JP3930987B2 - Compressed air production facility and operation method thereof - Google Patents

Compressed air production facility and operation method thereof Download PDF

Info

Publication number
JP3930987B2
JP3930987B2 JP34136398A JP34136398A JP3930987B2 JP 3930987 B2 JP3930987 B2 JP 3930987B2 JP 34136398 A JP34136398 A JP 34136398A JP 34136398 A JP34136398 A JP 34136398A JP 3930987 B2 JP3930987 B2 JP 3930987B2
Authority
JP
Japan
Prior art keywords
compressor
control
pressure
compressed air
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP34136398A
Other languages
Japanese (ja)
Other versions
JP2000161237A (en
Inventor
征和 長谷
優和 青木
洋幸 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Industrial Equipment Systems Co Ltd
Original Assignee
Hitachi Industrial Equipment Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Industrial Equipment Systems Co Ltd filed Critical Hitachi Industrial Equipment Systems Co Ltd
Priority to JP34136398A priority Critical patent/JP3930987B2/en
Publication of JP2000161237A publication Critical patent/JP2000161237A/en
Application granted granted Critical
Publication of JP3930987B2 publication Critical patent/JP3930987B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/02Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids specially adapted for several pumps connected in series or in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/08Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by varying the rotational speed

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、容量制御可能な圧縮空気製造設備及びその運転方法に係り、特に、回転速度を変化させて圧縮機容量を調整する圧縮機と、定回転速度で運転する圧縮機とを組み合わせて容量制御する圧縮空気製造設備及びその運転方法に関する。
【0002】
【従来の技術】
従来の圧縮空気製造設備の一例が、特開平9−250485号公報に開示されている。この公報に記載の圧縮機では、圧縮空気の吐出圧力を検出する圧力センサーが圧縮機出口に設けられており、PID制御を用いて圧縮機の回転数を変化させ、圧縮機を容量制御している。
【0003】
【発明が解決しようとする課題】
上記従来の技術においては、圧縮機を単独で運転したときには、圧縮機の回転速度一定として容量制御するそれまでの方法に対し消費動力を大幅に低減している。しかしながら、圧縮機を複数台並列に接続して運転する圧縮空気製造設備では、ある程度の省電力効果は得られるものの、それまでの複数台運転制御に比較してもそれほど大きな消費電力低減が得られない、という不具合があった。
【0004】
本発明は上記従来技術の不具合に鑑みなされたものであり、その目的は圧縮空気製造設備において、複数台の圧縮機を並列に運転するときの動力消費を極力低減することにある。本発明の他の目的は、複雑な構成を採用しなくとも圧縮空気製造設備において、省電力を達成することにある。
【0005】
【課題を解決するための手段】
上記目的を達成するための本発明の第1の特徴は、少なくとも1台の回転速度可変の圧縮機と、少なくとも1台の固定回転速度の圧縮機とを備えた圧縮空気製造設備において、可変速度圧縮機及び前記固定速度圧縮機の各々から吐出される吐出空気をその吐出側で合流させる手段と、この合流した吐出空気の圧力を検出する圧力検出手段と、この検出圧力と予め設定された圧力とに基づいて圧縮機を停止または始動させる制御手段とを設け、この制御手段は固定速度圧縮機がすべて停止したあとで可変速度圧縮機を停止させ、固定速度圧縮機及び可変速度圧縮機の各々から吐出される吐出空気の圧力を検出する個別吐出圧力検出手段を設け、前記吐出圧力検出手段に不具合が発生したときにはこの個別吐出圧力検出手段の検出圧力に基づいて、制御手段が各圧縮機を制御するものである。
【0006】
そして、可変速度圧縮機は吸い込み絞り弁を備え、制御手段は、この可変速度圧縮機の回転速度が所定回転速度に低下するまでは回転速度を変えて圧縮機の容量を制御し、所定回転速度に達すると吸込み絞り弁により圧縮機の容量を制御する;合流手段の近傍に吐出圧力を制御する制御弁を設け、制御手段は、可変速度圧縮機が所定回転速度に達したら、吸込み絞り弁を閉じ、制御弁を用いて吐出圧力を低下させるよう制御し、固定速度圧縮機及び可変速度圧縮機の各々から吐出される吐出空気の圧力を検出する個別吐出圧力検出手段を設け、前記吐出圧力検出手段に不具合が発生したときにはこの個別吐出圧力検出手段の検出圧力に基づいて、制御手段が各圧縮機を制御する;制御手段は、少なくとも1台の固定速度圧縮機の始動及び停止の少なくともいずれかの手順を記憶する記憶手段を有することが望ましい。
【0010】
【発明の実施の形態】
本発明のいくつかの実施例を、図面を用いて説明する。図1は、本発明に係る圧縮空気製造設備の一実施例のブロック図である。図2は、この図1に示した圧縮空気製造設備を運転するときのタイミングチャートの一例であり、いわゆるターンバック制御の例である。さらに、図5ないし図7は、ターンバック制御のフローチャート図である。
【0011】
本実施例は、3台の電動機で駆動される圧縮機を備えた圧縮空気製造設備であるが、台数は3に限るものでないことは言うまでもない。また、圧縮機としては、スクリュー圧縮機を前提としているが、これに限るものではない。ACV、BCC、CCC号機からなる3台の圧縮機の中で、ACV号機は電動機の回転速度が可変の可変速圧縮機である。BCC号機およびCCC号機は、電動機の回転速度が一定の圧縮機である。各圧縮機で圧縮された空気は、各圧縮機の出口部で集合されて空気槽1に導かれ、圧縮空気使用ラインに供給される。
【0012】
空気槽1には圧力センサーZSが取り付けられており、この信号は制御装置ACに取り込まれる。制御装置AC、BC、CCには予め制御上限圧力Hと制御下限圧力Lが設定されている。通常運転では、圧力センサーZSが検出した圧力と、制御装置ACに記憶された制御上限圧力Hおよび制御下限圧力Lを常時比較する。
【0013】
また、制御装置AC、BC、CCに運転する圧縮機の順序を予め設定しておく。例えば、ACV号機(最上位機)からCCC号機(最下位機)へACV→BCC→CCCの順に運転する。圧縮機の運転中に、空気槽の圧力が制御下限圧力Lより高く、制御上限圧力H未満であれば、圧縮機ACV号機は回転数制御を含む容量制御を行い、圧縮機BCC号機およびCCC号機は容量制御を行わずに全負荷で運転する。空気槽1の圧力が制御上限圧力H以上になったことを圧力センサーZSが検出したら、制御装置ACはAタイマーの積算を開始する。
【0014】
積算開始から制御装置ACに予め設定した時間が経過すると、制御装置ACから制御装置BCおよび制御装置CCをこの順で経由して、最終的に制御装置CCに圧縮機CCC号機を停止させる信号を発生させる指令が送られ、制御装置CCが圧縮機CCC号機を停止させる。圧縮機を停止させる信号を発する前に、圧力が制御上限圧力H以下になった場合は、Aタイマーを0にリセットする。圧縮空気製造設備から吐出される空気量より消費量が減少して、圧力が制御上限圧力Hに到達する毎に、この動作を繰り返し、末端の圧縮機から順次停止させる。
【0015】
これとは逆に、圧力センサーZSが圧力が制御下限圧力L以下であることを検出したときは、制御装置ACはBタイマーの積算を開始する。積算開始時間から制御装置ACに予め設定した時間が経過したら、停止順とは逆の順序、つまり上位側から圧縮機を始動する指令を制御装置ACが指令する。そして、始動する圧縮機が圧縮機ACV号機の場合には、圧縮機ACV号機を回転数制御を含む容量制御する。始動する圧縮機が、圧縮機BCC号機より末端側なら、全負荷運転する。圧縮機を始動する前に圧力が制御下限圧力L以上になったら、Bタイマーを0にリセットする。ここで、Aタイマー及びBタイマーの設定時間は、圧縮空気製造設備の安定性等を考慮して任意に設定できる。
【0016】
容量制御する圧縮機ACV号機は、圧力が一定になるように回転数を変化させて運転する。圧縮機ACV号機の回転速度可変範囲は、図2に示したように、30〜100%に設定している。この制御圧力は制御下限圧力Lと制御上限圧力Hの間の任意の圧力に設定する。この圧力も圧力センサーZSで検出する。以上の制御の様子は図5から図7に示したフローチャートに詳しいが、図5は圧縮機ACV号機の運転に関するフローチャートであり、図6は圧縮機BCC号機の運転に関するフローチャート、図7は圧縮機CCC号機の運転に関するフローチャートである。なお、圧縮機の運転台数が、4台以上になったときには、図7に示した圧縮機CCC号機の制御フローチャートと同様な手順を踏んで、各圧縮機DCC,ECC,・・・を制御する。
【0017】
図3に、圧縮空気製造設備を、上記実施例とは異なる制御法を用いて制御するときのタイミングチャートを示す。圧縮空気設備としては、図1に示した設備を用いている。この制御法は、いわゆるロータリー制御といわれる制御である。図8及び図9に、ロータリー制御時のフローチャートを示す。
【0018】
制御装置AC、BC、CCはターンバック制御機能と、下記のロータリー制御機能の双方を備えている。各制御装置AC、BC、CCに、始動及び停止する圧縮機の順序を予め設定する。例えば、圧縮機ACV号機(最上位機)を始動し、その後圧縮機BCC号機、次いで圧縮機CCC号機(最下位機)をACV→BCC→CCC順で始動する点は、上記ターンバック制御と同一である。
【0019】
圧縮機の運転中に空気槽の圧力が制御下限圧力Lより高く、制御上限圧力H未満であれば、圧縮機ACV号機について回転数制御を含む容量制御し、圧縮機BCC号機および圧縮機CCC号機を容量制御せずに全負荷で運転する点も、上記ターンバック制御と同じである。ただし、容量制御運転に入ると、回転速度制御可能な圧縮機ACV号機を除いて、常に圧縮機BCC号機を先に、圧縮機CCC号機を後に始動、または停止する。すなわち、容量が低下するときは、圧縮機BCC号機を先に停止し、圧縮機CCC号機を後に停止する。また、運転再開も圧縮機BCC号機を先に始動し、圧縮機CCC号機を後に始動する。この詳細を以下に示す。
【0020】
空気槽1の圧力が制御上限圧力H以上になったことを圧力センサーZSが検出したら、制御装置ACはAタイマーの積算を開始する。積算開始から制御装置ACに予め設定した時間が経過すると、制御装置ACが、制御装置BCおよび制御装置CCの順に各制御装置を経由して、圧縮機ACV号機を除く最後に停止した号機の次の号機の制御装置に圧縮機を停止させる指令を送信し、この号機の圧縮機を停止する。最後に停止した号機が最終号機(最下位機)の場合は、圧縮機BCC号機に戻る。圧縮機ACV号機を除く全ての圧縮機が停止しているときは、圧縮機ACV号機を停止させる。圧縮機を停止する信号を発する前に、圧力が制御上限圧力H以下になったときは、Aタイマーを0にリセットする。圧縮空気製造設備から吐出される空気量より、消費量が減少して圧力が制御上限圧力Hに到達する毎に、この動作を繰り返し順次圧縮機を停止する。
【0021】
これとは逆に、圧力が制御下限圧力L以下になったことを圧力センサーZSが検出したら、制御装置ACはBタイマーの積算を開始する。積算開始時間から、制御装置ACに予め設定された時間が経過すると、制御装置ACから制御装置BC、次いで制御装置CCの順に各制御装置を経由して、圧縮機ACV号機を除く最後に始動した号機の次の号機の制御装置に圧縮機を始動させる指令が送られる。そして、停止指令に対応した制御装置が、対応の圧縮機を停止させる。
【0022】
ここで、最後に始動した号機が最終号機(最下位機)であるか、またはまだ圧縮機BCC号機以降全て運転していなければ圧縮機BCC号機を停止させる。圧縮機ACV号機が停止しているときは、圧縮機ACV号機を始動させる。
【0023】
始動した圧縮機が圧縮機ACV号機の場合は回転数制御を含む容量制御をし、圧縮機BCC号機以降の場合は全負荷運転する。圧縮機を始動させる前に圧力が制御下限圧力L以上になったときは、Bタイマーを0にリセットする。以上の制御については、図8及び図9にフローチャートの詳細を示している。
【0024】
図8は、圧縮機ACV号機に関する制御のフローチャートであり、図9は代表的に圧縮機BCC号機に関する制御のフローチャートを示したものである。圧縮機CCC号機に関しては、図9と同様の制御のフローチャートとなる。また、圧縮機の台数が4台以上の場合には、増加した分の制御のフローチャートは図9と同様である。さらに、図3は制御のタイミングチャートであり、図2に示したターンバック制御に比べて、圧縮機BCC号機及びCCC号機の始動、停止タイミングが相違している点がロータリー制御の特徴である。なお、この図3のロータリー制御においても、圧縮機ACV号機の回転速度制御範囲を30〜100%に設定している。
【0025】
ターンバック制御は、各圧縮機の最大吐出空気量が違う場合に採用すると有効であり、圧縮機ACV号機を除く他の圧縮機の最大吐出空気量の多い機種から、BCC号機、CCC号機と順に定めるのが良い。一方、ロータリー制御は、圧縮機ACV号機を除く各圧縮機の運転時間を平均化できるので、ほぼ同一の圧縮機を複数台採用するときに特に有効である。
【0026】
圧縮機ACV号機以外の圧縮機が故障したら、その故障した圧縮機の制御装置を上記ターンバック制御またはロータリー制御の制御システムから切り離す。このとき、故障した圧縮機より優先度が下位の号機の圧縮機の始動・停止については、圧縮機ACV号機からの指令が、優先度が最下位の圧縮機の制御装置、次いで最下位より一つ手前の圧縮機の制御装置という具合に伝達されるように、優先度の最下位から順次優先度が上位の制御装置を経由するようにする。
【0027】
圧力センサーZSが故障した場合は、圧力センサーZSを上記ターンバック制御またはロータリ制御の制御システムから切り離し、制御に係る圧力を圧縮機ACV号機の圧力センサーASで検出するようにする。さらに圧力センサーASも故障した場合には、圧力センサーASも制御システムから切り離し、制御に係る圧力を圧縮機BCC号機の圧力センサーBSで検出するようにする。この場合、制御装置BCから制御装置ACに圧力の検出値を伝え、制御装置ACはその圧力値に基づいて制御する。この結果、圧縮空気製造設備の全ての圧力センサーが故障するまで、安定して圧縮空気製造設備を容量制御することができる。
【0028】
圧縮機ACV号機が故障したときは、全ての圧縮機を制御システムから切り離す。そして、圧縮機ACV号機以外の各圧縮機を、それぞれが有する圧力センサーで、独立に容量制御する。
【0029】
図10及び図11に、本圧縮空気製造設備に用いる圧縮機1台についての、使用空気量Qと消費動力LDの関係を示す。これらの図において、全負荷時の吐出し空気量を100%、そのときの圧縮機の消費動力を100%と正規化して示している。
【0030】
図10は、圧縮機の回転速度を一定にし、圧縮機の吸込側に設けた絞り弁の開度を変えて流量調整したときの消費動力の変化を示した図である。図11は、回転速度を可変にした圧縮機を用いて、圧縮機の流量調整したときの消費動力の変化を示した図である。空気量が、30%〜100%の範囲では回転速度制御し、30%以下の空気量範囲では、図10と同様の吸込絞りにより流量調整している。圧縮機1台のみを用いるときには、図11に示した回転速度制御併用の方が大幅に容量制御特性に優れている。そして、負荷変動時の電力消費を大きく改善できる。
【0031】
ところで、圧縮機の回転速度が一定の吸込絞り方式の圧縮機を5台採用し、その中の1台のみを容量制御し、他は全負荷運転させると、図4においてIIで示した消費動力特性となる。これは、従来の圧縮機の台数制御方法として広く用いられている制御方法である。
【0032】
また、回転速度可変の5台の圧縮機を単純に並列運転すると、図4においてIで示した消費動力特性が得られる。この図4におけるIとIIの比較においては、部分的にIIの方が消費動力が下回るところがあり、必ずしも回転速度可変による制御方法が省電力面で吸込み絞り制御に比べて優位であるとは言えない。
【0033】
以上に対し、本発明の圧縮空気製造設備では、回転速度が可変の圧縮機1台と、回転速度が一定の圧縮機複数台とを備えているので、図4においてIIIで示した消費動力特性を得ることが可能となる。すなわち、複数台の圧縮機を備えた圧縮空気製造設備においても、消費空気量に対してほぼ直線的に消費動力が低下する理想的な消費動力特性を得ることができる。
【0034】
この場合、回転速度可変の圧縮機5台を用いるIIの方式と比較すると、図4において傾斜部が省電力となる。具体的には、37kWの圧縮機5台を用いる場合、本発明の実施例のほうが、最大18kWhだけ省電力となる。これは、図10のP点と図11のQ点との差に相当する。なお、この比較は圧縮機5台の場合であるが、圧縮機の台数がこれ以外でも、台数に応じて省電力となることは言うまでもない。
【0035】
また、回転速度可変の圧縮機は、吐出圧力を一定値にするように制御を行わせることができるため、この設定圧力を制御下限圧力Lより少し高く設定しておけば、無駄な圧力上昇を防止し、この面でも消費電力を軽減することが可能である。
【0036】
【発明の効果】
本発明によれば、複数台の圧縮機を有する圧縮空気製造設備において、回転速度が可変の圧縮機を最小数備えただけで、使用空気量の減少に対応してほぼ直線的に消費動力を減少させることが可能になり、容量制御による無駄な消費動力を低減できる。
【図面の簡単な説明】
【図1】本発明に係る圧縮空気製造設備の一実施例のブロック図。
【図2】図1に示した実施例をターンバック制御したときのタイムチャート。
【図3】図1に示した実施例をロータリー制御したときのタイムチャート。
【図4】圧縮空気製造設備の消費動力特性を説明する図。
【図5】図1に示した実施例をターンバック制御するときのフローチャート。
【図6】図1に示した実施例をターンバック制御するときのフローチャート。
【図7】図1に示した実施例をターンバック制御するときのフローチャート。
【図8】図1に示した実施例をロータリー制御するときのフローチャート。
【図9】図1に示した実施例をロータリー制御するときのフローチャート。
【図10】圧縮機の消費動力特性を説明する図。
【図11】圧縮機の消費動力特性を説明する図。
【符号の説明】
1…空気槽、
S,BS,CS,ZS…圧力センサー、
C,BC,CC…制御装置、
CV…可変回転速度圧縮機、
CC,CCC,DCC,ECC…固定回転速度圧縮機、
H…制御上限圧力、L…制御下限圧力。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a capacity-controllable compressed air production facility and an operation method thereof, and in particular, a combination of a compressor that adjusts the compressor capacity by changing the rotational speed and a compressor that operates at a constant rotational speed. The present invention relates to a compressed air production facility to be controlled and an operation method thereof.
[0002]
[Prior art]
An example of a conventional compressed air production facility is disclosed in JP-A-9-250485. In the compressor described in this publication, a pressure sensor for detecting the discharge pressure of compressed air is provided at the compressor outlet, and the compressor speed is changed using PID control to control the capacity of the compressor. Yes.
[0003]
[Problems to be solved by the invention]
In the above prior art, when the compressor is operated alone, the power consumption is greatly reduced as compared with the conventional methods in which the capacity is controlled with the compressor rotating speed constant. However, in compressed air production equipment that operates by connecting multiple compressors in parallel, a certain level of power saving effect can be obtained, but a significant reduction in power consumption can be obtained compared to the conventional multiple-unit operation control. There was a problem of not.
[0004]
The present invention has been made in view of the above-described problems of the prior art, and an object thereof is to reduce power consumption as much as possible when a plurality of compressors are operated in parallel in a compressed air production facility. Another object of the present invention is to achieve power saving in a compressed air production facility without employing a complicated configuration.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, a first feature of the present invention is that in a compressed air production facility comprising at least one compressor having a variable rotational speed and at least one compressor having a fixed rotational speed, a variable speed is provided. A means for joining the discharge air discharged from each of the compressor and the fixed speed compressor on its discharge side, a pressure detection means for detecting the pressure of the joined discharge air, and the detected pressure and a preset pressure And a control means for stopping or starting the compressor based on the above, the control means stopping the variable speed compressor after all the fixed speed compressors are stopped, and each of the fixed speed compressor and the variable speed compressor. An individual discharge pressure detecting means for detecting the pressure of the discharge air discharged from the exhaust gas is provided, and when a failure occurs in the discharge pressure detecting means, based on the detected pressure of the individual discharge pressure detecting means In which the control means controls the respective compressors.
[0006]
The variable speed compressor is provided with a suction throttle valve, and the control means controls the capacity of the compressor by changing the rotation speed until the rotation speed of the variable speed compressor decreases to the predetermined rotation speed. When the variable speed compressor reaches a predetermined rotational speed, the control means controls the suction throttle valve to control the capacity of the compressor by the suction throttle valve. Closed and controlled to reduce the discharge pressure using a control valve, and provided with individual discharge pressure detection means for detecting the pressure of the discharge air discharged from each of the fixed speed compressor and the variable speed compressor, the discharge pressure detection when a defect occurs in means on the basis of the detected pressure of the separate discharge pressure detecting means, the control means controls the respective compressor; control means, starting and stopping at least one fixed speed compressor It is desirable to have a storage means for storing at least one procedure.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Several embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram of an embodiment of a compressed air production facility according to the present invention. FIG. 2 is an example of a timing chart when the compressed air production facility shown in FIG. 1 is operated, and is an example of so-called turnback control. Further, FIGS. 5 to 7 are flowcharts of the turnback control.
[0011]
The present embodiment is a compressed air production facility provided with a compressor driven by three electric motors, but it goes without saying that the number is not limited to three. Moreover, although the screw compressor is assumed as a compressor, it is not restricted to this. Among the three compressors consisting of A CV , B CC and C CC machines, A CV machine is a variable speed compressor in which the rotation speed of the motor is variable. The B CC machine and the C CC machine are compressors in which the rotation speed of the electric motor is constant. The air compressed by each compressor is gathered at the outlet of each compressor, led to the air tank 1, and supplied to the compressed air use line.
[0012]
The air tank 1 is attached a pressure sensor Z S, the signal is received by the control unit A C. A control upper limit pressure H and a control lower limit pressure L are set in advance in the control devices A C , B C and C C. In normal operation, the pressure measured by the pressure sensor Z S is detected, comparing a control upper limit pressure H and the control lower limit pressure L stored in the control unit A C at all times.
[0013]
Further, the order of the compressors operating in the control devices A C , B C and C C is set in advance. For example, the A CV machine (the highest machine) is operated in the order of A CV → B CC → C CC from the C CC machine (the lowest machine). If the pressure of the air tank is higher than the control lower limit pressure L and lower than the control upper limit pressure H during the operation of the compressor, the compressor A CV No. performs capacity control including the rotation speed control, and the compressor B CC No. C CC Unit operates at full load without capacity control. After that the pressure of the air tank 1 becomes equal to or greater than the control upper limit pressure H pressure sensor Z S is detected, the controller A C will begin accumulating A timer.
[0014]
When the time previously set in the control unit A C from integration start has elapsed, the controller A control apparatus B C and controller C C from C through in this order, and finally the compressor C CC to the control unit C C unit commands for generating a signal for stopping is sent, the control unit C C stops the compressor C CC unit. If the pressure falls below the control upper limit pressure H before issuing a signal to stop the compressor, the A timer is reset to zero. This operation is repeated each time the pressure reaches the control upper limit pressure H when the amount of consumption decreases from the amount of air discharged from the compressed air production facility, and the compressor is sequentially stopped from the terminal compressor.
[0015]
On the contrary, when the pressure sensor Z S detects that the pressure is equal to or lower than the control lower limit pressure L, the control device A C starts integrating the B timer. After the elapsed time which is previously set in the control unit A C from integration start time, reverse order of the stop order, i.e. the command for starting the compressor from the upper-side control unit A C is commanded. The compressor startup when the compressor A CV Unit is a compressor A CV Unit for capacity control includes a speed control. If the compressor to be started is on the end side of the compressor B CC , full load operation is performed. If the pressure exceeds the control lower limit pressure L before starting the compressor, the B timer is reset to zero. Here, the set times of the A timer and the B timer can be arbitrarily set in consideration of the stability of the compressed air manufacturing facility.
[0016]
The compressor A CV No. which controls capacity is operated by changing the rotation speed so that the pressure becomes constant. The rotation speed variable range of the compressor A CV No. is set to 30 to 100% as shown in FIG. This control pressure is set to an arbitrary pressure between the control lower limit pressure L and the control upper limit pressure H. This pressure is also detected by the pressure sensor Z S. The state of the above control is detailed in the flowchart shown in FIGS. 5-7, FIG. 5 is a flow chart relating to the operation of the compressor A CV Unit, FIG. 6 is a flow chart relating to the operation of the compressor B CC Units 7 It is a flowchart regarding the operation of the compressor CCC . When the number of operating compressors reaches 4 or more, the same procedure as the control flowchart of the compressor C CC shown in FIG. 7 is followed, and the compressors D CC , E CC ,. To control.
[0017]
FIG. 3 shows a timing chart when the compressed air production facility is controlled using a control method different from that of the above embodiment. As the compressed air equipment, the equipment shown in FIG. 1 is used. This control method is a so-called rotary control. 8 and 9 show flowcharts at the time of rotary control.
[0018]
The control devices A C , B C and C C have both a turnback control function and the following rotary control function. The order of the compressors to be started and stopped is preset in each control device A C , B C , C C. For example, start the compressor A CV No. (the highest level machine), then start the compressor B CC No., then the compressor C CC No. (the lowest level machine) in the order A CV → B CC → C CC This is the same as the turnback control.
[0019]
If the pressure of the air tank is higher than the control lower limit pressure L and lower than the control upper limit pressure H during the operation of the compressor, the capacity control including the rotational speed control is performed for the compressor A CV No., and the compressor B CC No. and the compressor The point that the CCC machine is operated at full load without capacity control is the same as the above turnback control. However, when the capacity control operation is started, the compressor B CC is always started first and the compressor C CC is started or stopped, except for the compressor A CV which can control the rotational speed. That is, when the capacity decreases, the compressor B CC No. is stopped first, and the compressor C CC No. is stopped later. In addition, the operation resumed to start the compressor B CC Unit earlier, to start the compressor C CC Unit after. Details are shown below.
[0020]
After that the pressure of the air tank 1 becomes equal to or greater than the control upper limit pressure H pressure sensor Z S is detected, the controller A C will begin accumulating A timer. When a preset time has elapsed in the control device A C from the start of integration, the control device A C finally passes through the control devices in the order of the control device B C and the control device C C , except for the compressor A CV. A command to stop the compressor is transmitted to the control device of the next unit after the stopped unit, and the compressor of this unit is stopped. If the last stopped machine is the last machine (lowest machine), return to the compressor BCC machine. When all the compressors except the compressor A CV are stopped, the compressor A CV is stopped. If the pressure falls below the control upper limit pressure H before issuing a signal to stop the compressor, the A timer is reset to zero. This operation is repeated and the compressor is stopped sequentially each time the amount of consumption decreases from the amount of air discharged from the compressed air production facility and the pressure reaches the control upper limit pressure H.
[0021]
On the contrary, if that the pressure falls below the control lower limit pressure L pressure sensor Z S is detected, the controller A C will begin accumulating B timer. When the time set in advance in the control device A C elapses from the integration start time, the compressor A CV No. is passed through each control device in the order of the control device A C to the control device B C and then the control device C C. A command to start the compressor is sent to the control unit of the next unit after the last started unit. Then, the control device corresponding to the stop command stops the corresponding compressor.
[0022]
Here, the last Unit that started the final Unit or a (lowest machine), or is still stopped compressor B CC Unit unless all compressors B CC No. after driving. When the compressor A CV No. is stopped, the compressor A CV No. is started.
[0023]
If the started compressor is compressor AC CV , capacity control including rotational speed control is performed, and if it is compressor B CC or later, full load operation is performed. If the pressure exceeds the control lower limit pressure L before starting the compressor, the B timer is reset to zero. Details of the above control are shown in flowcharts in FIGS.
[0024]
Figure 8 is a flowchart of control related to the compressor A CV Unit, FIG. 9 shows a flowchart of representative control regarding the compressor B CC Unit. The compressor CCC No. is the same control flowchart as FIG. When the number of compressors is four or more, the control flowchart for the increased amount is the same as FIG. Further, FIG. 3 is a control timing chart. The feature of the rotary control is that the start and stop timings of the compressor B CC and C CC are different from the turnback control shown in FIG. is there. Note that also set the rotary control in Fig. 3, the compressor A CV Unit speed control range 30 to 100%.
[0025]
Turnback control is effective when the maximum discharge air volume of each compressor is different. From the models with a large maximum discharge air volume of other compressors except compressor A CV , BCC No., C CC It is good to decide in order of Unit. On the other hand, the rotary control, it is possible to average the operating time of the compressor except for compressor A CV Unit is particularly effective when a plurality adopt nearly identical compressor.
[0026]
When a compressor other than the compressor A CV fails, the control device for the failed compressor is disconnected from the control system for the turnback control or the rotary control. At this time, the starting and stopping of the failed compressor than the priority is lower Unit compressor, a command from the compressor A CV Unit is, the control unit of priority lowest compressor, then than the lowest The priority is sequentially transmitted from the lowest priority to the higher-order control device so that it is transmitted to the control device of the previous compressor.
[0027]
When the pressure sensor Z S fails, the pressure sensor Z S is disconnected from the control system of the turnback control or the rotary control, and the pressure related to the control is detected by the pressure sensor A S of the compressor A CV . Further, when the pressure sensor A S also fails, the pressure sensor A S is also disconnected from the control system, and the pressure related to the control is detected by the pressure sensor B S of the compressor B CC . In this case, convey the detected value of the pressure in the control unit A C from the control unit B C, the controller A C is controlled based on the pressure value. As a result, the capacity of the compressed air production facility can be stably controlled until all the pressure sensors of the compressed air production facility fail.
[0028]
When compressor A CV No. fails, disconnect all compressors from the control system. And each compressor other than the compressor A CV No. is independently capacity-controlled by the pressure sensor which each has.
[0029]
10 and 11, for the compressor one used in the present compressed air production facility, showing the relation between consumption power L D and using air quantity Q. In these drawings, the amount of discharged air at full load is normalized to 100%, and the power consumption of the compressor at that time is normalized to 100%.
[0030]
FIG. 10 is a diagram showing a change in power consumption when the flow rate is adjusted by changing the opening degree of the throttle valve provided on the suction side of the compressor while keeping the rotation speed of the compressor constant. FIG. 11 is a diagram showing changes in power consumption when the flow rate of the compressor is adjusted using a compressor having a variable rotation speed. When the air amount is in the range of 30% to 100%, the rotational speed is controlled, and in the air amount range of 30% or less, the flow rate is adjusted by the same suction throttle as in FIG. When only one compressor is used, the combined use with the rotational speed control shown in FIG. 11 is significantly superior in capacity control characteristics. And the power consumption at the time of load fluctuation can be greatly improved.
[0031]
By the way, if five compressors with a suction throttle system with a constant compressor rotational speed are adopted, only one of them is capacity-controlled and the others are operated at full load, the power consumption indicated by II in FIG. It becomes a characteristic. This is a control method that is widely used as a conventional method for controlling the number of compressors.
[0032]
Further, when five compressors with variable rotation speed are simply operated in parallel, the power consumption characteristic indicated by I in FIG. 4 is obtained. In the comparison between I and II in FIG. 4, there is a portion where II consumes less power, and it can be said that the control method by varying the rotational speed is necessarily superior to the suction throttle control in terms of power saving. Absent.
[0033]
On the other hand, the compressed air production facility according to the present invention includes one compressor having a variable rotation speed and a plurality of compressors having a constant rotation speed. Therefore, the power consumption characteristic indicated by III in FIG. Can be obtained. That is, even in a compressed air production facility including a plurality of compressors, it is possible to obtain ideal power consumption characteristics in which power consumption decreases almost linearly with respect to the amount of air consumed.
[0034]
In this case, compared with the method II using five compressors with variable rotation speed, the inclined portion in FIG. 4 saves power. Specifically, when five 37 kW compressors are used, the embodiment of the present invention saves power by a maximum of 18 kWh. This corresponds to the difference between the point P in FIG. 10 and the point Q in FIG. In addition, although this comparison is a case of five compressors, it goes without saying that even if the number of compressors is other than this, power is saved according to the number.
[0035]
In addition, since the compressor having a variable rotation speed can be controlled so that the discharge pressure becomes a constant value, if this set pressure is set slightly higher than the control lower limit pressure L, a wasteful pressure increase can be achieved. In this respect, it is possible to reduce power consumption.
[0036]
【The invention's effect】
According to the present invention, in a compressed air production facility having a plurality of compressors, the power consumption is substantially linearly corresponding to the reduction in the amount of air used, with only a minimum number of compressors having a variable rotational speed. It becomes possible to reduce, and the useless power consumption by capacity | capacitance control can be reduced.
[Brief description of the drawings]
FIG. 1 is a block diagram of an embodiment of a compressed air production facility according to the present invention.
FIG. 2 is a time chart when the embodiment shown in FIG. 1 is turned back.
FIG. 3 is a time chart when the embodiment shown in FIG. 1 is rotary controlled.
FIG. 4 is a diagram for explaining consumption power characteristics of compressed air production equipment.
FIG. 5 is a flowchart when performing turnback control in the embodiment shown in FIG. 1;
FIG. 6 is a flowchart when performing turnback control in the embodiment shown in FIG. 1;
FIG. 7 is a flowchart when performing turnback control in the embodiment shown in FIG. 1;
FIG. 8 is a flowchart when the rotary control of the embodiment shown in FIG. 1 is performed.
FIG. 9 is a flowchart when the rotary control according to the embodiment shown in FIG. 1 is performed.
FIG. 10 is a diagram for explaining power consumption characteristics of a compressor.
FIG. 11 is a diagram illustrating power consumption characteristics of a compressor.
[Explanation of symbols]
1 ... Air tank,
A S , B S , C S , Z S ... pressure sensor,
A C, B C, C C ... control device,
A CV ... Variable rotational speed compressor,
B CC , C CC , D CC , E CC ... fixed rotational speed compressor,
H: Control upper limit pressure, L: Control lower limit pressure.

Claims (4)

少なくとも1台の回転速度可変の圧縮機と、少なくとも1台の固定回転速度の圧縮機とを備えた圧縮空気製造設備において、前記可変速度圧縮機及び前記固定速度圧縮機の各々から吐出される吐出空気をその吐出側で合流させる手段と、この合流した吐出空気の圧力を検出する圧力検出手段と、この検出圧力と予め設定された圧力とに基づいて圧縮機を停止または始動させる制御手段とを設け、この制御手段は前記固定速度圧縮機がすべて停止したあとで前記可変速度圧縮機を停止させ、前記固定速度圧縮機及び可変速度圧縮機の各々から吐出される吐出空気の圧力を検出する個別吐出圧力検出手段を設け、前記吐出圧力検出手段に不具合が発生したときにはこの個別吐出圧力検出手段の検出圧力に基づいて、前記制御手段が各圧縮機を制御することを特徴とする圧縮空気製造設備。Discharge discharged from each of the variable speed compressor and the fixed speed compressor in a compressed air production facility comprising at least one compressor having a variable rotation speed and at least one compressor having a fixed rotation speed Means for joining the air on the discharge side, pressure detecting means for detecting the pressure of the joined discharge air, and control means for stopping or starting the compressor based on the detected pressure and a preset pressure. The control means is configured to stop the variable speed compressor after all the fixed speed compressors are stopped, and to detect the pressure of the discharge air discharged from each of the fixed speed compressor and the variable speed compressor. Discharge pressure detection means is provided, and when a malfunction occurs in the discharge pressure detection means, the control means controls each compressor based on the detected pressure of the individual discharge pressure detection means. Compressed air production facility, characterized in that that. 前記可変速度圧縮機は吸い込み絞り弁を備え、前記制御手段は、この可変速度圧縮機の回転速度が所定回転速度に低下するまでは回転速度を変えて圧縮機の容量を制御し、所定回転速度に達すると前記吸込み絞り弁により圧縮機の容量を制御することを特徴とする請求項1に記載の圧縮空気製造設備。The variable speed compressor is provided with a suction throttle valve, and the control means controls the capacity of the compressor by changing the rotation speed until the rotation speed of the variable speed compressor decreases to a predetermined rotation speed, and the predetermined rotation speed The compressed air production facility according to claim 1, wherein the capacity of the compressor is controlled by the suction throttle valve when the pressure reaches the value. 前記合流手段の近傍に吐出圧力を制御する制御弁を設け、前記制御手段は、前記可変速度圧縮機が所定回転速度に達したら、前記吸込み絞り弁を閉じ、前記制御弁を用いて吐出圧力を低下させるよう制御することを特徴とする請求項2に記載の圧縮空気製造設備。A control valve for controlling the discharge pressure is provided in the vicinity of the merging means, and the control means closes the suction throttle valve when the variable speed compressor reaches a predetermined rotational speed, and uses the control valve to control the discharge pressure. It controls so that it may reduce, The compressed air manufacturing equipment of Claim 2 characterized by the above-mentioned. 前記制御手段は、前記少なくとも1台の固定速度圧縮機の始動及び停止の少なくともいずれかの手順を記憶する記憶手段を有することを特徴とする請求項1ないし3のいずれか1項に記載の圧縮空気製造設備。The compression unit according to any one of claims 1 to 3, wherein the control unit includes a storage unit that stores a procedure for starting and stopping the at least one fixed speed compressor. Air production equipment.
JP34136398A 1998-12-01 1998-12-01 Compressed air production facility and operation method thereof Expired - Lifetime JP3930987B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34136398A JP3930987B2 (en) 1998-12-01 1998-12-01 Compressed air production facility and operation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34136398A JP3930987B2 (en) 1998-12-01 1998-12-01 Compressed air production facility and operation method thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007010955A Division JP4627763B2 (en) 2007-01-22 2007-01-22 Compressed air production facility and operation method thereof

Publications (2)

Publication Number Publication Date
JP2000161237A JP2000161237A (en) 2000-06-13
JP3930987B2 true JP3930987B2 (en) 2007-06-13

Family

ID=18345491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34136398A Expired - Lifetime JP3930987B2 (en) 1998-12-01 1998-12-01 Compressed air production facility and operation method thereof

Country Status (1)

Country Link
JP (1) JP3930987B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4520608B2 (en) * 2000-09-20 2010-08-11 株式会社日立プラントテクノロジー Screw compressor
DE10054152C1 (en) * 2000-11-02 2002-03-28 Knorr Bremse Systeme Air compressor management method for rail vehicle has different compressors switched into operation in fixed or variable priority sequence
US7481869B2 (en) 2005-08-17 2009-01-27 Andrew Llc Dry gas production systems for pressurizing a space and methods of operating such systems to produce a dry gas stream
BE1017231A3 (en) * 2006-07-18 2008-05-06 Atlas Copco Airpower Nv METHOD FOR CONTROLLING A COMPRESSED AIR PLANT AND CONTROLLER AND COMPRESSED AIR PLANT FOR USING SUCH METHOD.
JP5016301B2 (en) * 2006-11-28 2012-09-05 北越工業株式会社 Compressor operation control method and compressed gas supply system in compressed gas supply system
JP5211564B2 (en) * 2007-07-09 2013-06-12 株式会社日立プラントテクノロジー Compressor device and control method of compressor device
JP2012202358A (en) * 2011-03-28 2012-10-22 Ihi Compressor & Machinery Co Ltd Automatic control system of multiple loop of compressor group

Also Published As

Publication number Publication date
JP2000161237A (en) 2000-06-13

Similar Documents

Publication Publication Date Title
US6287083B1 (en) Compressed air production facility
JP2591898B2 (en) Control device and control method for main drive unit of compressor
US8894381B2 (en) Compressor capacity control method and device for controlling the capacity of a compressor
JP4924855B1 (en) Compressor number control system
JP3930987B2 (en) Compressed air production facility and operation method thereof
JP3547314B2 (en) Compressed air production equipment
CN103748362A (en) Air compressor
JP5646282B2 (en) Compressor and operation control method thereof
CN103256213B (en) Compressor assembly and method for controlling of operation thereof
JP2004116381A (en) Automatic operation system for air compressor
US4968218A (en) Method of controlling the air output of a screw compressor
JP2675730B2 (en) Variable capacity compressor
JP4627763B2 (en) Compressed air production facility and operation method thereof
JP2002202064A (en) Control method of motor-driven compressor
JP4443109B2 (en) Compressed air production facility
JP4742862B2 (en) Capacity control apparatus and method for inverter-driven positive displacement compressor
JP5915931B2 (en) Compressor number control system
JP4122451B2 (en) Compressed air production system
JP4399655B2 (en) Compressed air production facility
KR100388655B1 (en) Air conditioner control system and control method thereof
JP2001280275A (en) Method for operating screw compressor and the screw compressor
JP3403968B2 (en) Compressed gas supply apparatus and parallel operation control method for compressor
JP4417178B2 (en) Compressed air production system
JP5163962B2 (en) Steam system
CN110566433A (en) Air compressor system and control method thereof

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060510

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070312

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120316

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130316

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130316

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140316

Year of fee payment: 7

EXPY Cancellation because of completion of term