JP2005077341A - Sound listening discrimination device and sound listening discrimination method - Google Patents
Sound listening discrimination device and sound listening discrimination method Download PDFInfo
- Publication number
- JP2005077341A JP2005077341A JP2003310893A JP2003310893A JP2005077341A JP 2005077341 A JP2005077341 A JP 2005077341A JP 2003310893 A JP2003310893 A JP 2003310893A JP 2003310893 A JP2003310893 A JP 2003310893A JP 2005077341 A JP2005077341 A JP 2005077341A
- Authority
- JP
- Japan
- Prior art keywords
- sound
- data
- event
- medium
- frequency
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
- Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
Abstract
Description
本発明は音聴識別装置及び音聴識別方法に係り、特に固体や液体を伝播する音を音圧あるいは周波数レベルの音データとして収集し、音データ塊を数量化、符号化することで対象となる事象の判別を可能にした音聴識別装置及び音聴識別方法に関する。 The present invention relates to a sound identification device and a sound identification method, and in particular, collects sound propagating through a solid or liquid as sound data of sound pressure or frequency level, and quantifies and encodes sound data chunks. The present invention relates to a sound identification device and a sound identification method that can discriminate an event.
従来、航空機、原子力プラント、大型土木施設等の鋼構造、コンクリート構造物において、構成部材の亀裂、ひび割れ探知や疲労チェック等の観察のために、内部発生音を測定して、発生現象を識別するAE(アコースティック・エミッション)と呼ばれる計測技術が使用されている。このAEでは、通常、可聴帯域よりも高い超音波域の周波数を検知する検知素子が使用され、発生音の収集が行われている。 Conventionally, in steel structures and concrete structures such as aircraft, nuclear power plants, large civil engineering facilities, etc., to detect cracks, crack detection, fatigue check, etc. of components, internally generated sound is measured to identify the occurrence phenomenon A measurement technique called AE (Acoustic Emission) is used. In this AE, a detection element that detects a frequency in an ultrasonic range higher than an audible band is generally used to collect generated sound.
これに対して、可聴帯域音については人間の聴覚との関係で、振動及び振動領域音については、耐震工学や機械振動工学の分野や、実務分野で多くの計測や解析が実施されてきた。たとえば、自動車エンジン、モータ等の回転時のシャフトの作動音によって回転するシャフトの動作性状の良否を判定する機械作動音取得装置等が知られている(特許文献1参照)。 On the other hand, a lot of measurement and analysis has been carried out in the field of earthquake-resistant engineering and mechanical vibration engineering, and in the field of practical use for vibration and vibration area sound for audible band sound in relation to human hearing. For example, there is known a mechanical operating sound acquisition device or the like that determines the quality of operating characteristics of a rotating shaft based on the operating sound of a shaft during rotation of an automobile engine, a motor, or the like (see Patent Document 1).
ところで、固体・液体を伝播する音の状況から、その観察対象の性状、事象を把握可能なものとしては、上述した機械設備のきしみ音、モータの回転音のような機械の動作により発生する音以外にも、静的な構造物で発生する音(構造物に作用する移動荷重音)自然事象で発生する音(風や波の音、流砂の音、山崩れの音など)、動物の活動する音(たとえば魚の遊泳音、人の脈拍音、微生物の発酵音など)、また日常生活における身の回りで発生する種々の音等がある。 By the way, the sound generated by the operation of the machine such as the squeak noise of the above-mentioned mechanical equipment and the rotation sound of the motor can be understood from the situation of the sound propagating through the solid / liquid. In addition, sounds generated by static structures (moving load sound acting on structures), sounds generated by natural events (wind, wave, liquid sand, landslides, etc.), animal activity There are sounds (for example, fish swimming sounds, human pulse sounds, microbial fermentation sounds, etc.), and various sounds generated in daily life.
これらの固体や液体等の媒質内を伝播する音の多くは、空気中を伝播する場合よりも速く、かつ遠くまで伝播するが、固体や液体から空気中へ伝播する際に大きく減衰してしまうため、媒質内でデータ収集を行う必要がある。また、これら多くの事象での発生音の周波数は可聴帯域から100Hz以下が卓越している。現状では、これら可聴帯域音と振動領域音との中間である5〜100Hz及び低周波音を、連続的測定を簡便に実現し、解析する計測・解析技術は確立されていない。そこで、本発明の目的は上述した従来の技術が有する問題点を解消し、固体、液体を媒質とする種々の発生音を、直接かつ連続的に収集でき、またその発生音のもととなる事象を識別可能な音聴識別装置及び音聴識別方法を提供することにある。 Many of these sounds that propagate in solids and liquids propagate faster and farther than in air, but are greatly attenuated when propagating from solids and liquids into air. Therefore, it is necessary to collect data in the medium. In addition, the frequency of sound generated in many of these events is excellent from the audible band to 100 Hz or less. At present, no measurement / analysis technique has been established for easily realizing continuous analysis of 5 to 100 Hz and low-frequency sounds, which are intermediate between these audible band sounds and vibration domain sounds. Therefore, the object of the present invention is to solve the above-mentioned problems of the prior art, and various generated sounds using solid and liquid media can be collected directly and continuously and become the source of the generated sounds. An object of the present invention is to provide a sound identification device and a sound identification method capable of identifying an event.
上記目的を達成するために、本発明は、音聴識別技術によって実現するものである。この音聴識別技術とは、発生音が音の強さ(音圧)と音の高さ(周波数)の分布及びその時間変化特性より構成されているとして、発生音の周波数及び音圧を連続計測して、そのデータを数量化、符号化することで、発生音の観測対象事象の識別、特定等を行う技術である。具体的には、対象自然物、人工構造物の状態の変化、異常の検知、損傷の探知、疲労等による劣化進行の監視、崩壊・倒壊等の前兆予知等の判別を行なうことが可能となる。観測対象の自然物、人工構造物としては、媒質により分類すると、固体(コンクリート構造物、鋼構造施設、地盤等)、液体(水、河川流水、し尿、石油等)及びその中間の物である水分含有率の高い木本、草本、生体(人体、動物)等が想定できる。 In order to achieve the above-mentioned object, the present invention is realized by a sound identification technique. This audio identification technology is based on the assumption that the generated sound is composed of the sound intensity (sound pressure) and sound pitch (frequency) distribution and its time-varying characteristics. This is a technique for identifying, specifying, etc., an observation target event of a generated sound by measuring, quantifying and encoding the data. Specifically, it is possible to determine changes in the state of target natural objects and artificial structures, detection of abnormalities, detection of damage, monitoring of progress of deterioration due to fatigue, etc., prediction of precursors such as collapse / collapse. Natural objects and artificial structures to be observed are classified according to medium, solid (concrete structure, steel structure facility, ground, etc.), liquid (water, river water, human waste, oil, etc.), and moisture in the middle A high content of woody, herbaceous, living body (human body, animal) can be assumed.
データの数量化による判別は、観測対象事象と比例する形に音を数量化し、対象諸量に変換するためのキャリブレーションと照合する形で観測を行う。一方、符号化による判別は、各種事象の違いを自動判断しやすい形になるように音データを整理して符号化し、区別したい事象のいずれの事象に属するかの判別を行う。 The discrimination by the quantification of the data is performed by quantifying the sound in a form proportional to the observation target event and comparing it with the calibration for converting into various quantities of the target. On the other hand, in the discrimination by encoding, the sound data is arranged and encoded so that the difference between various events is easily determined, and it is determined which event belongs to the event to be distinguished.
すなわち、本発明は観測対象の媒質内を伝播した音を収集する媒質マイクロホンと、該媒質マイクロホンを通して前記伝播した音を音圧値あるいは周波数幅で、所定時間にわたり所定時間間隔で収集し、所定帯域ごとの音データ塊を作成する計測制御演算手段と、該音データ塊を数量化し、事象を評価可能なキャリブレーションを経て観察対象諸量に変換する数量化演算手段と、前記音データ塊を符号化し、該当対象事象に属するか否かの判定を行う符号化演算手段とを備え、観測対象事象の状態把握を行うことを特徴とする。 That is, the present invention collects sound propagated through a medium to be observed and collects the sound propagated through the medium microphone at a predetermined time interval over a predetermined time with a sound pressure value or a frequency width. Measurement control calculation means for creating sound data chunks for each, quantification calculation means for quantifying the sound data chunks and converting them into various quantities to be observed through calibration capable of evaluating events, and encoding the sound data chunks And coding operation means for determining whether or not the target event belongs, and the state of the observation target event is grasped.
この音聴識別装置を用いた方法発明として、観測対象の媒質内を伝播した音を音圧値あるいは周波数幅で、所定時間にわたり所定時間間隔で収集し、所定帯域ごとの音データ塊を作成し、該音データ塊を数量化あるいは符号化し、事象を評価可能なキャリブレーションを経て観察対象諸量に変換するか、あるいは該当対象事象に属するか否かの判定を行い、観測対象事象の状態把握を行うことを特徴とする。 As a method invention using this audio identification device, the sound propagated in the observation target medium is collected at a predetermined time interval over a predetermined time with a sound pressure value or a frequency width, and a sound data block for each predetermined band is created. Quantify or encode the sound data chunk and convert the event into various quantities to be observed through calibration that can evaluate the event, or determine whether it belongs to the target event, and grasp the status of the event to be observed It is characterized by performing.
前記媒質内を伝播した音の音圧・周波数計測を行う計測時間は、1〜100秒程度に設定することが好ましい。 The measurement time for measuring the sound pressure / frequency of the sound propagated through the medium is preferably set to about 1 to 100 seconds.
本発明によれば、観察対象からの発生音や固体、液体内を伝播する音をデータ塊として得て、それらのデータ塊を加工して数量化、符号化を行って得られる情報により、その現象についての連続的な現象の変化の識別を行うことができるという効果を奏する。 According to the present invention, the sound generated from the observation object, the solid, the sound propagating in the liquid is obtained as a data chunk, and the data obtained by processing and quantizing and coding the data chunk, There is an effect that it is possible to identify a continuous change in phenomenon.
以下、本発明の音聴識別装置及び音聴識別方法の実施の形態について、図面を参照して説明する。
図1は、本発明の音聴識別装置の概略構成を示したブロック構成図である。同図に示したように、音聴識別装置10は、屋外等の計測位置に設置された防水タイプの媒質マイクロホン1からの信号を受信するように、屋内等の降水の影響のない場所に設置されたボックスタイプの計測装置の形態から構成されている。その内部構成は、図1のブロック図に示したように、媒質マイクロホンで検出された微弱信号を増幅する増幅回路11、周波数帯域別音を計測するバンドパスフィルタ12及びA/D変換器13と、搭載されたソフトウエア(アプリケーション)に基づき信号データの解析を行う演算解析部14と、周辺機器(図示せず)との接続により外部へのデータ出力を可能にし、また各種媒体へのデータ記録を行える出力/記録部15と、操作手順、解析結果、システム情報等をユーザに伝える表示部16とから構成されている。演算解析部14は具体的には制御用CPU、演算チップが搭載された制御ボードからなり、この演算解析部14には計測制御用ソフトに加えて、対象事象に合わせて作成された数量化ソフトウエア、符号化ソフトウエアがROM化され、搭載されている。
Hereinafter, embodiments of a sound identification apparatus and a sound identification method of the present invention will be described with reference to the drawings.
FIG. 1 is a block diagram showing a schematic configuration of a sound identification apparatus according to the present invention. As shown in the figure, the
本発明の音聴識別装置では、複数のアプリケーションソフトによって、データ収集、データ処理を行っている。図2は、各ソフトと音聴識別技術の各処理フローとの関係を示したフローチャートである。まず対象事象の伝播音のデータ収集に関して計測制御ソフトが機能するようになっている。この計測制御ソフトは、対象事象の伝播音の属する帯域(振動領域音、低周波音、可聴帯域音及び全帯域音)の帯域別音圧、周波数に関し、設定した一定時間毎(1〜100秒程度)における音圧と周波数データ群の収集を制御するようになっている。また、数量化、符号化を行うためのデータ塊の作成のための統計処理や解析処理のためのアルゴリズムは、観測内容や判別を行う対象事象の内容ごとに固有の取り扱いとし、モデル実験や試験計測を行って設計した上でアルゴリズムの構築(設計)を行い、数量化ソフトウエアおよび符号化ソフトウエアを作成し、取り扱うこととした。具体的には、収集されたデータ群は、データ塊(たとえばデータ数として10〜3,000データ程度)として取り扱い、これらデータ塊に統計処理や解析処理を行う形で数量化、符号化を行うこととした。さらに、数量化データと対象事象とのキャリブレーションを行うためのソフト及び既知の基準データや学習によって取得し蓄積されたデータをもとにした符号化データの事象判別式を備えた判別ソフトを備えている。これにより、最終的に数量化データによって、対象事象の現象を定量的に把握可能な諸量への換算を行え、また符号化データによって、対象事象の属する事象の判定を行うことができる。 In the sound identification apparatus of the present invention, data collection and data processing are performed by a plurality of application software. FIG. 2 is a flowchart showing the relationship between each software and each processing flow of the sound identification technology. First, the measurement control software functions to collect the propagation sound data of the target event. This measurement control software is set at regular intervals (1 to 100 seconds) with respect to the sound pressure and frequency for each band of the band (vibration region sound, low frequency sound, audible band sound and full band sound) to which the propagation sound of the target event belongs. The collection of sound pressure and frequency data groups in the degree). In addition, the algorithm for statistical processing and analysis processing for creating data blocks for quantification and encoding is handled uniquely for each observation content and the content of the target event to be discriminated. After designing by measuring, the algorithm was constructed (designed), and quantification software and encoding software were created and handled. Specifically, the collected data group is handled as a data chunk (for example, about 10 to 3,000 data as the number of data), and these data chunks are quantified and encoded by performing statistical processing and analysis processing. It was decided. In addition, software for calibrating quantified data and target events and discriminating software with event discriminants of encoded data based on known reference data and data acquired and accumulated by learning ing. As a result, it is finally possible to convert the phenomenon of the target event into various quantities that can quantitatively grasp the phenomenon of the target event from the quantified data, and it is possible to determine the event to which the target event belongs by using the encoded data.
ここで、収集した伝播音のデータ塊をもとに、数量化、符号化を行うデータ塊の構成概念について、表1を参照して説明する。表1において、所定の計測時間(時刻TT1〜TTn)にサンプリングされたデータ(n=1〜n)は、各帯域ごとに振動音(DA1〜DAn)、超低周波音(DB1〜DBn)、低周波音(DC1〜DCn)、可聴帯域音(DD1〜DDn)及び全帯域音(DT1〜DTn)として規定された音圧値(P)と周波数値(F)の集合がデータ塊である。このとき計測時刻(TT1〜TTn)は、任意に設定できる。これらの音データ塊から統計処理、解析処理を行い、数値化を図る。本発明では数値化に用いる統計処理、統計解析手法として、平均値、分散値等、頻度分布、累積頻度分布、散布図/平均値、中央値、最頻度/標準偏差、レンジ(最大偏差)、四分位偏差、10%値/ひずみ度、尖り度/相関係数、相関係数、スペクトル、その他各種の手法がある。 Here, a configuration concept of a data block to be quantified and encoded based on the collected data block of propagation sound will be described with reference to Table 1. In Table 1, data (n = 1 to n ) sampled at a predetermined measurement time (time TT 1 to TT n) are vibration sound (DA 1 to DA n ), ultra-low frequency sound (DB) for each band. 1 to DB n ), low frequency sound (DC 1 to DC n ), audible band sound (DD 1 to DD n ) and sound pressure value (P) and frequency defined as full band sound (DT 1 to DT n ) A set of values (F) is a data chunk. The time measurement time (TT 1 ~TT n) can be arbitrarily set. Statistical processing and analysis processing are performed from these sound data chunks for digitization. In the present invention, as statistical processing and statistical analysis methods used for quantification, an average value, a variance value, etc., frequency distribution, cumulative frequency distribution, scatter diagram / average value, median value, maximum frequency / standard deviation, range (maximum deviation), There are quartile deviation, 10% value / distortion, kurtosis / correlation coefficient, correlation coefficient, spectrum, and various other methods.
また、符号化においても、同様のデータ塊の処理を行うが、符号化の目的は事象の判別であるため、処理数値が必須でない場合もある。したがって、統計処理、統計解析手法を用いて数値を得る手法でなく、事象における閾値を設定し、この閾値の符号化や合成関数による符号化を行うことも有効である。 In encoding, the same data chunk processing is performed. However, since the purpose of encoding is to determine an event, a processing numerical value may not be essential. Therefore, it is also effective to set a threshold value for an event and perform encoding of the threshold value or encoding with a synthesis function, instead of using a statistical processing or statistical analysis method to obtain a numerical value.
図3は、音聴識別技術における数量化、符号化を行い、その結果を得るまでの作業フローを示したフローチャートである。同図に示したように、まず音聴識別を行う対象事象の変化特性を把握する。変化特性の把握とは、具体的には観測あるいは判別を行う事象(現象)における発生音の特性及び現象変化に伴う音の変化を推定することである。単に推定が難しい場合は、現象変化を模した実験等に基づく予備計測を行い、その把握を図ることが好ましい。このとき対象事象において同一の現象が連続ないし継続し、同一的反応による音の発生が継続するとした時間幅を設定することが重要である。次に、実際の現場における試験計測を行い、対象とする現象による発生音(伝播音)特性の把握を行う。この段階で発生音(伝播音)の音圧レベル、音圧変化レベル、卓越周波数範囲等の把握・整理、目的とする対象の識別(観測、判別)を行うためのアルゴリズム等の構築・設計条件を決める。 FIG. 3 is a flowchart showing a work flow from obtaining and quantifying and encoding in the sound identification technology. As shown in the figure, first, the change characteristics of the target event for which the auditory identification is performed are grasped. Specifically, the grasp of the change characteristic is to estimate the characteristic of the generated sound in the event (phenomenon) to be observed or discriminated and the change in sound accompanying the change in phenomenon. If it is difficult to simply estimate, it is preferable to perform preliminary measurement based on an experiment or the like simulating a phenomenon change to grasp the result. At this time, it is important to set a time width in which the same phenomenon continues or continues in the target event and the generation of sound due to the same reaction continues. Next, test measurement is performed at an actual site, and characteristics of sound (propagation sound) due to the target phenomenon are grasped. Construction and design conditions for algorithms, etc., to identify and organize the sound pressure level, sound pressure change level, dominant frequency range, etc. of the generated sound (propagation sound) at this stage, and identify the target object (observation, discrimination) Decide.
具体的には、発生音(伝播音)の音圧・周波数計測を行う設定時間は約1〜100秒とすることが好ましい。この設定時間は、対象の反応に応じて設定されるもので、たとえば風速観測の場合のように5〜30秒程度の周期で変化が予想される現象では長く設定し、気温、湿度の場合のように10〜100秒程度の間での変化が小さく、瞬時値としての計測値で有効なデータでは短く設定すればよい。この設定時間内に計測され、コンピュータ等の記録部に収録されるデータ数は約20〜200データ/秒であり、100秒の場合は比例して2,000〜20,000データとなる。このデータ群を統計処理、統計解析あるいは現象ごとに作成する状態方程式やシミュレーションモデル等により解析して、音の数量あるいは符号化を行う。この場合に音圧値でなく、反応把握に必要な帯域の周波数が連続的に計測し、周波数値を用いて行う点に特徴がある。 Specifically, the set time for measuring the sound pressure / frequency of the generated sound (propagation sound) is preferably about 1 to 100 seconds. This set time is set according to the reaction of the target. For example, when the phenomenon is expected to change with a period of about 5 to 30 seconds as in the case of wind speed observation, the set time is set long. Thus, the change between about 10 to 100 seconds is small, and the measured value as the instantaneous value may be set short for effective data. The number of data measured within this set time and recorded in a recording unit such as a computer is about 20 to 200 data / second, and in the case of 100 seconds, it becomes 2,000 to 20,000 data in proportion. This data group is analyzed by statistical processing, statistical analysis, or a state equation or simulation model created for each phenomenon, and the quantity or coding of sound is performed. In this case, there is a feature in that not the sound pressure value but the frequency of the band necessary for grasping the reaction is continuously measured and the frequency value is used.
さらに、データ塊を取り扱う装置性能を確保するために、測定周波数の範囲における時定数、増幅度等を設定する。ここで、測定周波数の範囲の設定では、振動音を含めた低周波音を中心とする場合と、可聴域音を中心とする場合の選択を行う。低周波音を中心とする場合は、反応時定数を2秒程度と遅くし、可聴域音場合は0.2秒程度以下と速くすることが必要である。また、増幅度は対象に設置された媒質マイクロホンからの入力信号の増幅度合を決めるもので、入力信号の変化特性より0,20,40,60,80,100dBの6段階から適切な増幅度を選択する。 Further, in order to ensure the performance of the apparatus that handles data chunks, a time constant, an amplification degree, etc. in the measurement frequency range are set. Here, in setting the measurement frequency range, a selection is made between a case where the low frequency sound including the vibration sound is centered and a case where the sound is centered on the audible range. In the case of focusing on low frequency sound, the reaction time constant needs to be slowed down to about 2 seconds, and in the case of audible range sound, it is necessary to speed up to about 0.2 seconds or less. In addition, the amplification degree determines the amplification degree of the input signal from the medium microphone installed in the target, and an appropriate amplification degree is obtained from six stages of 0, 20, 40, 60, 80, and 100 dB based on the change characteristic of the input signal. select.
音圧サンプリング項目は、音圧項目の中より必要な項目を選択し、サンプリング速度も対象事象の反応速度をもとに選択する。これらの諸条件を決めて連続計測することで得られる音のデータ塊に、統計処理、解析処理あるいは数値モデルの作成を行う形で数量化としての計算式あるいは符号化するための計算アルゴリズムを作成する。そして数量化ソフトを経て数量化されたデータをキャリブレーションによる換算、あるいは符号化ソフトを経て符号化されたデータを判別条件式により判別する。その結果は所定のフォーマットで外部出力される。 As the sound pressure sampling item, a necessary item is selected from the sound pressure items, and the sampling rate is also selected based on the reaction rate of the target event. Create a calculation formula or encoding algorithm for quantification in the form of statistical processing, analysis processing or numerical model creation of sound data obtained by deciding these various conditions and continuously measuring To do. Then, the data quantified through the quantification software is converted by calibration, or the data encoded through the encoding software is discriminated by the discriminant conditional expression. The result is output externally in a predetermined format.
数量化に際しては、上述したように、同一反応が0.5〜1間程度以上継続する反応による音の音圧と周波数変化を一定時間(おおよそ1〜100秒程度)計測してデータ化し、そのデータ群(データ数:約20〜10,000)より、観測対象にリニアになるように数量化、あるいは事象の判別が高精度となるように符号化する。この場合に単に統計処理のみでなく、統計解析を行うとともに、たとえば音の指数化を行い、その関係式の簡略化を図る。具体的には、以下の式で示したように、モデル実験等を行って現象の変動量と音の数量化値との間の線形関係式を導いて音の指数化を行う。 In quantification, as described above, the sound pressure and frequency change of the sound due to the reaction in which the same reaction continues for about 0.5 to 1 or more are measured for a certain period of time (about 1 to 100 seconds) and converted into data. From the data group (number of data: about 20 to 10,000), quantification is performed so that the observation target is linear, or encoding is performed so that the determination of the event becomes highly accurate. In this case, not only statistical processing but also statistical analysis is performed and, for example, sound is indexed to simplify the relational expression. Specifically, as shown by the following formula, a model experiment or the like is performed to derive a linear relational expression between the fluctuation amount of the phenomenon and the quantified value of the sound, and the sound is indexed.
以下に、数量化の式の例と、実施例について説明する。たとえば、観測諸量は、以下の関数式で表すことができる。 Hereinafter, examples of quantification formulas and examples will be described. For example, the observed quantities can be expressed by the following function formula.
Y=K(X−X0)
ここで、Y:観測諸量(たとえば降雨時の降水量、河川の流砂量)
K:キャリブレーションとしての係数
X:音圧、周波数計測値を数量化した値
X0:観測諸量が0に近いときのX値(バックグラウンド値)
Y = K (X−X 0 )
Where, Y: various observed quantities (for example, precipitation during rain, river sediment)
K: Coefficient as calibration
X: Value obtained by quantifying the sound pressure and frequency measurement values
X 0 : X value when the observed quantities are close to 0 (background value)
ここで音データ塊を数量化するには、計測値をそのまま使用せずに、1次式に近い形とし、換算係数を乗じてキャリブレーションが可能な数式とすることが好ましい。これにより、連続したデータ取得のための装置の精度維持を図ることができる。また、観測諸量が0に近い値の場合にも、暗騒音に相当するバックグラウンドの音が計測されるため、データ精度向上のため、式中でキャンセルするようにしている。なお、下式のように、式形式の次元を上げて、複数の数量化値をもとにして対象諸量の換算を行う場合もある。 Here, in order to quantify the sound data block, it is preferable that the measured value is not used as it is, but a form close to a linear expression is used, and a mathematical expression that can be calibrated by multiplying by a conversion coefficient is preferable. Thereby, the precision of the apparatus for continuous data acquisition can be maintained. Even when the observed quantities are close to 0, a background sound corresponding to background noise is measured, so that cancellation is made in the equation to improve data accuracy. In some cases, as shown in the following formula, the dimensions of the formula format are raised and the various quantities are converted based on a plurality of quantified values.
Y=f(X1×X2…×Xn)
ここで、Y:観測諸量(たとえば土壌水分量)
X1:音の数量化値(1)
X2: 〃 (2)
Xn: 〃 (n)
Y = f (X 1 × X 2 ... × X n )
Where Y: various observed quantities (eg soil moisture)
X 1 : Quantification value of sound (1)
X 2: 〃 (2)
Xn : 〃 (n)
以下に、数量化の実施例として降雨時における降水音の測定による降水量及び雨滴粒径分布について、実験に基づく換算式によるキャリブレーションの作成例を示す。
R=a{(P−P0)/FK}
Rd50=b1(FK)b2
ここで、R:降水量(mm/min)
Rd50:雨滴の50%粒径(mm)
P:測定音圧(μPa)
P0:無降雨時の音圧(μPa)
FK:雨滴音の周波数(Hz)
a,b1,b2:換算係数(実験値)
Hereinafter, as an example of quantification, an example of creating a calibration by a conversion formula based on an experiment for precipitation and raindrop particle size distribution by measurement of precipitation sound during rainfall will be shown.
R = a {(P−P 0 ) / F K }
Rd 50 = b 1 (F K ) b2
Where R: Precipitation (mm / min)
Rd 50 : 50% particle size of raindrop (mm)
P: Measurement sound pressure (μPa)
P 0 : Sound pressure when there is no rain (μPa)
F K : Raindrop sound frequency (Hz)
a, b 1 , b 2 : conversion factors (experimental values)
その他の事象の例としては、地中透過音の測定による土壌水分量(含水比)の観測、雪中透過音の測定による雪密度の観測、河川中の流砂音の測定による掃流砂量の観測、砂防ダムコンクリート躯体内の振動音の測定による土石流の観測、橋脚、河川施設等の躯体内の振動音測定による基礎根入れ度合の観測、築造ブロックの振動音測定による構造物の安定状態の観測、コンクリート構造物周辺地盤の測定による地盤半液状化の観測、微生物による発酵時の発生音の測定による微生物代謝速度の測定、コンクリート構造物劣化進行状態の観測、地盤崩壊前兆音の観測、トンネル覆工背面の空洞化部位の発生進行の観測、地すべり現象進行の観測等がある。 Examples of other events include observation of soil water content (moisture content ratio) by measurement of ground penetration sound, observation of snow density by measurement of penetration sound in snow, and observation of amount of sand flow by measurement of sand flow sound in rivers. , Observation of debris flow by measuring vibration noise in Sabo dam concrete enclosure, Observation of foundation penetration by measurement of vibration sound in enclosures such as piers and river facilities, Observation of stable state of structure by measurement of vibration sound of building blocks , Observation of ground semi-liquefaction by measuring ground around concrete structure, Measurement of microbial metabolic rate by measuring sound generated during fermentation by microorganisms, Observation of progress of deterioration of concrete structure, Observation of pre-collapse sign, Tunnel covering There are observations of the progress of cavitation on the back of the work, observation of the landslide phenomenon, etc.
符号化に際しては、その目的としてたとえば事象Aと事象Bの状態区別ができればよいとして、音圧・周波数データ塊から数値あるいは任意に定義する分類記号(たとえばA〜Z)による符号化を行う。具体的には、対象事象について実験あるいは試験計測を行う過程において、データ塊から符号化への変換アルゴリズムを作成する。この場合において、単純なデータ比較では事象の判別が不完全になる一方、完全な判別を追求しすぎると精度の低下のおそれがある。したがって、音データ塊を解析して、事象Aと事象Bとの間に空間があるように解析する形で処理することが好ましい。 At the time of encoding, for example, it is only necessary to be able to distinguish the state of event A and event B, and encoding is performed using numerical values or arbitrarily defined classification symbols (for example, A to Z) from the sound pressure / frequency data block. Specifically, in the process of performing an experiment or test measurement on the target event, a conversion algorithm from a data chunk to encoding is created. In this case, the determination of the event is incomplete in simple data comparison, but if the complete determination is pursued too much, the accuracy may be lowered. Therefore, it is preferable to analyze the sound data chunk and process it so that there is a space between the event A and the event B.
以下、標本A,Bの視聴しているTV番組が番組別固有音データ(チャンネルX)と同一番組であるかの判定を行うようにした実施例について説明する。たとえばTV番組には、番組ごと、放映時刻ごとに変化する固有の音声(番組別固有音データ)が存在する。この番組別固有音データは、周波数と音圧の連続的変化で構成されている。そこで、本発明の音聴識別装置によって収集した、視聴者(標本A,B)が視聴している視聴番組音の計測データと、あらかじめ設定されている番組別固有音(チャンネルXで放映の番組)の学習装置に記憶のデータ(学習装置データ)との照合判別を、統計処理して符号化を行い、これにより標本A,Bの視聴している番組が番組別固有音データ(チャンネルX)と同一番組であるかの判定を行う実施例について、以下説明する。 Hereinafter, an embodiment will be described in which it is determined whether the TV program viewed by the samples A and B is the same program as the program-specific sound data (channel X). For example, a TV program has a unique sound (program-specific sound data) that changes for each program and each broadcast time. This program specific sound data is composed of continuous changes in frequency and sound pressure. Therefore, the measurement data of the viewing program sound viewed by the viewer (samples A and B) collected by the sound identification apparatus of the present invention and the program specific sound (program broadcast on channel X) set in advance. ) Is compared with the data stored in the learning device (learning device data), statistically processed and encoded, so that the program viewed by the samples A and B is the program specific sound data (channel X). An embodiment for determining whether or not the same program will be described below.
具体的に、一定時間サンプリングして得られるデータ塊から以下の手順で学習装置のデータと比較し、判別を行う。
(1) 標本Aの視聴した番組の視聴番組音のデータ塊から以下の4項目(FD1〜FD4)を求める。その結果を表2に示す。
Specifically, the data block obtained by sampling for a certain period of time is compared with the data of the learning device in the following procedure to make a determination.
(1) The following four items (FD1 to FD4) are obtained from the data chunk of the viewing program sound of the program viewed by the sample A. The results are shown in Table 2.
(2) 同じ計測時間における学習装置データから求めたFD1〜FD4と、(1)で求めたFD1〜FD4を以下の式に代入し、FD1〜FD4それぞれについて計算する。その結果を表3に示す。
FD1〜FD4=−100×(X−X0)2+1
ここで、X:(1)で求めたFD1〜FD4
X0:学習装置データから求めたFD1〜FD4
(2) Substituting FD1 to FD4 obtained from learning device data at the same measurement time and FD1 to FD4 obtained in (1) into the following equations, and calculating each of FD1 to FD4. The results are shown in Table 3.
FD1 to FD4 = −100 × (X−X 0 ) 2 +1
Where X: FD1 to FD4 obtained in (1)
X 0 : FD1 to FD4 obtained from learning device data
(3) (2)で求めた値を合計(4点満点)し、以下の判別式(基準)で○(同一番組)、×(違う番組)を判定する。その結果を表4に示す。
合計点>3.9の場合 ○
それ以外 ×
(3) The values obtained in (2) are summed (up to 4 points), and ○ (same program) and x (different programs) are determined by the following discriminant (reference). The results are shown in Table 4.
If total score> 3.9 ○
Other than that ×
上述した実施例の他、符号化を想定した音聴識別技術には、各分野における適用例が考えられるが、音聴識別装置の設置場所、電源の要否に応じて以下のような装置が可能である。たとえば、野外(水中を含む)において商用電源を使用しないような装置として、流体管路漏水識別装置、鉄塔、タワー異常音識別装置、屋上施設、看板取付状態の安定性識別装置、仮設施設安定性識別装置が、商用電源を使用する装置として、交通有無識別装置(目的例:車、電車等の通過チェック)、接近、侵入者識別装置(目的例:建物構内セキュリティ)、異常水中音識別装置(目的例:水族館、プール等の管理)がある。また、屋内において商用電源を用いた装置として、上述のTV番組音識別装置(目的例:TV番組視聴率調査)、生活者識別装置(目的例:一人暮らし高齢者の生活管理)、侵入者識別装置(目的例:建物内セキュリティ)、発酵音識別装置(正常な反応の管理)、顧客入出店識別装置、異常行動者識別装置(目的例:警備補助)等、種々の用途をもった装置の提供が可能である。 In addition to the above-described embodiments, application examples in each field can be considered for the audio identification technology that assumes encoding. The following devices are provided depending on the installation location of the audio identification device and the necessity of the power supply. Is possible. For example, as a device that does not use a commercial power supply in the outdoors (including underwater), fluid pipe leakage identification device, steel tower, tower abnormal sound identification device, rooftop facility, stability identification device for signboard attachment state, temporary facility stability As a device that uses a commercial power source as an identification device, a traffic presence / absence identification device (example: pass check for cars, trains, etc.), approach, intruder identification device (purpose example: building premises security), abnormal underwater sound identification device ( (Example: Management of aquariums, pools, etc.) Further, as a device using a commercial power source indoors, the above-described TV program sound identification device (purpose example: TV program audience rating survey), consumer identification device (purpose example: life management of elderly living alone), intruder identification device (Purpose example: Building security), Fermentation sound identification device (Normal reaction management), Customer entry / exit identification device, Abnormal behavior identification device (Purpose example: Security assistance), etc. Is possible.
1 媒質マイクロホン
10 音聴識別装置
1
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003310893A JP2005077341A (en) | 2003-09-03 | 2003-09-03 | Sound listening discrimination device and sound listening discrimination method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003310893A JP2005077341A (en) | 2003-09-03 | 2003-09-03 | Sound listening discrimination device and sound listening discrimination method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005077341A true JP2005077341A (en) | 2005-03-24 |
Family
ID=34412602
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003310893A Pending JP2005077341A (en) | 2003-09-03 | 2003-09-03 | Sound listening discrimination device and sound listening discrimination method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005077341A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011059064A (en) * | 2009-09-14 | 2011-03-24 | Cti Science System Co Ltd | State evaluation method for structure using ultra-low frequency sound measurement |
CN103453980A (en) * | 2013-08-08 | 2013-12-18 | 大连理工大学 | Sound field parameter obtaining method based on compressed sensing |
JP2015094661A (en) * | 2013-11-12 | 2015-05-18 | 日本電気株式会社 | Device and method for monitoring underground |
JP2020071794A (en) * | 2018-11-02 | 2020-05-07 | 国際航業株式会社 | Abnormal natural phenomenon detection system and abnormal natural phenomenon detection method |
-
2003
- 2003-09-03 JP JP2003310893A patent/JP2005077341A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011059064A (en) * | 2009-09-14 | 2011-03-24 | Cti Science System Co Ltd | State evaluation method for structure using ultra-low frequency sound measurement |
CN103453980A (en) * | 2013-08-08 | 2013-12-18 | 大连理工大学 | Sound field parameter obtaining method based on compressed sensing |
JP2015094661A (en) * | 2013-11-12 | 2015-05-18 | 日本電気株式会社 | Device and method for monitoring underground |
JP2020071794A (en) * | 2018-11-02 | 2020-05-07 | 国際航業株式会社 | Abnormal natural phenomenon detection system and abnormal natural phenomenon detection method |
JP7223482B2 (en) | 2018-11-02 | 2023-02-16 | 国際航業株式会社 | Abnormal Natural Phenomenon Detection System and Abnormal Natural Phenomenon Detection Method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2020262969B2 (en) | Detection of structural anomalies in a pipeline network | |
Harmel et al. | Practical guidance for discharge and water quality data collection on small watersheds | |
Zhang et al. | An automatic impact-based delamination detection system for concrete bridge decks | |
CN104900013A (en) | Mud-rock flow monitoring and alarming system based on infrasonic wave | |
Bin Ali et al. | Rapid detection of sewer defects and blockages using acoustic-based instrumentation | |
Alves et al. | A fast and efficient feature extraction methodology for structural damage localization based on raw acceleration measurements | |
CN117114505B (en) | Building construction site environment monitoring method and system | |
Luk et al. | Impact-acoustics inspection of tile-wall bonding integrity via wavelet transform and hidden Markov models | |
CN109933933B (en) | Noise treatment method and equipment | |
Heidari et al. | Application of wavelet theory with denoising to estimate the parameters of an earthquake | |
Khan et al. | Acoustic characterization of pvc sewer pipes for crack detection using frequency domain analysis | |
Kleidorfer et al. | Optimization of measurement campaigns for calibration of a conceptual sewer model | |
JP2005077341A (en) | Sound listening discrimination device and sound listening discrimination method | |
CN117367382B (en) | H-ADCP-based online suspended load sediment measurement method | |
JP5417099B2 (en) | A method for evaluating the state of structures by measuring ultra-low frequency sound | |
Nasrin et al. | Modelling impact of extreme rainfall on sanitary sewer system by predicting rainfall derived infiltration/inflow | |
CN115290057B (en) | Channel software row state monitoring system and method | |
Liu et al. | Fuzzy pattern recognition of impact acoustic signals for nondestructive evaluation | |
Kankanamge et al. | Application of Wavelet Transform in Structural Health Monitoring | |
JP2004219168A (en) | Device and method for analyzing band-wise sound pressure of propagated sound | |
Reinstaller et al. | Qualitative Techniques to Evaluate Urban Flood Models | |
Titova et al. | Wear degree assessment of low-pressure earth dams within urban landscape | |
Montano | Low frequency noise and infrasound: A new method to determine the specific sound from the total sound; a plausible statistical algorithm for use in Legal Noise Assessment | |
Podd et al. | Rapid sonic characterisation of sewer change and obstructions | |
Ashtiani et al. | Spectral discrete probability density function of measured wind turbine noise in the far field |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Effective date: 20051116 Free format text: JAPANESE INTERMEDIATE CODE: A621 |
|
A977 | Report on retrieval |
Effective date: 20061222 Free format text: JAPANESE INTERMEDIATE CODE: A971007 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070724 |
|
A02 | Decision of refusal |
Effective date: 20071120 Free format text: JAPANESE INTERMEDIATE CODE: A02 |