JP3932222B2 - Precision farming - Google Patents

Precision farming Download PDF

Info

Publication number
JP3932222B2
JP3932222B2 JP05884998A JP5884998A JP3932222B2 JP 3932222 B2 JP3932222 B2 JP 3932222B2 JP 05884998 A JP05884998 A JP 05884998A JP 5884998 A JP5884998 A JP 5884998A JP 3932222 B2 JP3932222 B2 JP 3932222B2
Authority
JP
Japan
Prior art keywords
growth
fertilizer
crop
field
camera
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05884998A
Other languages
Japanese (ja)
Other versions
JPH11235124A (en
Inventor
多 毅 喜
井 昌 之 藤
場 芳 隆 市
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanma Agricultural Equipment Co Ltd
Original Assignee
Yanma Agricultural Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanma Agricultural Equipment Co Ltd filed Critical Yanma Agricultural Equipment Co Ltd
Priority to JP05884998A priority Critical patent/JP3932222B2/en
Publication of JPH11235124A publication Critical patent/JPH11235124A/en
Application granted granted Critical
Publication of JP3932222B2 publication Critical patent/JP3932222B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Instructional Devices (AREA)
  • Image Processing (AREA)
  • Cultivation Of Plants (AREA)
  • Fertilizing (AREA)
  • Catching Or Destruction (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は例えば作物を植付けるとき、または作物成育途中に、施肥機または防除機を用いて肥料及び薬剤の散布を行う精密農法に関する。
【0002】
【発明が解決しようとする課題】
従来、前回の収穫量または作物成育状況並びに圃場の取水及び排水などを参考にして施肥または防除作業を行っていたから、作業者の経験または記憶による不安定な条件で施肥または防除作業が行われ易く、施肥量調節または防除量調節を狭い範囲に限定して局地的に対応させて適正に行い得ず、施肥または防除効率の向上並びに収穫増量などを容易に図り得ない等の問題がある。
【0003】
【課題を解決するための手段】
請求項1に係る発明は、GPS受信機及び成育地図作成カメラ及び成育地図作成コントローラが飛行体に搭載され、前記飛行体に搭載した制御用受信機の受信コントローラに、前記GPS受信機及び前記成育地図作成カメラ及び前記成育地図作成コントローラを接続し、無線操縦用の送信機を操縦者が手元操作して、前記飛行体を飛行させる一方、前記成育地図作成カメラの空中撮像によって圃場の作物の成育状況を検出し、その作物の成育状況に基づいて前記成育地図作成コントローラによって圃場の作物の成育地図を形成する精密農法において、前記飛行体の脚体用の支柱とメインフレームとの連結部に施肥フレームを連結し、その施肥フレームを介して前記飛行体の胴体の下方に施肥タンクを配置し、前記メインフレームの前部の下側に前記成育地図作成カメラを配置し、前記送信機に設けた成育地図スイッチの操作によって前記成育地図作成カメラを作動し、カラーセンサとして の前記成育地図作成カメラの撮像によって、圃場の作物の葉緑素の含有量を検出し、測定された葉緑素の含有量に基づいて圃場の作物の成育状態が圃場の成育地図として記録されるものであるから、作物の成育状況を測定したデータと、実際の成育状況の誤差を少なくできる。即ち、作物の葉緑素の含有量の測定によって、特定の場所の作物の成育状態の検出精度を向上できるものであるから、成育状況又は予測収穫量等を判断するための成育地図の作成作業の信頼性を向上できるものである。
【0004】
請求項2に係る発明は、請求項1において、前記施肥フレームの上面側に前記施肥タンクを配置し、前記施肥フレームに設けた駆動軸を介して、前記施肥タンク(7)の底面の繰出ケース(24)の下方に肥料散布用の拡散羽根を配置し、肥料の散布方向及び散布幅を変更するためのカバーによって前記拡散羽根を覆う一方、前記送信機は、前記施肥タンク内の肥料を散布する施肥スイッチを有し、圃場の作物の成育状態が記録された成育地図データに基づいて前記施肥タンク内の肥料が散布されるものであるから、特定の場所の作物に対する施肥量または防除量の過不足を防止でき、施肥効率又は防除効率等を向上できるものである。
【0005】
【0006】
【0007】
【0008】
【0009】
【0010】
【発明の実施の形態】
以下、本発明の実施例を図面に基づいて詳述する。図1は圃場の薬剤散布に使用する遠隔操縦ヘリコプタの説明図であり、図中(A)は遠隔操縦によって無人飛行させるヘリコプタであり、メインロータ(1)及びスタビライザ(2)をヘリコプタ(A)の胴体(3)上側に設けると共に、脚体(4)を胴体(3)下側に固定させる。また、胴体(3)後側のテールブーム(5)後端にテールロータ(6)を設けると共に、胴体(3)下側に施肥タンク(7)を固定させ、無人飛行させ乍ら粒状肥料を空中散布させるように構成している。
【0011】
また、前記胴体(3)内部にメインフレーム(8)を介してエンジン(9)及びミッションケース(10)を取付け、マフラー(11)及び燃料タンク(12)を配設させると共に、リコイルレバーを引張る手動操作によってエンジン(9)を始動させ、前記メインロータ(1)及びテールロータ(6)をエンジン(9)によって駆動し、無線操縦用の送信機(B)を操縦者が手元操作してヘリコプタ(A)を飛行させるように構成している。なお、符号(13)はヘリコプタ(A)制御用受信機、(14)はモニタライトである。
【0012】
さらに、図2に示す如く、前記脚体(4)を取付ける板バネ製支柱(15)(15)とメインフレーム(8)の連結部に受フレーム(16)(17)をボルト(18)(18)止め固定させ、受フレーム(16)(17)にノブボルト(19)(19)を介して前後受板(20)(21)を着脱自在に固定させる。また、前受板(20)に緩衝ゴム(22)を介して施肥フレーム(23)を連結させ、施肥フレーム(23)上面側に繰出ケース(24)を介して施肥タンク(7)底部中央を固定させると共に、後受板(21)に緩衝ゴム(25)を介して施肥タンク(7)後部を連結させる。また、開閉自在なキャップ(26)(26)を有する左右投入口(27)(27)を施肥タンク(7)両側に左右対称に連結させている。
【0013】
さらに、図2に示す如く、前記施肥フレーム(23)に軸受(29)を介して駆動軸(30)を軸支させ、円板形の拡散羽根(31)を駆動軸(30)下端に固定させると共に、前記タンク(7)前方の施肥フレーム(23)前部上面に電動拡散用施肥モータ(32)を固定させ、タイミングベルト及びプーリ(33)(34)を介してモータ(32)を駆動軸(30)に連結させ、モータ(32)によって拡散羽根(31)を一方向に回転させるように構成している。また、前記軸受(29)に上面カバー板(35)を固定させ、羽根(31)の上面側をカバー板(35)によって遮閉している。
【0014】
さらに、前記タンク(7)底面の繰出ケース(24)下端側に、垂直軸芯回りに回転自在な出口筒(36)を配置させると共に、繰出ケース(24)と出口筒(36)の間にシャッタを出入自在に挿入させて開閉するもので、施肥シャーシ(23)に調量サーボ型散布量モータ(37)を取付け、該モータ(37)の正逆転制御によって出口筒(36)の開口を開閉作動させる。また、前記出口筒(36)を設ける拡散羽根(31)後側を遮閉する側面カバー(38)を設け、該カバー(38)を前記上面カバー板(35)に取付け、拡散羽根(31)の回転上手側または下手側に前記カバー(38)を移動させ、拡散羽根(31)による肥料散布方向及び散布幅を変更するように構成している。
【0015】
また、前記送信機(B)の四角箱形ケース(39)に左右スティック(40)(41)及び液晶ディスプレイ(42)などを設けると共に、図3に示す如く、右スティック(41)の縦方向操作量に基づきエンジン(9)出力並びにメインロータ(1)の集合ピッチ調節を行う高度操作(垂直昇降)信号を出力させるエンコンボリューム(43)と、右スティック(41)の横方向操作量に基づきメインロータ(1)の横周期ピッチ調節を行う左右方向飛行信号を出力させるエルロンボリューム(44)と、左スティック(40)の縦方向操作量に基づきメインロータ(1)の縦周期ピッチ調節を行う前後方向飛行信号を出力させるエレベータボリューム(45)と、左スティック(40)の横方向操作量に基づきテールロータ(6)のピッチ調節を行う機体方向操作信号を出力させるラダーボリューム(46)を備え、マイクロコンピュータで形成する送信機(B)の送信コントローラ(47)に前記各ボリューム(43)〜(46)を接続させ、前記各ボリューム(43)〜(46)出力をヘリコプタ(A)の受信機(13)に送信するように構成している。さらに、図3において、(48)は電源バッテリ、(49)はメインスイッチ、(50)は電圧メータ、(51)は送信用アンテナ、(52)(53)(54)(55)(56)はモード切換スイッチである。
【0016】
また、図4は前記受信機(13)の制御回路図であり、3軸ジャイロで形成する飛行安定装置用センサであるエルロン用ジャイロ(57)及びエレベータ用ジャイロ(58)及びラダー用ジャイロ(59)をヘリコプタ(A)に備え、前記各ジャイロ(57)〜(59)を受信コントローラ(60)に入力接続させると共に、エンジン(9)出力並びにメインロータ(1)の集合ピッチ調節を行ってヘリコプタ(A)を垂直昇降させるエンコン用サーボモータ(61)と、メインロータ(1)の横周期ピッチ調節を行ってヘリコプタ(A)を左右方向に飛行させるエルロン用サーボモータ(62)と、メインロータ(1)の縦周期ピッチ調節を行ってヘリコプタ(A)を前後方向に飛行させるエレベータ用サーボモータ(63)と、テールロータ(6)のピッチ調節を行ってヘリコプタ(A)の方向を変更させるラダー用サーボモータ(64)と、ピッチ用サーボモータ(65)と、前記施肥モータ(32)と、散布量モータ(37)とに、受信コントローラ(60)を出力接続させるもので、前記送信コントローラ(47)からの遠隔操縦信号、並びに各ジャイロ(57)〜(59)入力により、各サーボモータ(61)〜(65)を作動させ、送信機(B)の制御信号に基づきヘリコプタ(A)を遠隔操縦するように構成している。
【0017】
さらに、図4において、(66)は電源バッテリ、(67)はメインスイッチ、(68)は受信用アンテナ、(69)はGPS(全地球測位システム)衛星からの電波を受信入力してヘリコプタ(A)の現在飛行位置を方位検出するGPS受信機である。
【0018】
さらに、図2、図3、図4に示す如く、前記ヘリコプタ(A)のメインフレーム(8)前部下側に成育地図作成カメラ(70)を取付けると共に、前記施肥モータ(32)及び散布量モータ(37)を遠隔操作する施肥スイッチ(71)と、前記カメラ(70)を撮像操作する成育地図スイッチ(72)を、前記送信コントローラ(47)に接続させる。また、前記成育地図作成カメラ(70)を受信コントローラ(60)に接続させ、作物のカラーセンサ分析による葉緑素含有量測定、並びに作物の光分析による病虫害の発生状態測定を前記カメラ(70)入力に基づき行い、作物の成育状態を前記カメラ(70)によって測定させて受信コントローラ(60)に入力させるように構成している。
【0019】
また、前記GPS受信機(69)によって検出される飛行位置である測定作物位置と、前記カメラ(70)によって測定される作物成育状態に基づき、圃場の作物成育状態を表す成育地図を形成する成育地図作成コントローラ(73)を設け、該コントローラ(73)を受信コントローラ(60)に接続させ、また互換自在な磁気ディスク(74)を装着して成育地図を記録させるもので、図5に示す如く、畦(75)で囲まれた圃場(76)の高位置側の水路(77)の水を取水口(78)から導入し、圃場(76)の水を低位置側の水路(79)に排水口(80)から排出させ、水稲を育成することにより、取水口(78)付近では肥料が不足し易く、収穫する穀稈量または穀粒量が少なくなり易く、また圃場(76)中央部の水溜り部で肥料が多くなり、穀稈量が局部的に多くなったり、穀粒量が局部的に多くなるが、作物を成育する実際の圃場(76)形状を格子形区分(81)によって分割して対応した作物の成育状態が表示された図6に示す成育地図(82)が形成され、前記ディスク(74)に記録される一方、図6の成育地図(82)データに基づき散布量モータ(37)を自動制御して施肥(または防除または除草など)を行い、圃場(76)全体の作物の成育を図り、かつ肥料(または薬剤)の無駄な使用を防ぎ、肥培管理を適正に行えるように構成している。
【0020】
上記から明らかなように、作物の成育状況を検出して圃場(76)の成育地図(82)を自動的に形成するもので、局地的に測定される作物成育状況が成育地図(82)として記録されることにより、前記成育地図(82)データに基づいて施肥または防除などを行え、施肥量または防除量の過不足を防止し、施肥または防除効率の向上並びに収穫増量などを図ると共に、施肥量調節または防除量調節の自動制御化による制御機能の向上及び省力化などを図れるように構成している。また、飛行体であるヘリコプタ(A)に搭載するカメラ(70)の空中撮像によって作物の成育状況を検出させ、成育状態の検出精度向上並びに成育地図(82)データの信頼性向上などを図ると共に、作物の葉緑素含有量をカラーセンサであるカメラ(70)の撮像によって検出させ、作物の測定成育状況と実際の成育状況の誤差を少なくして収穫量測定信頼性を向上させ、またカメラ(70)の撮像によって作物を光分析して病虫害発生状況を測定させ、作物成育状況の検出精度向上並びに成育地図(82)データの信頼性向上などを図り、さらに、成育地図(82)に基づいて施肥及び防除量の少なくとも一方を自動的に局地対応制御し、成育地図(82)のデータに基づいて狭い範囲に限定して施肥量調節または防除量調節を高精度で行え、施肥または防除自動制御機能の向上などを図れるように構成している。
【0021】
さらに、図7は例えば稲を育成している水田または畑を走行し乍ら薬剤または肥料の散布などを行う乗用管理作業車の側面図、図8は同平面図であり、図中(83)は作業者が搭乗する走行車であり、エンジン(84)を車体フレーム(85)前部上方に搭載させ、ギヤ減速ケース(86)前方に前アクスルケース(87)を介して前走行輪(88)を支持させると共に、前記ギヤ減速ケース(86)の後部に後アクスルケース(89)を連設し、前記後アクスルケース(89)に後走行輪(90)を支持させる。そして前記エンジン(84)等を覆うボンネット(91)後部に操向ハンドル(92)を取付けると共に、ステップ(93)を介して作業者が搭乗する車体カバー(94)によって前記ギヤ減速ケース(86)等を覆い、前記車体カバー(94)上部に運転席(95)を取付ける。
【0022】
また、図中(96)は液剤タンク、(97)は散布ブーム(98)などを具備する散布作業機であり、トップリンク(99)及びロワーリンク(100)を含むリンク機構(101)を介して走行車(83)後側にヒッチフレーム(102)を連結させ、前記リンク機構(101)を介して散布作業機(97)を昇降させる油圧昇降シリンダをロワーリンク(100)に連結させ、前後走行輪(88)(90)を走行駆動し、水田内で作物である稲(103)の間を走行移動し乍ら散布ブーム(98)の散布ノズル(104)から連続的に散布作業を行うように構成する。なお、図中(105)は走行変速レバー、(106)は無段変速用副変速レバー、(107)は主クラッチペダル、(108)(108)は左右ブレーキペダルである。
【0023】
さらに、図9は前記走行車(83)に搭載する散布制御回路図であり、前記走行車(83)の走行速度を検出する車速センサ(109)と、圃場(76)内の施肥(または防除)作業位置を測定入力させるGPS受信機(69)を、マイクロコンピュータで構成する散布コントローラ(110)に接続させる。また、液剤タンク(96)の液肥または薬液を薬剤モータ(111)から散布ノズル(104)に送給させる散布バルブ(112)の開閉制御を行うバルブモータ(113)を前記コントローラ(110)にドライバ(114)を介して接続させると共に、前記ボンネット(91)前部の支柱(115)上端部に成育地図作成カメラ(70)を取付けると共に、前記車速センサ(109)によって検出する走行車(83)の車速と連動してカメラ(70)の角度を変更するカメラ角度モータ(116)を設け、前記カメラ(70)及びモータ(116)を前記散布コントローラ(110)に接続させ、作物である稲(103)のカラーセンサ分析による葉緑素含有量測定、並びに稲(103)の光分析による病虫害の発生状態測定を前記カメラ(70)入力に基づき行い、稲(103)の成育状態を前記カメラ(70)によって測定させて散布コントローラ(110)に入力させるように構成している。
【0024】
また、前記GPS受信機(69)によって検出される走行車(83)移動位置である測定作物位置と、前記カメラ(70)によって測定される作物成育状態に基づき、圃場の作物成育状態を表す成育地図を形成する成育地図作成コントローラ(73)を散布コントローラ(110)に接続させ、また互換自在な磁気ディスク(74)を装着して成育地図を記録させるもので、図5に示す如く、畦(75)で囲まれた圃場(76)の高位置側の水路(77)の水を取水口(78)から導入し、圃場(76)の水を低位置側の水路(79)に排水口(80)から排出させ、水稲を育成することにより、取水口(78)付近では肥料が不足し易く、収穫する穀稈量または穀粒量が少なくなり易く、また圃場(76)中央部の水溜り部で肥料が多くなり、穀稈量が局部的に多くなったり、穀粒量が局部的に多くなるが、作物を成育する実際の圃場(76)形状を格子形区分(81)によって分割して対応した作物の成育状態が表示された図6に示す成育地図(82)が形成され、前記ディスク(74)に記録される一方、GPS受信機(69)入力によって圃場(76)内の施肥または防除作業位置を認識させ、かつディスク(74)に入力させる、成育地図(82)データに基づきバルブモータ(113)を正逆転制御して散布バルブ(112)の開閉度を変更し、稲(103)の成育が不良である地点での液肥散布量を自動的に多くし、稲(103)の成育が良好な地点での液肥散布量を自動的に少なくすると共に、稲(103)の成育良好地点で、雑草が少ないから除草液散布量を少なくし、また害虫が多く発生するから殺虫液散布量を多くする一方、稲(103)の成育不良地点では前記と逆に除草液散布量を多くしたり殺虫液散布量を少なくする制御を自動的に行い、液肥または薬液を用いた施肥または防除を効率良く行えるように構成している。
【0025】
上記から明らかなように、走行体である走行車(83)に搭載するカメラ(70)によって作物である稲(103)の成育状況を検出させ、測定稲(103)と実際の稲(103)位置の誤差を低減して、成育地図(82)形成精度の向上などを図ると共に、走行車(83)の車速変化と連動してカメラ(70)の撮影姿勢を変更させ、稲(103)の測定成育状況と実際の成育状況を一致させて成育地図(82)形成精度を向上させるように構成している。
【0026】
なお、図7に示す如く、前記カメラ(70)及びモータ(116)と略同一機能構造の成育地図作成カメラ(117)及びカメラ角度モータ(118)を車体フレーム(85)前端部に取付け、稲(103)先端部を略水平姿勢のカメラ(117)によって撮像させ、稲(103)の成育高さを検出させ、稲(103)を上方から撮像する前記カメラ(70)と稲(103)を水平方向から撮像する前記カメラ(117)の両方の測定結果に基づき、図6の成育地図(82)を形成して地図(82)形成精度をさらに向上させることも行える。
【0027】
【発明の効果】
以上実施例から明らかなように、請求項1に係る発明は、GPS受信機(69)及び成育地図作成カメラ(70)及び成育地図作成コントローラ(73)が飛行体としてのヘリコプタ(A)に搭載され、ヘリコプタ(A)に搭載した制御用受信機(13)の受信コントローラ(60)に、前記GPS受信機(69)及び前記成育地図作成カメラ(70)及び前記成育地図作成コントローラ(73)を接続し、無線操縦用の送信機(B)を操縦者が手元操作して、ヘリコプタ(A)を飛行させる一方、前記成育地図作成カメラ(70)の空中撮像によって圃場(76)の作物としての稲(103)の成育状況を検出し、その稲(103)の成育状況に基づいて前記成育地図作成コントローラ(73)によって圃場(76)の稲(103)の成育地図(82)を形成する精密農法において、ヘリコプタ(A)の脚体(4)用の支柱(15)とメインフレーム(8)との連結部に施肥フレーム(23)を連結し、その施肥フレーム(23)を介してヘリコプタ(A)の胴体の下方に施肥タンク(7)を配置し、前記メインフレーム(8)の前部の下側に前記成育地図作成カメラ(70)を配置し、前記送信機(B)に設けた成育地図スイッチ(72)の操作によって前記成育地図作成カメラ(70)を作動し、カラーセンサとしての前記成育地図作成カメラ(70)の撮像によって、圃場(76)の稲(103)の葉緑素の含有量を検出し、測定された稲(103)の葉緑素の含有量に基づいて圃場(76)の作物(103)の成育状態が圃場(76)の成育地図(82)として記録されるものであるから、稲(103)の成育状況を測定したデータと、実際の稲(103)の成育状況の誤差を少なくできる。即ち、稲(103)の葉緑素の含有量の測定によって、特定の場所の稲(103)の成育状態の検出精度を向上できるものであるから、成育状況又は予測収穫量等を判断するための成育地図(82)の作成作業の信頼性を向上できるものである。
【0028】
請求項2に係る発明は、請求項1において、前記施肥タンク(7)の底面の繰出ケース(24)の下方に設ける肥料散布用の拡散羽根(31)と、前記拡散羽根(31)を一方向に回転させる施肥モータ(32)と、前記施肥タンク(7)の出口を開閉する散布量モータ(37)とを配置し、肥料の散布方向及び散布幅を変更するためのカバー(38)によって前記拡散羽(31)根を覆う一方、送信機(B)は、施肥タンク(7)内の肥料を散布する施肥スイッチ(71)を有し、圃場(76)の稲(103)の成育状態が記録された成育地図(82)データに基づいて前記施肥タンク(7)内の肥料が散布されるものであるから、特定の場所の稲(103)に対する施肥量または防除量の過不足を防止でき、施肥効率又は防除効率等を向上できるものである。
【0029】
【0030】
【0031】
【0032】
【0033】
【図面の簡単な説明】
【図1】ヘリコプタの側面図である。
【図2】施肥タンクの説明図である。
【図3】送信回路図である。
【図4】受信回路図である。
【図5】圃場の説明図である。
【図6】成育地図の説明図である。
【図7】乗用管理作業車の側面図である。
【図8】同平面図である。
【図9】散布制御回路図である。
【符号の説明】
(A)ヘリコプタ(飛行体)
(B)送信機
(4)脚体
(7)施肥タンク
(8)メインフレーム
(13)制御用受信機
(15)支柱
(23)施肥フレーム
(24)繰出ケース
(31)拡散羽根
(32)施肥モータ
(37)散布量モータ
(38)側面カバー
(60)受信コントローラ
(69)GPS受信機
(70)成育地図作成カメラ
(71)施肥スイッチ
(72)成育地図スイッチ
(73)成育地図作成コントローラ
(76)圃場
(82)成育地図
(83)走行車(走行体)
(103)稲(作物)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a precision farming method in which a fertilizer and a chemical are sprayed by using a fertilizer applicator or a control machine, for example, when a crop is planted or during crop growth.
[0002]
[Problems to be solved by the invention]
Conventionally, since fertilization or control work was performed with reference to the previous harvest amount or crop growth status and water intake and drainage of the field, fertilization or control work is easily performed under unstable conditions due to the experience or memory of the worker, There is a problem that the fertilization amount control or the control amount control is limited to a narrow range and cannot be appropriately performed in a localized manner, and it is difficult to improve the fertilization or control efficiency and increase the yield easily.
[0003]
[Means for Solving the Problems]
According to the first aspect of the present invention, a GPS receiver, a growth map creation camera, and a growth map creation controller are mounted on a flying object, and the GPS receiver and the growth chart are included in a reception controller of a control receiver mounted on the flying object. The cartography camera and the growth map creation controller are connected, and the operator operates the radio control transmitter at hand to fly the flying object, while the aerial imaging of the growth map creation camera raises the crops in the field. In a precision farming method in which a situation is detected and a growth map of a crop in a field is formed by the growth map creation controller based on the growth status of the crop , fertilization is applied to a connecting portion between a support for a leg of the flying body and a main frame. A frame is connected, and a fertilization tank is arranged below the fuselage of the flying body through the fertilization frame, and the lower side of the front part of the main frame Wherein placing the growth cartographic camera, the growth actuated cartographic camera by operating the growth map switch provided in the transmitter, by the imaging of growth mapping camera as a color sensor, containing chlorophyll of field crops Since the amount of growth of the crop in the field is recorded as a field growth map based on the measured chlorophyll content, the data on the growth status of the crop and the actual growth status Errors can be reduced. In other words, measurement of the chlorophyll content of crops can improve the detection accuracy of the growth status of crops at a specific location, so the reliability of the creation of a growth map for judging the growth status or predicted yield, etc. Can improve the performance.
[0004]
The invention according to claim 2 is the feeding case of the bottom surface of the fertilizer tank (7) according to claim 1, wherein the fertilizer tank is disposed on the upper surface side of the fertilizer frame and a drive shaft provided on the fertilizer frame is provided. A spreading blade for fertilizer application is arranged below (24) and the diffusion blade is covered with a cover for changing the application direction and application width of the fertilizer, while the transmitter applies the fertilizer in the fertilizer tank. Since the fertilizer in the fertilizer tank is sprayed based on the growth map data in which the growth state of the crops in the field is recorded, the fertilizer application amount or the control amount of the crop in a specific place Excess and deficiency can be prevented, and fertilization efficiency or control efficiency can be improved.
[0005]
[0006]
[0007]
[0008]
[0009]
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 is an explanatory view of a remote control helicopter used for spraying medicines in a field. In FIG. 1, (A) is a helicopter for unmanned flight by remote control, and a main rotor (1) and a stabilizer (2) are connected to a helicopter (A). And the leg (4) is fixed to the lower side of the body (3). In addition, a tail rotor (6) is provided at the rear end of the tail boom (5) on the rear side of the fuselage (3), and a fertilizer tank (7) is fixed to the lower side of the fuselage (3) to allow unmanned flight and to produce granular fertilizer. It is configured to be dispersed in the air.
[0011]
Further, the engine (9) and the transmission case (10) are attached to the body (3) through the main frame (8), the muffler (11) and the fuel tank (12) are disposed, and the recoil lever is pulled. The engine (9) is started by manual operation, the main rotor (1) and the tail rotor (6) are driven by the engine (9), and the operator operates the radio-controlled transmitter (B) by hand to operate the helicopter. (A) is configured to fly. Reference numeral (13) is a helicopter (A) control receiver, and (14) is a monitor light.
[0012]
Further, as shown in FIG. 2, a receiving frame (16) (17) is attached to the connecting portion of the main frame (8) with a plate spring support (15) (15) for mounting the leg (4). 18) The front and rear receiving plates (20) and (21) are detachably fixed to the receiving frames (16) and (17) via the knob bolts (19) and (19). Further, the fertilizer frame (23) is connected to the front receiving plate (20) via the buffer rubber (22), and the bottom center of the fertilizer tank (7) is connected to the upper surface side of the fertilizer frame (23) via the feeding case (24). At the same time, the rear portion of the fertilizer tank (7) is connected to the rear receiving plate (21) via the buffer rubber (25). In addition, left and right inlets (27) and (27) having caps (26) and (26) that can be freely opened and closed are connected to both sides of the fertilization tank (7) symmetrically.
[0013]
Further, as shown in FIG. 2 , the fertilizer frame (23) is supported by a drive shaft (30) via a bearing (29), and a disk-shaped diffusion blade (31) is fixed to the lower end of the drive shaft (30). In addition, an electric diffusion fertilizer application motor (32) is fixed to the upper surface of the front portion of the fertilization frame (23) in front of the tank (7), and the motor (32) is driven via the timing belt and pulleys (33) (34). The diffusion blade (31) is connected to the shaft (30) and rotated in one direction by the motor (32). Further, the upper cover plate (35) is fixed to the bearing (29), and the upper surface side of the blade (31) is blocked by the cover plate (35).
[0014]
Further, an outlet tube (36) rotatable around a vertical axis is disposed on the lower end side of the feeding case (24) on the bottom surface of the tank (7), and between the feeding case (24) and the outlet tube (36). The shutter is removably inserted and opened and closed. A metering servo type spraying amount motor (37) is attached to the fertilizer application chassis (23), and the opening of the outlet tube (36) is controlled by forward / reverse control of the motor (37). Open and close. Further, a side cover (38) for blocking the rear side of the diffusion blade (31) provided with the outlet tube (36) is provided, and the cover (38) is attached to the upper surface cover plate (35), and the diffusion blade (31) The cover (38) is moved to the upper side or the lower side of the rotation, and the fertilizer application direction and application width by the diffusion blade (31) are changed.
[0015]
In addition, left and right sticks (40) and (41) and a liquid crystal display (42) are provided in the rectangular box case (39) of the transmitter (B), and the vertical direction of the right stick (41) as shown in FIG. Based on the engine control (9) output based on the operation amount and the high-speed operation (vertical up / down) signal for adjusting the collective pitch of the main rotor (1) and the lateral operation amount of the right stick (41). Adjusting the vertical period pitch of the main rotor (1) based on the aileron volume (44) for outputting a lateral flight signal for adjusting the horizontal period pitch of the main rotor (1) and the vertical operation amount of the left stick (40) The tail volume of the tail rotor (6) is determined based on the amount of lateral operation of the elevator volume (45) that outputs the front-rear flight signal and the left stick (40). A ladder volume (46) for outputting a machine direction operation signal for adjustment is provided, and the volumes (43) to (46) are connected to a transmission controller (47) of a transmitter (B) formed by a microcomputer. Each volume (43)-(46) output is comprised so that it may transmit to the receiver (13) of a helicopter (A). Further, in FIG. 3, (48) is a power supply battery, (49) is a main switch, (50) is a voltage meter, (51) is a transmitting antenna, (52) (53) (54) (55) (56). Is a mode switch.
[0016]
FIG. 4 is a control circuit diagram of the receiver (13). Aileron gyros (57), elevator gyros (58) and ladder gyros (59) which are sensors for a flight stabilizer formed by a three-axis gyro. ) In the helicopter (A), the gyroscopes (57) to (59) are connected to the receiving controller (60), and the helicopter is adjusted by adjusting the engine (9) output and the collective pitch of the main rotor (1). (A) vertical servo motor (61), aileron servomotor (62) for flying the helicopter (A) in the left-right direction by adjusting the horizontal pitch of the main rotor (1), and the main rotor An elevator servo motor (63) for flying the helicopter (A) in the front-rear direction by adjusting the vertical period pitch in (1), and a tail rotor The ladder servo motor (64) that adjusts the pitch of the helicopter (A) by adjusting the pitch of the rotor (6), the pitch servo motor (65), the fertilizer motor (32), and the spraying amount motor (37 The receiving controller (60) is connected to the output of the servo controller (60). The servo motors (61) to (65) are connected to the remote control signal from the transmission controller (47) and the gyro (57) to (59) inputs. ) To operate the helicopter (A) remotely based on the control signal of the transmitter (B).
[0017]
Further, in FIG. 4, (66) is a power battery, (67) is a main switch, (68) is a receiving antenna, and (69) is a helicopter that receives and receives radio waves from a GPS (Global Positioning System) satellite. A) GPS receiver that detects the current flight position of A).
[0018]
Further, as shown in FIGS. 2, 3, and 4, a growth map creation camera (70) is attached to the lower side of the front part of the main frame (8) of the helicopter (A), and the fertilizer application motor (32) and the application amount motor are provided. A fertilization switch (71) for remotely operating (37) and a growth map switch (72) for performing imaging operation of the camera (70) are connected to the transmission controller (47). Further, the growth mapping camera (70) is connected to the reception controller (60), and the chlorophyll content measurement by crop color sensor analysis and the occurrence state of disease and pest damage by crop light analysis are input to the camera (70). The crop growth state is measured by the camera (70) and input to the reception controller (60).
[0019]
Further, the growth that forms the growth map representing the crop growth state of the field based on the measured crop position which is the flight position detected by the GPS receiver (69) and the crop growth state measured by the camera (70). As shown in FIG. 5, a map creation controller (73) is provided, and the controller (73) is connected to the reception controller (60) and a compatible magnetic disk (74) is mounted to record a growth map. The water in the water channel (77) on the high position side of the field (76) surrounded by the reed (75) is introduced from the water inlet (78), and the water in the field (76) is introduced into the water channel (79) on the low position side. By draining from the drainage port (80) and growing rice, fertilizer tends to be insufficient in the vicinity of the water intake port (78), and the amount of cereals or grains to be harvested is likely to decrease, and the center of the field (76) Puddle Fertilizer increases, the amount of cereals increases locally, and the amount of kernels increases locally, but the actual field (76) shape for growing crops is divided by the grid section (81) A growth map (82) shown in FIG. 6 on which the growth state of the finished crop is displayed is formed and recorded on the disk (74), while a spray amount motor (37) based on the growth map (82) data of FIG. It is configured so that fertilization (or pest control or weeding, etc.) can be performed automatically by controlling the growth of the crop on the entire field (76), and wasteful use of fertilizer (or chemicals) can be prevented, and fertilizer management can be performed appropriately. is doing.
[0020]
As is clear from the above, the growth status of the crop (82) is automatically formed by detecting the growth status of the crop, and the crop growth status measured locally is the growth map (82). By being recorded as, it can be applied fertilization or control based on the growth map (82) data, prevent excessive or insufficient fertilization amount or control amount, improve fertilization or control efficiency and increase yield, etc. It is configured to improve control functions and save labor by automatically controlling fertilizer application or control. In addition, the growth status of the crop is detected by aerial imaging of the camera (70) mounted on the helicopter (A), which is a flying object, so that the detection accuracy of the growth status is improved and the reliability of the growth map (82) data is improved. The chlorophyll content of the crop is detected by imaging with a camera (70) which is a color sensor, the error in the measured growth status of the crop and the actual growth status is reduced, and the yield measurement reliability is improved. ) By optically analyzing the crop by imaging and measuring the occurrence of disease and pest damage, improving the detection accuracy of the crop growth status and improving the reliability of the growth map (82) data, and fertilizing based on the growth map (82) And at least one of the control amount is automatically controlled locally and limited to a narrow range based on the data of the growth map (82), the fertilizer control or control control is highly accurate. Can constitute as attained and fertilization or improvement in control auto-control function.
[0021]
Further, FIG. 7 is a side view of a passenger management work vehicle that, for example, travels in a paddy field or a field where rice is cultivated and sprays chemicals or fertilizers, and FIG. 8 is a plan view thereof. Is a traveling vehicle on which an operator is boarded. The engine (84) is mounted on the upper front part of the vehicle body frame (85), and the front traveling wheels (88) are disposed in front of the gear reduction case (86) via the front axle case (87). ), A rear axle case (89) is connected to the rear portion of the gear reduction case (86), and the rear running wheel (90) is supported by the rear axle case (89). A steering handle (92) is attached to the rear part of the bonnet (91) covering the engine (84) and the like, and the gear reduction case (86) is mounted by a vehicle body cover (94) on which an operator rides through a step (93). Etc., and the driver's seat (95) is attached to the upper part of the vehicle body cover (94).
[0022]
Further, in the figure, (96) is a liquid agent tank, (97) is a spraying machine equipped with a spraying boom (98) and the like, via a link mechanism (101) including a top link (99) and a lower link (100). The hitch frame (102) is connected to the rear side of the traveling vehicle (83), and the hydraulic lifting cylinder for moving the spraying work machine (97) up and down via the link mechanism (101) is connected to the lower link (100). The traveling wheels (88) and (90) are driven to travel, and the spraying operation is continuously performed from the spray nozzle (104) of the spray boom (98) while traveling between the rice (103) which is a crop in the paddy field. Configure as follows. In the figure, (105) is a travel shift lever, (106) is a continuously variable sub-shift lever, (107) is a main clutch pedal, and (108) and (108) are left and right brake pedals.
[0023]
Further, FIG. 9 is a dispersion control circuit diagram mounted on the traveling vehicle (83), and a vehicle speed sensor (109) for detecting the traveling speed of the traveling vehicle (83) and fertilization (or control) in the field (76). ) A GPS receiver (69) for measuring and inputting a work position is connected to a spraying controller (110) composed of a microcomputer. Further, the controller (110) is provided with a valve motor (113) for controlling the opening and closing of the spray valve (112) for feeding the liquid fertilizer or the chemical liquid in the liquid agent tank (96) from the drug motor (111) to the spray nozzle (104). (114) and a vehicle (83) that is connected to the front of the bonnet (91) at the upper end of the bonnet (91) (70) and is detected by the vehicle speed sensor (109). A camera angle motor (116) for changing the angle of the camera (70) in conjunction with the vehicle speed of the vehicle is provided, and the camera (70) and the motor (116) are connected to the spraying controller (110) to produce rice ( 103) measurement of the chlorophyll content by color sensor analysis and measurement of the occurrence of disease and pest damage by optical analysis of rice (103). (70) performed on the basis of the input, and configured to input to the rice (103) spraying the controller the growth state by measured by the camera (70) of (110).
[0024]
Further, based on the measured crop position which is the moving position of the traveling vehicle (83) detected by the GPS receiver (69) and the crop growth state measured by the camera (70), the growth indicating the crop growth state of the field A growth map creation controller (73) for forming a map is connected to the scatter controller (110), and a compatible magnetic disk (74) is attached to record a growth map. As shown in FIG. 75), water in the high-position side waterway (77) of the field (76) surrounded by 75) is introduced from the water inlet (78), and water in the field (76) is drained into the low-position side waterway (79) ( 80) and cultivating paddy rice, fertilizer tends to be insufficient in the vicinity of the intake (78), the amount of cereals or grains to be harvested tends to be small, and the puddle in the center of the field (76) A lot of fertilizer Growth of crops corresponding to the increase in the amount of cereal grains or the increase in the amount of grains locally by dividing the actual field (76) shape for growing the crop by the grid section (81) The growth map (82) shown in FIG. 6 showing the state is formed and recorded on the disk (74), and the fertilization or control work position in the field (76) is recognized by the GPS receiver (69) input. Control of the valve motor (113) based on the growth map (82) data input to the disk (74) to change the degree of opening and closing of the spray valve (112), resulting in poor growth of rice (103) Automatically increase the liquid fertilizer application amount at the point where the rice (103) is growing well and automatically reduce the liquid fertilizer application amount at the point where the rice (103) growth is good, and weeds at the good growth point of the rice (103) Less application of herbicidal solution Comb and pests are often generated, so the amount of spraying of the insecticide is increased. On the other hand, at the point of poor growth of rice (103), the control to increase the amount of spraying herbicide or reduce the amount of spraying of the insecticide is automatic. It is configured so that fertilization or control using liquid fertilizer or chemical solution can be performed efficiently.
[0025]
As is clear from the above, the growing situation of rice (103) as a crop is detected by a camera (70) mounted on a traveling vehicle (83) as a traveling body, and the measured rice (103) and the actual rice (103) are detected. The position error is reduced to improve the formation accuracy of the growth map (82) and the shooting posture of the camera (70) is changed in conjunction with the change in the vehicle speed of the traveling vehicle (83). The measurement growth situation and the actual growth situation are matched to improve the formation accuracy of the growth map (82).
[0026]
As shown in FIG. 7, a growth map creation camera (117) and a camera angle motor (118) having substantially the same functional structure as the camera (70) and motor (116) are attached to the front end of the body frame (85), and rice (103) The front end is imaged by a camera (117) in a substantially horizontal posture, the growth height of rice (103) is detected, and the camera (70) and rice (103) for imaging rice (103) from above are used. Based on the measurement results of both the cameras (117) picked up from the horizontal direction, the growth map (82) of FIG. 6 can be formed to further improve the accuracy of map (82) formation.
[0027]
【The invention's effect】
As is apparent from the above embodiments, the invention according to claim 1 is equipped with a GPS receiver (69), a growth map creation camera (70), and a growth map creation controller (73) mounted on a helicopter (A) as a flying object. The GPS receiver (69), the growth map creation camera (70), and the growth map creation controller (73) are added to the reception controller (60) of the control receiver (13) mounted on the helicopter (A). The operator controls the transmitter (B) for wireless control to fly the helicopter (A) while the helicopter (A) flies. detecting the growth conditions of the rice (103), growth of rice (103) of the field (76) wherein the growth mapping controller (73) based on the growth conditions of the rice (103) In precision farming for forming the FIG (82), connecting the helicopter strut for leg (4) of the (A) (15) and fertilization frame in a connecting part between the main frame (8) (23), the fertilization frame (23) through which the fertilization tank (7) is disposed below the fuselage of the helicopter (A), the growth map creation camera (70) is disposed below the front part of the main frame (8), The growth map creation camera (70) is operated by operating the growth map switch (72) provided in the transmitter (B), and the image of the growth map creation camera (70) as a color sensor is used to image the field (76). The chlorophyll content of rice (103) is detected, and based on the measured chlorophyll content of rice (103), the growth state of the crop (103) in the field (76) is the growth map (82) of the field (76). Recorded as) Since those, the data obtained by measuring the growth conditions of the rice (103), the error of growth conditions of actual rice (103) can be reduced. That is, by measuring the chlorophyll content of rice (103), it is possible to improve the detection accuracy of the growth status of rice (103) at a specific location. The reliability of the work of creating the map (82) can be improved.
[0028]
The invention according to claim 2 is the same as claim 1 in that the diffusion blade (31) for spreading fertilizer provided below the feeding case (24) on the bottom surface of the fertilizer tank (7) and the diffusion blade (31) are combined. A fertilizer application motor (32) that rotates in a direction and a spray amount motor (37) that opens and closes the outlet of the fertilizer tank (7), and a cover (38) for changing the fertilizer application direction and application width The transmitter (B) has a fertilizer switch (71) for spraying fertilizer in the fertilizer tank (7) while covering the roots of the diffusion feathers (31), and the growing state of the rice (103) in the field (76) Since the fertilizer in the fertilizer tank (7) is sprayed based on the growth map (82) data in which is recorded, prevent the excess or deficiency of fertilizer or control amount for rice (103) in a specific place Can improve fertilization efficiency or control efficiency It is those that can be.
[0029]
[0030]
[0031]
[0032]
[0033]
[Brief description of the drawings]
FIG. 1 is a side view of a helicopter.
FIG. 2 is an explanatory diagram of a fertilization tank.
FIG. 3 is a transmission circuit diagram.
FIG. 4 is a reception circuit diagram.
FIG. 5 is an explanatory diagram of a farm field.
FIG. 6 is an explanatory diagram of a growth map.
FIG. 7 is a side view of the passenger management work vehicle.
FIG. 8 is a plan view of the same.
FIG. 9 is a distribution control circuit diagram.
[Explanation of symbols]
(A) Helicopter (aircraft)
(B) Transmitter
(4) Leg
(7) Fertilizer tank
(8) Main frame
(13) Control receiver
(15) Prop
(23) Fertilization frame
(24) Feeding case
(31) Diffusion blade
(32) Fertilizer motor
(37) Spreading amount motor
(38) Side cover
(60) Reception controller
(69) GPS receiver (70) Growth mapping camera
(71) Fertilizer switch
(72) Growth map switch
(73) Growth map creation controller (76) Farm field (82) Growth map (83) Traveling vehicle (traveling body)
(103) Rice (crop)

Claims (2)

GPS受信機及び成育地図作成カメラ及び成育地図作成コントローラが飛行体に搭載され、前記飛行体に搭載した制御用受信機の受信コントローラに、前記GPS受信機及び前記成育地図作成カメラ及び前記成育地図作成コントローラを接続し、無線操縦用の送信機を操縦者が手元操作して、前記飛行体を飛行させる一方、
前記成育地図作成カメラの空中撮像によって圃場の作物の成育状況を検出し、その作物の成育状況に基づいて前記成育地図作成コントローラによって圃場の作物の成育地図を形成する精密農法において、
前記飛行体の脚体用の支柱とメインフレームとの連結部に施肥フレームを連結し、その施肥フレームを介して前記飛行体の胴体の下方に施肥タンクを配置し、前記メインフレームの前部の下側に前記成育地図作成カメラを配置し、
前記送信機に設けた成育地図スイッチの操作によって前記成育地図作成カメラを作動し、カラーセンサとしての前記成育地図作成カメラの撮像によって、圃場の作物の葉緑素の含有量を検出し、測定された葉緑素の含有量に基づいて圃場の作物の成育状態が圃場の成育地図として記録されることを特徴とする精密農法。
A GPS receiver, a growth map creation camera, and a growth map creation controller are mounted on a flying object, and the GPS receiver, the growth map creation camera, and the growth map creation are included in a reception controller of a control receiver mounted on the flying object. The controller is connected, and the operator operates the transmitter for wireless operation to fly the flying object,
In the precision farming method of detecting the growth situation of the crop in the field by aerial imaging of the growth mapping camera, and forming the growth map of the crop in the field by the growth mapping controller based on the growth situation of the crop ,
A fertilization frame is connected to a connecting portion between a support for a leg of the flying body and a main frame, a fertilization tank is disposed below the fuselage of the flying body via the fertilization frame, and a front portion of the main frame is arranged. Place the growth mapping camera on the bottom,
The growth map creation camera is operated by operating the growth map switch provided in the transmitter, and the chlorophyll content of the crop in the field is detected by the imaging of the growth map creation camera as a color sensor. A precise farming method in which the growth state of the crop in the field is recorded as a growth map of the field based on the content of the field .
前記施肥タンクの底面の繰出ケースの下方に設ける肥料散布用の拡散羽根と、拡散羽根を一方向に回転させる施肥モータと、前記施肥タンクの出口を開閉する散布量モータとを配置し、肥料の散布方向及び散布幅を変更するためのカバーによって前記拡散羽根を覆う一方、
前記送信機は、前記施肥タンク内の肥料を散布する施肥スイッチを有し、圃場の作物の成育状態が記録された成育地図データに基づいて前記施肥タンク内の肥料が散布されることを特徴とする請求項1に記載の精密農法。
A fertilizer spreading diffusion blade provided below the feed case on the bottom surface of the fertilizer tank, a fertilizer motor that rotates the diffusion blade in one direction, and a spray amount motor that opens and closes the outlet of the fertilizer tank are disposed. While covering the diffusion blade with a cover for changing the spreading direction and spreading width,
The transmitter has a fertilizer switch for spraying fertilizer in the fertilizer tank, and the fertilizer in the fertilizer tank is sprayed based on the growth map data in which the growth state of the crop in the field is recorded The precision farming method according to claim 1.
JP05884998A 1998-02-23 1998-02-23 Precision farming Expired - Fee Related JP3932222B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05884998A JP3932222B2 (en) 1998-02-23 1998-02-23 Precision farming

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05884998A JP3932222B2 (en) 1998-02-23 1998-02-23 Precision farming

Publications (2)

Publication Number Publication Date
JPH11235124A JPH11235124A (en) 1999-08-31
JP3932222B2 true JP3932222B2 (en) 2007-06-20

Family

ID=13096133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05884998A Expired - Fee Related JP3932222B2 (en) 1998-02-23 1998-02-23 Precision farming

Country Status (1)

Country Link
JP (1) JP3932222B2 (en)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001120151A (en) * 1999-10-27 2001-05-08 Nec Corp Automatic agrochemical spraying device with radio controlled helicopter using gps
JP2001251906A (en) * 2000-03-14 2001-09-18 Yanmar Agricult Equip Co Ltd Working vehicle for agriculture
JP4020293B2 (en) * 2001-11-19 2007-12-12 富士重工業株式会社 Method and apparatus for evaluating results of spraying of flying object by flying object
JP2004229633A (en) * 2003-01-31 2004-08-19 Sasaki Corporation Fertilizer distributor
JP2007272085A (en) * 2006-03-31 2007-10-18 Pioneer Electronic Corp Information display device, information display method, and program for information display
CN103636582A (en) * 2013-11-06 2014-03-19 苏州迪芬德物联网科技有限公司 Electronic spraying rod for automatically spraying pesticide in agricultural greenhouse
CN106954385B (en) 2015-01-09 2020-07-28 麦克赛尔控股株式会社 Plant information acquisition system, plant information acquisition device, and plant information acquisition method
JP6662570B2 (en) * 2015-01-09 2020-03-11 マクセルホールディングス株式会社 Plant information acquisition system, plant information acquisition device, and plant information acquisition method
IL236606B (en) 2015-01-11 2020-09-30 Gornik Amihay Systems and methods for agricultural monitoring
JP6555781B2 (en) * 2015-05-29 2019-08-07 株式会社笑農和 Water level management system
JP6621140B2 (en) * 2016-02-16 2019-12-18 株式会社ナイルワークス Method and program for spraying medicine by unmanned air vehicle
WO2017175804A1 (en) * 2016-04-08 2017-10-12 株式会社ナイルワークス Method for chemical spraying using unmanned aerial vehicle, program, and device
JP6822790B2 (en) * 2016-06-28 2021-01-27 日本ユニシス株式会社 Automatic anti-frost system using drone
WO2018003082A1 (en) * 2016-06-30 2018-01-04 株式会社オプティム Mobile body control application and mobile body control method
JP2018066616A (en) * 2016-10-18 2018-04-26 ヤンマー株式会社 Soil diagnostic method and soil condition improvement method
JP6805928B2 (en) * 2017-03-28 2020-12-23 井関農機株式会社 Work management system for work vehicles
WO2018189848A1 (en) * 2017-04-12 2018-10-18 株式会社ナイルワークス Method for spraying chemical by unmanned flight vehicle, and program
JOP20190145A1 (en) * 2017-06-14 2019-06-16 Grow Solutions Tech Llc Systems and methods for bypassing harvesting for a grow pod
JP6975936B2 (en) * 2017-08-28 2021-12-01 パナソニックIpマネジメント株式会社 Sprayer
US11793175B2 (en) * 2017-10-10 2023-10-24 Basf Se Method for monitoring at least one aquaculture pond and aquaculture pond monitoring system
CN108271493B (en) * 2018-02-11 2024-03-12 华南农业大学 Tea garden spraying system and spraying method based on unmanned aerial vehicle
WO2020157879A1 (en) * 2019-01-30 2020-08-06 株式会社オプティム Computer system, crop growth assistance method, and program
WO2020174645A1 (en) * 2019-02-28 2020-09-03 株式会社オプティム Computer system, pest detection method, program
CN111418296A (en) * 2019-03-01 2020-07-17 中国石油大学(华东) Intelligent reclamation system for abandoned well sites in oil fields
JP6765109B2 (en) * 2019-03-08 2020-10-07 Assest株式会社 Agricultural system
BR112021017500A2 (en) * 2019-03-27 2021-11-16 Sumitomo Chemical Co Method for weed control
AU2020248763A1 (en) * 2019-03-27 2021-11-18 Sumitomo Chemical Company, Limited Method for controlling weeds
US20210186005A1 (en) * 2019-12-21 2021-06-24 Verdant Robotics Inc. Agricultural delivery system to apply one or more treatments with micro-precision to agricultural objects autonomously
CN113592279B (en) * 2021-07-23 2024-01-12 北京百瑞盛田环保科技发展有限公司 Pesticide spraying remote monitoring method, server and computer readable storage medium

Also Published As

Publication number Publication date
JPH11235124A (en) 1999-08-31

Similar Documents

Publication Publication Date Title
JP3932222B2 (en) Precision farming
US10542666B2 (en) Autonomous or remote-controlled vehicle platform for planting
US8655559B2 (en) Agricultural autopilot path adjustment
JP6312416B2 (en) Field work machine
JP6704130B2 (en) Agricultural work support system
US8738244B2 (en) Agricultural machine having a system for automatic setting of a working parameter, and associated method
US8924030B2 (en) Method and apparatus for optimization of agricultural field operations using weather, product and environmental information
KR20200096503A (en) Slip determination system, travel path generation system, and pavement vehicle
US20090099737A1 (en) Method and apparatus for optimization of agricultural field operations using weather, product and environmental information
EP3406125B1 (en) Autonomous or remote controlled vehicle platform for planting
CN206590122U (en) A kind of automatic dispenser system of rotor wing unmanned aerial vehicle based on measurement in space
EP3987927A1 (en) System confidence display and control for mobile machines
US20210272255A1 (en) System and method for determining residue coverage within a field based on pre-harvest image data
Pota et al. Agricultural robotics: A streamlined approach to realization of autonomous farming
JP6694017B2 (en) Rice transplanter
JP2001251906A (en) Working vehicle for agriculture
JP6508232B2 (en) Scattering system
JP7337615B2 (en) Agricultural work support system
JP7387347B2 (en) Farming support system
JP7206161B2 (en) Field work machine and plowed soil depth information calculation system
JP7309546B2 (en) Flying object dispersion support device
JP7443209B2 (en) Automatic driving support device
JP7066250B1 (en) Agricultural work support system
RU2808295C1 (en) Unmanned aerial vehicle for spraying pesticides on row crops
EP4256957A1 (en) Predictive weed map and material application machine control

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040604

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040827

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20041109

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20041109

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20050322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060920

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070312

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100323

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100323

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110323

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees