JP3933526B2 - Gas concentration measuring device - Google Patents

Gas concentration measuring device Download PDF

Info

Publication number
JP3933526B2
JP3933526B2 JP2002161116A JP2002161116A JP3933526B2 JP 3933526 B2 JP3933526 B2 JP 3933526B2 JP 2002161116 A JP2002161116 A JP 2002161116A JP 2002161116 A JP2002161116 A JP 2002161116A JP 3933526 B2 JP3933526 B2 JP 3933526B2
Authority
JP
Japan
Prior art keywords
voltage
gas
semiconductor
semiconductor material
switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002161116A
Other languages
Japanese (ja)
Other versions
JP2004003903A (en
Inventor
勝 石橋
康二三 大田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Riken Keiki KK
Original Assignee
Riken Keiki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken Keiki KK filed Critical Riken Keiki KK
Priority to JP2002161116A priority Critical patent/JP3933526B2/en
Publication of JP2004003903A publication Critical patent/JP2004003903A/en
Application granted granted Critical
Publication of JP3933526B2 publication Critical patent/JP3933526B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、遠隔地に配置されたガスセンサからの電圧信号を有線により伝送してガスの濃度を検出するガス濃度測定装置におけるガスセンサの端子電圧を検出端子側で測定する技術に関する。
【0002】
【従来の技術】
例えば、化学プラントなどでは原料の漏洩を早期に検出するため、ガス検出手段を設備ごとに配置してケーブルにより中央監視所に電圧信号を伝送するように監視システムが構築されている。
【0003】
このようなガス検出手段は、通常、ガスに感応する半導体物質を加熱手段により加熱し、ガス感応時の半導体物質の抵抗を基準抵抗との分圧として検出するように回路構成されて使用される。
【0004】
【発明が解決しようとする課題】
しかしながら、ガス検出点と中央監視所とは、長い場合にはキロメートルオーダのケーブルにより接続され、かつその長さが不定であるため、ケーブルの線路抵抗に起因した誤差が測定結果に含まれるという問題がある。
本発明はこのような問題に鑑みてなされたものであって、その目的とするところは、ガス検出点と中央監視所とを接続するケーブルの線路抵抗にかかわりなく、ガスセンサに印加される端子電圧を中央監視所から測定することができるガス検出装置を提供することである。
【0005】
【課題を解決するための手段】
このような問題を解消するために本発明においては、ガスに感応する半導体物質をヒータにより加熱する半導体ガスセンサと、前記ヒータに線路を介して定電流を供給する定電流電源手段と、前記半導体物質の抵抗、または電圧を、基準抵抗の電圧信号として線路を介して検出する測定手段とを備えたガス濃度測定装置において、前記半導体物質はスイッチを介して前記基準抵抗に接続されており、前記ガスを測定する場合には前記スイッチがオンにされ、また前記半導体物質の端子電圧を測定する場合には前記スイッチがオフにされるように構成されている。
【0006】
【作用】
半導体ガスセンサの端子電圧を測定する場合には、スイッチをオフとして線路1本分の電圧降下を含む電圧を検出し、ヒータに接続する線路間の電圧との演算により線路抵抗による電圧降下を相殺した電圧データを得る。
【0007】
【発明の実施の態様】
そこで以下に本発明の詳細を図示した実施例に基づいて説明する。
図1は、本発明の一実施例を示すものであって、ガス検出手段を構成する半導体ガスセンサ1は、ヒータ2と、これとは電気的に分離され、かつ熱伝導関係を形成するようにガス感応半導体物質3を配置して構成されている。
ガスセンサ1は、そのヒータ2をケーブルを構成する線路L1、L2を介して中央監視所の端子T1、T2に、また半導体物質3は一端をヒータ2に接続され、他端を線路L3を介して端子T3に延長されている。
【0008】
端子T1、T2には定電流電源回路4が接続されていて、半導体ガスセンサ1のヒータ2に所定電流、例えば100mAの電流が供給されている。
また端子T3には常時オン状態を維持するスイッチ5を介して接地された基準抵抗6が接続され、基準抵抗6の電圧信号が演算増幅器7を介して測定手段8に入力されている。測定手段8は、アナログーデジタル変換手段9、ガス濃度演算手段10、表示部11により構成され、半導体物質3の抵抗値を電圧信号として検出し、ガス濃度を表示部11により表示するように構成されている。
【0009】
この実施例において、被検ガスが半導体ガスセンサ1に流れ込むと、半導体物質3の抵抗値Rxがガス濃度に対応して変化する。この抵抗Rxは、ヒータ2と半導体物質3との接続点Aから端子3までの抵抗として測定手段8により検出される。つまり半導体物質3と直列に接続された基準抵抗6の電圧をアナログーデジタル変換器9から得て、ガス濃度演算手段10に予め格納されている校正データに基づいてガス濃度を算出して表示部11に表示する。
【0010】
このように分圧により半導体ガスセンサ1の信号電圧を検出する関係上、半導体ガスセンサ1に印加されている電圧V、つまりA点とB点との間の電圧を検出する必要があるが、各線路L1〜L3は、それぞれ線路抵抗R1〜R3が存在するため、端子T1、T2の電圧は、負荷電流と線路抵抗R1、R2(長さ2000mの場合には略20Ω程度)とによる電圧降下分ΔVを含む。
【0011】
半導体ガスセンサ1に印加される電圧Vを測定する場合には、スイッチ5をオフとして接続点Aと端子T3との間に電流が流れない状態として端子T1と端子T3との電圧を高入力インピーダンス電圧測定手段により測定すると、半導体物質3の抵抗(通常、200KΩ程度)や線路抵抗R3に関わり無く、端子T1とA点と間の電圧V1、つまり線路抵抗R2による電圧降下分ΔV1だけを含んだ電圧を測定できる。
【0012】
また、端子T1と端子T2との電圧V2を測定することにより、線路抵抗R1とR2とによる電圧降下ΔV2を含んだ電圧を測定することができる。
【0013】
ところで、線路L1乃至L3は通常同一規格のものが用いられ、かつ長さも同一であり、またヒータ2の抵抗も一定であるから、これら電圧V1とV2との差分V1−V2は、線路L1、L2それぞれ1本分の電圧降下を示すことになる。
【0014】
したがって、端子T1と端子T2との間の電圧V2から上記差分の2倍の電圧(V1−V2)×2を差し引くか、または端子T1と端子T3との間の電圧V1から上記差分(V1−V2)を差し引くことにより、半導体ガスセンサ1の端子電圧Vを正確に知ることができる。
【0015】
なお、上述に実施例においては、スイッチ5としてメカニカルスイッチを使用した場合について説明したが、半導体スイッチを使用しても同様の作用を奏する。
すなわち、半導体スイッチは、そのオフ時のインピーダンスは、半導体物質3や線路抵抗に対して極めて高い値を有するから、実質的に完全なオフ状態とみなすことができる。
【0016】
【発明の効果】
以上、説明したように本発明によれば、半導体ガスセンサの端子電圧を測定する場合には、スイッチをオフとして線路1本分の電圧降下を含む電圧が検出できるから、ヒータに接続する線路間の電圧との演算により線路抵抗による電圧降下が相殺可能となり、遠隔地点のセンサに印加されている電圧を正確に測定することができる。
【図面の簡単な説明】
【図1】本発明の一実施例を示すブロック図である。
【符号の説明】
1 半導体ガスセンサ
2 ヒータ
3 半導体物質
5 スイッチ
6 基準抵抗
8 測定手段
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a technique for measuring a terminal voltage of a gas sensor on a detection terminal side in a gas concentration measuring device that detects a gas concentration by transmitting a voltage signal from a gas sensor disposed at a remote place by wire.
[0002]
[Prior art]
For example, in a chemical plant or the like, a monitoring system is constructed so as to transmit a voltage signal to a central monitoring station via a cable by arranging gas detection means for each facility in order to detect raw material leakage at an early stage.
[0003]
Such a gas detection means is usually used in a circuit configuration so that a semiconductor material sensitive to gas is heated by a heating means, and the resistance of the semiconductor material at the time of gas detection is detected as a partial pressure with respect to a reference resistance. .
[0004]
[Problems to be solved by the invention]
However, since the gas detection point and the central monitoring station are connected by a cable in the kilometer order when the length is long and the length is indefinite, an error caused by the line resistance of the cable is included in the measurement result. There is.
The present invention has been made in view of such problems, and the object of the present invention is to provide a terminal voltage applied to the gas sensor regardless of the line resistance of the cable connecting the gas detection point and the central monitoring station. It is to provide a gas detection device that can measure from a central monitoring station.
[0005]
[Means for Solving the Problems]
In order to solve such a problem, in the present invention, a semiconductor gas sensor for heating a semiconductor material sensitive to gas by a heater, a constant current power supply means for supplying a constant current to the heater via a line, and the semiconductor material A gas concentration measuring device comprising a measuring means for detecting the resistance or voltage as a voltage signal of a reference resistance via a line, wherein the semiconductor substance is connected to the reference resistance via a switch, and the gas The switch is turned on when measuring the voltage, and the switch is turned off when measuring the terminal voltage of the semiconductor material .
[0006]
[Action]
When measuring the terminal voltage of the semiconductor gas sensor, the switch is turned off, the voltage including the voltage drop for one line is detected, and the voltage drop due to the line resistance is canceled by calculation with the voltage between the lines connected to the heater. Get voltage data.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
Therefore, details of the present invention will be described below based on the illustrated embodiment.
FIG. 1 shows an embodiment of the present invention, in which a semiconductor gas sensor 1 constituting a gas detection means is electrically separated from a heater 2 and forms a heat conduction relationship. The gas-sensitive semiconductor material 3 is arranged.
The gas sensor 1 has the heater 2 connected to the terminals T1 and T2 of the central monitoring station via lines L1 and L2 constituting the cable, and the semiconductor substance 3 has one end connected to the heater 2 and the other end connected to the line L3. It is extended to the terminal T3.
[0008]
A constant current power supply circuit 4 is connected to the terminals T1 and T2, and a predetermined current, for example, a current of 100 mA is supplied to the heater 2 of the semiconductor gas sensor 1.
Further, the terminal T3 is connected to a reference resistor 6 that is grounded via a switch 5 that is always on, and a voltage signal of the reference resistor 6 is input to the measuring means 8 via an operational amplifier 7. The measuring unit 8 includes an analog-digital converting unit 9, a gas concentration calculating unit 10, and a display unit 11. The measuring unit 8 detects the resistance value of the semiconductor material 3 as a voltage signal and displays the gas concentration on the display unit 11. Has been.
[0009]
In this embodiment, when the test gas flows into the semiconductor gas sensor 1, the resistance value Rx of the semiconductor material 3 changes corresponding to the gas concentration. This resistance Rx is detected by the measuring means 8 as a resistance from the connection point A between the heater 2 and the semiconductor material 3 to the terminal T3 . That is, the voltage of the reference resistor 6 connected in series with the semiconductor material 3 is obtained from the analog-digital converter 9 and the gas concentration is calculated based on the calibration data stored in advance in the gas concentration calculating means 10 to display the display unit. 11 is displayed.
[0010]
Thus, it is necessary to detect the voltage V applied to the semiconductor gas sensor 1, that is, the voltage between the point A and the point B, because the signal voltage of the semiconductor gas sensor 1 is detected by the partial pressure. Since L1 to L3 have line resistances R1 to R3, respectively, the voltage at the terminals T1 and T2 is a voltage drop ΔV due to the load current and the line resistances R1 and R2 (about 20Ω when the length is 2000 m). including.
[0011]
When the voltage V applied to the semiconductor gas sensor 1 is measured, the switch 5 is turned off so that no current flows between the connection point A and the terminal T3, and the voltage at the terminals T1 and T3 is set to the high input impedance voltage. When measured by the measuring means, regardless of the resistance of the semiconductor material 3 (usually about 200 KΩ) or the line resistance R3, the voltage V1 between the terminal T1 and the point A, that is, the voltage including only the voltage drop ΔV1 due to the line resistance R2. Can be measured.
[0012]
Further, by measuring the voltage V2 between the terminal T1 and the terminal T2, a voltage including the voltage drop ΔV2 due to the line resistances R1 and R2 can be measured.
[0013]
By the way, the lines L1 to L3 are usually of the same standard, have the same length, and the resistance of the heater 2 is constant, so that the difference V1-V2 between these voltages V1 and V2 is the line L1, Each L2 represents a voltage drop for one line.
[0014]
Accordingly, a voltage (V1−V2) × 2 that is twice the difference is subtracted from the voltage V2 between the terminals T1 and T2, or the difference (V1−V1) is calculated from the voltage V1 between the terminals T1 and T3. By subtracting V2), the terminal voltage V of the semiconductor gas sensor 1 can be accurately known.
[0015]
In the above-described embodiment, the case where a mechanical switch is used as the switch 5 has been described. However, even if a semiconductor switch is used, the same effect is obtained.
That is, the semiconductor switch has an extremely high impedance when it is turned off with respect to the semiconductor material 3 and the line resistance, so that it can be regarded as a substantially complete off state.
[0016]
【The invention's effect】
As described above, according to the present invention, when the terminal voltage of the semiconductor gas sensor is measured, a voltage including a voltage drop for one line can be detected by turning off the switch. The voltage drop due to the line resistance can be canceled by the calculation with the voltage, and the voltage applied to the sensor at the remote point can be accurately measured.
[Brief description of the drawings]
FIG. 1 is a block diagram showing an embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Semiconductor gas sensor 2 Heater 3 Semiconductor substance 5 Switch 6 Reference resistance 8 Measuring means

Claims (1)

ガスに感応する半導体物質をヒータにより加熱する半導体ガスセンサと、前記ヒータに線路を介して定電流を供給する定電流電源手段と、前記半導体物質の抵抗、または電圧を、基準抵抗の電圧信号として線路を介して検出する測定手段とを備えたガス濃度測定装置において、
前記半導体物質はスイッチを介して前記基準抵抗に接続されており、前記ガスを測定する場合には前記スイッチがオンにされ、また前記半導体物質の端子電圧を測定する場合には前記スイッチがオフにされるガス濃度測定装置。
A semiconductor gas sensor for heating a semiconductor material sensitive to gas by a heater, a constant current power supply means for supplying a constant current to the heater through a line, and a resistance or voltage of the semiconductor material as a voltage signal of a reference resistance as a line In a gas concentration measuring device comprising a measuring means for detecting via
The semiconductor material is connected to the reference resistor via a switch, the switch is turned on when measuring the gas, and the switch is turned off when measuring the terminal voltage of the semiconductor material. is Ru gas concentration measuring device.
JP2002161116A 2002-06-03 2002-06-03 Gas concentration measuring device Expired - Fee Related JP3933526B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002161116A JP3933526B2 (en) 2002-06-03 2002-06-03 Gas concentration measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002161116A JP3933526B2 (en) 2002-06-03 2002-06-03 Gas concentration measuring device

Publications (2)

Publication Number Publication Date
JP2004003903A JP2004003903A (en) 2004-01-08
JP3933526B2 true JP3933526B2 (en) 2007-06-20

Family

ID=30430274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002161116A Expired - Fee Related JP3933526B2 (en) 2002-06-03 2002-06-03 Gas concentration measuring device

Country Status (1)

Country Link
JP (1) JP3933526B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6379372B2 (en) * 2013-07-10 2018-08-29 理研計器株式会社 Gas detection system

Also Published As

Publication number Publication date
JP2004003903A (en) 2004-01-08

Similar Documents

Publication Publication Date Title
EP2102616B1 (en) Temperature sensor configuration detection in a process variable transmitter
JP5465355B2 (en) Process variable transmitter with thermocouple polarity detection
KR101293280B1 (en) Multi input circuit
JP2013536437A (en) Process fluid temperature measuring instrument
JP2014529075A (en) Differential current sensor
CN104297569B (en) Resistance measurement
WO2018127793A1 (en) Devices and methods for smart sensor application
KR102530710B1 (en) Current sensor and method for measuring an electric current
JP4819874B2 (en) Sensor system
US4492123A (en) Thermal conductivity vacuum gage
CN203177991U (en) Process variable transmitter employing EMF detection and correction
US20100026322A1 (en) Method for ascertaining burden resistance for a measurement transmitter
JP3933526B2 (en) Gas concentration measuring device
JPH08247857A (en) Input device for temperature detecting resistor
JP6767731B2 (en) Overheat detection system Systems and methods for event sites
JP3878779B2 (en) Resistance measuring method and apparatus
CA1237476A (en) Method and circuit for evaluating an analog voltage
CN109564139A (en) Sensor device
US9470580B2 (en) Infrared sensor
JPH0614082B2 (en) Temperature measuring device
KR101338756B1 (en) Apparatus for Temperature Detection Using Resistance Temperature Detector
JP2003106879A (en) Electromagnetic flowmeter
JP4087616B2 (en) Liquid level measuring device
JPH05126649A (en) Temperature sensor identifying module
JPH0534583U (en) 4-terminal measurement circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070313

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070313

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3933526

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160330

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees