JP3928745B2 - Linear thermal fuse - Google Patents

Linear thermal fuse Download PDF

Info

Publication number
JP3928745B2
JP3928745B2 JP12792096A JP12792096A JP3928745B2 JP 3928745 B2 JP3928745 B2 JP 3928745B2 JP 12792096 A JP12792096 A JP 12792096A JP 12792096 A JP12792096 A JP 12792096A JP 3928745 B2 JP3928745 B2 JP 3928745B2
Authority
JP
Japan
Prior art keywords
linear
insulator
temperature
fuse
thermal fuse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12792096A
Other languages
Japanese (ja)
Other versions
JPH09288947A (en
Inventor
浩史 野末
康浩 長谷
純 菊池
岳信 金澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurabe Industrial Co Ltd
Original Assignee
Kurabe Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurabe Industrial Co Ltd filed Critical Kurabe Industrial Co Ltd
Priority to JP12792096A priority Critical patent/JP3928745B2/en
Publication of JPH09288947A publication Critical patent/JPH09288947A/en
Application granted granted Critical
Publication of JP3928745B2 publication Critical patent/JP3928745B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Fuses (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は熱機器などの異常温度を検知する線状温度ヒューズに関するものである。
【0002】
【従来の技術】
熱機器の異常温度検知は従来、素子状の温度ヒューズを用いて行われていたが、安全性の向上のために、多数個の温度ヒューズを連結して用いることが多くなった。しかし、この方法では、温度ヒューズの使用量が増大して部品コストが上昇するばかりか、その連結加工にも多大な工数がかかるため作業コストも非常に高いものであった。このような問題に対しては、例えば、特開昭57−81695号公報、実開昭57−161713号公報などによって、線状の温度ヒューズが提案されたが、これらの線状温度ヒューズは検知の確実性や検知後の再結合の防止等の安全上の問題があり、実用化には至らなかった。そこで、当該出願人は、先に、これらの問題点を解決した線状の温度ヒューズを、特開平5−128950号公報、特開平6−181028号公報、特開平7−176251号公報などで提案した。これらの提案によって線状温度ヒューズは、一部実用化されている。
【0003】
【発明が解決しようとする問題点】
しかしながら、従来の技術範囲で、検知の確実性や検知後の再結合の防止等の安全性の向上、許容電流値の増加、コストのさらなる低減などを実現しようとした場合には問題点があった。つまり、安全性を向上させた線状温度ヒューズ(例えば、特開平6−181028号公報に開示されたもの)において、許容電流値を増加させようとすると多本数の線状導電体を引き揃えて横巻きしなければならず、製造装置の複雑化からコストが上昇するととともに、要求される許容電流値によっては設計が不可能になってしまう場合があった。
【0004】
本発明はこのような点に基づいてなされたもので、その目的とするところは、安全性の向上、許容電流値の増加、コストのさらなる低減などを同時に達成することが可能な線状温度ヒューズを提供することにある。
【0005】
【課題を解決するための手段】
上記目的を達成するべく本発明による線状温度ヒューズは、所定の温度以上で溶融する線状導電体と所定の温度以上で長さ方同に収縮する線状絶縁体とが連続的に互いに絡み合った状態のヒューズコアを、絶縁体で連続的に被覆したことを特徴とするものである。
【0006】
【発明の実施の形態】
本発明において使用される線状導電体としては、例えば、錫、鉛、ビスマス、カドミウム、銀、インジュウム等の低融点金属及びそれらの合金を線状に加工したものや、上記の低融点金属及びそれらの合金からなる繊維或いは粉末を所定の温度で溶融する有機物中に分散してなる混合物を押出成形等によって線状に加工したものなどが挙げられる。好ましくは、低融点金属及びそれらの合金を線状に加工したものが用いられる。尚、線状導電体としては、内部にフラックスを充填したものを使用することも考えられ、この場合には、本発明によって得られる線状温度ヒューズの感度をより一層高めることができ特に好ましい。これらは市販品も多数見られるのでそれらを使用しても良い。
【0007】
線状導電体は所定の温度以上で溶融するものである。溶融温度は本発明によって得られる線状温度ヒューズの使用条件(例えば、検知温度)によって異なるものであり、これは使用する低融点金属及びその合金の種類、組み合わせなどを適宜に変更することによって設定される。
【0008】
本発明においては、上記線状導電体と、後述する線状絶縁体を連続的に互いに絡み合った状態に形成してヒューズコアとする。線状導電体と線状絶縁体が連続的に絡み合った状態を形成する手段としては、例えば、線状導電体と線状絶縁体を撚り合わせることによる方法や、線状導電体上に線状絶縁体を連続的に横巻きすることによる方法などが好ましく採用される。
【0009】
線状絶縁体は、例えば、以下に示すような方法によって得られたものである。まず、高密度ポリエチレン、低密度ポリエチレン、直鎖低密度ポリエチレン、ポリプロピレン、フッ化ビニリデン、エチレン−テトラフルオロエチレン共重合体、ポリアミド12、ポリアミド11、ポリアミド6、ポリアミド66、ポリブチレンテレフタレート、ポリエチレンテレフタレート、ポリアセタール等の結晶性重合体を少なくとも10%程度含む樹脂組成物を原料とし、これを線状に押出成形する。次いで、これを該組成物のガラス転移点以上結晶融点以下の温度に加熱して、該温度での降伏硬度以上の張力をかけて長手方同に引き延ばし、その状態で冷却する。
【0010】
また、別の方法として、以下に示すような方法も考えられる。まず、上述した樹脂組成物を原料とし、これに架橋助剤としてのエチレン性不飽和基を複数有する化合物を必要に応じて適宜に混合したものを線状に押出成形し、電子線照射などによって架橋を施す。次いで、この架橋体を、該架橋体の結晶融点以上の温度に加熱して、該温度での降伏硬度以上の張力をかけて長手方同に引き延ばし、その状態で冷却する。尚、上記の結晶性重合体の内、高密度ポリエチレン、低密度ポリエチレン、直鎖低密度ポリエチレンまたはこれらを混合してなる樹脂組成物など、幾つかの樹脂組成物は架橋助剤を混合しなくても良く、更に、電子線架橋以外の過酸化物架橋にも適応できる。
【0011】
このようにして得られた線状絶縁体は、使用した結晶性重合体の融点付近の温度で長さ方向に収縮するものとなる。収縮する際の温度は、本発明によって得られる線状温度ヒューズの使用条件(例えば、検知温度)によって異なるものであり、これらは使用する結晶性重合体の種類、組み合わせなどを適宜に変更することによって設定すれば良い。好ましくは、線状導電体の溶融温度よりも50℃低い温度から50℃高い温度の範囲内、更に好ましくは、線状導電体の溶融温度よりも20℃低い温度から20℃高い温度の範囲内とする。50℃を超えて低い温度では、通常の使用時に線状絶縁体が収縮してしまい、線状温度ヒューズの寿命が短くなり好ましくない。一方、50℃を超えた高い温度では、線状導電体が溶融しても相当高い温度になるまで線状絶縁体が収縮せず、線状温度ヒューズの感度が低下してしまい好ましくない。
【0012】
線状絶縁体の長さ方向の収縮率は10%以上である必要がある。収縮率は大きいほど本発明によって得られる線状温度ヒューズの感度や安全性が向上する。その理由としては、線状温度ヒューズが異常な高温にさらされ、線状絶縁体が所定の温度以上に加熱された際、線状導電体に絡み合った状態の線状絶縁体が、その長さを縮めて直線になろうとする力で線状導電体を切断するからである。長さ方向の収縮率が10%未満では、線状導電体を切断する力が不足し、優れた感度や確実な切断が得られないので好ましくない。
【0013】
このようにして得られたヒューズコアを、絶縁体で連続的に被覆することによって本発明の線状温度ヒューズが完成する。絶縁体の被覆は、従来より各種の方法が公知となっているため、それらの中から、線状導電体が溶融する温度よりも低い加工温度を実現できる方法を採用する。好ましくは、線状導電体が溶融する温度及び線状絶縁体が収縮する温度よりも低い加工温度を実現できる方法を採用する。実例としては、線状導電体が溶融する温度及び線状絶縁体が収縮する温度によっても異なるが、例えば、120℃以下の加工温度を実現できる方法としては、ポリエチレンを融点程度の低い温度で押出被覆し、その後電子線照射により架橋する方法や、ガラス繊維、有機繊維などで編組被覆し、常温で乾燥する絶縁ワニスを塗布する方法などが考えられる。
【0014】
尚、絶縁体は、ヒューズコアに完全に密着させず空間層を有した状態で被覆することが好ましい。空間層が無いと、検知の確実性が低下することが有り好ましくない。このような空間層を形成する手段としては、例えば、当業者間で公知のいわゆるチュービング押し出しによる方法、内面に突起を備えた形状の絶縁体を被覆する方法、スペーサを中間層として設ける方法などが知られており、それらのいずれも適用可能である。
【0015】
本発明においては、線状導電体が断線した後(異常温度検知後)の再結合の防止効果をより一層高めるために、ヒューズコアと絶縁体との間に、非溶融性繊維の横巻き及び/または編組からなる流動防止層を更に設けても良い。この場合の横巻き及び/または編組は、粗いものである必要がある。つまり、密であると上述した絶縁体と何ら変わらず、流動防止層としての特有の効果が発現しない。目安としては、1インチあたりのターン数または編組目が5から15程度である。この流動防止層は、上記の空間層を持つためのスペーサとしても当然使用することができる。非溶融性繊維としては、ガラス繊維、アラミド繊維、セラミック繊維などが公知であるのでこれらを用いれば良い。
【0016】
本発明によって得られる線状温度ヒューズの便用方法は、各種用途において任意であるが、例えば、線状温度ヒューズを所定の長さに切断し、端末の絶縁体をストリップ加工して線状導電体を外部回路と接続するための端子と溶接などの方法で接続し、線状絶縁体と絶縁体を一括してかしめることによって外部回路と接続し、任意の熱発生機器などに組み込むことなどが考えられる。勿論、端末加工の方法は従来より多数公知であり、例示された方法以外であっても良い。
【0017】
【実施例】
以下に実施例を示し本発明の内容を更に詳細に説明する。
【0018】
実施例1
錫63%、鉛37%を含有する外径1.2mmの半田線(融点184℃)からなる線状導電体に、外径0.4mmの線状絶縁体をピッチ10mmで横巻きしてヒューズコアを作成した。次に、ヒューズコア上に、絶縁体として市販の難燃性ポリエチレンコンパウンドを内径2.0mm、外径3.2mmとなるように連続的に押出被覆し、80kGyの電子線を照射して架橋させた。
【0019】
尚、線状絶縁体は、以下に示すような方法で得たものである。まず、フッ化ビニリデン(融点170℃)100重量部に架橋助剤としてのトリアリルイソシアヌレートを3重量部混合したものを外径1mmの紐状に押出成形し、その後、100kGyの電子線を照射して架橋させた。次いで、架橋した紐状体を200℃の熱風炉に通して加熱軟化させた後、即座に外径0.4mmになるまで張力をかけて長手方向に引き延ばし、その状態で直ちに冷却した。このようにして得られた線状絶縁体の長さ方向の収縮率は84%であった。
【0020】
実施例2
線状導電体として、錫63%、鉛37%を含有する外径1.2mmのフラックス入り半田線(フラックス径0.5mm、融点184℃)を使用した他は、実施例1と同様にして線状温度ヒューズを製造した。
【0021】
実施例3
実施例2と同様のヒューズコアを使用し、その直上に約100番手のガラス繊維を用いて、16打ち、密度8目/インチ編組仕様の流動防止層を設けた他は、実施例1と同様にして線状温度ヒューズを製造した。尚、絶縁体は、内径2.1mm、外径3.3mmとなるように押出被覆した。
【0022】
実施例4
線状導電体として、錫43%、鉛43%、ビスマス14%を含有する外径1.2mmのフラックス入り半田線(フラックス径0.4mm、融点163℃)を使用した他は、実施例3と同様にして線状温度ヒューズを製造した。
【0023】
実施例5
線状導電体として、錫51.2%、鉛30.6%、カドミウム18.2%を含有する外径1.2mmのフラックス入り半田線(フラックス径0.4mm、融点145℃)を使用した他は、実施例3と同様にして線状温度ヒューズを製造した。
【0024】
実施例6
錫63%、鉛37%を含有する外径1.0mmのフラックス入り半田線(フラックス径0.3mm、融点184℃)からなる線状導電体と、実施例1で使用した外径0.4mmの線状絶縁体とを、ピッチ40mmで撚り合わせてヒューズコアを作成した他は、実施例1と同様にして線状温度ヒューズを製造した。尚、絶縁体は、内径2.2mm、外径3.4mmとなるように押出被覆した。
【0025】
実施例7
線状絶縁体として、架橋ポリプロピレンを使用した他は、実施例1と同様にして線状温度ヒューズを製造した。線状絶縁体は、以下に示す方法で得たものである。まず、市販の押し出しグレードポリプロピレン(融点165℃)100重量部に架橋助剤としてのトリアリルイソシアヌレートを3重量部混合したものを外径1mmの紐状に押出成形し、その後、80kGyの電子線を照射して架橋させた。次いで、実施例1と同様の方法で外径0.5mmになるように引き延ばし、、その状態で直ちに冷却した。このようにして得られた線状絶縁体の長さ方向の収縮率は75%であった。
【0026】
実施例8
線状絶縁体として、未架橋のポリアミド12を使用した他は、実施例6と同様にして線状温度ヒューズを製造した。線状絶縁体は、以下に示す方法で得たものである。まず、ポリアミド12(融点176℃)を外径0.6mmの紐状に押出成形し、次いで、200℃の熱風炉に通して加熱し充分に軟化させた後、即座に外径0.4mmになるまで張力をかけて長手方向に引き延ばし、その状態で直ちに冷却した。このようにして得られた線状絶縁体の長さ方向の収縮率は50%であった。
【0027】
ここで、このようにして製造された8種類の線状温度ヒューズの特性を評価するために、感度、再結合性、高温保存性及び許容電流値について、それぞれ試験を実施した。結果は表1に示した。
【0028】
【表1】

Figure 0003928745
【0029】
試験方法は以下の通りである。
感度
線状温度ヒューズに250℃の熱風を当てて、線状導電体が断線するまでの時間を測定した。
再結合性
線状導電体が断線した線状温度ヒューズに電球を直列に接続し、これを250℃の熱風を当てた状態で上下左右に振って電球のチャタリングの有無(再結合の有無)を観察した。
高温保存性
線状温度ヒューズを120℃に保持された恒温槽中に500時間放置した後取り出し、250℃の熱風を当てて、線状導電体が断線するまでの時間を測定した。
許容電流値
断熱状態の線状温度ヒューズに所定電流を流し、温度上昇が5degになった電流値を測定し、許容電流値とした。尚、許容電流値は、従来の線状温度ヒューズ(特開平6−181028号公報に開示されたもので、線状導電体として外径0.6mmのフラックス入り半田線を2本使用したもの)の許容電流値(1.0A程度)と比較することによって評価した。
【0030】
表1の結果によれば、本実施例による線状温度ヒューズは、いずれも、優れた感度を示しており、高温雰囲気に長時間さらされた後も、その感度を維持していいる。また、断線した後も、溶融した線状導電体によって再結合を起こしていない。更に、許容電流値についても、従来の線状温度ヒューズと比べて3倍程度高くなっている。
【0031】
【発明の効果】
以上詳述したように本発明にれば、従来品に比べて単純な構造でありながら、許容電流値の高い線状温度ヒューズを得ることができる。また、検知の確実性については、線状絶縁体の収縮力によって線状導電体を機械的に切断する動作機構を備えているために十分に確保されている。従って、これからの各種熱機器の安全性の向上や安全設計の単純化などに著しい効果があるものと思われる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a linear thermal fuse that detects an abnormal temperature of a thermal device or the like.
[0002]
[Prior art]
Conventionally, detection of abnormal temperatures in thermal equipment has been performed using element-shaped thermal fuses. However, in order to improve safety, a large number of thermal fuses are often used in combination. However, in this method, not only the amount of use of the thermal fuse is increased and the cost of parts is increased, but also the connecting process requires a great number of man-hours, so that the operation cost is very high. For such problems, for example, linear temperature fuses have been proposed by Japanese Patent Application Laid-Open Nos. 57-81695 and 57-161713. However, these linear temperature fuses are not detected. There have been safety problems such as the reliability and prevention of recombination after detection, and it has not been put into practical use. Therefore, the applicant previously proposed a linear thermal fuse that solves these problems in Japanese Patent Laid-Open Nos. 5-128950, 6-181028, and 7-176251. did. With these proposals, some linear thermal fuses have been put into practical use.
[0003]
[Problems to be solved by the invention]
However, there are problems in the conventional technical scope when trying to improve the safety of detection, prevention of recombination after detection, etc., increase the allowable current value, and further reduce costs. It was. In other words, in a linear thermal fuse with improved safety (for example, one disclosed in Japanese Patent Laid-Open No. 6-181028), if an allowable current value is increased, a large number of linear conductors are aligned. Since it has to be wound horizontally, the cost increases due to the complexity of the manufacturing apparatus, and the design may become impossible depending on the required allowable current value.
[0004]
The present invention has been made based on these points, and the object of the present invention is to provide a linear thermal fuse capable of simultaneously improving safety, increasing allowable current value, and further reducing cost. Is to provide.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, the linear thermal fuse according to the present invention has a linear conductor that melts at a predetermined temperature or higher and a linear insulator that shrinks in the same length at a predetermined temperature or higher continuously intertwining each other. In this case, the fuse core is continuously covered with an insulator.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
As the linear conductor used in the present invention, for example, low melting point metals such as tin, lead, bismuth, cadmium, silver, indium and their alloys processed into a linear shape, the above low melting point metals and For example, a mixture obtained by dispersing fibers or powders made of these alloys in an organic substance that melts at a predetermined temperature into a linear shape by extrusion or the like may be used. Preferably, low-melting metals and their alloys processed into a linear shape are used. Note that it is conceivable to use a linear conductor filled with a flux. In this case, the sensitivity of the linear thermal fuse obtained by the present invention can be further enhanced, which is particularly preferable. Since many commercially available products are also found, they may be used.
[0007]
The linear conductor melts at a predetermined temperature or higher. The melting temperature varies depending on the use conditions (for example, detection temperature) of the linear thermal fuse obtained by the present invention, and this is set by appropriately changing the type, combination, etc. of the low melting point metal and its alloy. Is done.
[0008]
In the present invention, the above-mentioned linear conductor and a linear insulator described later are formed so as to be continuously entangled with each other to form a fuse core. As a means for forming a state in which the linear conductor and the linear insulator are continuously intertwined, for example, a method by twisting the linear conductor and the linear insulator, or a linear shape on the linear conductor A method by continuously winding the insulator horizontally is preferably employed.
[0009]
The linear insulator is obtained by, for example, the following method. First, high density polyethylene, low density polyethylene, linear low density polyethylene, polypropylene, vinylidene fluoride, ethylene-tetrafluoroethylene copolymer, polyamide 12, polyamide 11, polyamide 6, polyamide 66, polybutylene terephthalate, polyethylene terephthalate, A resin composition containing at least about 10% of a crystalline polymer such as polyacetal is used as a raw material, and this is extruded into a linear shape. Then, this is heated to a temperature not lower than the glass transition point and not higher than the crystal melting point of the composition, stretched in the longitudinal direction under tension equal to or higher than the yield hardness at the temperature, and cooled in that state.
[0010]
As another method, the following method is also conceivable. First, the resin composition described above is used as a raw material, and an appropriate mixture of a compound having a plurality of ethylenically unsaturated groups as a crosslinking aid is extruded as needed, and then linearly extruded, and then irradiated with an electron beam or the like. Crosslink. Next, the crosslinked body is heated to a temperature equal to or higher than the crystal melting point of the crosslinked body, stretched in the longitudinal direction under tension equal to or higher than the yield hardness at the temperature, and cooled in that state. Among the above crystalline polymers, some resin compositions such as high-density polyethylene, low-density polyethylene, linear low-density polyethylene, or a resin composition obtained by mixing them do not contain a crosslinking aid. Furthermore, it can be applied to peroxide crosslinking other than electron beam crosslinking.
[0011]
The linear insulator thus obtained shrinks in the length direction at a temperature near the melting point of the crystalline polymer used. The temperature at the time of contraction differs depending on the use conditions (for example, the detection temperature) of the linear thermal fuse obtained by the present invention, and these are appropriately changed in the kind and combination of the crystalline polymer to be used. It should be set by. Preferably, the temperature is in the range of 50 ° C. to 50 ° C. higher than the melting temperature of the linear conductor, and more preferably in the range of 20 ° C. to 20 ° C. higher than the melting temperature of the linear conductor. And If the temperature is over 50 ° C., the linear insulator shrinks during normal use, which shortens the life of the linear thermal fuse, which is not preferable. On the other hand, at a high temperature exceeding 50 ° C., even if the linear conductor melts, the linear insulator does not contract until it reaches a considerably high temperature, and the sensitivity of the linear temperature fuse is lowered, which is not preferable.
[0012]
The shrinkage ratio in the length direction of the linear insulator needs to be 10% or more. As the shrinkage rate increases, the sensitivity and safety of the linear thermal fuse obtained by the present invention improves. The reason for this is that when the linear thermal fuse is exposed to an abnormally high temperature and the linear insulator is heated to a predetermined temperature or higher, the length of the linear insulator entangled with the linear conductor is This is because the linear conductor is cut by a force that shrinks the line to become a straight line. If the shrinkage in the length direction is less than 10%, the force for cutting the linear conductor is insufficient, and excellent sensitivity and reliable cutting cannot be obtained.
[0013]
The linear thermal fuse of the present invention is completed by continuously covering the fuse core thus obtained with an insulator. Since various methods are conventionally known for coating the insulator, a method that can realize a processing temperature lower than the temperature at which the linear conductor melts is employed. Preferably, a method capable of realizing a processing temperature lower than a temperature at which the linear conductor melts and a temperature at which the linear insulator contracts is adopted. As an example, although it depends on the temperature at which the linear conductor melts and the temperature at which the linear insulator shrinks, for example, as a method that can achieve a processing temperature of 120 ° C. or less, polyethylene is extruded at a temperature as low as the melting point. A method of coating and then crosslinking by electron beam irradiation, a method of applying a braided coating with glass fiber, organic fiber, etc., and applying an insulating varnish that is dried at room temperature can be considered.
[0014]
The insulator is preferably covered with a space layer without being completely adhered to the fuse core. If there is no space layer, the reliability of detection may decrease, which is not preferable. As a means for forming such a space layer, for example, a method by so-called tubing extrusion, which is known among those skilled in the art, a method of covering an insulator having a shape with a protrusion on the inner surface, a method of providing a spacer as an intermediate layer, etc. Any of them are applicable.
[0015]
In the present invention, in order to further enhance the effect of preventing recombination after the linear conductor is disconnected (after detecting an abnormal temperature), between the fuse core and the insulator, the lateral winding of non-melting fiber and A flow prevention layer made of a braid may be further provided. In this case, the horizontal winding and / or the braiding needs to be rough. That is, when it is dense, it is not different from the above-described insulator, and a specific effect as a flow preventing layer is not exhibited. As a guide, the number of turns per inch or the braid is about 5 to 15. This flow prevention layer can also be used as a spacer for having the above-mentioned space layer. As non-meltable fibers, glass fibers, aramid fibers, ceramic fibers, and the like are known, and these may be used.
[0016]
The method of using the linear thermal fuse obtained by the present invention is arbitrary in various applications. For example, the linear thermal fuse is cut to a predetermined length, and the insulator of the terminal is stripped to perform linear conduction. Connect the body with the terminal for connecting to the external circuit by a method such as welding, connect the linear insulator and the insulator together to connect to the external circuit, and incorporate it into any heat generating equipment etc. Can be considered. Of course, many terminal processing methods are conventionally known, and methods other than those exemplified may be used.
[0017]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples.
[0018]
Example 1
A linear conductor made of solder wire (melting point 184 ° C.) containing 63% tin and 37% lead and having an outer diameter of 1.2 mm is laterally wound at a pitch of 10 mm with a linear insulator having an outer diameter of 0.4 mm. Created the core. Next, a commercially available flame retardant polyethylene compound as an insulator is continuously extrusion-coated on the fuse core so as to have an inner diameter of 2.0 mm and an outer diameter of 3.2 mm, and is crosslinked by irradiation with an electron beam of 80 kGy. It was.
[0019]
The linear insulator was obtained by the following method. First, 100 parts by weight of vinylidene fluoride (melting point: 170 ° C.) mixed with 3 parts by weight of triallyl isocyanurate as a crosslinking aid is extruded into a string having an outer diameter of 1 mm, and then irradiated with an electron beam of 100 kGy. And crosslinked. Next, the cross-linked string-like body was heated and softened by passing through a hot air oven at 200 ° C., then immediately stretched in the longitudinal direction by applying tension until the outer diameter became 0.4 mm, and immediately cooled in that state. The shrinkage ratio in the length direction of the linear insulator thus obtained was 84%.
[0020]
Example 2
The same procedure as in Example 1 was used except that a flux-cored solder wire (flux diameter 0.5 mm, melting point 184 ° C.) containing 63% tin and 37% lead was used as the linear conductor. A linear thermal fuse was manufactured.
[0021]
Example 3
Similar to Example 1, except that a fuse core similar to that of Example 2 was used, and an anti-flow layer having a density of 8 stitches / inch braided specification was provided using glass fiber of about 100 count immediately above it. Thus, a linear thermal fuse was manufactured. The insulator was extrusion coated so that the inner diameter was 2.1 mm and the outer diameter was 3.3 mm.
[0022]
Example 4
Example 3 except that a flux-cored solder wire (flux diameter 0.4 mm, melting point 163 ° C.) containing an outer diameter of 1.2 mm containing 43% tin, 43% lead, and 14% bismuth was used as the linear conductor. In the same manner, a linear thermal fuse was manufactured.
[0023]
Example 5
As the linear conductor, a flux-cored solder wire (flux diameter 0.4 mm, melting point 145 ° C.) having an outer diameter of 1.2 mm containing 51.2% tin, 30.6% lead, and 18.2% cadmium was used. Otherwise, a linear thermal fuse was manufactured in the same manner as in Example 3.
[0024]
Example 6
A linear conductor made of flux-cored solder wire (flux diameter 0.3 mm, melting point 184 ° C.) containing 63% tin and 37% lead and an outer diameter of 0.4 mm used in Example 1. A linear thermal fuse was manufactured in the same manner as in Example 1 except that a fuse core was produced by twisting the above linear insulator with a pitch of 40 mm. The insulator was extrusion coated so that the inner diameter was 2.2 mm and the outer diameter was 3.4 mm.
[0025]
Example 7
A linear thermal fuse was manufactured in the same manner as in Example 1 except that crosslinked polypropylene was used as the linear insulator. The linear insulator is obtained by the following method. First, 100 parts by weight of commercially available extruded grade polypropylene (melting point 165 ° C.) mixed with 3 parts by weight of triallyl isocyanurate as a crosslinking aid was extruded into a string with an outer diameter of 1 mm, and then an 80 kGy electron beam Were cross-linked by irradiation. Subsequently, it was stretched to have an outer diameter of 0.5 mm by the same method as in Example 1, and immediately cooled in that state. The linear insulator thus obtained had a shrinkage ratio in the length direction of 75%.
[0026]
Example 8
A linear thermal fuse was manufactured in the same manner as in Example 6 except that uncrosslinked polyamide 12 was used as the linear insulator. The linear insulator is obtained by the following method. First, polyamide 12 (melting point: 176 ° C.) was extruded into a string shape having an outer diameter of 0.6 mm, then passed through a hot air oven at 200 ° C. and sufficiently softened, and immediately reduced to an outer diameter of 0.4 mm. It was stretched in the longitudinal direction under tension until it was, and immediately cooled in that state. The linear insulator thus obtained had a contraction rate in the length direction of 50%.
[0027]
Here, in order to evaluate the characteristics of the eight types of linear thermal fuses manufactured in this way, tests were performed for sensitivity, recombination property, high temperature storage property and allowable current value, respectively. The results are shown in Table 1.
[0028]
[Table 1]
Figure 0003928745
[0029]
The test method is as follows.
Sensitivity Hot air of 250 ° C. was applied to the linear temperature fuse, and the time until the linear conductor was disconnected was measured.
Recombination property A light bulb is connected in series to a linear thermal fuse with a broken linear conductor, and shaken up and down and left and right with hot air of 250 ° C (recombination) The presence or absence of was observed.
High temperature storability The linear temperature fuse was left in a thermostat kept at 120C for 500 hours and then taken out, and hot air at 250C was applied to measure the time until the linear conductor was broken. .
Allowable current value A predetermined current was passed through the linear thermal fuse in an adiabatic state, and the current value at which the temperature rise was 5 deg was measured to obtain an allowable current value. The allowable current value is a conventional linear thermal fuse (disclosed in Japanese Patent Laid-Open No. 6-181028, using two flux-cored solder wires having an outer diameter of 0.6 mm as a linear conductor). It was evaluated by comparing with an allowable current value (about 1.0 A).
[0030]
According to the results in Table 1, all of the linear thermal fuses according to this example show excellent sensitivity, and the sensitivity is maintained even after being exposed to a high temperature atmosphere for a long time. Further, even after disconnection, recombination is not caused by the molten linear conductor. Further, the allowable current value is about three times higher than that of the conventional linear temperature fuse.
[0031]
【The invention's effect】
As described above in detail, according to the present invention, it is possible to obtain a linear thermal fuse having a high allowable current value while having a simple structure as compared with a conventional product. The certainty of detection is sufficiently ensured because the operation mechanism that mechanically cuts the linear conductor by the contraction force of the linear insulator is provided. Therefore, it seems that there is a remarkable effect in improving the safety of various types of thermal equipment and simplifying the safety design.

Claims (6)

所定の温度以上で溶融する線状導電体と所定の温度以上で長さ方同に収縮する線状絶縁体とが連続的に互いに絡み合った状態のヒューズコアを、絶縁体で連続的に被覆したことを特徴とする線状温度ヒューズにおいて、上記線状温度ヒューズが異常な高温にさらされた際、上記線状絶縁体が、その長さを縮めて直線になろうとする力で上記線状導電体を切断することを特徴とする線状温度ヒューズA fuse core in which a linear conductor that melts at a predetermined temperature or more and a linear insulator that shrinks in the same length at a predetermined temperature or more is continuously intertwined with each other is continuously covered with the insulator. In the linear thermal fuse , when the linear thermal fuse is exposed to an abnormally high temperature, the linear insulator is contracted by a force that shortens its length to become a straight line. A linear thermal fuse characterized by cutting the body . 線状導電体と線状絶縁体を撚り合わせることによってヒューズコアを形成したことを特徴とする請求項1記載の線状温度ヒューズ。  2. The linear thermal fuse according to claim 1, wherein a fuse core is formed by twisting a linear conductor and a linear insulator. 線状導電体上に線状絶縁体を連続的に横巻きすることによってヒューズコアを形成したことを特徴とする請求項1記載の線状温度ヒューズ。  2. The linear thermal fuse according to claim 1, wherein a fuse core is formed by continuously laterally winding a linear insulator on the linear conductor. ヒューズコアと絶縁体との間に、非溶融性繊維の横巻き及び/または編組からなる流動防止層を設けたことを特徴とする請求項1、請求項2または請求項3記載の線状温度ヒューズ。  The linear temperature according to claim 1, 2 or 3, wherein a flow prevention layer comprising a non-melting fiber transversely wound and / or braided is provided between the fuse core and the insulator. fuse. 線状絶縁体は、架橋した結晶性絶縁体を、該絶縁体の結晶融点以上の温度に加熱して応力をかけて引き延ばし、その状態で冷却することによって構成されたものであり、且つ、長さ方向の収縮率がl0%以上であることを特徴とする請求項1、請求項2、請求項3または請求項4記載の線状温度ヒュ−ズ。  The linear insulator is constituted by heating a cross-linked crystalline insulator to a temperature equal to or higher than the crystal melting point of the insulator, stretching it by applying stress, and cooling in that state. 5. The linear temperature fuse according to claim 1, wherein the shrinkage ratio in the vertical direction is 10% or more. 線状絶縁体は、未架橋の結晶性絶縁体を、該絶縁体のガラス転移点以上結晶融点以下の温度に加熱して応力をかけて引き延ばし、その状態で冷却することによって構成されたものであり、且つ、長さ方向の収縮率がl0%以上であることを特徴とする請求項1、請求項2、請求項3または請求項4記載の線状温度ヒュ−ズ。  A linear insulator is formed by heating an uncrosslinked crystalline insulator to a temperature not lower than the glass transition point of the insulator and not higher than the crystal melting point, stretching it under stress, and cooling in that state. 5. The linear temperature fuse according to claim 1, wherein the shrinkage rate in the length direction is 10% or more.
JP12792096A 1996-04-23 1996-04-23 Linear thermal fuse Expired - Fee Related JP3928745B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12792096A JP3928745B2 (en) 1996-04-23 1996-04-23 Linear thermal fuse

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12792096A JP3928745B2 (en) 1996-04-23 1996-04-23 Linear thermal fuse

Publications (2)

Publication Number Publication Date
JPH09288947A JPH09288947A (en) 1997-11-04
JP3928745B2 true JP3928745B2 (en) 2007-06-13

Family

ID=14971915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12792096A Expired - Fee Related JP3928745B2 (en) 1996-04-23 1996-04-23 Linear thermal fuse

Country Status (1)

Country Link
JP (1) JP3928745B2 (en)

Also Published As

Publication number Publication date
JPH09288947A (en) 1997-11-04

Similar Documents

Publication Publication Date Title
AU668933B2 (en) Flat cable
EP0440118A2 (en) Electric insulated wire and cable using the same
US11049629B2 (en) Non-halogen flame-retardant insulated electric wire and non-halogen flame-retardant cable
US10999899B2 (en) Heating cable having excellent flex resistance and flexibility
US4451306A (en) Manufacture of coextruded oriented products
WO2006005426A1 (en) Fire resistant wire and cable constructions
US6054028A (en) Ignition cables
WO2004025679A1 (en) Code-shaped temperature fuse and sheet-shaped temperature fuse
JP3928745B2 (en) Linear thermal fuse
JP4033525B2 (en) Linear thermal fuse
US4877467A (en) Electrically insulated wire
JP2010129172A (en) Linear thermal fuse
KR101971359B1 (en) Heating cable with excellent elasticity and flexibility
JPS6333245B2 (en)
JP4046794B2 (en) Cord temperature fuse
US4220615A (en) Method for the manufacture of a power cable
CA1151255A (en) Electrical insulated wire with flexibility and abrasion-resistant layer
JP2019091562A (en) Twisted pair cable
JP6252398B2 (en) Electric wire with overcurrent cutoff function
JP2000076972A (en) Linear thermal fuse
KR102402191B1 (en) Heating cable with excellent elasticity and flexibility
CN111180122B (en) Cable with a protective layer
JPH05128950A (en) Cord-like thermal fuse and plane temperature fuse
JP3867937B2 (en) Cord heater
US4869959A (en) Electrically insulated wire

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060606

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070228

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120316

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120316

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130316

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees