JP3928712B2 - Anticorrosion structure and anticorrosion method - Google Patents

Anticorrosion structure and anticorrosion method Download PDF

Info

Publication number
JP3928712B2
JP3928712B2 JP2002223834A JP2002223834A JP3928712B2 JP 3928712 B2 JP3928712 B2 JP 3928712B2 JP 2002223834 A JP2002223834 A JP 2002223834A JP 2002223834 A JP2002223834 A JP 2002223834A JP 3928712 B2 JP3928712 B2 JP 3928712B2
Authority
JP
Japan
Prior art keywords
protective layer
protein
surface layer
anticorrosion
corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002223834A
Other languages
Japanese (ja)
Other versions
JP2004060035A (en
Inventor
濱田秀則
横田弘
岩波光保
丸屋剛
堀口賢一
武田均
新藤竹文
渡辺芳春
坂井悦郎
石川弘子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
INDEPENDENT ADMINISTRATIVE INSTITUTION PORT AND AIRPORT RESEARCH INSTITUTE
Taisei Corp
Denka Co Ltd
Original Assignee
INDEPENDENT ADMINISTRATIVE INSTITUTION PORT AND AIRPORT RESEARCH INSTITUTE
Taisei Corp
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by INDEPENDENT ADMINISTRATIVE INSTITUTION PORT AND AIRPORT RESEARCH INSTITUTE, Taisei Corp, Denki Kagaku Kogyo KK filed Critical INDEPENDENT ADMINISTRATIVE INSTITUTION PORT AND AIRPORT RESEARCH INSTITUTE
Priority to JP2002223834A priority Critical patent/JP3928712B2/en
Publication of JP2004060035A publication Critical patent/JP2004060035A/en
Application granted granted Critical
Publication of JP3928712B2 publication Critical patent/JP3928712B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Revetment (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、コンクリート構造物、鋼構造物などの海洋構造物の防食構造及び防食方法に関するものである。
【0002】
【従来の技術】
海洋環境、特に飛沫帯においては、塩化物イオンおよび酸素などがコンクリート中に侵入して、内部の鉄筋を腐食させる現象が発生する。
このため、海洋環境にある鉄筋コンクリート構造物、プレストレストコンクリート構造物、鋼構造物などには従来から防食処理が施されていた。
第1種防食法としては、コンクリートの材料や配合などでコンクリートを緻密化して鋼材の腐食因子の侵入や移動を抑制したり、鉄筋のかぶりを大きくしたりすることにより腐食因子の鋼材への到達時間を遅らせる方法がある。
また、第2種防食法としては、コンクリート表面を表面被覆材などで被覆し、鋼材の腐食因子の侵入を抑制する方法、エポキシ樹脂塗装鉄筋などの防食性の鋼材を使用することにより腐食の進行を抑制する方法、及び電気防食などの電気化学的方法などがある。
【0003】
【発明が解決しようとする課題】
前記した従来の防食構造及び防食方法にあっては、次のような問題点がある。
<イ>表面被覆材は一般に有機物であり、環境や人体に悪影響を及ぼすおそれのある物質が含まれている。
<ロ>有機物の表面被覆材は時間の経過とともに劣化するため、定期的にメンテナンスをおこなう必要がある。
<ハ>一般に、樹脂系の表面被覆材の耐用年数は10年程度であり、表面被覆材の塗り替え時期に剥がして処分する必要がある。この剥がした表面被覆材は産業廃棄物となるため、処分に多くの費用がかかり、地球環境に与える悪影響も少なくない。
【0004】
【発明の目的】
本発明は上記したような従来の問題を解決するためになされたもので、安全な材料で防食効果の高い防食構造及び防食方法を提供することを目的とする。
また、耐久年数の長い防食構造及び防食方法を提供することを目的とする。
さらに、使用期間経過後も容易に処分できる防食構造及び防食方法を提供することを目的とする。
本発明は、これらの目的の少なくとも一つを達成するものである。
【0005】
【課題を解決するための手段】
上記の目的を達成するために、本発明の第1発明として、鋼材を備える本体部から構成する海洋構造物の防食構造であって、前記本体部表面の一部又は全部に表層材を配置し、前記表層材は、板材又はシート材と、該板材又はシート材の海洋側の表面に予め形成した保護層と、より構成し、前記保護層は、タンパク質と炭酸カルシウムを生成する海生生物前記タンパク質を利用して付着させることにより形成し、前記海生生物の付着面積率は70%以上であり、前記保護層の厚さが50〜100μmであることを特徴とする防食構造を提供するものである。
また、本発明の第2発明として、表層材と、前記表層材を埋設型枠として構築したコンクリート構造物と、からなる、海洋構造物の防食構造であって、前記表層材は、板材又はシート材と、該板材又はシート材の海洋側の表面に予め形成した保護層と、より構成し、前記保護層は、タンパク質と炭酸カルシウムを生成する海生生物を前記タンパク質を利用して付着させることにより形成し、前記海生生物の付着面積率は70%以上であり、前記保護層の厚さが50〜100μmであることを特徴とする防食構造を提供する。
【0006】
そして本発明の防食方法は、第3発明として、表層材を製造し、前記表層材を埋設型枠として配置し、コンクリートを前記埋設型枠の内側に打設して構築した、鋼材を備える海洋構造物の防食方法であって、前記表層材は、板材又はシート材と、該板材又はシート材の海洋側の表面に予め形成した保護層と、より構成し、前記保護層は、タンパク質と炭酸カルシウムを生成する海生生物前記タンパク質を利用して付着させることにより形成し、前記海生生物の付着面積率は70%以上であり、前記保護層の厚さが50〜100μmであることを特徴とする防食方法を提供する。
また、第4発明として、表層材を製造し、前記表層材を、既設の鋼材を備える海洋構造物の表面に取り付ける防食方法であって、前記表層材は、板材又はシート材と、該板材又はシート材の海洋側の表面に予め形成した保護層と、より構成し、前記保護層は、タンパク質と炭酸カルシウムを生成する海生生物前記タンパク質を利用して付着させることにより形成し、前記海生生物の付着面積率は70%以上であり、前記保護層の厚さが50〜100μmであることを特徴とする、防食方法を提供する。
【0007】
【発明の実施の形態】
以下、図面を参照しながら本発明の実施の形態について説明する。
【0008】
<イ>適用条件
本発明は、防食処理を必要とするあらゆる構造物に適用することができる。特に、水辺や海に近い場所、海上、飛沫帯などの海洋環境に存在する鉄筋コンクリート構造物、プレストレストコンクリート構造物、鋼構造物などに適用するのが効果的である。
【0009】
<ロ>表層材
表層材1は、海生生物を付着させて製作する。
海生生物の種類は、干満帯ではフジツボ類、カキ類が最も多く、カサガイ類、イガイ類、一枚貝類、巻き貝等があり、海中部ではゴカイ類、コケムシ類、ホヤ等がある。この中で、特に緻密な底殻を形成する海生生物の種類はフジツボ類とカキ類である。
表層材1は、例えばコンクリート製の板材に海生生物を付着させて製作する。海生生物が付着することよって海生生物の底殻からなる層が表層材1の表面に形成される。
薄くて取り扱い易い板材又はシート材は、海生生物が付着しやすい海中や干満帯などの環境下に容易におくことができるので、海生生物を効率的に付着させたり、付着量を制御したりするのに適している。
また、付着した海生生物を板状に切り出すことで表層材1を製作することもできる。
【0010】
<ハ>防食構造
海生生物が形成する保護層は、海生生物により生成されるたんぱく質(コンクリート表面に付着する際に使われる物質)と炭酸カルシウムで構成される。そして、海生生物付着層の主成分は炭酸カルシウムである。
この海生生物付着層の組織は、セメントペーストよりも緻密な構造であり、その厚さが50〜100μm程度の層である(図2参照)。
【0011】
<ニ>防食構造の構築方法
表層材1をコンクリート構造物の表面に配置する実施例について説明する。
図1は、桟橋上部工における防食方法の実施例を示したものである。図1の海面4から本体部2の底面にかけては飛沫帯に該当する。この飛沫帯は、構造物にとって特に条件の厳しい劣化が進行しやすい場所であるが、海生生物が自然に付着することは期待できない場所でもある。
そこで、予め海生生物を付着させた表層材1を埋設型枠として本体部2の表面に配置する。表層材1の内面には公知のスタッド、アンカーなどを取り付けて、後から表層材1の内側に打設するコンクリートと一体化させる。また、表層材1間の接合部には、エポキシ樹脂やシリコン樹脂などの公知の樹脂系充填材を充填して接合することができる。
また、本体部2が既設のコンクリート構造物である場合は、表層材1を表面パネルとして本体部2の表面に取り付けることができる。この場合は、表層材1を公知の接着剤やボルトなどで本体部2の表面に固定する。
【0012】
<ホ>塩化物イオン及び酸素の拡散係数の低減効果(図3)
図3(a)に、塩化物イオン拡散係数と生物付着面積率との関係を示す。ここで、生物付着面積率とは海生生物が表面に付着した割合をいう。
生物付着面積率が大きくなるほど塩化物イオン拡散係数は小さくなる傾向を示しており、付着層により塩化物イオンの浸透が抑制されていると考えられる。特に、生物付着面積率が30%程度までは、付着がない場合の拡散係数と同程度の値が測定されており、生物付着による拡散係数低減の効果が明確でないが、生物付着面積率が70%以上になるとその低減効果が顕著に現れている。
【0013】
図3(b)に、酸素拡散係数と生物付着量との関係を示す。
生物付着量が多くなるほど酸素拡散係数は小さくなる傾向を示しており、生物付着はコンクリート中への酸素拡散の抑制効果も有しているといえる。
【0014】
図4に、鉄筋の腐食速度と生物付着面積率との関係を示す。この図から生物付着面積率が大きくなると腐食速度が小さくなる傾向が認められる。
【0015】
<ヘ>コンクリート構造物の耐用年数の延長
鉄筋腐食の観点からみた構造物の寿命モデルを図5に示す。ここで、構造物中の鉄筋が限界発錆量に達し、腐食ひび割れが発生する時点を構造物の耐用年数と定義すると、耐用年数は腐食発生までの潜伏期間と、腐食発生後のひび割れ発生までの進展期間とによって決定される。
この潜伏期間は主にコンクリート中の塩化物イオン拡散に支配され、進展期間は酸素拡散に支配されると考えられる。従って、海生生物の付着量が増加すると、塩化物イオン拡散係数及び酸素拡散係数を小さくすることができることから潜伏期間及び進展期間がともに長くなり、構造物の耐用年数が延長される。
【0016】
【発明の効果】
本発明の防食構造及び防食方法は以上説明したようになるから次のような効果を得ることができる。
<イ>表層材は炭酸カルシウムを主成分とする安全な材料で被覆されている。また、海生生物の付着によって形成される保護層は緻密な構造である。このため、安全で防食効果の高い防食をおこなうことができる。
<ロ>炭酸カルシウムを主成分とする保護層は、従来の有機物の表面被覆材に比べて非常に耐久性に優れている。
<ハ>海生生物の作り出す自然材料であるため、使用期間経過後も容易に処分できる。
【図面の簡単な説明】
【図1】本発明の防食構造の実施例の説明図。
【図2】防食構造の拡大詳細図。
【図3】(a)塩化物イオン拡散係数と生物付着面積率との関係図。(b)酸素拡散係数と生物付着量との関係図。
【図4】腐食速度と生物付着面積率との関係図。
【図5】鉄筋腐食の観点からみた構造物の寿命モデル。
【符号の説明】
1・・・表層材
2・・・本体部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an anticorrosion structure and an anticorrosion method for marine structures such as concrete structures and steel structures .
[0002]
[Prior art]
In the marine environment, particularly in the splash zone, chloride ions and oxygen enter the concrete, causing a phenomenon that corrodes the internal rebar.
For this reason, reinforced concrete structures, prestressed concrete structures, steel structures and the like in the marine environment have been conventionally subjected to anticorrosion treatment.
The first type of anti-corrosion method is that the concrete is densified with the material and composition of the concrete to suppress the invasion and movement of the corrosion factor of the steel material, or the corrosion factor reaches the steel material by increasing the cover of the reinforcing bar. There is a way to delay the time.
In addition, as the second type of anticorrosion method, the surface of the concrete is covered with a surface coating material to suppress the invasion of corrosion factors of the steel material, and the corrosion progresses by using an anticorrosive steel material such as an epoxy resin coated reinforcing bar. There are a method for suppressing the corrosion and an electrochemical method such as an anti-corrosion.
[0003]
[Problems to be solved by the invention]
The above-described conventional anticorrosion structure and anticorrosion method have the following problems.
<I> The surface coating material is generally an organic substance and contains a substance that may adversely affect the environment and the human body.
<B> Since organic surface coating materials deteriorate over time, it is necessary to perform maintenance periodically.
<C> Generally, the service life of a resin-based surface coating material is about 10 years, and it is necessary to remove it at the time of repainting the surface coating material and dispose it. Since the peeled surface coating material becomes industrial waste, it takes a lot of costs for disposal, and there are many adverse effects on the global environment.
[0004]
OBJECT OF THE INVENTION
The present invention has been made to solve the above-described conventional problems, and an object thereof is to provide a corrosion prevention structure and a corrosion prevention method that are safe materials and have a high corrosion prevention effect.
Moreover, it aims at providing the anti-corrosion structure and anti-corrosion method with a long durable life.
Furthermore, it aims at providing the anti-corrosion structure and the anti-corrosion method which can be easily disposed of even after the period of use.
The present invention achieves at least one of these objects.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, as a first invention of the present invention, an anticorrosion structure for a marine structure composed of a main body provided with a steel material, wherein a surface layer material is arranged on a part or all of the surface of the main body. the surface layer material comprises a plate or sheet material, and a protective layer formed in advance on the ocean-side surface of the plate material or a sheet material, more configuration, the protective layer, marine organisms to produce the protein and calcium carbonate was formed by depositing by use of the protein, adhesion area ratio of the marine organisms is approximately 70% or more, the corrosion protection structure the thickness of the protective layer is characterized by a 50~100μm It is to provide.
Further, as a second invention of the present invention, the anticorrosion structure of an oceanic structure comprising a surface layer material and a concrete structure constructed using the surface layer material as an embedded formwork, wherein the surface layer material is a plate material or a sheet. and wood, and a protective layer formed in advance on the ocean-side surface of the plate material or a sheet material, more structure, the protective layer may cause adhesion of marine organisms to produce the protein and calcium carbonate by use of the protein formed by adhesion area ratio of the marine organisms is approximately 70% or more, the thickness of the protective layer provides corrosion protection structure, which is a 50 to 100 [mu] m.
[0006]
And the anticorrosion method of this invention is a marine equipped with steel material which manufactured the surface layer material as 3rd invention, arrange | positioned the said surface layer material as an embedded formwork, and cast concrete inside the said embedded formwork. a corrosion process of the structure, the surface layer material comprises a plate or sheet material, and a protective layer formed in advance on the ocean-side surface of the plate material or a sheet material, more constructed, the protective layer, and protein the marine organisms to form calcium carbonate is formed by adhering by using the protein, adhesion area ratio of the marine organisms is approximately 70% or more, the thickness of the protective layer is 50~100μm An anticorrosion method is provided.
Moreover, as a fourth invention, a surface layer material is manufactured, and the surface layer material is attached to a surface of an offshore structure including an existing steel material. The surface layer material includes a plate material or a sheet material, and the plate material or a protective layer formed in advance on the ocean-side surface of the sheet material, more configuration, the protective layer, a marine organism that produces the protein and calcium carbonate was formed by depositing by use of the protein, the A marine organism adhesion area ratio is 70% or more, and the thickness of the protective layer is 50 to 100 μm.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0008]
<I> Application conditions The present invention can be applied to any structure that requires anticorrosion treatment. In particular, it is effective to apply to a reinforced concrete structure, a prestressed concrete structure, a steel structure, etc. existing in a marine environment such as a waterside or near the sea, the sea, or a splash zone.
[0009]
<B> Surface material The surface material 1 is produced by attaching marine organisms.
In the tidal zone, marine organisms are most common in barnacles and oysters, including limpets, mussels, snails, snails, etc., and in the middle of the sea, there are sandworms, bryozoans, and sea squirts. Among them, the species of marine organisms that form a dense bottom shell are barnacles and oysters.
The surface layer material 1 is manufactured by attaching marine organisms to a concrete plate material, for example. By attaching marine organisms, a layer composed of the bottom shell of marine organisms is formed on the surface of the surface material 1.
Thin and easy-to-handle plate or sheet materials can be easily placed in the sea or in the tidal zone where marine organisms are likely to attach, so marine organisms can be attached efficiently and the amount of attachment can be controlled. It is suitable for.
Moreover, the surface layer material 1 can also be manufactured by cutting out adhering marine organisms in plate shape.
[0010]
<C> Anti-corrosion structure The protective layer formed by marine organisms is composed of proteins produced by marine organisms (substances used when adhering to concrete surfaces) and calcium carbonate. The main component of the marine organism adhesion layer is calcium carbonate.
The structure of the marine organism adhesion layer is a layer having a denser structure than the cement paste and a thickness of about 50 to 100 μm (see FIG. 2).
[0011]
<D> Construction method of anticorrosion structure An embodiment in which the surface material 1 is arranged on the surface of a concrete structure will be described.
FIG. 1 shows an embodiment of the anticorrosion method in the pier superstructure. From the sea surface 4 of FIG. 1 to the bottom surface of the main body 2, it corresponds to a splash zone. This splash zone is a place where severe deterioration of conditions is particularly likely to proceed for the structure, but it is also a place where marine organisms cannot be expected to adhere naturally.
Therefore, the surface material 1 to which marine organisms are attached in advance is disposed on the surface of the main body 2 as an embedded formwork. A well-known stud, an anchor, etc. are attached to the inner surface of the surface layer material 1, and are integrated with the concrete to be placed inside the surface layer material 1 later. In addition, the joint portion between the surface layer materials 1 can be joined by being filled with a known resin filler such as epoxy resin or silicon resin.
Moreover, when the main-body part 2 is an existing concrete structure, the surface layer material 1 can be attached to the surface of the main-body part 2 as a surface panel. In this case, the surface layer material 1 is fixed to the surface of the main body 2 with a known adhesive or bolt.
[0012]
<E> Reduction effect of diffusion coefficient of chloride ion and oxygen (Fig. 3)
FIG. 3A shows the relationship between the chloride ion diffusion coefficient and the biofouling area ratio. Here, the biological adhesion area ratio refers to the ratio of marine organisms attached to the surface.
As the biological adhesion area ratio increases, the chloride ion diffusion coefficient tends to decrease, and it is considered that the penetration of chloride ions is suppressed by the adhesion layer. In particular, up to about 30% of the biofouling area ratio, a value similar to the diffusion coefficient when there is no adhesion is measured, and the effect of reducing the diffusion coefficient due to biofouling is not clear, but the biofouling area ratio is 70 If it exceeds%, the reduction effect appears remarkably.
[0013]
FIG. 3B shows the relationship between the oxygen diffusion coefficient and the amount of biofouling.
The oxygen diffusion coefficient tends to decrease as the amount of biofouling increases, and it can be said that biofouling also has an effect of suppressing oxygen diffusion into concrete.
[0014]
FIG. 4 shows the relationship between the corrosion rate of the reinforcing bars and the biological adhesion area rate. From this figure, it is recognized that the corrosion rate tends to decrease as the biological adhesion area ratio increases.
[0015]
<F> Fig. 5 shows a life model of the structure from the viewpoint of extended reinforcing steel corrosion of the concrete structure. Here, if the rebar in the structure reaches the limit rusting amount and the point of time when corrosion cracking occurs is defined as the useful life of the structure, the useful life is the incubation period until the occurrence of corrosion and the occurrence of cracking after the occurrence of corrosion. Determined by the development period.
This incubation period is mainly governed by the diffusion of chloride ions in concrete, and the evolution period is thought to be governed by oxygen diffusion. Therefore, when the adhesion amount of marine organisms increases, the chloride ion diffusion coefficient and the oxygen diffusion coefficient can be reduced, so that both the incubation period and the development period become longer, and the useful life of the structure is extended.
[0016]
【The invention's effect】
Since the anticorrosion structure and anticorrosion method of the present invention are as described above, the following effects can be obtained.
<A> The surface material is coated with a safe material mainly composed of calcium carbonate. The protective layer formed by the attachment of marine organisms has a dense structure. For this reason, it is safe and can perform corrosion prevention with a high anticorrosion effect.
<B> The protective layer mainly composed of calcium carbonate is extremely excellent in durability as compared with a conventional organic surface coating material.
<C> Since it is a natural material created by marine organisms, it can be easily disposed of even after the period of use.
[Brief description of the drawings]
FIG. 1 is an explanatory view of an embodiment of the anticorrosion structure of the present invention.
FIG. 2 is an enlarged detail view of the anticorrosion structure.
FIG. 3A is a graph showing the relationship between the chloride ion diffusion coefficient and the biofouling area ratio. (B) Relationship diagram between oxygen diffusion coefficient and biofouling amount.
FIG. 4 is a diagram showing the relationship between the corrosion rate and the biofouling area rate.
FIG. 5 is a life model of a structure from the viewpoint of reinforcing steel corrosion.
[Explanation of symbols]
1 ... Surface material 2 ... Main body

Claims (4)

鋼材を備える本体部から構成する海洋構造物の防食構造であって、
前記本体部表面の一部又は全部に表層材を配置し、
前記表層材は、板材又はシート材と、該板材又はシート材の海洋側の表面に予め形成した保護層と、より構成し、
前記保護層は、タンパク質と炭酸カルシウムを生成する海生生物前記タンパク質を利用して付着させることにより形成し、
前記海生生物の付着面積率は70%以上であり、
前記保護層の厚さが50〜100μmであることを特徴とする、
防食構造。
An anti-corrosion structure for a marine structure composed of a main body provided with a steel material,
A surface layer material is arranged on part or all of the surface of the main body,
The surface layer material comprises a plate material or a sheet material, and a protective layer formed in advance on the ocean side surface of the plate material or sheet material,
The protective layer, a marine organism that produces the protein and calcium carbonate was formed by depositing by use of the protein,
The marine organism adhesion area ratio is 70% or more,
The protective layer has a thickness of 50 to 100 μm,
Anti-corrosion structure.
表層材と、前記表層材を埋設型枠として構築したコンクリート構造物と、からなる、海洋構造物の防食構造であって、
前記表層材は、板材又はシート材と、該板材又はシート材の海洋側の表面に予め形成した保護層と、より構成し、
前記保護層は、タンパク質と炭酸カルシウムを生成する海生生物前記タンパク質を利用して付着させることにより形成し、
前記海生生物の付着面積率は70%以上であり、
前記保護層の厚さが50〜100μmであることを特徴とする、
防食構造。
An anticorrosion structure for a marine structure , comprising a surface layer material and a concrete structure constructed using the surface layer material as an embedded formwork,
The surface layer material comprises a plate material or a sheet material, and a protective layer formed in advance on the ocean side surface of the plate material or sheet material,
The protective layer, a marine organism that produces the protein and calcium carbonate was formed by depositing by use of the protein,
The marine organism adhesion area ratio is 70% or more,
The protective layer has a thickness of 50 to 100 μm,
Anti-corrosion structure.
表層材を製造し、前記表層材を埋設型枠として配置し、コンクリートを前記埋設型枠の内側に打設して構築した、鋼材を備える海洋構造物の防食方法であって、
前記表層材は、板材又はシート材と、該板材又はシート材の海洋側の表面に予め形成した保護層と、より構成し、
前記保護層は、タンパク質と炭酸カルシウムを生成する海生生物前記タンパク質を利用して付着させることにより形成し、
前記海生生物の付着面積率は70%以上であり、
前記保護層の厚さが50〜100μmであることを特徴とする、
防食方法。
Producing a surface layer material, placing the surface layer material as an embedded formwork, and constructing by placing concrete on the inside of the embedded formwork, an anticorrosion method for an offshore structure comprising a steel material,
The surface layer material comprises a plate material or a sheet material, and a protective layer formed in advance on the ocean side surface of the plate material or sheet material,
The protective layer, a marine organism that produces the protein and calcium carbonate was formed by depositing by use of the protein,
The marine organism adhesion area ratio is 70% or more,
The protective layer has a thickness of 50 to 100 μm,
Anticorrosion method.
表層材を製造し、前記表層材を、既設の鋼材を備える海洋構造物の表面に取り付ける防食方法であって、
前記表層材は、板材又はシート材と、該板材又はシート材の海洋側の表面に予め形成した保護層と、より構成し、
前記保護層は、タンパク質と炭酸カルシウムを生成する海生生物前記タンパク質を利用して付着させることにより形成し、
前記海生生物の付着面積率は70%以上であり、
前記保護層の厚さが50〜100μmであることを特徴とする、
防食方法。
It is a corrosion prevention method for producing a surface layer material and attaching the surface layer material to the surface of an offshore structure including an existing steel material,
The surface layer material comprises a plate material or a sheet material, and a protective layer formed in advance on the ocean side surface of the plate material or sheet material,
The protective layer, a marine organism that produces the protein and calcium carbonate was formed by depositing by use of the protein,
The marine organism adhesion area ratio is 70% or more,
The protective layer has a thickness of 50 to 100 μm,
Anticorrosion method.
JP2002223834A 2002-07-31 2002-07-31 Anticorrosion structure and anticorrosion method Expired - Fee Related JP3928712B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002223834A JP3928712B2 (en) 2002-07-31 2002-07-31 Anticorrosion structure and anticorrosion method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002223834A JP3928712B2 (en) 2002-07-31 2002-07-31 Anticorrosion structure and anticorrosion method

Publications (2)

Publication Number Publication Date
JP2004060035A JP2004060035A (en) 2004-02-26
JP3928712B2 true JP3928712B2 (en) 2007-06-13

Family

ID=31943488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002223834A Expired - Fee Related JP3928712B2 (en) 2002-07-31 2002-07-31 Anticorrosion structure and anticorrosion method

Country Status (1)

Country Link
JP (1) JP3928712B2 (en)

Also Published As

Publication number Publication date
JP2004060035A (en) 2004-02-26

Similar Documents

Publication Publication Date Title
Yeomans Performance of black, galvanized, and epoxy-coated reinforcing steels in chloride-contaminated concrete
JPS62263986A (en) Cathodic anti-corrosion of reinforced concrete contacted with conductive liquid
CN101392538A (en) Basement detail water proof method
JP3928712B2 (en) Anticorrosion structure and anticorrosion method
CN215330419U (en) Active and passive dual-protection seawater sea sand reinforced concrete member and ICCP system
JP5361077B2 (en) Anticorrosion method
JPH05132964A (en) Anti-corrosive treatment of marine concrete construction
CN211499891U (en) Maintenance system suitable for reinforced concrete structure with reinforcing bars
CN105350558B (en) A kind of method of concrete caisson outer cladding corrosion-resistant metallic material
Wilmot Corrosion protection of reinforcement for concrete structures
JP4047973B2 (en) Method for reinforcing anticorrosion coating on steel sheet pile joints
CN219731720U (en) UHPC thickening structure of deepwater bearing platform
JPS5829916A (en) Corrosion resistance processing method for ocean structure
CN205224123U (en) Outer anti -corrosion metal material&#39;s of cladding of concrete caisson structure
JPH0725047U (en) Protective cover for anticorrosion and antifouling of steel structures
JP2006207000A5 (en)
JP2001152475A (en) Covering corrosion-proof transparent cover
Van Dyke et al. Long-term corrosion protection of bridge elements reinforcing materials in concrete
JPH0224913B2 (en)
JP3819387B2 (en) Underwater structure and its construction method
Andrade Coating protection for reinforcement: state of the art report
JPH0224914B2 (en)
JP2020111913A (en) Reinforced concrete structure
JP2018044319A (en) Anticorrosive construction method
JPH02248531A (en) Applying anticorrosive method to harbor structure and anticorrosive panel

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060314

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061017

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070227

R150 Certificate of patent or registration of utility model

Ref document number: 3928712

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100316

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120316

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120316

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130316

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140316

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees