用が可能である。
【0021】
図2は、本発明の広帯域バンドパスフィルタ20の概略構成を示したブロック構成図である。本発明では、周波数分析を行う際に、帯域を重ねる減衰特性を有する広帯域バンドパスフィルタ20を採用している。特に本実施の形態では、図3に示した発生超低周波音の音圧−周波数換算模式図に重ねて示したように、中心周波数が1Hz、10Hz、100Hz、1kHzで、2次(6dB/oct)の減衰特性を示す広帯域バンドパスフィルタ20(20A,20B,20C,20D)が設けられている。これらの広帯域バンドパスフィルタ20の通過信号と、全帯域(バンドパスフィルタを介さない)通過信号に関してDC4Vの直流電圧出力回路13(13A,13B,13C,13D)を介して音圧レベル変換し、それぞれの帯域音圧値を同時記録するようになっている。そして4帯域の帯域別音圧値をもとに、あらかじめROM化された算出式プログラムにより3周波数を換算出力する。換算周波数としては、100Hz〜1kHzの間の可聴音帯域でピークが一つとなっている卓越周波数があるとした周波数(Fx)、10〜100Hzの低周波音領域でピークが一つとなっている卓越周波数があるとした周波数(Fy)と、1〜10Hzの振動域にピークが一つとなっている卓越周波数があるとした周波数(Fz)の3周波数を得る。なお、各バンドパスフィルタの特性としては、中心周波数1Hz、10Hz、100Hz、1kHzに山形のピークを有し2次減衰特性を示すブロードなバンドパスフィルタとして設定した。これらのバンドパスフィルタ間の中間周波数は、帯域別音圧値の分布比率によって判別することができる。すなわち、中間周波数は、重なっている所定のバンドパスフィルタ間での周波数分布の比として表される。
【0022】
具体的には、F1:振動領域音周波数(Hz)は、P11:1Hz帯域別音圧値(μPa)とP2:10Hz帯域別音圧値(μPa)とからの算出式(式1)により算出され、F2:低周波音周波数(Hz)は、P21:10Hz帯域別音圧値(μPa)とP3:100Hz帯域別音圧値(μPa)とからの算出式(式2)により算出され、F5:可聴帯域音周波数(Hz)は、P31:100Hz帯域別音圧値(μPa)とP4:1kHz帯域別音圧値(μPa)とからの算出式(式5)により算出される。また、中間の周波数、F3:1〜100(Hz)、F4:10〜1000(Hz)、F6:1〜1000(Hz)についても同様に(式3),(式4)及び(式6)から求めることができる。
【0023】
[数1]

Figure 0003935080
ここで、a16:周波数係数
【0024】
同様にして振動領域音、低周波音、可聴帯域音ごとのピーク音圧、平均音圧も算出することができる。これらの算出式は、さらに可聴帯域周波数(40〜4,000Hz)を想定するような場合には、特に低音域、中音域、高温域の周波数、ピーク音圧、特定周波数および音圧を算出することができる。
【0025】
次に、実際に斜面等のフィールドに設置された伝播音の帯域別音圧解析装置を用いた伝播音判別としての音の連続モニタリングについて図4を参照して説明する。ここで、音の連続モニタリングとは、超低周波音を中心とした音の音圧強度、音圧変化度合、卓越周波数、周波数変化度合等の連続計測(モニタリング)をさし、これにより、構造物に発生する劣化損傷の診断、異常の検出、崩壊前兆の予知、地盤、河床、地下水脈等の自然物の現象の観測や状態の監視に適用可能とすることを意図している。そのため、所定の計測位置に据え付けられた状態で長期間にわたり自動的にかつ連続的に作動する本装置が有効となる。
【0026】
まず、設置された装置について、予備モニタリングを行う。たとえば1ヶ月程度の短期のデータ収集を行う(ステップ100:S100)。このとき並行してその地点での経時データとして雨量、風速の変化を観測しておく。取得した音圧レベルデータをもとに想定される特定現象の抽出を行い、解析対象のキャリブレーションを作成する(ステップ110)。抽出する現象データとしては、降雨音、風の影響音(樹木根振動音)、落石音、陥没音、漏水音の抽出と解析を行う。各現象の音圧レベル解析結果をもとにバックグラウンド値(平均値、標準偏差値)、降雨時周波数、風の影響音(樹木根振動音)周波数を算出する(ステップ120)。また、オプションとして異常状態の判断基準を設定し(ステップ130)、連続した監視状態において、判断基準に従って異常状態を知らせる警告等を発するようにすることもできる。これらの前処理の後、長期の斜面モニタリングによるデータ収集を開始する(ステップ140)。この連続モニタリングの間に斜面状態の監視情報として、伝播音の帯域別音圧解析装置で収集された音圧信号から、斜面に亀裂が生じたり、侵食の進行状態、小崩落発生状態、落石発生の有無、降雨及び風の状態を判別、把握することができる(ステップ150)。
【0027】
【実施例1】
以下に実施例として、斜面観測データにおいて、地盤の振動を検出することにより、崖崩れ検知モニタとしての適用事例について図5(a)〜(d)を参照して説明する。地すべりの多発している崖の近くに地中マイクロフォンを埋設し、地中に伝播する音から地すべり振動を検出したものである。計測間隔5分間隔、計測日数1日間での観測データである。音圧値データ(a)から、可聴音演算値(b)、低周波演算値(c)、振動演算値(d)を求め、その間の状態経時変化を求めている。前半200データ程は台風通過に伴う強い降雨によって生じた地上音が地中に伝播して検出された状態が示されている。この降雨による伝播音は可聴周波数(100〜1kHz)において、よく検出されている。また、260番目のデータと280番目のデータ付近で特異な振動として地盤の振動が検出されている。周波数が1.5Hz付近を示し、観測対象斜面に地すべりが発生したことを示している。
【0028】
【実施例2】
別の実施例として、河床に地中マイクロフォンを埋設し、掃流砂量の検出を行なった観測例について図6(a)〜(d)を参照して説明する。同図は、計測間隔10分間隔、計測日数1日間での観測データと、それぞれ音圧値データ(a)から、可聴音演算値(b)、低周波演算値(c)、振動演算値(d)を求めたグラフである。河川水位の増大に伴って流量が増え、流量と可聴音域の信号には関連性が認められる。流水音は可聴音域の700Hz付近で検出されている。流量が増えるに従い掃流砂が発生し、これに伴う振動成分が2〜3Hz付近で検出されている。このように、河川の掃流砂量の状態観測に対して、本装置による連続観測の適用可能性が確認できた。
【0029】
【発明の効果】
以上に述べたように、本発明の装置によれば、フィールドでの伝播音としての超低周波音の長期にわたる連続モニタリングが可能になり、さらに得られた所定の音圧レベルでの卓越周波数をもとに伝播音の音源としての自然事象の変化、構造物内に発生している変化、状態を判別、把握できるという効果を奏する。
【図面の簡単な説明】
【図1】本発明の伝播音の帯域別音圧解析装置の構成を示した概略ブロック構成図。
【図2】図1のバンドパスフィルタの構成を示した概略ブロック構成図。
【図3】発生超低周波音の音圧と周波数との関係を示した換算模式図。
【図4】連続モニタリングの実施例として斜面モニタリング作業、解析例を示したフローチャート。
【図5】実施例としての斜面観測データを示したグラフ。
【図6】他の実施例としての河床の掃流砂量の検出観測データを示したグラフ。
【符号の説明】
10 帯域別音圧解析装置
20 広帯域バンドパスフィルタ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a sound pressure analysis device, a frequency analysis device, and an analysis method for each band of propagation sound.
[0002]
[Prior art]
Conventionally, in sound source analysis or the like, analysis using FFT (Fast Fourier) transformation is generally used when the frequency resolution is not sufficient in analysis using a 1/3 octave band filter or the like. In the conventional acoustic measurement, for example, a plurality of microphones arranged around the measurement object are simultaneously recorded on a multi-channel recording tape for a specified time, and then the recorded data is reproduced for each channel, and a sound level meter or The time average sound pressure level is obtained from the frequency analyzer, and the spatial average sound pressure level of the measurement surface is obtained from the obtained value, and the desired sound output is calculated using a predetermined calculation formula. It has become. For this calculation, a personal computer or the like is used, and the result is output to a printer or the like (for example, refer to the prior art in Patent Document 1).
[0003]
On the other hand, as an application example of sound source measurement, paying attention to the work sound that occurs when a worker performs work at a construction site, etc., the characteristics of the specific work sound that differs depending on the work can be expressed by changes in the sound pressure level and frequency characteristics. A technology has been developed that grasps and automatically determines the work content (see Patent Document 2).
[0004]
[Patent Document 1]
JP-A-8-211986 [Patent Document 2]
Japanese Patent Laid-Open No. 2002-56050
By the way, detection and damage of abnormal displacement of structures due to applied loads in rigid structures such as civil engineering / building facilities and plants, and invisible changes in the ground and structural members In order to enable detection of deterioration, monitoring of deterioration due to fatigue, etc., and grasping of collapse / collapse, etc., especially the handling of propagation sound (especially low frequency sound) that propagates in solid (liquid) medium has been studied. Yes. The technology to identify crack detection and fatigue check of members such as concrete and steel materials by measuring internally generated sound using a measurement technique called AE (Acoustic Emission) measurement is used for aircraft, nuclear power plant, large civil engineering facility. Etc. are used. However, in the case of AE, a human audible band (80 to 16,000 Hz) and an ultrasonic frequency higher than the audible band are used.
[0006]
[Problems to be solved by the invention]
In the case of frequency analysis using the above-described FFT analyzer, analysis may be difficult with a highly unpredictable signal whose characteristic frequency is not clear. Also, when processing data after recording, the real-time performance of the measurement is lost due to recording and playback, and there is no opportunity for re-measurement, such as changing the measurement conditions based on the measurement results and improving the target equipment. Often. In addition, the measurement of the time average sound pressure level by recording and reproduction requires a huge amount of data processing for each channel, which requires a certain amount of time, and additionally requires an extra recording time. Further, a measuring apparatus equipped with a general FFT analyzer consumes a large amount of power, and there is a problem that battery operation is not suitable for continuous recording over a long period of time such as field observation.
[0007]
In addition, in the technology that automatically detects the work content by detecting changes in the sound pressure level, an operator directly wears a microphone as a sound collection means and picks up sound generated during work. In addition, the work is realized by inquiring with limited work contents within a predetermined time. In addition, this technique cannot perform the analysis function for the determination and grasping of the propagation sound by continuously measuring and determining the propagation sound transmitted through the solid and liquid as described above.
[0008]
Therefore, the above-mentioned problems can be solved, and long-term use in the field is possible, and continuous monitoring of ultra-low frequency sound as propagation sound that has fluctuated with weak intensity between the audible band sound and the vibration area sound in the past. Further, a device capable of distinguishing and grasping a change in a natural event as a sound source of a propagation sound, a change occurring in a structure, and a state based on a dominant frequency at a predetermined sound pressure level obtained, and its It is to provide an analysis method.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, the sound pressure analysis device for each band according to the present invention includes:
A plurality of bandpass filters each having specific passband characteristics, the passbands overlapping each other and filtering the propagation signal;
Conversion means for converting a signal that has passed through the plurality of band-pass filters into a signal indicating a sound pressure level of the signal;
A frequency analysis unit for obtaining an approximate frequency in a predetermined frequency region of the propagation signal based on a ratio of a plurality of sound pressure values for each band converted by the conversion unit and characteristics of each wideband filter;
It is provided with.
[0010]
The frequency analysis method of the present invention is
Filtering the input signal using a plurality of bandpass filters, each having a specific passband characteristic and the passbands overlapping each other,
The signal that has passed through the plurality of bandpass filters is converted into a signal indicating the signal level of the input signal,
Based on the ratio of the signal level for each of the plurality of bands converted by the conversion means and the characteristics of each wideband filter, an approximate frequency in a predetermined frequency region of the input signal is obtained.
It is characterized by that.
[0011]
For example, the band filter exhibits a second-order attenuation characteristic having a peak at the center frequency of the pass band, and the frequency analysis unit calculates a sound pressure for each combination of signals indicating a sound pressure level output from the conversion unit. Based on the square root of the ratio of the levels, the frequency of the propagation sound is estimated by multiplying the determined square root by a predetermined coefficient.
[0012]
Moreover, it is preferable that the wideband filter exhibits a secondary attenuation characteristic having peak peaks at center frequencies of 1, 10, 100, and 1 kHz.
[0013]
In addition, the frequency analysis device of the present invention is
Filtering the input signal using multiple filters, each with specific passband characteristics and overlapping passbands,
Signal level determining means for determining the signal level of the signal that has passed through the plurality of filters;
A frequency analysis unit for determining an approximate frequency of the input signal based on a ratio of a plurality of signal levels determined by the determination unit and characteristics of each filter;
It is provided with.
[0014]
The frequency analysis method according to the present invention is as follows:
Filtering the input signal using multiple filters, each with specific passband characteristics and overlapping passbands,
Determining the signal level of the signal that has passed through the plurality of filters;
Based on the plurality of determined signal levels and the characteristics of each filter, an approximate frequency of the input signal is obtained.
It is characterized by that.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a sound pressure analysis apparatus and analysis method for propagation sound according to the present invention will be described with reference to the accompanying drawings. First, in the sound pressure analysis apparatus for band-based sound pressure analysis of the present invention and the analysis method using the apparatus, the determination of the propagation sound is intended to be performed using a wide range of audible bands and ultra-low frequency sounds. Yes. And as the measurement target (sound source), solid (concrete structure, steel structure, natural ground, artificial ground, etc.), liquid (water, oils, etc.) and intermediate products with high moisture content, It is intended to determine and grasp the medium sound that has been propagated using a living body or the like as a sound source. When medium sounds are classified by frequency, they are classified as ultra-low frequency sounds (5 to 100 Hz), vibration domain sounds (1 to 10 and several Hz), and vibrations of 1 Hz or less.
[0016]
FIG. 1 shows a block configuration diagram of a sound pressure analysis device for each band of propagation sound according to the present embodiment. As shown in the figure, this apparatus 10 amplifies an acoustic signal obtained from a microphone 11 as an input unit via a high-sensitivity amplifier circuit 12, and several types of sound pressure signals are obtained by a plurality of wideband filters 20. Level is converted for each frequency band, digitized by the A / D converter 14, and then output in various output forms as a predetermined frequency signal group through an arithmetic circuit 15 that performs analysis by frequency and sound pressure calculation analytical expressions. The configuration is output from the unit 16.
[0017]
As the microphone 11, it is preferable to use a microphone having specifications suitable for the installation field, for example, a medium microphone having water resistance, waterproofness, and the like. Data input (sound collection) via a microphone is performed at predetermined measurement intervals (for example, every 0.2, 1, 15, 60 seconds), so that the amount of information to be recorded can be sufficiently reduced and consumed. By suppressing the electric power, it is possible to perform measurement in the field for a long time. In addition, the measurement interval can be set to an appropriate interval between about 60 minutes from continuous measurement according to the application of the necessary data and the observation period.
[0018]
In the present embodiment, the arithmetic circuit 15 is loaded with arithmetic software in ROM. As a result, the device 10 is reduced in size, reduced in power consumption, and highly reliable, and can be used for a long time in the field. As calculation software, in addition to essential OS, BIOS, measurement control software, frequency conversion application, various applications customized according to the user's application can be installed.
[0019]
Options for the output unit include LCD display, multimedia card recording as an external recording medium, transfer to a personal computer (RS232C), external transmission via a communication medium such as a mobile phone, and transmission to an external control device via a relay signal. Output is possible.
[0020]
Further, since the sound pressure value for each band and the calculated (converted) value are recorded (described later), the amount of recorded information can be reduced and the power consumption can be reduced. The internal or external battery (lead storage battery, solar battery) power supply is used. Therefore, in addition to acoustic measurement, it can be applied to a wide range of observations such as vibration meters and seismometers.
[0021]
FIG. 2 is a block configuration diagram showing a schematic configuration of the wideband bandpass filter 20 of the present invention. In the present invention, when performing frequency analysis, a wideband bandpass filter 20 having an attenuation characteristic of overlapping bands is employed. In particular, in the present embodiment, as shown superimposed on the sound pressure-frequency conversion schematic diagram of the generated very low frequency sound shown in FIG. 3, the center frequency is 1 Hz, 10 Hz, 100 Hz, 1 kHz, and the secondary (6 dB / A broadband band pass filter 20 (20A, 20B, 20C, 20D) showing attenuation characteristics of oct) is provided. The sound pressure level conversion is performed for the passing signals of these wideband bandpass filters 20 and the entire band (not passing the bandpass filter) through the DC4V DC voltage output circuit 13 (13A, 13B, 13C, 13D), Each band sound pressure value is recorded simultaneously. Based on the sound pressure values for each of the four bands, the three frequencies are converted and output by a calculation formula program stored in advance in ROM. The conversion frequency is a frequency (Fx) that has a dominant frequency with one peak in the audible sound band between 100 Hz and 1 kHz, and a single peak in the low frequency sound region of 10 to 100 Hz. Three frequencies are obtained, ie, a frequency (Fy) where there is a frequency and a frequency (Fz) where there is a dominant frequency with one peak in the vibration range of 1 to 10 Hz. The characteristics of each bandpass filter were set as broad bandpass filters having peak peaks at center frequencies of 1 Hz, 10 Hz, 100 Hz, and 1 kHz and exhibiting secondary attenuation characteristics. The intermediate frequency between these bandpass filters can be determined by the distribution ratio of the sound pressure values for each band. That is, the intermediate frequency is expressed as a ratio of frequency distribution between predetermined overlapping bandpass filters.
[0022]
Specifically, F 1 : Vibration region sound frequency (Hz) is calculated from P 1 1: 1 Hz sound pressure value (μPa) and P 2 : 10 Hz sound pressure value (μPa). 1) F 2 : low frequency sound frequency (Hz) is calculated from P 2 1:10 Hz sound pressure value (μPa) and P 3 : 100 Hz sound pressure value (μPa) ( F 5 : audible band sound frequency (Hz) is calculated from the equation 2), and P 3 1: 100 Hz band-specific sound pressure value (μPa) and P 4 : 1 kHz band-specific sound pressure value (μPa) Calculated by (Equation 5). Similarly, for the intermediate frequencies, F 3 : 1 to 100 (Hz), F 4 : 10 to 1000 (Hz), and F 6 : 1 to 1000 (Hz), (Formula 3), (Formula 4) and ( It can be obtained from equation (6).
[0023]
[Equation 1]
Figure 0003935080
Where a 1 to 6 : frequency coefficient
Similarly, the peak sound pressure and the average sound pressure for each vibration region sound, low frequency sound, and audible band sound can be calculated. These calculation formulas calculate the frequencies of the low, middle, and high temperatures, the peak sound pressure, the specific frequency, and the sound pressure especially when an audible band frequency (40 to 4,000 Hz) is assumed. be able to.
[0025]
Next, continuous sound monitoring as a propagation sound discrimination using a sound pressure analysis device for each band of propagation sound actually installed in a field such as a slope will be described with reference to FIG. Here, continuous sound monitoring refers to the continuous measurement (monitoring) of sound pressure intensity, sound pressure change degree, prevailing frequency, frequency change degree, etc., centering on ultra-low frequency sound. It is intended to be applicable to the diagnosis of deterioration damage to objects, detection of abnormalities, prediction of signs of collapse, observation of natural phenomena such as ground, riverbed, groundwater veins, and monitoring of conditions. Therefore, the present apparatus that operates automatically and continuously over a long period of time while being installed at a predetermined measurement position is effective.
[0026]
First, preliminary monitoring is performed on the installed equipment. For example, short-term data collection for about one month is performed (step 100: S100). At the same time, changes in rainfall and wind speed are observed as time-lapse data at that point. A specific phenomenon assumed based on the acquired sound pressure level data is extracted, and a calibration to be analyzed is created (step 110). As the phenomenon data to be extracted, extraction and analysis of rain sound, wind influence sound (tree root vibration sound), rock fall sound, depression sound and water leakage sound are performed. Based on the sound pressure level analysis results of each phenomenon, the background value (average value, standard deviation value), frequency during rain, and frequency of sound affected by wind (tree root vibration sound) are calculated (step 120). In addition, as an option, a judgment criterion for an abnormal state can be set (step 130), and a warning or the like for notifying the abnormal state can be issued according to the judgment criterion in a continuous monitoring state. After these pretreatments, data collection by long-term slope monitoring is started (step 140). During this continuous monitoring, as the monitoring information of the slope condition, the sound pressure signal collected by the sound pressure analyzer for each band of the propagation sound is cracked on the slope, the progress of erosion, the state of small collapse, the occurrence of rock fall Presence / absence of rain, rainfall and wind conditions can be determined and grasped (step 150).
[0027]
[Example 1]
As an example, an application example as a landslide detection monitor by detecting ground vibration in slope observation data will be described with reference to FIGS. An underground microphone was buried near a cliff where landslides occurred frequently, and landslide vibration was detected from the sound propagating into the ground. This is observation data at a measurement interval of 5 minutes and a measurement day of 1 day. From the sound pressure value data (a), an audible sound calculation value (b), a low frequency calculation value (c), and a vibration calculation value (d) are obtained, and a state change with time is obtained. The first half of 200 data shows a state in which ground sound generated by strong rainfall accompanying the typhoon is transmitted and detected in the ground. This propagation sound due to rain is often detected at an audible frequency (100 to 1 kHz). Moreover, the vibration of the ground is detected as a unique vibration in the vicinity of the 260th data and the 280th data. The frequency is around 1.5Hz, indicating that a landslide has occurred on the observation target slope.
[0028]
[Example 2]
As another example, an observation example in which an underground microphone is embedded in the riverbed and the amount of the sweeping sand is detected will be described with reference to FIGS. The figure shows an audible sound calculation value (b), a low frequency calculation value (c), and a vibration calculation value (from the observation data at a measurement interval of 10 minutes, the measurement day of one day, and the sound pressure value data (a). It is the graph which calculated | required d). As the river water level increases, the flow rate increases, and there is a relationship between the flow rate and the audible signal. The running water sound is detected around 700 Hz in the audible sound range. As the flow rate increases, scavenging sand is generated, and the accompanying vibration component is detected in the vicinity of 2 to 3 Hz. In this way, the applicability of continuous observation using this device could be confirmed for the state observation of the river sediment.
[0029]
【The invention's effect】
As described above, according to the apparatus of the present invention, it is possible to continuously monitor a very low frequency sound as a propagation sound in the field over a long period of time, and to obtain a superior frequency at a predetermined sound pressure level obtained. Based on this, it is possible to distinguish and grasp changes in natural events as a sound source of propagation sound, changes occurring in structures, and states.
[Brief description of the drawings]
FIG. 1 is a schematic block configuration diagram showing the configuration of a sound pressure analysis apparatus for propagation sound according to a band of the present invention.
FIG. 2 is a schematic block diagram showing the configuration of the bandpass filter of FIG.
FIG. 3 is a conversion schematic diagram showing a relationship between sound pressure and frequency of generated ultra-low frequency sound.
FIG. 4 is a flowchart showing an example of slope monitoring work and analysis as an example of continuous monitoring.
FIG. 5 is a graph showing slope observation data as an example.
FIG. 6 is a graph showing detection observation data of riverbed scavenging sand as another example.
[Explanation of symbols]
10 Sound pressure analysis device for each band 20 Wideband bandpass filter

Claims (8)

それぞれ特定の通過帯域特性を有し、通過帯域が互いに重なり合い、伝播信号をフィルタリングする複数の帯域フィルタと、
前記複数の帯域フィルタを通過した信号を、該信号の音圧レベルを示す信号に変換する変換手段と、
前記変換手段で変換された複数の帯域別音圧値の比と各広帯域フィルタの特性とに基づいて、前記伝播信号の所定周波数領域における概算周波数を求める周波数解析部と、
を備えたことを特徴とする伝播音の帯域別音圧解析装置。
A plurality of bandpass filters each having specific passband characteristics, wherein the passbands overlap each other and filter the propagation signal;
Conversion means for converting a signal that has passed through the plurality of bandpass filters into a signal indicating a sound pressure level of the signal;
A frequency analysis unit for obtaining an approximate frequency in a predetermined frequency region of the propagation signal based on a ratio of a plurality of sound pressure values for each band converted by the conversion unit and characteristics of each wideband filter;
An apparatus for analyzing sound pressure by band of propagation sound, characterized by comprising:
前記帯域フィルタは、その通過帯域の中心周波数をピークとする2次減衰特性を示し、The bandpass filter exhibits a secondary attenuation characteristic having a peak at the center frequency of the passband;
前記周波数解析部は、前記変換手段から出力された音圧レベルを示す信号の各組み合わせについて、音圧レベルの比の平方根を基め、求めた平方根に所定の係数を乗算することにより、伝播音の周波数を概算する、  For each combination of signals indicating the sound pressure level output from the conversion means, the frequency analysis unit is based on the square root of the ratio of the sound pressure levels, and multiplies the obtained square root by a predetermined coefficient to thereby propagate the propagation sound. Approximate the frequency of the
ことを特徴とする請求項1に記載の伝播音の帯域別音圧解析装置。The sound pressure analysis apparatus according to claim 1, wherein the sound pressure is different for each band.
前記帯域フィルタは、中心周波数1Hz,10Hz,100Hz及び1kHzを山形のピークとする2次減衰特性を示すことを特徴とする請求項1又は2に記載の伝播音の帯域別音圧解析装置。3. The sound pressure analyzing apparatus according to claim 1, wherein the band filter exhibits a second-order attenuation characteristic having peak peaks at a center frequency of 1 Hz, 10 Hz, 100 Hz, and 1 kHz. それぞれ特定の通過帯域特性を有し、通過帯域が互いに重なり合う複数の帯域フィルタを用いて入力信号をフィルタリングし、Filtering the input signal using a plurality of bandpass filters, each having a specific passband characteristic and the passbands overlapping each other,
前記複数の帯域フィルタを通過した信号を、入力信号の信号レベルを示す信号に変換し、  The signal that has passed through the plurality of bandpass filters is converted into a signal indicating the signal level of the input signal,
前記変換手段で変換された複数の帯域別の信号レベルの比と各広帯域フィルタの特性とに基づいて、前記入力信号の所定周波数領域における概算周波数を求める、  Based on the ratio of the signal level for each of the plurality of bands converted by the conversion means and the characteristics of each wideband filter, an approximate frequency in a predetermined frequency region of the input signal is obtained.
ことを特徴とする周波数解析方法。A frequency analysis method characterized by the above.
前記帯域フィルタは、その通過帯域の中心周波数をピークとする2次減衰特性を示し、The bandpass filter exhibits a secondary attenuation characteristic having a peak at the center frequency of the passband;
変換後の信号レベルを示す信号の各組み合わせについて、信号レベルの比の平方根を基め、求めた平方根に所定の係数を乗算することにより、伝播音の周波数を概算する、  For each combination of signals indicating the signal level after conversion, based on the square root of the ratio of the signal level, by multiplying the determined square root by a predetermined coefficient, the frequency of the propagation sound is estimated,
ことを特徴とする請求項4に記載の周波数解析方法。The frequency analysis method according to claim 4.
前記帯域フィルタは、中心周波数1Hz,10Hz,100Hz及び1kHzを山形のピークとする2次減衰特性を示すことを特徴とする請求項4又は5に記載の周波数解析方法。6. The frequency analysis method according to claim 4 , wherein the bandpass filter exhibits a second-order attenuation characteristic having peak peaks at center frequencies of 1 Hz, 10 Hz, 100 Hz, and 1 kHz. それぞれ特定の通過帯域特性を有し、通過帯域が互いに重なり合う複数のフィルタを用いて入力信号をフィルタリングし、Filtering the input signal using multiple filters, each with specific passband characteristics and overlapping passbands,
前記複数のフィルタを通過した信号の信号レベルを判別する信号レベル判別手段と、  Signal level determining means for determining the signal level of the signal that has passed through the plurality of filters;
前記判別手段で判別された複数の信号レベルの比と各フィルタの特性とに基づいて、前記入力信号の概算周波数を求める周波数解析部と、  A frequency analysis unit for obtaining an approximate frequency of the input signal based on a ratio of a plurality of signal levels determined by the determination unit and characteristics of each filter;
を備えたことを特徴とする周波数解析装置。A frequency analysis apparatus comprising:
それぞれ特定の通過帯域特性を有し、通過帯域が互いに重なり合う複数のフィルタを用いて入力信号をフィルタリングし、Filtering the input signal using multiple filters, each with specific passband characteristics and overlapping passbands,
前記複数のフィルタを通過した信号の信号レベルを判別し、  Determining the signal level of the signal that has passed through the plurality of filters;
判別した複数の信号レベルと各フィルタの特性とに基づいて、前記入力信号の概算周波数を求める、  Based on the plurality of determined signal levels and the characteristics of each filter, an approximate frequency of the input signal is obtained.
ことを特徴とする周波数解析方法。A frequency analysis method characterized by the above.
JP2003004789A 2003-01-10 2003-01-10 Sound pressure analysis device for frequency of propagation sound, frequency analysis device, and frequency analysis method Expired - Lifetime JP3935080B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003004789A JP3935080B2 (en) 2003-01-10 2003-01-10 Sound pressure analysis device for frequency of propagation sound, frequency analysis device, and frequency analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003004789A JP3935080B2 (en) 2003-01-10 2003-01-10 Sound pressure analysis device for frequency of propagation sound, frequency analysis device, and frequency analysis method

Publications (2)

Publication Number Publication Date
JP2004219168A JP2004219168A (en) 2004-08-05
JP3935080B2 true JP3935080B2 (en) 2007-06-20

Family

ID=32895659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003004789A Expired - Lifetime JP3935080B2 (en) 2003-01-10 2003-01-10 Sound pressure analysis device for frequency of propagation sound, frequency analysis device, and frequency analysis method

Country Status (1)

Country Link
JP (1) JP3935080B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4952162B2 (en) * 2006-09-19 2012-06-13 三菱化学株式会社 Data processing apparatus, data processing method, and data processing program
JP5417099B2 (en) * 2009-09-14 2014-02-12 株式会社東京建設コンサルタント A method for evaluating the state of structures by measuring ultra-low frequency sound
JP6228772B2 (en) * 2013-07-25 2017-11-08 株式会社東京建設コンサルタント measuring device
JP7387108B2 (en) * 2020-08-05 2023-11-28 国立大学法人 鹿児島大学 Evaluation device and evaluation method

Also Published As

Publication number Publication date
JP2004219168A (en) 2004-08-05

Similar Documents

Publication Publication Date Title
US11680829B2 (en) Method and system for detecting events in a conduit
TWI449883B (en) Method for analyzing structure safety
KR100903949B1 (en) Method for predicting failure of geotechnical structure
KR102282400B1 (en) Inspection method for concrete delamination based on multi-channel elastic wave measurement
CN104900013A (en) Mud-rock flow monitoring and alarming system based on infrasonic wave
EP2326933B1 (en) Improvements in and relating to apparatus for the airborne acoustic inspection of pipes
CN110621971A (en) Optical acoustic sensing system and method
CN113819401A (en) Desert buried pipeline monitoring system and method based on optical fiber vibration and temperature test
Lishman et al. Acoustic emissions from in situ compression and indentation experiments on sea ice
JP3935080B2 (en) Sound pressure analysis device for frequency of propagation sound, frequency analysis device, and frequency analysis method
CN102879813A (en) Method and device for automatically picking up time of arrival of micro earthquake signal
JP5417099B2 (en) A method for evaluating the state of structures by measuring ultra-low frequency sound
CN117473263A (en) Automatic recognition method and system for frequency and damping ratio of bridge vibration monitoring
CN117890465A (en) Anti-slide pile landslide post-earthquake damage identification method and electronic equipment
Henderson et al. Acoustic inspection of concrete bridge decks
CN117452481A (en) Mud-rock flow monitoring system and method based on seismic data
Kankanamge et al. Application of Wavelet Transform in Structural Health Monitoring
RU2199005C1 (en) Method of diagnosis of annular space state of oil producing wells and device for method embodiment
Travers Acoustic monitoring of prestressed concrete pipe
La et al. Reducing ambient sensor noise in wind tunnel tests using spectral subtraction method
Adam et al. Infrasonic monitoring of snow-avalanche activity: what do we know and where do we go from here?
Wang et al. An improved cross-correlation algorithm based on wavelet transform and energy feature extraction for pipeline leak detection
JP2005077341A (en) Sound listening discrimination device and sound listening discrimination method
Beltrami et al. Algorithms for automatic, real-time tsunami detection in sea level measurements
KR102468928B1 (en) A quick progress determination method and system using the initial angle of p wave

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070213

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070313

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070316

R150 Certificate of patent or registration of utility model

Ref document number: 3935080

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140330

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term