JP3932967B2 - Fuel injection device - Google Patents

Fuel injection device Download PDF

Info

Publication number
JP3932967B2
JP3932967B2 JP2002125757A JP2002125757A JP3932967B2 JP 3932967 B2 JP3932967 B2 JP 3932967B2 JP 2002125757 A JP2002125757 A JP 2002125757A JP 2002125757 A JP2002125757 A JP 2002125757A JP 3932967 B2 JP3932967 B2 JP 3932967B2
Authority
JP
Japan
Prior art keywords
conical surface
convex curved
fuel
curved surface
valve member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002125757A
Other languages
Japanese (ja)
Other versions
JP2003314412A (en
Inventor
正博 岡嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2002125757A priority Critical patent/JP3932967B2/en
Publication of JP2003314412A publication Critical patent/JP2003314412A/en
Application granted granted Critical
Publication of JP3932967B2 publication Critical patent/JP3932967B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、弁ボディの円錐面に着座する弁部材の当接部が摩耗しても燃料噴射量の変化率を低下する燃料噴射装置(以下、「燃料噴射装置」をインジェクタという)に関する。
【0002】
【従来の技術】
噴孔に向かう燃料流れ方向に縮径する円錐面を弁ボディの内周壁に有し、弁部材の当接部が円錐面に着座することにより噴孔からの燃料噴射を遮断し、円錐面から離座することにより噴孔から燃料を噴射するインジェクタが知られている。弁ボディの円錐面に着座する当接部の形状として、例えばテーパ面同士が形成する角部(以下、「テーパ面同士が形成する角部」を単に角部という)であるものと、特開平8−218973号公報に開示されているように球状であるものが知られている。
【0003】
図4の(A)および(B)に、円錐面202に凸曲面214で着座するインジェクタを示す。特開平8−218973号公報に開示される弁部材の先端は球状であり先端全体が球面であるが、弁部材210の先端全体は球面ではない。しかし、凸曲面214は弁部材210の先端全体が球面であるときの一部を構成している。球状に形成されている弁部材先端部の球面の半径中心は弁部材の中心軸上にあるので、凸曲面214の半径中心Oも弁部材210の中心軸220上にある。凸曲面214は球面の一部を構成しているので、凸曲面214の半径rは、シート径dsおよび円錐面202のシート角θにより決定される。
【0004】
弁部材が円錐面から離座したときに円錐面と当接部との間に形成される開口流路の絞り位置は、当接部と円錐面との距離が最小であるシート位置で決まるのではなく、周方向に環状に形成される開口流路の流路面積が最小のところで決定される。図4に示すように、弁部材210の当接部212に形成された凸曲面214で弁ボディ200の内周壁に形成された円錐面202に当接するインジェクタにおいて、当接部212が円錐面202から離座したときに円錐面202と当接部212との間に形成される開口流路の絞り位置は、シート径が同じである場合、角部の角度にもよるが角部で円錐面に当接するインジェクタに比べ、燃料上流側つまり弁部材210の中心軸220から離れていることが一般的である。したがって、リフト量が同じであれば弁部材の当接部が球面である方が角部よりも絞り位置における流路面積が大きくなる。
【0005】
また、絞り位置から上流側および下流側に向かうにしたがい流路面積の増加率は当接部が球面である方が角部よりも大きくなるので、リフト量が同じであれば、円錐面と当接部との間に形成される開口流路の流路抵抗は、当接部が球面である方が角部よりも小さい。
リフト量およびシート径が同じであれば、当接部の形状が球面の方が角部であるものよりも開口流路の圧損が小さく、噴孔から噴射する燃料噴射圧が増加する。したがって、燃料を微粒化して噴射できる。
【0006】
【発明が解決しようとする課題】
図4に示すインジェクタにおいて、当接部212が円錐面202との着座および離座を繰り返すと、図4の(B)の二点鎖線に示すように当接部212は摩耗する。すると、摩耗量δに対し円錐面202と当接部212との間に形成する開口流路の絞り位置が燃料下流側、つまり中心軸220側に移動するとともに、弁部材210の最大リフト量が大きくなる。当接部212の摩耗量δが増加すると、摩耗前に比べ当接部212と円錐面202との間を流れる燃料流量、つまり噴孔204から噴射される燃料噴射量が変化する。
本発明の目的は、弁ボディの円錐面に弁部材の当接部が凸曲面で着座する構成において、当接部が摩耗しても燃料噴射量の変化率が小さいインジェクタを提供することにある。
【0007】
【課題を解決するための手段】
本発明の請求項1記載のインジェクタによると、弁ボディの円錐面に着座する弁部材の当接部の当接面は凸曲面である。角部が円錐面に着座するインジェ久タに比べ燃料噴射圧が上昇するので、噴孔から噴射される燃料を微粒化できる。
【0008】
また、円錐面との当接位置における凸曲面の半径中心は当接位置からみて弁部材の中心軸よりも向こう側に位置している。つまり、円錐面に凸曲面が着座しているときのシート径、ならびに円錐面が形成するシート角が同じである場合、弁部材の中心軸上に半径中心が位置している球面に比べ凸曲面の半径は大きい。凸曲面の半径はシート径およびシート角に関わらず設定される。
【0009】
円錐面に当接する凸曲面の半径が大きくなると、弁部材が円錐面との着座および離座を繰り返すことにより当接部が摩耗しても、弁部材のリフト量の変化量は小さくなる。また、円錐面から当接部が離座したときに当接部と円錐面との間に形成される開口流路の絞り位置が当接部が摩耗することにより移動する場合、凸曲面の半径が大きくなると絞り位置の移動量が小さくなる。したがって、当接部の摩耗量が同じであれば、凸曲面の半径が大きい方が、開口流路を流れる燃料流量、つまり燃料噴射量の変化率を低下することができる。ここで燃料流量または燃料噴射量の変化率とは、摩耗前の燃料流量または燃料噴射量に対し摩耗により変化した燃料流量または燃料噴射量の増減量の割合を表している。
また、凸曲面の半径を大きくすることにより、凸曲面と円錐面との間に形成される隙間が小さくなるので、凸曲面と円錐面との間に異物が噛み込みにくくなる。したがって、異物の噛み込みにより弁部材と弁ボディとの間から燃料が漏れることを防止できる。
【0010】
また、本発明の請求項1記載のインジェクタによると、弁部材は凸曲面の燃料上流側端から弁部材の中心軸方向に沿って反噴孔側に延びる円柱面を有し、円柱面の外径をD、凸曲面の半径をrとすると、当接部が摩耗しても当接部と円錐面との間に形成される開口流路を流れる燃料流量の変化率が3%以下になるように、凸曲面の半径rは0.53D≦rに設定されている。凸曲面の半径を大きくすることにより、当接部が摩耗しても燃料噴射量の変化率を低下できる。
【0011】
当接部の凸曲面の半径を大きくすれば、摩耗によるリフト量および開口流路における絞り位置の変化量は小さくなり、燃料噴射量の変化率を低下することができる。しかし、当接部の凸曲面の半径を大きくし燃料噴射量の変化率を低下しすぎると、開口流路の流路抵抗が大きくなり、圧損が大きくなる。すると、燃料噴射圧が低下し噴射燃料の微粒化が損なわれる。本発明の請求項記載のインジェクタによると、当接部が摩耗しても開口流路を流れる燃料流量の変化率が1%以上3%以下になるように凸曲面の半径を設定しているので、燃料噴射量の変化率を低下するとともに、燃料噴射圧の低下を防止している。したがって、噴射燃料を微粒化できる。
【0013】
本発明の請求項記載のインジェクタによると、弁部材は凸曲面の燃料上流側端から弁部材の中心軸方向に沿って反噴孔側に延びる円柱面を有し、円柱面の外径をD、凸曲面の半径をrとすると、0.53D≦r≦Dである。凸曲面の半径の最大値を設定することにより、燃料噴射圧が低下することを防止する。したがって、噴射燃料を微粒化できる。
【0014】
【発明の実施の形態】
以下、本発明の実施の形態を示す実施例を図に基づいて説明する。
本発明の一実施例によるインジェクタを図2に示す。
弁ボディ12は弁ハウジング16の燃料噴射側端部内壁に溶接により固定されている。弁ボディ12は燃料流れ方向の噴孔14側に向けて縮径する円錐面13を内周壁に有している。
図1に示すように、弁部材20は円錐面13に着座する当接部21を噴孔14側端部に有している。当接部21が円錐面13に着座すると噴孔14からの燃料噴射が遮断され、当接部21が円錐面13から離座すると噴孔14から燃料が噴射される。
【0015】
円錐面13に着座する当接部21の当接面は球面の一部を構成する凸曲面22である。したがって、凸曲面22全体の曲率は等しい。凸曲面22の半径rの中心Oは、円錐面13に当接する凸曲面22の当接位置からみて弁部材20の中心軸100の向こう側に位置している。弁部材の噴孔側先端を球状にしている場合に比べ、凸曲面22の半径は大きくなっている。凸曲面22の燃料上流側端から、弁部材20の中心軸100に沿って反噴孔側に円柱面23が延びている。
【0016】
図2に示すように、筒部材30は弁ハウジング16の反噴孔側内周壁に挿入され、溶接により弁ハウジング16に固定されている。筒部材30は、噴孔14側から第1磁性筒部32、非磁性筒部34および第2磁性筒部36により構成されている。非磁性筒部34は第1磁性筒部32と第2磁性筒部36との磁気的短絡を防止する。
【0017】
可動コア40は磁性材料で円筒状に形成されており、弁部材20の反噴孔側の端部24と溶接により固定されている。可動コア40は弁部材20とともに往復移動する。可動コア40の筒壁を貫通する流出孔42は、可動コア40の筒内外を連通する燃料通路を形成している。
【0018】
固定コア44は磁性材料で円筒状に形成されている。固定コア44は筒部材30内に挿入されており、筒部材30と溶接により固定されている。固定コア44は可動コア40に対し反噴孔側に設置され可動コア40と向き合っている。
【0019】
アジャスティングパイプ46は固定コア44に圧入され、内部に燃料通路を形成している。スプリング48は一端部でアジャスティングパイプ46に係止され、他端部で可動コア40に係止されている。アジャスティングパイプ46の圧入量を調整することにより、可動コア40に加わるスプリング48の荷重を変更できる。スプリング48の付勢力により可動コア40および弁部材20は円錐面13に向けて付勢されている。
【0020】
コイル50はスプール52に巻回されている。ターミナル55はコネクタ54にインサート成形されており、コイル50と電気的に接続している。コイル50に通電すると、可動コア40と固定コア44との間に磁気吸引力が働き、スプリング48の付勢力に抗し可動コア40は固定コア44側に吸引される。
【0021】
フィルタ60は固定コア44の燃料上流側に設置されており、インジェクタ10に供給される燃料中の異物を除去する。固定コア44内にフィルタ60を通して流入した燃料は、アジャスティングパイプ46内の燃料通路、可動コア40内の燃料通路、流出孔42、弁ハウジング16の内周壁と弁部材20の外周壁との間を順次通過する。弁部材20が円錐面13から離座すると、当接部21と円錐面13との間に形成される開口流路を燃料が通過し噴孔14に導かれる。
【0022】
コイル50への通電を断続し、インジェクタ10が間欠噴射することにより、当接部21は円錐面13との着座および離座を繰り返す。これにより、当接部21は摩耗する。当接部21が摩耗すると、弁部材20のリフト量が大きくなるとともに、開口流路の絞り位置が燃料下流側に移動するので、開口流路を流れる燃料流量、つまり燃料噴射量が変化する。しかし、当接部21の凸曲面22の半径rは、シート径dsおよび円錐面13のシート角θで決定されず、中心軸100上に半径中心Oがある球面よりも大きく設定されているので、当接部21の摩耗量に対し開口流路を流れる燃料流量の変化率、つまり燃料噴射量の変化率が低下する。
【0023】
シート径dsを1.4mm、円柱面23の外径Dを1.5mmとしたときの、凸曲面22の半径rと開口流路を流れる燃料流量の変化率との関係を図3に示す。半径rが大きくなるほど燃料流量の変化率が低下していることが分かる。変化率を3%以下にするため0.53D≦rであることが望ましい。
【0024】
凸曲面22の半径rを大きくすると、燃料流量の変化率は低下するが、開口流路の流路抵抗が大きくなり燃料噴射圧が低下する。燃料流量の変化率の低下を抑制しつつ燃料噴射圧の低下を抑制するため、燃料流量の変化率は1%以上3%以下であることが望ましい。
【0025】
本実施例では、凸曲面22の半径を大きくすることにより、凸曲面22と円錐面13との間に形成される隙間が小さくなるので、凸曲面22と円錐面13との間に異物が噛み込みにくくなる。したがって、異物の噛み込みによりので、弁部材20と弁ボディ12との間から燃料が漏れることを防止できる。
本実施例では、凸曲面22は球面の一部を構成しており、凸曲面22全体の曲率が等しいが、曲率が異なっている凸曲面でもよい。
【図面の簡単な説明】
【図1】本発明の一実施例によるインジェクタの噴孔周囲を示す断面図である。
【図2】本実施例によるインジェクタを示す断面図である。
【図3】本実施例において、シート径と流量変化率との関係を示す特性図である。
【図4】従来のインジェクタの噴孔周囲を示す断面図である。
【符号の説明】
10 インジェクタ(燃料噴射装置)
12 弁ボディ
13 円錐面
14 噴孔
20 弁部材
21 当接部
22 凸曲面
40 可動コア
44 固定コア
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a fuel injection device (hereinafter, “fuel injection device” is referred to as an injector) that reduces the rate of change in fuel injection amount even when a contact portion of a valve member seated on a conical surface of a valve body is worn.
[0002]
[Prior art]
The inner circumferential wall of the valve body has a conical surface whose diameter decreases in the direction of fuel flow toward the nozzle hole, and the contact portion of the valve member is seated on the conical surface to block fuel injection from the nozzle hole, 2. Description of the Related Art An injector that injects fuel from an injection hole by being separated is known. As the shape of the contact portion seated on the conical surface of the valve body, for example, a corner portion formed by taper surfaces (hereinafter, “corner portion formed by taper surfaces” is simply referred to as a corner portion), As disclosed in Japanese Patent Application Laid-Open No. 8-218973, one having a spherical shape is known.
[0003]
FIGS. 4A and 4B show an injector seated on the conical surface 202 with a convex curved surface 214. The tip of the valve member disclosed in JP-A-8-218973 is spherical and the entire tip is spherical, but the entire tip of the valve member 210 is not spherical. However, the convex curved surface 214 constitutes a part when the entire tip of the valve member 210 is a spherical surface. Since the spherical center of the spherical surface of the tip of the valve member formed in a spherical shape is on the central axis of the valve member, the radial center O of the convex curved surface 214 is also on the central axis 220 of the valve member 210. Since the convex curved surface 214 forms a part of a spherical surface, the radius r of the convex curved surface 214 is determined by the seat diameter ds and the seat angle θ of the conical surface 202.
[0004]
When the valve member is separated from the conical surface, the throttle position of the opening channel formed between the conical surface and the abutting portion is determined by the seat position where the distance between the abutting portion and the conical surface is the smallest. Instead, the channel area of the opening channel formed in a ring shape in the circumferential direction is determined at a minimum. As shown in FIG. 4, in the injector that contacts the conical surface 202 formed on the inner peripheral wall of the valve body 200 with the convex curved surface 214 formed on the contact portion 212 of the valve member 210, the contact portion 212 is the conical surface 202. When the seat diameter is the same, the throttle position of the opening channel formed between the conical surface 202 and the contact portion 212 when the seat is separated from the corner is conical at the corner depending on the angle of the corner. In general, it is farther from the fuel upstream side, that is, from the central shaft 220 of the valve member 210, as compared with the injector that contacts the fuel. Therefore, if the lift amount is the same, the flow path area at the throttle position is larger when the contact portion of the valve member is spherical than at the corner portion.
[0005]
In addition, the rate of increase of the flow path area from the throttle position toward the upstream side and the downstream side is larger when the contact portion is a spherical surface than the corner portion. The channel resistance of the open channel formed between the contact portion and the contact portion is spherical is smaller than the corner portion.
If the lift amount and the seat diameter are the same, the pressure loss of the opening flow path is smaller than that of the spherical contact portion, and the fuel injection pressure injected from the injection hole increases. Therefore, the fuel can be atomized and injected.
[0006]
[Problems to be solved by the invention]
In the injector shown in FIG. 4, when the contact portion 212 repeats seating and separation with the conical surface 202, the contact portion 212 is worn as indicated by a two-dot chain line in FIG. 4B. Then, the throttle position of the opening flow path formed between the conical surface 202 and the contact portion 212 with respect to the wear amount δ moves to the fuel downstream side, that is, the central shaft 220 side, and the maximum lift amount of the valve member 210 is increased. growing. When the wear amount δ of the contact portion 212 increases, the flow rate of fuel flowing between the contact portion 212 and the conical surface 202, that is, the fuel injection amount injected from the injection hole 204, changes compared to before the wear.
An object of the present invention is to provide an injector having a small rate of change in fuel injection amount even when the contact portion is worn in a configuration in which the contact portion of the valve member is seated on the conical surface of the valve body as a convex curved surface. .
[0007]
[Means for Solving the Problems]
According to the injector of the first aspect of the present invention, the contact surface of the contact portion of the valve member seated on the conical surface of the valve body is a convex curved surface. Since the fuel injection pressure increases as compared with the injector whose corners are seated on the conical surface, the fuel injected from the injection hole can be atomized.
[0008]
Further, the radius center of the convex curved surface at the contact position with the conical surface is located on the far side from the central axis of the valve member as viewed from the contact position. In other words, when the seat diameter when the convex curved surface is seated on the conical surface and the seat angle formed by the conical surface are the same, the convex curved surface is compared with the spherical surface whose radius center is located on the central axis of the valve member. The radius of is large. The radius of the convex curved surface is set regardless of the sheet diameter and the sheet angle.
[0009]
When the radius of the convex curved surface that comes into contact with the conical surface is increased, the amount of change in the lift amount of the valve member is reduced even if the contact member wears due to repeated seating and separation of the valve member with the conical surface. In addition, when the contact portion is separated from the conical surface and the throttle position of the opening channel formed between the contact portion and the conical surface moves due to wear of the contact portion, the radius of the convex curved surface As the value increases, the amount of movement of the aperture position decreases. Therefore, if the wear amount of the contact portion is the same, the larger the radius of the convex curved surface, the lower the rate of change of the fuel flow rate, that is, the fuel injection amount that flows through the open flow path. Here, the rate of change of the fuel flow rate or the fuel injection amount represents the ratio of the increase or decrease in the fuel flow rate or the fuel injection amount that has changed due to wear with respect to the fuel flow rate or the fuel injection amount before wear.
Further, by increasing the radius of the convex curved surface, the gap formed between the convex curved surface and the conical surface is reduced, so that it is difficult for foreign matter to get caught between the convex curved surface and the conical surface. Therefore, fuel can be prevented from leaking from between the valve member and the valve body due to the biting of foreign matter.
[0010]
According to the injector of the first aspect of the present invention, the valve member has a cylindrical surface extending from the upstream end of the convex curved fuel toward the anti-injection hole along the central axis direction of the valve member. When the diameter is D and the radius of the convex curved surface is r, the rate of change of the fuel flow rate flowing through the open flow path formed between the contact portion and the conical surface is 3% or less even if the contact portion is worn. Thus, the radius r of the convex curved surface is set to 0.53D ≦ r. By increasing the radius of the convex curved surface, the rate of change of the fuel injection amount can be reduced even if the contact portion is worn.
[0011]
If the radius of the convex curved surface of the contact portion is increased, the lift amount due to wear and the change amount of the throttle position in the opening channel are reduced, and the rate of change of the fuel injection amount can be reduced. However, if the radius of the convex curved surface of the contact portion is increased to reduce the rate of change of the fuel injection amount too much, the flow resistance of the open flow path increases and the pressure loss increases. Then, fuel injection pressure falls and atomization of injected fuel is impaired. According to the injector of the second aspect of the present invention, the radius of the convex curved surface is set so that the rate of change of the fuel flow rate flowing through the opening channel is 1% or more and 3% or less even if the contact portion is worn . Therefore, the change rate of the fuel injection amount is reduced and the fuel injection pressure is prevented from decreasing. Therefore, the injected fuel can be atomized.
[0013]
According to the injector of claim 3 of the present invention, the valve member has a cylindrical surface extending from the fuel upstream side end of the convex curved surface toward the anti-injection hole side along the central axis direction of the valve member, and the outer diameter of the cylindrical surface is reduced. D, where r is the radius of the convex curved surface, 0.53D ≦ r ≦ D. By setting the maximum value of the radius of the convex curved surface, the fuel injection pressure is prevented from decreasing. Therefore, the injected fuel can be atomized.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, examples showing embodiments of the present invention will be described with reference to the drawings.
An injector according to one embodiment of the present invention is shown in FIG.
The valve body 12 is fixed to the fuel injection side end inner wall of the valve housing 16 by welding. The valve body 12 has a conical surface 13 whose diameter is reduced toward the nozzle hole 14 side in the fuel flow direction on the inner peripheral wall.
As shown in FIG. 1, the valve member 20 has an abutting portion 21 seated on the conical surface 13 at an end portion on the injection hole 14 side. When the contact portion 21 is seated on the conical surface 13, the fuel injection from the nozzle hole 14 is blocked, and when the contact portion 21 is separated from the conical surface 13, fuel is injected from the nozzle hole 14.
[0015]
The contact surface of the contact portion 21 seated on the conical surface 13 is a convex curved surface 22 constituting a part of a spherical surface. Therefore, the curvature of the entire convex curved surface 22 is equal. The center O of the radius r of the convex surface 22 is located on the other side of the central axis 100 of the valve member 20 when viewed from the contact position of the convex surface 22 that contacts the conical surface 13. The radius of the convex curved surface 22 is larger than when the tip of the valve member on the injection hole side is spherical. A cylindrical surface 23 extends from the upstream end of the convex curved surface 22 along the central axis 100 of the valve member 20 toward the anti-injection hole.
[0016]
As shown in FIG. 2, the tubular member 30 is inserted into the inner wall of the valve housing 16 on the side opposite to the injection hole, and is fixed to the valve housing 16 by welding. The cylindrical member 30 includes a first magnetic cylindrical portion 32, a nonmagnetic cylindrical portion 34, and a second magnetic cylindrical portion 36 from the nozzle hole 14 side. The nonmagnetic cylinder portion 34 prevents a magnetic short circuit between the first magnetic cylinder portion 32 and the second magnetic cylinder portion 36.
[0017]
The movable core 40 is formed of a magnetic material in a cylindrical shape, and is fixed to the end portion 24 of the valve member 20 on the side opposite to the injection hole by welding. The movable core 40 reciprocates together with the valve member 20. The outflow hole 42 that penetrates the cylindrical wall of the movable core 40 forms a fuel passage that communicates the inside and outside of the cylinder of the movable core 40.
[0018]
The fixed core 44 is formed of a magnetic material in a cylindrical shape. The fixed core 44 is inserted into the cylindrical member 30 and is fixed to the cylindrical member 30 by welding. The fixed core 44 is installed on the side opposite to the injection hole with respect to the movable core 40 and faces the movable core 40.
[0019]
The adjusting pipe 46 is press-fitted into the fixed core 44 and forms a fuel passage therein. The spring 48 is locked to the adjusting pipe 46 at one end and is locked to the movable core 40 at the other end. By adjusting the press-fitting amount of the adjusting pipe 46, the load of the spring 48 applied to the movable core 40 can be changed. The movable core 40 and the valve member 20 are biased toward the conical surface 13 by the biasing force of the spring 48.
[0020]
The coil 50 is wound around the spool 52. The terminal 55 is insert-molded in the connector 54 and is electrically connected to the coil 50. When the coil 50 is energized, a magnetic attractive force acts between the movable core 40 and the fixed core 44, and the movable core 40 is attracted toward the fixed core 44 against the urging force of the spring 48.
[0021]
The filter 60 is installed on the fuel upstream side of the fixed core 44 and removes foreign matters in the fuel supplied to the injector 10. The fuel that has flowed into the fixed core 44 through the filter 60 flows between the fuel passage in the adjusting pipe 46, the fuel passage in the movable core 40, the outflow hole 42, and the inner peripheral wall of the valve housing 16 and the outer peripheral wall of the valve member 20. Pass through sequentially. When the valve member 20 is separated from the conical surface 13, the fuel passes through an opening channel formed between the contact portion 21 and the conical surface 13 and is guided to the injection hole 14.
[0022]
The energization of the coil 50 is interrupted and the injector 10 intermittently injects, whereby the abutting portion 21 repeats the seating and separation with the conical surface 13. Thereby, the contact part 21 is worn. When the contact portion 21 wears, the lift amount of the valve member 20 increases, and the throttle position of the opening flow path moves to the fuel downstream side, so that the fuel flow rate, that is, the fuel injection amount that flows through the opening flow path changes. However, the radius r of the convex curved surface 22 of the contact portion 21 is not determined by the seat diameter ds and the seat angle θ of the conical surface 13, and is set larger than the spherical surface having the radius center O on the central axis 100. Thus, the rate of change of the fuel flow rate flowing through the opening channel, that is, the rate of change of the fuel injection amount decreases with respect to the amount of wear of the contact portion 21.
[0023]
FIG. 3 shows the relationship between the radius r of the convex curved surface 22 and the rate of change of the fuel flow rate through the open flow path when the seat diameter ds is 1.4 mm and the outer diameter D of the cylindrical surface 23 is 1.5 mm. It can be seen that the rate of change of the fuel flow rate decreases as the radius r increases. In order to make the rate of change 3% or less, it is desirable that 0.53D ≦ r.
[0024]
When the radius r of the convex curved surface 22 is increased, the change rate of the fuel flow rate is reduced, but the flow resistance of the open flow path is increased and the fuel injection pressure is decreased. In order to suppress a decrease in fuel injection pressure while suppressing a decrease in fuel flow rate change rate, the fuel flow rate change rate is preferably 1% or more and 3% or less.
[0025]
In the present embodiment, by increasing the radius of the convex curved surface 22, the gap formed between the convex curved surface 22 and the conical surface 13 is reduced, so that a foreign object bites between the convex curved surface 22 and the conical surface 13. It becomes difficult to get in. Therefore, since foreign matter is caught, fuel can be prevented from leaking from between the valve member 20 and the valve body 12.
In the present embodiment, the convex curved surface 22 constitutes a part of a spherical surface, and the curvature of the entire convex curved surface 22 is equal, but may be a convex curved surface having different curvatures.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing the vicinity of an injection hole of an injector according to an embodiment of the present invention.
FIG. 2 is a cross-sectional view showing an injector according to the present embodiment.
FIG. 3 is a characteristic diagram showing the relationship between the seat diameter and the flow rate change rate in this example.
FIG. 4 is a cross-sectional view showing the periphery of an injection hole of a conventional injector.
[Explanation of symbols]
10 Injector (fuel injection device)
12 Valve body 13 Conical surface 14 Injection hole 20 Valve member 21 Contact part 22 Convex surface 40 Movable core 44 Fixed core

Claims (3)

噴孔に向かう燃料流れ方向に縮径する円錐面を有する弁ボディと、
前記円錐面に着座することにより前記噴孔を閉塞し、前記円錐面から離座することにより前記噴孔を開放する当接部を有する弁部材と、
を備える燃料噴射装置であって、
前記円錐面に着座する前記当接部の当接面は凸曲面であり、前記円錐面との当接位置における前記凸曲面の半径中心は前記当接位置からみて前記弁部材の中心軸を越えた位置に設置されており、前記弁部材は前記凸曲面の燃料上流側端から前記弁部材の中心軸方向に沿って反噴孔側に延びる円柱面を有し、前記円柱面の外径をD、前記凸曲面の半径をrとすると、前記円錐面との着座および離座を繰り返すことにより摩耗する前記当接部と前記円錐面との間を流れる燃料流量の変化率が3%以下になるように、前記凸曲面の半径rは0.53D≦rに設定されていることを特徴とする燃料噴射装置。
A valve body having a conical surface whose diameter decreases in the fuel flow direction toward the nozzle hole;
A valve member having a contact portion that closes the nozzle hole by sitting on the conical surface and opens the nozzle hole by sitting away from the conical surface;
A fuel injection device comprising:
The contact surface of the contact portion seated on the conical surface is a convex curved surface, and the radius center of the convex curved surface at the contact position with the conical surface exceeds the central axis of the valve member as viewed from the contact position. The valve member has a cylindrical surface extending from the fuel upstream end of the convex curved surface toward the anti-injection hole along the central axis direction of the valve member, and the outer diameter of the cylindrical surface is D, where r is the radius of the convex curved surface, the rate of change of the flow rate of fuel flowing between the abutting portion and the conical surface that wears by repeated seating and separation with the conical surface is 3% or less. Thus, the radius r of the convex curved surface is set to 0.53D ≦ r .
前記円錐面との着座および離座を繰り返すことにより摩耗する前記当接部と前記円錐面との間を流れる燃料流量の変化率が1%以上3%以下になるように前記凸曲面の半径rは設定されていることを特徴とする請求項1記載の燃料噴射装置。The radius r of the convex curved surface so that the rate of change of the flow rate of fuel flowing between the abutting portion and the conical surface that wears by repeated seating and separation with the conical surface is 1% or more and 3% or less. The fuel injection device according to claim 1, wherein is set. 0.53D≦r≦Dであることを特徴とする請求項1または2記載の燃料噴射装置。The fuel injection device according to claim 1, wherein 0.53D ≦ r ≦ D.
JP2002125757A 2002-04-26 2002-04-26 Fuel injection device Expired - Lifetime JP3932967B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002125757A JP3932967B2 (en) 2002-04-26 2002-04-26 Fuel injection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002125757A JP3932967B2 (en) 2002-04-26 2002-04-26 Fuel injection device

Publications (2)

Publication Number Publication Date
JP2003314412A JP2003314412A (en) 2003-11-06
JP3932967B2 true JP3932967B2 (en) 2007-06-20

Family

ID=29540384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002125757A Expired - Lifetime JP3932967B2 (en) 2002-04-26 2002-04-26 Fuel injection device

Country Status (1)

Country Link
JP (1) JP3932967B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104588962A (en) * 2014-12-03 2015-05-06 中国第一汽车股份有限公司无锡油泵油嘴研究所 Engine hole type oil nozzle single-hole extruding and grinding device and use method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7926745B2 (en) * 2006-11-27 2011-04-19 Mitsubishi Electric Corporation Fuel injection valve
US10094366B2 (en) 2008-10-16 2018-10-09 National Oilwell Varco, L.P. Valve having opposed curved sealing surfaces on a valve member and a valve seat to facilitate effective sealing
JP6354519B2 (en) 2014-10-23 2018-07-11 株式会社デンソー Fuel injection valve
JP6554955B2 (en) * 2015-07-13 2019-08-07 株式会社デンソー Fuel injection valve

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104588962A (en) * 2014-12-03 2015-05-06 中国第一汽车股份有限公司无锡油泵油嘴研究所 Engine hole type oil nozzle single-hole extruding and grinding device and use method

Also Published As

Publication number Publication date
JP2003314412A (en) 2003-11-06

Similar Documents

Publication Publication Date Title
US8302889B2 (en) Fuel injection valve
JP5623784B2 (en) Electromagnetic fuel injection valve
EP2626542B1 (en) Gas fuel injection valve
JP2002039036A (en) Fuel injection valve
US7341204B2 (en) Fuel injection valve
US20060208108A1 (en) Fuel injection valve
JP4215004B2 (en) Fuel injection valve
US9038604B2 (en) Electromagnetically actuable valve
JP3932967B2 (en) Fuel injection device
JP4577654B2 (en) Electromagnetic drive device and fuel injection valve using the same
JP2005207412A (en) Fuel injection valve
JP3882892B2 (en) Fuel injection device
US7061144B2 (en) Fuel injection valve having internal pipe
US7614604B2 (en) Electromagnetic fuel injection valve
JP2003328891A (en) Fuel injection device
US20060249601A1 (en) Fuel injection valve
JP2005233048A (en) Fluid injection valve
JPH05502491A (en) Electromagnetically operated fuel injection valve
JP3923935B2 (en) Fuel injection valve
WO2017010034A1 (en) Fuel injection valve
JP6256495B2 (en) Fuel injection valve
JP6554955B2 (en) Fuel injection valve
JP4123323B2 (en) Fuel injection valve
JP2000045913A (en) Fuel injection valve
JPH0589867U (en) Fuel injection valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070312

R150 Certificate of patent or registration of utility model

Ref document number: 3932967

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100330

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140330

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term