JP3930460B2 - Electric vehicle control device - Google Patents

Electric vehicle control device Download PDF

Info

Publication number
JP3930460B2
JP3930460B2 JP2003199217A JP2003199217A JP3930460B2 JP 3930460 B2 JP3930460 B2 JP 3930460B2 JP 2003199217 A JP2003199217 A JP 2003199217A JP 2003199217 A JP2003199217 A JP 2003199217A JP 3930460 B2 JP3930460 B2 JP 3930460B2
Authority
JP
Japan
Prior art keywords
control
idling
axis
electric vehicle
torque
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003199217A
Other languages
Japanese (ja)
Other versions
JP2005039915A (en
Inventor
博之 萱野
幸雄 植田
重樹 西
寛 西澤
哲朗 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Japan Freight Railway Co
Original Assignee
Mitsubishi Electric Corp
Japan Freight Railway Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp, Japan Freight Railway Co filed Critical Mitsubishi Electric Corp
Priority to JP2003199217A priority Critical patent/JP3930460B2/en
Publication of JP2005039915A publication Critical patent/JP2005039915A/en
Application granted granted Critical
Publication of JP3930460B2 publication Critical patent/JP3930460B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、電気車の駆動用電動機の制御、特にVVVFインバータ制御装置の空転滑走制御に関するものである。
【0002】
【従来の技術】
従来、電気車を駆動する電動機の制御として用いるVVVFインバータ装置の制御は、制御対象となる電動機の自軸回転周波数と基準周波数から運転指令に基づくトルクを演算して、上記電動機にトルク指令信号を出力することによって行われる。
このような制御システムにおける空転制御は、空転により急激に変化した上記自軸回転周波数と、基準周波数の偏差から空転状態を検知し、空転再粘着に必要なトルク指令信号を出力して行われるのが一般的である。(例えば、特許文献1参照)。
【0003】
【特許文献1】
特開平09−140003号公報
【0004】
【発明が解決しようとする課題】
上記のような空転制御方式においては、自軸回転周波数の変動を元に空転検知を行っているため、例えばある車軸で空転が発生しても、同一車両内の他の車軸は通常のトルク制御のままで走行する。
そのため、同一台車内における前位軸が空転した場合、台車の軸重移動量が変動して後位軸の軸重が減少し、後位軸への空転が誘発されやすくなる。
そしてこれが引き金となり、台車がピッチング動作を発生させ、さらに空転が誘発されて車両走行性能が低下するという問題があった。
【0005】
この発明は、以上のような問題点を解決するためになされたもので、空転が発生した際、軸重移動量の変動による他の車軸への空転の誘発が回避でき、ピッチング動作を抑制する電気車の制御装置を提供するものである。
【0006】
【課題を解決するための手段】
この発明に係る電気車の制御装置においては、電気車を駆動する電動機と、
この電動機に可変電圧可変周波数の交流を出力するインバータと、
上記電動機の回転速度を検出する速度検出手段と、
この速度検出手段からの回転速度検出値と制御対象軸ではない他軸における制御手段から入力される空転検知情報とに基づいて、制御対象軸のトルクを低減させるよう上記インバータを制御し、台車のピッチング動作を抑制する制御手段とを備えたことを特徴とするものである。
【0007】
【発明の実施の形態】
実施の形態1.
以下、本発明の実施例の基本構成を図1を用いて説明する。
なお、図1の構成は電気車を駆動制御する制御装置のブロック図を示しており、図示していないが通常の編成列車では複数連結して、運転・停止指令やトルク指令は各制御対象軸に伝送されている。
【0008】
通常の力行時には、制御回路14内のトルク制御部25において、運転指令21と基準周波数22または、自軸の周波数23などに応じた力行の出力26を演算し、出力している。
ここで、制御対象軸ではない他軸で空転が発生した場合、その他軸空転検知情報33はピッチング抑制制御部32に入力され、このピッチング抑制制御部32では上記出力26に対し、ピッチング動作を抑制するための制御を行ったトルク指令27を出力する。
【0009】
次に図1に示す電気車の制御装置の動作を説明する。
図2に示すように、まず時刻t1で制御対象軸の主電動機FM1が空転を開始すると、それを検知した空転検知信号#1が上記FM1に対応した制御対象軸の制御回路に入力され、空転制御のためトルクを低減させるようトルク指令#1によってFM1の再粘着制御を行っている。
【0010】
従来ではこのようにFM1の空転制御を行っても、同一車両内の他の動輪軸FM2でもFM1の空転の影響を受けて台車のピッチングが発生し、軸重が低下して空転が誘発される(時刻t2)。
この場合、上記FM1の場合と同様に、FM2が空転した後、これに対応した空転検知信号#2がFM2に対応した制御回路に入力され、トルク指令#2によって空転制御を行うが、この時点ではFM2の空転量が大きくなり、トルク指令#2のトルクは大きく減衰する。
【0011】
しかし、本発明の構成においては、上記FM1で空転検知した信号#1は、FM1に対応する制御回路と同時に 同一車両内の他軸FM2に対応する制御回路にも入力され、ピッチング抑制制御部にて通常のトルク指令に対して、ピッチングを抑制するためにトルクを低減させるようトルク指令#2'を出力する。
【0012】
この場合、上記トルク指令#2に比べてピッチング抑制制御によるトルク指令#2’は、自軸FM2の空転発生以前にFM2のトルクがピッチング抑制のために低減されるため、軸重移動量の変動による空転の誘発が回避でき、#2’に示すようにトルクの低減を最小限に抑えることができる。
のトルク指令#2’では、ピッチングを抑制するための絞り込み目標値に対して、ステップ状にトルクを低減させているが、1次遅れで時定数をもってトルクを低減させることも可能である。
【0013】
以上のように、制御対象軸ではない他軸からの空転検知情報に基づいて、トルク指令を行うピッチング抑制手段を備えることにより、他軸で空転が発生した場合、自軸の空転発生の有無に関わらずトルクが制御されるため、軸重移動量の変動による空転の誘発が回避でき、走行時のトルクの低減を最小限に抑えることによって、連続的に空転が発生する環境下においても、安定した車両走行が可能となる。
【0014】
実施の形態2.
図3は本発明の第2の実施の形態として、特に図4に示すような各主電動機12A〜12Dがインバータ装置11A〜11Dによって個別に制御される車両制御システムにおける構成図を示すものである。
図3における制御回路14A〜14Dには、図1に示す制御回路14がそれぞれに対応し、図1での自軸周波数23は、図3の各主電動機回転数を検出するPGセンサ13A〜13Dからの出力23A〜23Dに相当し、図1での他軸の空転検知情報33は、図3の各制御回路14A〜14D間で伝送される33A〜33Dに相当する。
【0015】
通常の力行時には、制御回路14A〜14D内のそれぞれのトルク制御部で制御対象軸に応じた力行トルク指令27A〜27Dを出力している。
ここで、制御対象軸ではない他軸で空転が発生した場合、例えばINV1の主電動機12Aで空転が発生すると、その情報は制御回路14Aで検知され、自軸のトルク指令27Aによって空転制御を行うと同時に、同一台車内、或いは同一車両内の他の制御回路(ここでは制御回路14B〜14D)へ他軸の空転検知情報33Aとして出力し、この他軸空転検知情報33Aはそれぞれの制御回路14B〜14D内にあるピッチング抑制制御部に入力され、ピッチング動作を抑制するための制御を行ったトルク指令27B〜27Dを出力する。
【0016】
以上のように、個別制御の車両制御システムにおいても、自軸の空転発生有無に関わらず、同一台車内、或いは同一車両内の制御対象軸でない他軸の空転検知情報からピッチング抑制制御を行うため、軸重移動量による空転の誘発が回避でき、走行時のトルクの低減を最小限に抑えることにより、連続的に空転が発生する環境下においても、安定した車両走行を可能とする。
【0017】
実施の形態3.
図5は本発明の第3の実施の形態として、特に図6に示すような各主電動機12E〜12Hがそれぞれ各台車毎にインバータ装置11E、11Fによって制御される車両制御システムにおける構成図を示すものである。
図5における制御回路14E、14Fには、図1に示す制御回路14がそれぞれに対応し、図1での自軸周波数23は、図5の各主電動機回転数を検出するPGセンサ13E〜13Hからの出力23E〜23Hに相当し、図1での他軸の空転検知情報33は、図5の各制御回路14E、14F間で伝送される33E、33Fに相当する。
【0018】
通常の力行時には、制御回路14E、14F内のそれぞれのトルク制御部で制御対象軸に応じた力行トルク指令27E、27Fを演算し、出力している。
ここで、制御対象ではない他台車の動輪軸で空転が発生した場合、例えば主電動機12Gで空転が発生すると、その情報は制御回路14Fで検知され、自軸のトルク指令27Fによって空転制御を行うと同時に、同一車両内の他台車へ他軸の空転検知情報33Fとして出力し、この他軸空転検知情報33Fは制御回路14E内にあるピッチング抑制制御部に入力され、ピッチング動作を抑制するための制御を行ったトルク指令27Eを出力する。
【0019】
以上のように、台車制御の車両制御システムにおいても、同一車両内の制御対象でない他台車の空転検知情報からピッチング抑制制御を行うため、軸重移動量による空転の誘発が回避でき、トルクの低減を最小限に抑えることにより、連続的に空転が発生する環境下においても、安定した車両走行を可能とする。
【0020】
実施の形態4.
図7は本発明の第4の実施の形態の構成図を示すものである。
図7において、他軸の空転検知情報33は、基準となる速度(基準周波数)22と他軸の回転周波数35を取り込み、これらの偏差を監視し、偏差がセット値を上回ったことによって空転検知をする周波数偏差監視部34によって空転検知され、制御回路内部のピッチング抑制制御部32に入力される。
【0021】
なお、上記周波数偏差監視部34では、基準速度と他軸の回転周波数を取り込んで演算しているが本発明はこれに限られるものではなく、基準速度と他軸の回転周波数の加速度信号を取り込んで演算しても同様な効果が得られる。
【0022】
また、本発明の実施例を鉄道を走行する電気車を対象にした制御装置で説明したが、これに限られるものではなく、例えば、道路を走行する電気自動車における制御装置に本発明を適用しても同様な効果が得られる。
【0023】
【発明の効果】
この発明は以上説明したように、
電気車を駆動する電動機と、
この電動機に可変電圧可変周波数の交流を出力するインバータと、
上記電動機の回転速度を検出する速度検出手段と、
この速度検出手段からの回転速度検出値と制御対象軸ではない他軸における制御手段から入力される空転検知情報とに基づいて、制御対象軸のトルクを低減させるよう上記インバータを制御し、台車のピッチング動作を抑制する制御手段とを備えたことにより、
自軸の空転発生の有無に関わらずトルク制御されるため、軸重移動量の変動による空転の誘発が回避でき、トルクの低減を最小限に抑えることにより、連続的に空転が発生する環境下においても、安定した走行が可能となる。
【図面の簡単な説明】
【図1】この発明の実施の形態1の一例を示す制御装置のブロック図である。
【図2】実施の形態1における空転制御時の動作を示すタイムチャートである。
【図3】この発明の実施の形態2の一例を示す制御装置のシステム構成図である。
【図4】実施の形態2における個別電動機制御の電気車システムを示す構成図である。
【図5】この発明の実施の形態3の一例を示す制御装置のシステム構成図である。
【図6】実施の形態3における台車電動機制御の電気車システムを示す構成図である。
【図7】この発明の実施の形態4の一例を示す制御装置のブロック図である。
【符号の説明】
11A〜11F:各軸を制御するインバータ制御装置、 12A〜12H:各軸の主電動機、
13A〜13H:各軸の速度センサ、 14,14A〜14F:制御回路、
15:基準周波数演算部、 21:運転指令、
22:検出または演算された基準周波数(15からの出力)、
23、23A〜23H:自軸の主電動機周波数、 24:周波数偏差監視部、
25:トルク制御部、 26:トルク制御部からの出力信号、
27、27A〜27F:トルク指令、 32:ピッチング抑制制御部、
33、33A〜33F:他軸の空転検知情報、 34:他軸周波数偏差監視部、
35:他軸の主電動機周波数。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to control of an electric motor for driving an electric vehicle, and more particularly to idling control of a VVVF inverter control device.
[0002]
[Prior art]
Conventionally, the control of the VVVF inverter device used as the control of the electric motor that drives the electric vehicle calculates the torque based on the operation command from the own shaft rotation frequency and the reference frequency of the motor to be controlled, and outputs the torque command signal to the motor. This is done by outputting.
The idling control in such a control system is performed by detecting the idling state from the deviation of the own shaft rotation frequency that has changed suddenly due to idling and the reference frequency, and outputting a torque command signal necessary for idling re-adhesion. Is common. (For example, refer to Patent Document 1).
[0003]
[Patent Document 1]
Japanese Patent Laid-Open No. 09-140003
[Problems to be solved by the invention]
In the idling control method as described above, idling detection is performed based on the fluctuation of the own shaft rotation frequency. For example, even if idling occurs on a certain axle, the other axles in the same vehicle are controlled by normal torque control. Drive as is.
Therefore, when the front shaft in the same carriage is idle, the movement of the axle load of the carriage fluctuates, the axle weight of the rear axis is reduced, and idling to the rear axis is easily induced.
This triggers the cart to cause a pitching action, and further causes slipping and lowers the vehicle running performance.
[0005]
The present invention has been made to solve the above problems, and when idling occurs, it is possible to avoid idling to other axles due to fluctuations in the amount of axle load movement, and to suppress pitching operation. An electric vehicle control device is provided.
[0006]
[Means for Solving the Problems]
In the electric vehicle control device according to the present invention, an electric motor that drives the electric vehicle;
An inverter that outputs alternating current of variable voltage and variable frequency to this motor;
Speed detecting means for detecting the rotational speed of the electric motor;
Based on the rotation speed detection value from the speed detection means and the idling detection information input from the control means in the other axis that is not the control target axis, the inverter is controlled to reduce the torque of the control target axis , And a control means for suppressing the pitching operation.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1.
The basic configuration of the embodiment of the present invention will be described below with reference to FIG.
The configuration of FIG. 1 is a block diagram of a control device for driving and controlling an electric vehicle. Although not shown, a plurality of trains are connected in a normal train, and the operation / stop command and torque command are transmitted to each control target axis. Has been transmitted.
[0008]
During normal power running, the torque control unit 25 in the control circuit 14 calculates and outputs a power running output 26 corresponding to the operation command 21 and the reference frequency 22 or the own shaft frequency 23.
Here, when idling occurs on another axis that is not the control target axis, the other axis idling detection information 33 is input to the pitching suppression control unit 32, and the pitching suppression control unit 32 suppresses the pitching operation with respect to the output 26. A torque command 27 for performing control is output.
[0009]
Next, the operation of the electric vehicle control apparatus shown in FIG. 1 will be described.
As shown in FIG. 2, first, when the main motor FM1 of the control target shaft starts idling at time t1, an idling detection signal # 1 that detects this is input to the control circuit of the control target axis corresponding to the FM1, and the idling Re-adhesion control of FM1 is performed by torque command # 1 so as to reduce the torque for control.
[0010]
Conventionally, even if the idling control of FM1 is performed in this way, the other wheeled shaft FM2 in the same vehicle is also affected by the idling of FM1 to cause pitching of the carriage, and the axle load is reduced to cause idling. (Time t2).
In this case, as in the case of the above FM1, after the idling of FM2, idling detection signal # 2 corresponding to this is input to the control circuit corresponding to FM2, and idling control is performed by torque command # 2. Then, the amount of idling of FM2 becomes large, and the torque of torque command # 2 is greatly attenuated.
[0011]
However, in the configuration of the present invention, the signal # 1 detected by the FM1 in the idling state is input to the control circuit corresponding to the other shaft FM2 in the same vehicle at the same time as the control circuit corresponding to the FM1, and is input to the pitching suppression control unit. In response to the normal torque command, torque command # 2 ′ is output so as to reduce the torque in order to suppress pitching.
[0012]
In this case, compared to the torque command # 2, the torque command # 2 ′ by the pitching suppression control has a fluctuation in the amount of axial load movement because the torque of the FM2 is reduced to suppress the pitching before the idling of the own shaft FM2. Induction of idling due to can be avoided, and torque reduction can be minimized as shown in # 2 ′.
In the torque command # 2 ′ of FIG. 2 , the torque is reduced stepwise with respect to the narrowing target value for suppressing pitching, but it is also possible to reduce the torque with a time constant with a first order delay. .
[0013]
As described above, by providing a pitching suppression means for performing a torque command based on the slip detection information from the other shaft that is not the control target shaft, when the slip on the other shaft occurs, whether or not the own shaft slips Regardless of the torque control, it is possible to avoid the occurrence of slipping due to fluctuations in the amount of axial load movement, and by minimizing the torque reduction during driving, it is stable even in an environment where continuous slipping occurs. Vehicle travel is possible.
[0014]
Embodiment 2. FIG.
FIG. 3 shows, as a second embodiment of the present invention, a configuration diagram in a vehicle control system in which main motors 12A to 12D as shown in FIG. 4 are individually controlled by inverter devices 11A to 11D. .
The control circuits 14A to 14D in FIG. 3 correspond respectively to the control circuits 14 shown in FIG. 1, and the own shaft frequency 23 in FIG. 1 corresponds to the PG sensors 13A to 13D that detect the rotation speeds of the main motors in FIG. 1 corresponds to the outputs 23A to 23D from the other axis, and the idling detection information 33 on the other axis in FIG. 1 corresponds to 33A to 33D transmitted between the control circuits 14A to 14D in FIG.
[0015]
During normal power running, each torque control unit in the control circuits 14A to 14D outputs power running torque commands 27A to 27D corresponding to the control target shaft.
Here, when idling occurs in another axis that is not the control target axis, for example, when idling occurs in the main motor 12A of the INV1, the information is detected by the control circuit 14A, and idling control is performed by the torque command 27A of the own axis. At the same time, the other axis idling detection information 33A is output to other control circuits (in this case, control circuits 14B to 14D) in the same carriage or the same vehicle as the other axis idling detection information 33A. The torque commands 27B to 27D, which are input to the pitching suppression control unit within ~ 14D and perform control for suppressing the pitching operation, are output.
[0016]
As described above, in the individually controlled vehicle control system, the pitching suppression control is performed from the slip detection information of the other axis that is not the control target axis in the same vehicle or the same vehicle, regardless of whether or not the own axis is idle. Further, induction of idling due to the amount of axial load movement can be avoided, and stable vehicle running can be achieved even in an environment where idling occurs continuously by minimizing the reduction in torque during running.
[0017]
Embodiment 3 FIG.
FIG. 5 shows a configuration diagram of a vehicle control system in which the main motors 12E to 12H as shown in FIG. 6 are controlled by the inverter devices 11E and 11F for each carriage, respectively, as a third embodiment of the present invention. Is.
The control circuits 14E and 14F in FIG. 5 correspond to the control circuit 14 shown in FIG. 1, and the own shaft frequency 23 in FIG. 1 corresponds to the PG sensors 13E to 13H that detect the rotation speeds of the main motors in FIG. 1 corresponds to the outputs 23E to 23H from FIG. 1, and the other-axis idling detection information 33 in FIG. 1 corresponds to 33E and 33F transmitted between the control circuits 14E and 14F in FIG.
[0018]
During normal power running, the respective torque control units in the control circuits 14E and 14F calculate and output power running torque commands 27E and 27F corresponding to the control target shaft.
Here, when idling occurs on the driving wheel shaft of another truck that is not the control target, for example, when idling occurs in the main motor 12G, the information is detected by the control circuit 14F, and idling control is performed by the torque command 27F of the own shaft. At the same time, the other axle idling detection information 33F is output to another carriage in the same vehicle, and this other axle idling detection information 33F is input to the pitching suppression control unit in the control circuit 14E to suppress the pitching operation. The controlled torque command 27E is output.
[0019]
As described above, even in the vehicle control system of the trolley control, the pitching suppression control is performed from the slip detection information of other trolleys that are not controlled in the same vehicle. By minimizing the above, stable vehicle travel is possible even in an environment where idling occurs continuously.
[0020]
Embodiment 4 FIG.
FIG. 7 shows a configuration diagram of the fourth embodiment of the present invention.
In FIG. 7, the other-axis idling detection information 33 takes in the reference speed (reference frequency) 22 and the other-axis rotation frequency 35, monitors these deviations, and detects idling when the deviation exceeds the set value. The idling is detected by the frequency deviation monitoring unit 34, and is input to the pitching suppression control unit 32 inside the control circuit.
[0021]
The frequency deviation monitoring unit 34 calculates the reference speed and the rotation frequency of the other axis, but the present invention is not limited to this, and the acceleration signal of the reference speed and the rotation frequency of the other axis is acquired. The same effect can be obtained by calculating with.
[0022]
Further, although the embodiment of the present invention has been described with the control device for an electric vehicle traveling on a railway, the present invention is not limited to this, and for example, the present invention is applied to a control device in an electric vehicle traveling on a road. However, the same effect can be obtained.
[0023]
【The invention's effect】
As described above, the present invention
An electric motor for driving an electric vehicle;
An inverter that outputs alternating current of variable voltage and variable frequency to this motor;
Speed detecting means for detecting the rotational speed of the electric motor;
Based on the rotation speed detection value from the speed detection means and the idling detection information input from the control means in the other axis that is not the control target axis, the inverter is controlled to reduce the torque of the control target axis , By providing control means for suppressing the pitching operation,
Torque control is performed regardless of whether or not the own shaft is idling, so induction of idling due to fluctuations in the axle load movement amount can be avoided, and in an environment where idling occurs continuously by minimizing torque reduction. In this case, stable running is possible.
[Brief description of the drawings]
FIG. 1 is a block diagram of a control apparatus showing an example of Embodiment 1 of the present invention.
FIG. 2 is a time chart showing an operation during idling control in the first embodiment.
FIG. 3 is a system configuration diagram of a control device showing an example of Embodiment 2 of the present invention;
FIG. 4 is a configuration diagram showing an electric vehicle system with individual motor control according to a second embodiment.
FIG. 5 is a system configuration diagram of a control device showing an example of Embodiment 3 of the present invention.
FIG. 6 is a configuration diagram showing an electric vehicle system for truck motor control according to a third embodiment.
FIG. 7 is a block diagram of a control device showing an example of Embodiment 4 of the present invention.
[Explanation of symbols]
11A to 11F: Inverter control device for controlling each axis, 12A to 12H: Main motor for each axis,
13A to 13H: Speed sensor for each axis, 14, 14A to 14F: Control circuit,
15: Reference frequency calculation unit, 21: Operation command,
22: Reference frequency detected or calculated (output from 15),
23, 23A-23H: the main motor frequency of its own shaft, 24: frequency deviation monitoring unit,
25: Torque control unit, 26: Output signal from torque control unit,
27, 27A to 27F: torque command, 32: pitching suppression control unit,
33, 33A to 33F: idling detection information of other axis, 34: other axis frequency deviation monitoring unit,
35: Main motor frequency of the other shaft.

Claims (4)

電気車を駆動する電動機と、
この電動機に可変電圧可変周波数の交流を出力するインバータと、
上記電動機の回転速度を検出する速度検出手段と、
この速度検出手段からの回転速度検出値と制御対象軸ではない他軸における制御手段から入力される空転検知情報とに基づいて、制御対象軸のトルクを低減させるよう上記インバータを制御し、台車のピッチング動作を抑制する制御手段とを備えたことを特徴とする電気車の制御装置。
An electric motor for driving an electric vehicle;
An inverter that outputs alternating current of variable voltage and variable frequency to this motor;
Speed detecting means for detecting the rotational speed of the electric motor;
Based on the rotation speed detection value from the speed detection means and the idling detection information input from the control means in the other axis that is not the control target axis, the inverter is controlled to reduce the torque of the control target axis , An electric vehicle control device comprising control means for suppressing a pitching operation.
上記制御手段は、
制御対象軸の上記電動機で空転が発生するとその情報を検知し、
制御対象軸ではない他軸の制御手段へ他軸の空転検知情報として出力することを特徴とする請求項1記載の電気車の制御装置。
The control means includes
When idling occurs in the motor of the controlled shaft , the information is detected,
2. The control apparatus for an electric vehicle according to claim 1, wherein the control device outputs the non-slip detection information of the other axis to the control unit of the other axis that is not the control target axis .
電気車を駆動する電動機を個別に制御することを特徴とする請求項1、または2記載の電気車の制御装置。  3. The electric vehicle control device according to claim 1, wherein the electric motors for driving the electric vehicle are individually controlled. 電気車を駆動する電動機を台車毎に制御することを特徴とする請求項1、または2記載の電気車の制御装置。  3. The electric vehicle control device according to claim 1, wherein an electric motor for driving the electric vehicle is controlled for each carriage.
JP2003199217A 2003-07-18 2003-07-18 Electric vehicle control device Expired - Lifetime JP3930460B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003199217A JP3930460B2 (en) 2003-07-18 2003-07-18 Electric vehicle control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003199217A JP3930460B2 (en) 2003-07-18 2003-07-18 Electric vehicle control device

Publications (2)

Publication Number Publication Date
JP2005039915A JP2005039915A (en) 2005-02-10
JP3930460B2 true JP3930460B2 (en) 2007-06-13

Family

ID=34208743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003199217A Expired - Lifetime JP3930460B2 (en) 2003-07-18 2003-07-18 Electric vehicle control device

Country Status (1)

Country Link
JP (1) JP3930460B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4850870B2 (en) * 2008-05-28 2012-01-11 公益財団法人鉄道総合技術研究所 Electric vehicle control method and electric vehicle control device
JP2010028982A (en) * 2008-07-22 2010-02-04 Railway Technical Res Inst Method for controlling electric vehicle and controller for the electric vehicle
JP2010124555A (en) * 2008-11-18 2010-06-03 Toyo Electric Mfg Co Ltd Electric bogie
JP5391456B2 (en) * 2009-11-25 2014-01-15 公益財団法人鉄道総合技術研究所 Electric motor control method and electric motor control device
JP5649399B2 (en) * 2010-10-15 2015-01-07 株式会社東芝 Constant speed control method
JP6738751B2 (en) * 2017-02-28 2020-08-12 公益財団法人鉄道総合技術研究所 Electric motor control method and control device

Also Published As

Publication number Publication date
JP2005039915A (en) 2005-02-10

Similar Documents

Publication Publication Date Title
WO2012132188A1 (en) Vehicle control device and control method
JPWO2011089830A1 (en) Electric drive vehicle
JPWO2005110802A1 (en) Electric vehicle control device
JP2016111834A (en) Braking/driving force control device of vehicle
JP5443294B2 (en) Electric motor control method and electric motor control device
JP5391456B2 (en) Electric motor control method and electric motor control device
JP4850870B2 (en) Electric vehicle control method and electric vehicle control device
JP3930460B2 (en) Electric vehicle control device
WO2014196406A1 (en) Slip control device for electric vehicle
JP2004096932A (en) Controller of hybrid vehicle
JP5643271B2 (en) Method for detecting occurrence of idling and motor control device
JP4903740B2 (en) Electric motor control method and electric motor control device
JP3933983B2 (en) Electric vehicle control device
JP7105608B2 (en) Motor control method and motor control device
JP4945493B2 (en) Electric motor control method and electric motor control device
JP6107294B2 (en) Control device for each wheel independent drive cart
JP6730057B2 (en) Electric vehicle control device
JP2000221207A (en) Apparatus for detecting travel speed
JP5828452B2 (en) Electric vehicle control device
JP4406476B2 (en) Electric vehicle control device
JP2009124810A (en) Motor controller and readhesion control method
JP6305071B2 (en) Electric car
JP6990112B2 (en) Re-adhesion control method and motor control device
JP6115235B2 (en) Control device for each wheel independent drive cart
JP2008043141A (en) Industrial vehicle provided with slip detection means, and slip detection method

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20041112

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20041112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20041112

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051004

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060912

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070308

R150 Certificate of patent or registration of utility model

Ref document number: 3930460

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100316

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120316

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120316

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130316

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130316

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140316

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term