JP3932853B2 - Fuel injection device for internal combustion engine - Google Patents

Fuel injection device for internal combustion engine Download PDF

Info

Publication number
JP3932853B2
JP3932853B2 JP2001315741A JP2001315741A JP3932853B2 JP 3932853 B2 JP3932853 B2 JP 3932853B2 JP 2001315741 A JP2001315741 A JP 2001315741A JP 2001315741 A JP2001315741 A JP 2001315741A JP 3932853 B2 JP3932853 B2 JP 3932853B2
Authority
JP
Japan
Prior art keywords
fuel
valve body
seat portion
fuel reservoir
space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001315741A
Other languages
Japanese (ja)
Other versions
JP2003120475A (en
Inventor
知士郎 杉本
啓壮 武田
恵理子 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2001315741A priority Critical patent/JP3932853B2/en
Publication of JP2003120475A publication Critical patent/JP2003120475A/en
Application granted granted Critical
Publication of JP3932853B2 publication Critical patent/JP3932853B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Fuel-Injection Apparatus (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関の燃料噴射装置に関する。
【0002】
【従来の技術】
一般的な内燃機関の燃料噴射装置は、特開平11−303710号公報に開示されているように、環状テーパ形状のシート部に当接する弁体と、シート部直下流側の燃料溜と、燃料溜に連通する噴孔とを有している。燃料噴射に際して弁体をシート部から離間させ、それにより、高圧の燃料がシート部を介して燃料溜内へ流入することによって、燃料溜内から噴孔を介して燃料が噴射される。
【0003】
【発明が解決しようとする課題】
噴孔がシート部の中心軸線上に形成されていれば、燃料溜内へ流入した燃料は、容易に噴孔内へ流入して噴射される。しかしながら、例えば、噴孔がシート部の中心軸線に対して偏倚して燃料溜に連通されているような場合には、燃料溜内における噴孔の反偏倚側に比較的広い空間が形成され、シート部の反偏倚側から燃料溜内へ流入した燃料が、この空間内で縦方向に旋回する渦を形成し易い。このような渦が形成されると、噴孔へ流入する燃料のエネルギ損失が発生するために、噴射された燃料の貫徹力が低下したり、また、噴孔内を通過する燃料の流速の不均衡が発生して意図する形状の燃料噴霧を形成することが困難となる。
【0004】
従って、本発明の目的は、噴孔が弁体シート部の中心軸線から偏倚して燃料溜に連通している燃料噴射装置において、弁体シート部から燃料溜内へ流入する燃料が燃料溜内で渦を形成しないようにして、貫徹力の強い意図する形状の燃料噴霧を形成可能とすることである。
【0005】
【課題を解決するための手段】
本発明による請求項1に記載の内燃機関の燃料噴射装置は、弁体と、前記弁体のシート角部が当接する環状テーパ形状のシート部と、前記シート部の直下流側に位置する燃料溜と、前記シート部の中心軸線から偏倚して前記燃料溜に連通する単一の噴孔、とを具備し、前記噴孔の偏倚によって前記燃料溜内における前記噴孔の偏倚側の空間より反偏倚側の空間が大きくなり、前記シート部と前記燃料溜との間における少なくとも前記反偏倚側には面取りが形成されると共に、前記弁体の前記シート角部より先端側部分には、最先端部に前記先端側部分を構成する面より前記弁体の軸線方向に突出する突出部が設けられ、前記シート部の前記反偏倚側を通過する燃料は、前記面取り及び前記弁体の前記突出部によって前記反偏倚側の空間の略中央部へ導かれることを特徴とする。
【0007】
【発明の実施の形態】
図1は本発明による燃料噴射装置が取り付けられた筒内噴射式火花点火内燃機関の気筒内概略縦断面図であり、図2は図1のピストン平面図である。これらの図において、1は吸気ポートであり、吸気弁3を介して気筒内へ通じている。2は排気ポートであり、排気弁4を介して気筒内へ通じている。5はピストンであり、その頂面には凹状のキャビティ8が形成されている。
【0008】
6は気筒上部略中心に配置された点火プラグであり、7は気筒上部周囲から気筒内へ直接的に燃料を噴射するための燃料噴射装置、すなわち、燃料噴射弁である。燃料噴射弁7は、燃料のベーパを防止するために、気筒内において吸気流により比較的低温度となる吸気ポート側に配置されている。
【0009】
また、燃料噴射弁7は、スリット状の噴孔を有し、燃料を厚さの薄い略扇形状に噴射するものである。成層燃焼を実施するためには、図1に示すように、圧縮行程後半において燃料をピストン5の頂面に形成されたキャビティ8内へ噴射する。斜線で示す噴射直後の燃料は液状であるが、幅方向に拡がりながら気筒内を飛行する際に気筒内の高圧高温の吸気と十分に接触するために気化し易く、また、キャビティ8の底壁8aに沿って進行して幅方向に拡がる際に底壁8aの広範囲部分から熱吸収するために気化し易い。こうして気化しつつある燃料は、対向側壁8bによって上方向に偏向させられる。
【0010】
図2に示すように、対向側壁8bは、平面視において円弧形状を有している。それにより、キャビティ8の底壁8a上を進行して気化しつつある燃料は、対向側壁8bの円弧形状によって中央部へ集合し、点火プラグ6近傍においてドットで示す一塊の可燃混合気となる。こうして、この可燃混合気を着火燃焼させることにより希薄燃焼として成層燃焼が実現可能である。このように、燃料噴霧は、自身慣性力によって点火プラグ近傍へ導かれるために、良好な可燃混合気を形成するためには比較的強い貫徹力が必要である。また、強い貫徹力は飛行中における吸気との摩擦力を大きくし燃料を気化させるにも好ましい。
【0011】
本筒内噴射式火花点火内燃機関は、このような成層燃焼だけでなく、吸気行程で燃料を噴射することにより、点火時点において気筒内に均質混合気を形成し、この均質混合気を着火燃焼させる均質燃焼も実現可能である。このような均質燃焼は、燃料噴射期間が圧縮行程後半に限られる成層燃焼とは異なり、多量の燃料噴射が可能となるために、主には高回転高負荷時に実施される。均質燃焼時において、比較的厚さの薄い略扇形状の燃料噴霧は、気筒内を飛行中において幅方向に拡がり、円錐形状燃料噴霧の中央部のように気筒内の吸気と接触し難い部分がなく噴霧全体が吸気と十分に接触するために気化し易く、良好な均質混合気を形成するにも有利である。また、燃料噴霧の貫徹力が強ければ、成層燃焼時と同様に、吸気との摩擦力が大きくなるために、さらに燃料が気化し易くなる。
【0012】
図3は、燃料噴射弁7の先端部の断面図である。燃料噴射弁7の先端部には、弁体71が当接する環状テーパ形状のシート面72が形成され、また、このシート面72の下流側には、キャップ形状の燃料溜73が形成されている。燃料溜73のキャップ形状は、シート面72に接する円柱形状と、この円柱形状と同一半径を有する半球形状とから成っている。燃料噴射弁7の先端部には、さらに、燃料溜73に連通するスリット状の噴孔74が形成されている。
【0013】
図4は図3のA−A断面図であり、図3及び図4に示すように、噴孔74は、略扇形状の燃料噴霧の厚さ方向に離間して互いに略平行な二つの厚さ方向壁と、燃料噴霧の幅方向に所定夾角Bを持って離間する二つの幅方向壁とを有している。一点鎖線で示す二つの幅方向壁の厚さ方向中心線は、燃料溜73の半球形状中心Cにおいて交差するようになっている。尚、この厚さ方向中心線は、半球形状中心Cから多少ずれてシート面の中心軸線と交差するようにしても良い。
【0014】
図1に示すように、燃料噴射弁7は、取り付けスペースの関係でシリンダヘッドとシリンダブロックとの間の境界面に対して比較的小さな角度で取り付けられる。しかしながら、このように取り付けられた燃料噴射弁7の軸線方向に燃料を噴射したのでは、ピストン5頂面のキャビティ8内へ燃料を噴射することが難しいために、図1に示すように、軸線方向に対して所定角度Dで燃料を噴射するようになっている。そのために、噴孔74の二つの厚さ方向壁は、燃料噴射弁7の軸線に対して所定角度Dで傾斜して形成されている。
【0015】
図3及び図4に示すように、弁体71がリフトされて弁体71のシート角部71aがシート面72から離間すると、蓄圧室(図示せず)等に蓄えられた高圧燃料がシート面72を介して燃料溜73へ流入し、燃料溜73内から噴孔74を介して燃料が噴射される。こうして噴射される燃料が、噴孔74の形状に沿った略扇状噴霧となって比較的強い貫徹力を有していれば、前述したように、成層燃焼時においては、容易に気化すると共に確実に点火プラグ近傍へ導かれ、良好な可燃混合気を形成可能となる。また、均質燃焼時においては、容易に気化して良好な均質混合気を形成可能となる。
【0016】
図5は、一般的な燃料噴射弁7’の先端部の断面図である。図3と完全に同じ構成部分に関して同じ参照番号を付けており説明を省略する。環状テーパ形状のシート面72は、燃料噴射を停止するために、弁体71’のシート角部71a’と当接して高圧燃料をシールすることとなる。このシールを完全なものとするためには、弁体71’の軸線方向に作用する押圧力に対して十分な抗力を提供しなければならず、そのためには、シート面72をその軸線Eに対して比較的大きな角度Fで傾斜させなければならない。本実施形態の燃料噴射弁7においても同様に、シート面72は軸線Eに対して比較的大きな角度で傾斜している。
【0017】
前述したように、噴孔74は軸線Eに対して所定角度Dで傾斜している。それにより、噴孔74は、軸線Eに対して、すなわち、シート部72の中心軸線に対して偏倚して燃料溜73に連通されることとなる。こうして、燃料溜73は、噴孔74の開口を境に考えた場合において、噴孔の偏倚側の空間73bより反偏倚側の空間73aの方が大きくなり、反偏倚側の空間73aは比較的広いものとなる。
【0018】
燃料噴射に際して、シート部72を介して燃料が燃料溜73内へ流入することとなるが、シート部72は前述したように軸線Eに対して比較的大きな角度Fで傾斜しているために、図5に矢印で示すように、シート部72の噴孔偏倚側から燃料溜73内へ流入する燃料は燃料溜73の偏倚側空間73bの上部(弁体側)へ流入し、また、シート部72の噴孔反偏倚側から燃料溜73内へ流入する燃料は反偏倚側空間73aの上部へ流入し、次いで、これら二つの燃料流れは互いに衝突して軸線Eを通る垂直面(噴孔74の幅方向中心平面に垂直な)近傍に沿って燃料溜73の下方(噴孔側)へ進行する。
【0019】
この時、燃料溜73の偏倚側空間73bは狭いために燃料流れが旋回するようなことはないが、反偏倚側空間73aは広く、燃料が、その周囲部を通過するようになるために、図5に矢印で示すように、燃料は縦方向に旋回する渦を形成し易い。このような渦が形成されると、噴孔へ流入する燃料のエネルギ損失が発生するために、噴射された燃料の貫徹力が低下したり、また、噴孔内を通過する燃料の流速の不均衡が発生して意図する形状の燃料噴霧を形成することが困難となる。
【0020】
本実施形態の燃料噴射弁7では、図3に示すように、シート部72と燃料溜73との間にはテーパ形状の面取り75が形成されている。それにより、図3に矢印で示すように、シート部72の噴孔偏倚側から燃料溜73内へ流入する燃料は、面取り75によって燃料溜73の偏倚側空間の略中央部へ導かれ、また、シート部72の噴孔反偏倚側から燃料溜73内へ流入する燃料は反偏倚側空間の略中央部へ導かれる。
【0021】
こうして、本実施形態においても同様に燃料溜73の反偏倚側空間は広いが、略中央部へ導かれた燃料流れが反偏倚側空間内で渦を形成することはなく、噴孔74へ流入する燃料のエネルギ損失が発生することはないために、噴射された燃料の貫徹力は低下せず、また、噴孔内を通過する燃料の流速の不均衡が発生するようなことはないために、意図する形状の燃料噴霧を形成することが可能となる。
【0022】
また、本実施形態において、弁体71の先端は、シート部72の噴孔偏倚側から燃料溜73内へ流入する燃料が偏倚側空間の略中央部へ導かれ易くすると共に、シート部72の噴孔反偏倚側から燃料溜73内へ流入する燃料が反偏倚側空間の略中央部へ導かれ易くするような突出部71bによって突出している。
【0023】
それにより、シート部72の噴孔反偏倚側から燃料溜73内へ流入する燃料は、さらに確実に反偏倚側空間の略中央部へ導かれ、燃料溜73内で渦が発生することを確実に防止することが可能となる。
【0024】
本実施形態において、面取り75はシート部72と燃料溜73との間の全周に形成されている。それにより、シート部72の噴孔反偏倚側から燃料溜73内へ流入する燃料が反偏倚側空間の略中央部へ導かれること加えて、シート部72の噴孔偏倚側から燃料溜73内へ流入する燃料が偏倚側空間の略中央部へ導かれるようになっている。前述したように、燃料溜の偏倚側空間は狭いために、特に略中央へ燃料が導かれなくても燃料の渦が形成され難い。それにより、面取り75をシート部72と燃料溜73との間の反偏倚側だけに形成するようにしても良い。しかしながら、本実施形態のようにすることで、燃料溜73の偏倚側空間でも渦の生成を完全に防止することができる。また、弁体71の突出部71bに関しても同様のことが言える。
【0025】
本実施形態において、噴孔74は、略扇形状の燃料噴霧を形成するためのスリット噴孔となっている。これは本発明を限定するものではない。例えば、断面丸形状の噴孔がスリット状噴孔と同位置に形成されている場合においても、燃料溜73の反偏倚側空間は同様に広くなり、ここで渦が形成されれば、噴孔へ流入する燃料のエネルギ損失が発生し、やはり、噴射された燃料の貫徹力が低下することとなる。従って、この場合においても本実施形態のような面取り75及び突出部71bを設けることは有効である。最後に、本実施形態において、シート部72の環状テーパ形状は、実際的には切頭円錐形状であるが、切頭角錐形状等の任意の環状テーパ形状としても良い。
【0026】
【発明の効果】
本発明による内燃機関の燃料噴射装置によれば、噴孔の偏倚によって燃料溜内における噴孔の偏倚側の空間より反偏倚側の空間が大きくなる場合に、シート部と燃料溜との間における少なくとも反偏倚側には面取りが形成されると共に、弁体のシート角部より先端側部分には、最先端部に先端側部分を構成する面より弁体の軸線方向に突出する突出部が設けられ、シート部の反偏倚側を通過する燃料は面取り及び弁体の突出部によって反偏倚側の空間の略中央部へ導かれるようになっている。それにより、渦が形成され易い大きな反偏倚側空間において渦の発生を防止することができ、燃料溜内における燃料のエネルギ損失が抑制されるために、貫徹力の強い意図する形状の燃料噴霧を形成可能とすることができる。
【図面の簡単な説明】
【図1】本発明による燃料噴射装置が取り付けられた筒内噴射式火花点火内燃機関の概略気筒内縦断面図である。
【図2】図1の筒内噴射式火花点火内燃機関のピストン頂面図である。
【図3】燃料噴射弁の実施形態を示す先端部の断面図である。
【図4】図3のA−A断面図である。
【図5】一般的な燃料噴射弁の先端部の断面図である。
【符号の説明】
6…点火プラグ
7…燃料噴射弁
71…弁体
71b…突出部
72…シート面
73…燃料溜
74…噴孔
75…面取り
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a fuel injection device for an internal combustion engine.
[0002]
[Prior art]
As disclosed in Japanese Patent Application Laid-Open No. 11-303710, a general internal combustion engine fuel injection device includes a valve body that contacts an annular tapered seat portion, a fuel reservoir directly downstream of the seat portion, and a fuel And a nozzle hole communicating with the reservoir. When the fuel is injected, the valve body is separated from the seat portion, whereby high-pressure fuel flows into the fuel reservoir through the seat portion, whereby the fuel is injected from the fuel reservoir through the injection hole.
[0003]
[Problems to be solved by the invention]
If the injection hole is formed on the central axis of the seat portion, the fuel that has flowed into the fuel reservoir easily flows into the injection hole and is injected. However, for example, in the case where the nozzle hole is deviated with respect to the central axis of the seat portion and communicated with the fuel reservoir, a relatively wide space is formed on the side opposite to the nozzle hole in the fuel reservoir, The fuel that has flowed into the fuel reservoir from the non-biased side of the seat portion easily forms a vortex that swirls in the vertical direction in this space. When such a vortex is formed, energy loss of the fuel flowing into the nozzle hole occurs, so that the penetrating force of the injected fuel is reduced or the flow velocity of the fuel passing through the nozzle hole is reduced. It becomes difficult to form a fuel spray having an intended shape due to the occurrence of equilibrium.
[0004]
Accordingly, an object of the present invention is to provide a fuel injection device in which the nozzle hole is deviated from the central axis of the valve body seat portion and communicates with the fuel reservoir, and fuel flowing into the fuel reservoir from the valve body seat portion is contained in the fuel reservoir. In other words, it is possible to form a fuel spray of an intended shape having a strong penetration force without forming a vortex.
[0005]
[Means for Solving the Problems]
According to a first aspect of the present invention, there is provided a fuel injection device for an internal combustion engine, comprising: a valve body; an annular tapered seat portion in contact with a seat corner portion of the valve body; and a fuel located immediately downstream of the seat portion. A reservoir, and a single injection hole that is deviated from the central axis of the seat portion and communicates with the fuel reservoir, and the displacement of the injection hole causes a displacement from the displacement side of the injection hole in the fuel reservoir. The space on the counter-bias side becomes large, and a chamfer is formed on at least the counter-bias side between the seat portion and the fuel reservoir, and at the tip end portion of the valve body from the corner portion of the seat. protrusion protruding from the surface constituting the tip portion to the tip portion in the axial direction of the valve body is provided, the fuel passing through the counter-biasing side of the seat portion, said projection of said chamfer and the valve body substantially in the space of the counter-biased side by parts Characterized in that it is guided to part.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a schematic longitudinal sectional view in a cylinder of a cylinder injection type spark ignition internal combustion engine to which a fuel injection device according to the present invention is attached, and FIG. 2 is a plan view of a piston in FIG. In these drawings, reference numeral 1 denotes an intake port that communicates with the inside of the cylinder via an intake valve 3. An exhaust port 2 communicates with the inside of the cylinder via the exhaust valve 4. Reference numeral 5 denotes a piston, and a concave cavity 8 is formed on the top surface.
[0008]
6 is an ignition plug disposed substantially at the center of the upper part of the cylinder, and 7 is a fuel injection device for directly injecting fuel from the periphery of the upper part of the cylinder into the cylinder, that is, a fuel injection valve. The fuel injection valve 7 is disposed on the intake port side where the temperature becomes relatively low due to the intake air flow in the cylinder in order to prevent fuel vapor.
[0009]
Moreover, the fuel injection valve 7 has a slit-shaped injection hole, and injects fuel in the substantially fan shape with thin thickness. In order to perform stratified combustion, as shown in FIG. 1, fuel is injected into a cavity 8 formed on the top surface of the piston 5 in the latter half of the compression stroke. Although the fuel immediately after the injection indicated by the oblique lines is in a liquid state, it spreads in the width direction and is likely to be vaporized in order to make sufficient contact with the high-pressure and high-temperature intake air in the cylinder when flying in the cylinder. As it advances along the width 8a and spreads in the width direction, it absorbs heat from a wide area of the bottom wall 8a, and is easily vaporized. The fuel being vaporized in this way is deflected upward by the opposing side wall 8b.
[0010]
As shown in FIG. 2, the opposing side wall 8b has an arc shape in plan view. As a result, the fuel that has progressed and vaporized on the bottom wall 8a of the cavity 8 gathers in the center due to the arc shape of the opposing side wall 8b, and becomes a lump of combustible air-fuel mixture indicated by dots in the vicinity of the spark plug 6. Thus, stratified combustion can be realized as lean combustion by igniting and burning this combustible mixture. Thus, since the fuel spray is guided to the vicinity of the spark plug by its own inertial force, a relatively strong penetration force is required to form a good combustible mixture. A strong penetration force is also preferable for increasing the frictional force with the intake air during flight and vaporizing the fuel.
[0011]
This in-cylinder injection type spark ignition internal combustion engine forms not only such stratified combustion but also fuel in the intake stroke to form a homogeneous mixture in the cylinder at the time of ignition, and this homogeneous mixture is ignited and combusted. Homogeneous combustion is also possible. Unlike the stratified combustion in which the fuel injection period is limited to the latter half of the compression stroke, such homogeneous combustion is mainly performed at high rotation and high load because a large amount of fuel can be injected. During homogeneous combustion, the relatively thin, generally fan-shaped fuel spray spreads in the width direction during flight in the cylinder, and there is a portion that is difficult to come into contact with the intake air in the cylinder, such as the central part of the conical fuel spray. In addition, since the entire spray is sufficiently in contact with the intake air, it is easy to vaporize, which is advantageous for forming a good homogeneous mixture. In addition, if the penetration force of the fuel spray is strong, the frictional force with the intake air becomes larger as in the stratified combustion, so that the fuel is more easily vaporized.
[0012]
FIG. 3 is a cross-sectional view of the tip portion of the fuel injection valve 7. An annular tapered seat surface 72 with which the valve body 71 abuts is formed at the tip of the fuel injection valve 7, and a cap-shaped fuel reservoir 73 is formed downstream of the seat surface 72. . The cap shape of the fuel reservoir 73 is composed of a cylindrical shape in contact with the seat surface 72 and a hemispherical shape having the same radius as this cylindrical shape. A slit-like injection hole 74 communicating with the fuel reservoir 73 is further formed at the tip of the fuel injection valve 7.
[0013]
4 is a cross-sectional view taken along the line AA in FIG. 3. As shown in FIGS. 3 and 4, the nozzle hole 74 has two thicknesses that are separated from each other in the thickness direction of the substantially fan-shaped fuel spray and are substantially parallel to each other. It has a width direction wall and two width direction walls spaced apart with a predetermined depression angle B in the width direction of the fuel spray. The center line in the thickness direction of the two walls in the width direction indicated by the alternate long and short dash line intersects with the hemispherical center C of the fuel reservoir 73. The center line in the thickness direction may slightly deviate from the hemispherical center C and intersect the center axis of the sheet surface.
[0014]
As shown in FIG. 1, the fuel injection valve 7 is attached at a relatively small angle with respect to the boundary surface between the cylinder head and the cylinder block because of the attachment space. However, if the fuel is injected in the axial direction of the fuel injection valve 7 attached in this way, it is difficult to inject the fuel into the cavity 8 on the top surface of the piston 5, so as shown in FIG. The fuel is injected at a predetermined angle D with respect to the direction. Therefore, the two thickness direction walls of the injection hole 74 are formed to be inclined at a predetermined angle D with respect to the axis of the fuel injection valve 7.
[0015]
As shown in FIGS. 3 and 4, when the valve body 71 is lifted and the seat corner 71a of the valve body 71 is separated from the seat surface 72, the high-pressure fuel stored in the pressure accumulating chamber (not shown) or the like is The fuel flows into the fuel reservoir 73 through 72, and the fuel is injected from the fuel reservoir 73 through the injection hole 74. If the fuel thus injected becomes a substantially fan-shaped spray along the shape of the nozzle hole 74 and has a relatively strong penetration force, as described above, during the stratified combustion, it can be vaporized easily and reliably. In this way, a good combustible air-fuel mixture can be formed. Further, during homogeneous combustion, it can be easily vaporized to form a good homogeneous mixture.
[0016]
FIG. 5 is a cross-sectional view of the tip of a general fuel injection valve 7 ′. The same reference numerals are assigned to the same components as those in FIG. The annular tapered seat surface 72 comes into contact with the seat corner portion 71a ′ of the valve body 71 ′ to stop high-pressure fuel in order to stop fuel injection. In order to complete this seal, it is necessary to provide a sufficient resistance against the pressing force acting in the axial direction of the valve body 71 ′. For this purpose, the seat surface 72 is placed on the axis E. It must be tilted at a relatively large angle F. Similarly, in the fuel injection valve 7 of the present embodiment, the seat surface 72 is inclined at a relatively large angle with respect to the axis E.
[0017]
As described above, the nozzle hole 74 is inclined at the predetermined angle D with respect to the axis E. As a result, the injection hole 74 is in communication with the fuel reservoir 73 while being offset with respect to the axis E, that is, with respect to the central axis of the seat portion 72. Thus, when the fuel reservoir 73 is considered at the opening of the nozzle hole 74, the space 73a on the counter-bias side is larger than the space 73b on the side of the nozzle hole, and the space 73a on the counter-bias side is relatively small. It will be wide.
[0018]
During fuel injection, the fuel flows into the fuel reservoir 73 through the seat portion 72. However, since the seat portion 72 is inclined at a relatively large angle F with respect to the axis E as described above, As indicated by arrows in FIG. 5, the fuel that flows into the fuel reservoir 73 from the nozzle hole deflection side of the seat portion 72 flows into the upper portion (valve element side) of the deflection side space 73 b of the fuel reservoir 73, and also the seat portion 72. The fuel flowing into the fuel reservoir 73 from the nozzle hole opposite side of the nozzle hole flows into the upper part of the counter-bias side space 73a, and then these two fuel flows collide with each other and pass through the vertical plane (the hole hole 74). It progresses downward (injection hole side) of the fuel reservoir 73 along the vicinity (perpendicular to the center plane in the width direction).
[0019]
At this time, since the bias side space 73b of the fuel reservoir 73 is narrow, the fuel flow does not swirl, but the anti-bias side space 73a is wide and the fuel passes through its surroundings. As indicated by arrows in FIG. 5, the fuel tends to form a vortex swirling in the vertical direction. When such a vortex is formed, energy loss of the fuel flowing into the nozzle hole occurs, so that the penetrating force of the injected fuel is reduced or the flow velocity of the fuel passing through the nozzle hole is reduced. It becomes difficult to form a fuel spray having an intended shape due to the occurrence of equilibrium.
[0020]
In the fuel injection valve 7 of this embodiment, as shown in FIG. 3, a tapered chamfer 75 is formed between the seat portion 72 and the fuel reservoir 73. As a result, as shown by an arrow in FIG. 3, the fuel that flows into the fuel reservoir 73 from the nozzle hole deflection side of the seat portion 72 is guided by the chamfer 75 to the substantially central portion of the bias side space of the fuel reservoir 73. The fuel flowing into the fuel reservoir 73 from the nozzle hole counter-bias side of the seat portion 72 is guided to the substantially central part of the counter-bias side space.
[0021]
Thus, in this embodiment as well, the anti-bias side space of the fuel reservoir 73 is wide, but the fuel flow guided to the substantially central portion does not form a vortex in the anti-bias side space and flows into the nozzle hole 74. Because there is no energy loss of the fuel to be injected, the penetration force of the injected fuel does not decrease, and there is no imbalance in the flow velocity of the fuel passing through the nozzle hole Thus, it is possible to form a fuel spray having an intended shape.
[0022]
Further, in the present embodiment, the tip of the valve body 71 facilitates the introduction of the fuel flowing into the fuel reservoir 73 from the nozzle hole deflection side of the seat portion 72 to the substantially central portion of the deflection side space, and The fuel that flows into the fuel reservoir 73 from the nozzle hole counter-bias side protrudes by a protrusion 71b that facilitates the introduction of the fuel into the substantially central portion of the counter-bias side space.
[0023]
As a result, the fuel flowing into the fuel reservoir 73 from the nozzle hole counter-bias side of the seat portion 72 is more reliably guided to the substantially central portion of the counter-bias side space, and it is ensured that a vortex is generated in the fuel reservoir 73. Can be prevented.
[0024]
In the present embodiment, the chamfer 75 is formed on the entire circumference between the seat portion 72 and the fuel reservoir 73. As a result, the fuel flowing into the fuel reservoir 73 from the nozzle hole counter-bias side of the seat portion 72 is guided to the substantially central portion of the anti-bias side space, and in addition to the inside of the fuel reservoir 73 from the nozzle hole bias side of the seat portion 72. The fuel that flows in is guided to a substantially central portion of the bias side space. As described above, since the bias side space of the fuel reservoir is narrow, it is difficult for the fuel vortex to be formed even if the fuel is not led to substantially the center. Thereby, the chamfer 75 may be formed only on the counter-bias side between the seat portion 72 and the fuel reservoir 73. However, by using this embodiment, the generation of vortices can be completely prevented even in the bias side space of the fuel reservoir 73. The same applies to the protrusion 71b of the valve body 71.
[0025]
In the present embodiment, the nozzle hole 74 is a slit nozzle hole for forming a substantially fan-shaped fuel spray. This does not limit the invention. For example, even when the nozzle hole having a round cross section is formed at the same position as the slit nozzle hole, the anti-bias side space of the fuel reservoir 73 is similarly widened, and if a vortex is formed here, the nozzle hole An energy loss of the fuel flowing into the fuel occurs, and the penetration force of the injected fuel is also reduced. Accordingly, even in this case, it is effective to provide the chamfer 75 and the protruding portion 71b as in the present embodiment. Finally, in the present embodiment, the annular tapered shape of the seat portion 72 is actually a truncated cone shape, but may be any annular tapered shape such as a truncated pyramid shape.
[0026]
【The invention's effect】
According to the fuel injection device for an internal combustion engine according to the present invention, when the space on the counter-bias side is larger than the space on the bias side of the nozzle hole in the fuel reservoir due to the bias of the nozzle hole, the space between the seat portion and the fuel reservoir is increased. A chamfer is formed at least on the anti-bias side, and a protruding portion that protrudes in the axial direction of the valve body from the surface that forms the distal end portion is provided at the distal end portion from the corner portion of the seat of the valve body. The fuel passing through the anti-bias side of the seat portion is guided to the substantially central portion of the space on the anti-bias side by chamfering and the protruding portion of the valve body. As a result, the generation of vortices can be prevented in a large anti-bias side space where vortices are easily formed, and the energy loss of fuel in the fuel reservoir is suppressed. It can be formed.
[Brief description of the drawings]
FIG. 1 is a schematic longitudinal cross-sectional view of a cylinder injection type spark ignition internal combustion engine equipped with a fuel injection device according to the present invention.
2 is a top view of a piston of the direct injection spark ignition internal combustion engine of FIG. 1. FIG.
FIG. 3 is a sectional view of a tip portion showing an embodiment of a fuel injection valve.
4 is a cross-sectional view taken along the line AA in FIG. 3;
FIG. 5 is a cross-sectional view of a tip portion of a general fuel injection valve.
[Explanation of symbols]
6 ... Spark plug 7 ... Fuel injection valve 71 ... Valve body 71b ... Projection 72 ... Seat surface 73 ... Fuel reservoir 74 ... Injection hole 75 ... Chamfer

Claims (1)

弁体と、前記弁体のシート角部が当接する環状テーパ形状のシート部と、前記シート部の直下流側に位置する燃料溜と、前記シート部の中心軸線から偏倚して前記燃料溜に連通する単一の噴孔、とを具備し、前記噴孔の偏倚によって前記燃料溜内における前記噴孔の偏倚側の空間より反偏倚側の空間が大きくなり、前記シート部と前記燃料溜との間における少なくとも前記反偏倚側には面取りが形成されると共に、前記弁体の前記シート角部より先端側部分には、最先端部に前記先端側部分を構成する面より前記弁体の軸線方向に突出する突出部が設けられ、前記シート部の前記反偏倚側を通過する燃料は、前記面取り及び前記弁体の前記突出部によって前記反偏倚側の空間の略中央部へ導かれることを特徴とする内燃機関の燃料噴射装置。A valve body, an annular taper-shaped seat portion with which a seat corner of the valve body abuts, a fuel reservoir located immediately downstream of the seat portion, and a fuel reservoir deviated from a central axis of the seat portion A single injection hole communicating therewith, and due to the deviation of the injection hole, a space on the counter-bias side in the fuel reservoir becomes larger than a space on the deflection side of the injection hole, and the seat portion and the fuel reservoir, A chamfer is formed at least on the anti-bias side between the valve body, the tip side portion of the valve body from the sheet corner portion, and the axis of the valve body from the surface constituting the tip side portion at the most distal portion A projecting portion projecting in the direction is provided, and fuel passing through the anti-biasing side of the seat portion is guided to a substantially central portion of the space on the anti-biasing side by the chamfering and the projecting portion of the valve body. A fuel injection device for an internal combustion engine.
JP2001315741A 2001-10-12 2001-10-12 Fuel injection device for internal combustion engine Expired - Fee Related JP3932853B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001315741A JP3932853B2 (en) 2001-10-12 2001-10-12 Fuel injection device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001315741A JP3932853B2 (en) 2001-10-12 2001-10-12 Fuel injection device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2003120475A JP2003120475A (en) 2003-04-23
JP3932853B2 true JP3932853B2 (en) 2007-06-20

Family

ID=19133860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001315741A Expired - Fee Related JP3932853B2 (en) 2001-10-12 2001-10-12 Fuel injection device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP3932853B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009236048A (en) * 2008-03-27 2009-10-15 Toyota Motor Corp Fuel injection valve for internal combustion engine

Also Published As

Publication number Publication date
JP2003120475A (en) 2003-04-23

Similar Documents

Publication Publication Date Title
CA2251677C (en) Fuel injector for an internal combustion engine
JP3903657B2 (en) In-cylinder injection spark ignition internal combustion engine
US8671908B2 (en) Glow plug placement in a diesel engine
JP3163906B2 (en) In-cylinder injection spark ignition engine
JPH07500158A (en) Slanted fuel injector with thin disc orifice member
EP1033483B1 (en) Direct fuel injection-type spark-ignition internal combustion engine
US6155504A (en) Fuel injector for an internal combustion engine
JP3932853B2 (en) Fuel injection device for internal combustion engine
JPS61218772A (en) Fuel injection device for diesel engine
JP3797019B2 (en) Fuel injection valve for direct-injection spark ignition internal combustion engine
JP3191732B2 (en) In-cylinder injection spark ignition internal combustion engine
US6047904A (en) Fuel injector for an internal combustion engine
JP4221858B2 (en) Liquid fuel vaporizer
JP2009121251A (en) Cylinder injection type spark ignition internal combustion engine
KR20030014324A (en) Fuel injection system
JP3644057B2 (en) Direct injection spark ignition internal combustion engine
JPH11223127A (en) Spark ignition type internal combustion engine
JPS62139921A (en) Fuel collision, reflection, and diffusion type combustion method and internal combustion engine therefor
JP3633423B2 (en) In-cylinder injection spark ignition internal combustion engine
JPH057502Y2 (en)
JP3937650B2 (en) Combustion chamber of in-cylinder direct fuel injection engine
JP2508675B2 (en) Combustion chamber of direct injection diesel engine
JPH0755295Y2 (en) Combustion chamber of internal combustion engine
JPH04187815A (en) Cylinder direct injection type spark ignition engine
JP2002004864A (en) Cylinder injection type spark ignition internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060327

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060905

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060919

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070312

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140330

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees