JP3927660B2 - Automatic display device for trees under the transmission line - Google Patents

Automatic display device for trees under the transmission line Download PDF

Info

Publication number
JP3927660B2
JP3927660B2 JP24922397A JP24922397A JP3927660B2 JP 3927660 B2 JP3927660 B2 JP 3927660B2 JP 24922397 A JP24922397 A JP 24922397A JP 24922397 A JP24922397 A JP 24922397A JP 3927660 B2 JP3927660 B2 JP 3927660B2
Authority
JP
Japan
Prior art keywords
tree
transmission line
information
curve
processing unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP24922397A
Other languages
Japanese (ja)
Other versions
JPH1198634A (en
Inventor
修一 蘆立
秀典 伊藤
紀綱 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Co Inc
Asia Air Survey Co Ltd
Original Assignee
Tokyo Electric Power Co Inc
Asia Air Survey Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc, Asia Air Survey Co Ltd filed Critical Tokyo Electric Power Co Inc
Priority to JP24922397A priority Critical patent/JP3927660B2/en
Publication of JPH1198634A publication Critical patent/JPH1198634A/en
Application granted granted Critical
Publication of JP3927660B2 publication Critical patent/JP3927660B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、送電線下付近の樹木が成長に伴って送電線と樹木との距離が適切に保たれているかどうかを所定の形式で自動的に知らせる送電線下支障樹木自動表示装置に関する。
【0002】
【従来の技術】
一般に、送電線は、鉄塔を山野に敷設して所定の弛みを有して張られているものである。このため、送電線下付近にある樹木の成長によって、送電線と樹木との距離が適切に保てなくなってくる(以下送電線下支障樹木という)。
【0003】
このような、送電線下支障樹木は、従来においては電力会社の選任作業員が実際に送電線下を廻って、送電線下支障樹木(風によって送電線が揺れた場合に、送電線に触れるおそれがある樹木を含む)をチェックし、必要に応じて伐採を行っていた。
【0004】
このため、チェックする作業員を多く必要とすると共に、チェックに非常に長い時間を要していた。
【0005】
そこで、近年は航空機で送電線上を飛行して得た3次元写真から樹木が送電線に触れるかどうかをチェックする場合もある。
【0006】
このチェックは、3次元写真から人間が樹木の高さを割り出し、送電線高が書き込まれている図面に、この樹木高をプロットした後に、風等によって送電線が揺れる範囲を書き込む。
【0007】
そして、この範囲に入る樹木又は近い将来に前述の範囲に入る樹木がないかどうかをチェックしていた。
【0008】
【発明が解決しようとする課題】
しかしながら、航空機で得た山林等の3次元写真から送電線下付近の支障樹木の割り出しは、人間が一本毎に高さを割り出すと共に、送電線の揺れる範囲を書き込んでいかなければならないので、支障樹木の割り出しに膨大な時間を要するという課題があった。
【0009】
従って、航空機によって得た3次元データから送電線下付近の支障樹木を自動的に割り出して知らせる送電線下支障樹木自動表示装置が望ましい。
【0010】
また、航空機(ヘリコプターを含む)にレーザー測距装置を搭載して得た3次元データから送電線下付近の支障樹木を短時間に自動的に割り出して知らせる場合にも、送電線下支障樹木自動表示装置が望ましい。
【0011】
【課題を解決するための手段】
本発明は、上空からレーザを発射させて得た地物の3次元位置を用いて、第1の鉄塔と第2の鉄塔との径間の送電線と、この送電線下の樹木情報とに基づいて、送電線と樹木との関係を表示部に表示する送電線下支障樹木自動表示装置において、
前記径間毎に、少なくも、前記径間一帯の、前記樹木の樹木情報と前記径間の径間情報と送電線状態情報とが記憶され、前記送電線と前記樹木との離隔距離情報とこの離隔距離に対しての判定結果情報とが対応させられて記憶される記憶手段と、
前記径間が指定されると、その径間に対応する前記樹木情報、径間情報、送電線状態情報、離隔距離情報を内部の主メモリに取り込む手段と(データ取込部)
前記径間の、平面をX−Y座標系に、縦断面をX−Z座標系に、横断面をY−Z座標系にした3軸の座標系を有し、前記送電線の曲線である、設定された第1、第2又は第3の曲線の3次元座標のX、Y座標値を前記X−Y座標系(平面)に、X、Z座標値を前記X−Z座標系(縦断面)に、Y、Z座標値を前記Y−Z座標系(横断面)に投影し、また設定された前記主メモリの前記樹木情報の3次元座標の、X、Y座標値を前記X−Y座標系(平面)に、X、Z座標値を前記X−Z座標系(縦断面)に、Y、Z座標値を前記Y−Z座標系(横断面)に投影する投影処理部と、
前記主メモリの前記径間の前記樹木情報の樹木の頂点のX、Y座標値並びに前記第1の鉄塔と第2の鉄塔の間の前記径間情報の送電線の曲線である第1の曲線のX、Y座標値を前記投影処理部に設定する手段と(平面図生成処理部)、
前記主メモリの前記径間の前記樹木情報の樹木の頂点のX、Z座標値並びに前記第1の鉄塔と第2の鉄塔の間の前記径間情報の送電線の曲線である第2の曲線のX、Z座標値を前記投影処理部に設定する手段と(縦面図生成処理部)、
前記主メモリの前記径間の前記樹木情報の樹木の頂点のY、Z座標値並びに前記第1の鉄塔と第2の鉄塔の間の前記径間情報の送電線の曲線である第3の曲線のY、Z座標値を前記投影処理部に設定する手段と(横断面図生成処理部)、
前記送電線に対して前記送電線状態情報に基づく通常電力を供給し、風の影響を考慮しないとする第1の条件又は前記送電線状態情報に基づく通常電力を供給し、風の影響を考慮するとする第2の条件若しくは前記送電線に前記送電線状態情報に基づく最大電力を供給し、風の影響を考慮しないとする第3の条件を設定する手段と(設定情報読取処理部)、
前記第1の条件が設定されたときは、前記第1の鉄塔と第2の鉄塔との間で前記送電線に通常電力を供給して静止させたときの前記第1の曲線のX、Y座標値とX、Z座標値とY、Z座標値とを前記投影処理部に設定する手段と(送電線−樹木間算出処理部)、
前記第2の条件が設定されたときは、前記第1の曲線を前記最大風力で振ったときの前記第2の曲線のX、Y座標値とX、Z座標値とY、Z座標値とを前記投影処理部に設定する手段と(送電線−樹木間算出処理部)、
前記第3の条件が設定されたときは、前記送電線に最大電力を供給したときの前記第3の曲線のX、Y座標値とX、Z座標値とY、Z座標値とを前記投影処理部に設定する手段と(送電線−樹木間算出処理部)、
前記投影処理部の前記Y−Z座標系(横断面)における前記第1の曲線、第2の曲線、第3の曲線と前記樹木情報の樹木の各頂点の座標との離隔距離を順次求める手段と(送電線−樹木間算出処理部)、
前記求めた離隔距離が危険な距離かどうかを判定し、該判定結果の危険度と該危険度の色と共に前記樹木情報の前記頂点の座標に対応させて前記記憶手段に記憶する手段と(送電線−樹木間算出処理部)、
前記投影処理部のX−Y座標系(平面)の第1の鉄塔と第2の鉄塔との間の前記第1の曲線、第2の曲線、第3の曲線を前記表示部に表示する手段と(平面図生成処理部)、
前記頂点の座標に対応させている前記第1、第2、第3の曲線の前記判定結果を読み込み、この判定結果の危険度に応じた色で前記投影処理部のX−Y座標系(平面)の前記樹木情報の各樹木を前記表示部に表示する手段と(平面図生成処理部)を備えたことを要旨とする。
【0012】
【発明の実施の形態】
図1は本実施の形態の送電線下支障樹木自動表示装置の概略構成図である。図1の送電線下支障樹木表示装置1は、送電線および木等の3次元データに基づいて樹木と送電線間の距離を求め、これらの距離から送電線付近の樹木と送電線間の距離を、その距離に応じて色別表示するものである。
【0013】
この送電線下支障樹木表示装置1は、図1に示すように、樹木等の3次元データに基づいて樹木と送電線間の距離を求め、これらの距離から送電線付近の樹木と送電線間の距離を、その距離に応じて色別表示させる本体部2と、全ての送電線の路線Ai(i;a、b、c、……)と、全ての径間情報Bi(i;a、b、c、……)と、全ての樹木情報h(i;a、b、c、……)と、送電線情報等を記憶したデータベース3とを備えている。また、本体部2には表示部4と、マウス5とが接続されている。前述の径間とは、送電線の鉄塔と鉄塔との間を意味する。
【0014】
本体部2は、マルチウィンドウ/管理部6と、設定情報読取処理部7と、処理モード判定処理部8と、データ読取部10と、主メモリ11と、画像メモリ12と、投影処理部13と、3次元画像表示処理部14と、縦図面生成処理部16と、断面図生成処理部17と、平面図生成処理部18と、送電線−樹木間算出処理部19と、樹木情報更新処理部20等を備えている。
【0015】
<各部の詳細>
データベース3には、航空機(ヘリコプターを含む)にレーザ測距装置を搭載して得た樹木、鉄塔等の3次元データおよび航空機によって得た3次元データが階層構造的に予め記憶されている。また、航空機によって得た山林の3次元画像が記憶されている。
【0016】
例えば、図2に示すように、送電線の路線Ai(i;a、b、c、……)と、路線Aiの地形データGi(i;a、b、c、……)と、路線Aiの複数の径間情報Bi(i;a1、a2、……、b1、b2、……)と、画像番号ki(i;a1、a2、……、b1、b2、……)、径間Biの樹木情報h(i;a1、a2、……、b1、b2、……)とからなる送電線間‐樹木情報Jiが階層的に記憶されている。
【0017】
前述の径間情報Biは、送電線番号と鉄塔番号と鉄塔高と送電線種と送電電力(最大時、通常時)と送電線の支点位置等からなる。また、樹木情報hは、画像kiにおける各樹木位置(hix、hiy、hiz、i;a、b、c、……)と、この樹木位置に於ける地形データ(ix、iy、iz、i;a、b、c、……)とからなる。これらの情報は、路線毎(Aa、Ab、……)に区分けされて記憶されている。
【0018】
さらに、データベース3には、送電線−樹木間算出処理部19によって求められた離隔距離情報Riが予め図3に示すように階層的に記憶されている。この離隔距離情報Riは、路線Ai(i;a、b、c、……)の径間情報Bi(i;a、b、c、……)と送電線状態情報Li(i;a、b、c、……)と、径間情報Biの樹木位置hiと、離隔距離mi(i;a1、a2、……、b1、b2、………)とが対応づけられて記憶される。これらの情報は、路線毎に分けられて記憶される。
【0019】
マルチウィンドウ管理部6は、各プログラムを管理すると共に、表示部4に所望の画面を複数同時に開く。また、マウス5によって指示された画面上の位置を設定情報読取処理部7に送出する。
【0020】
設定情報読取処理部7は、マルチウィンドウ管理部6を用いて、路線、径間、平面図、断面図、写真画像、送電線状態条件等の表示形式選択画面、成長率更新画面、伐採情報設定画面、集計画面設定画面等を表示させ、これらの画面において、マウス5によって指示された画面上の位置からどのような条件の画面かを示すフラグをフラグレジスタに設定する。
【0021】
前述の送電線状態条件は、少なくとも、送電線に最大電力送電を送電するとするか否か、風の影響を考慮するか否か等を設定させる条件である。
【0022】
処理モード判定処理部8は、フラグレジスタのフラグの種類により、データ読取部10、3次元画像表示処理部14、縦図面生成処理部16、断面図生成処理部17、平面図生成処理部18、送電線−樹木間算出処理部19、樹木情報更新処理部20等のいずれかを起動させると共に、フラグレジスタの設定内容を、その処理部に設定する。
【0023】
データ読取部10は、路線Aiと径間Biとが指定されると、その路線の径間に関連する離隔距離情報Ri及び送電線間‐樹木情報Jiを主メモリ11に記憶し、かつ3次元画像を画像メモリ12に記憶する。
【0024】
投影処理部13は、3軸の座標系を有し、X、Y座標値をXーY座標系に投影し、X、Z座標値をXーZ座標系に投影し、また、Y、Z座標値をYーZ座標系に投影する。
【0025】
3次元画像表示処理部14は 画像メモリ12に記憶された3次元画像をマルチウィンドウ管理部6を用いて表示させる。
【0026】
縦図面生成処理部16は、縦断面図表示指令に伴って、主メモリ11の路線Aiの径間Biに対応する離隔距離情報Riの全ての樹木情報hのhx、hyを投影処理部13に設定し、投影処理部13でXーZ座標系に投影された座標に、記号又は符号を割り当て表示させると共に、判定結果に基づいて色別表示させる。
【0027】
また、同時に送電線−樹木間算出部19を起動させて鉄塔同士を結ぶ送電線の曲線を、後述する(1)、(2)、(3)の設定条件に従って求めさせ、この求めた曲線を投影処理部13に設定し、縦座標系に投影させて、樹木位置と共に表示させる。
【0028】
断面図生成処理部17は、断面図表示指令に伴って、表示された平面図の縦カーソル位置を読み、このカーソル位置における樹木情報hの断面座標(hy、hz)を投影処理部13に設定し、投影処理部13でYーZ座標系に投影された座標に、記号又は符号を割り当て表示させると共に、判定結果に基づいて色別表示させる。
【0029】
また、同時に送電線−樹木間算出部19を起動させて鉄塔同士を結ぶ送電線の曲線を、後述する(1)、(2)、(3)の設定条件に従って求め、求めた曲線を投影処理部13に設定し、縦座標系に投影させて、樹木位置と共に表示させる。
【0030】
この曲線の投影は、通常送電の鉄塔の断面図又は最悪時の鉄塔の断面図若しくは両方の断面図を投影させる。
【0031】
通常送電時において送電線を振らせる場合は、鉄塔の断面の支点を中心とした半円を求めて投影させる。また、最悪時において風を考慮する場合は、鉄塔の支点を所定条件に基づいてのばし、このときの支点を中心とした半円を求めて投影させる。
【0032】
送電線−樹木間算出処理部19は、データベース3から径間Biの樹木位置hiと、送電線の鉄塔位置とを読み、この鉄塔間を結ぶ送電線の曲線を求めて樹木位置hiとの離隔距離を3次元において求める。そして、これらの情報を図2の所定の形式にしてデータベース3に記憶する。
【0033】
この離隔距離は、前述の送電線状態の設定条件に従って求められる。例えば、
(1) 送電線に最大電力を供給しない場合で風の影響を考慮しないと設定されたときは、単に樹木と送電線の離隔距離として求める。
【0034】
(2) 送電線に最大電力を供給しない場合で風の影響を考慮すると設定されたときは、通常送電時の送電線を最大風力で振ったときの樹木と送電線の離隔距離として求める。
【0035】
(3) 送電線に最大電力を供給(最悪時ともいう)で風の影響を考慮しないとすると設定された場合は、送電線に最大電力を流して弛ませて、樹木と送電線との離隔距離を求める。
【0036】
また、送電線−樹木間算出処理部19は、平面図、断面図、縦断図の表示時には、鉄塔同士を結ぶ送電線の曲線を、前述の(1)、(2)、(3)の設定条件に従って求め、求めた曲線を投影処理部13に設定し、平面座標系、断面座標系又は縦座標系に投影させて、樹木位置と共に表示させる。
【0037】
特に、断面図の表示においては、通常送電時において送電線を振らせる場合は、鉄塔の断面の支点を中心とした半円を求める。また、最悪時において風を考慮する場合は、鉄塔の支点を所定条件に基づいてのばし、このときの支点を中心とした半円を求める。
【0038】
さらに、樹木情報hの更新が知らせられると、その樹木情報をデータベース3から引当て、これらの情報に基づいて送電線と樹木との3軸上の離隔距離を求め、路線及び径間に対応づけてデータベース3に記憶する。
【0039】
また、前述の離隔距離に対して以下に説明する危険度の割付を行う。例えば、XーY軸面(平面)、XーZ軸面(縦面)、YーZ軸面(横面)におけるいずれかの面成分の離隔距離が数週間以内に、送電線に所定以上に近接する場合には赤色を、数ヶ月以内に送電線に所定以上に近接する場合には紫色を、その他の樹木情報hには緑色を割り付ける。
【0040】
すなわち、データベース3には、送電線状態設定画面で設定された条件に従った離隔距離情報Riの送電線間距離が3軸面成分に分けられて記憶され、この3軸成分の判定結果が記憶される。
【0041】
樹木情報更新処理部20は、設定された線路Ai、径間Biの樹木情報hをデータベース3から検索し、入力された年月日に基づいて樹木高を更新させる。また、伐採と設定されたときは、その樹木情報の樹木高から伐採長を減算する。
【0042】
投影処理部13は、3軸の座標系を有し、X、Y座標値をXーY座標系に投影し、X、Z座標値をXーZ座標系に投影し、また、Y、Z座標値をYーZ座標系に投影する。
【0043】
上記のように構成された送電線下支障樹木自動表示装置の動作を図4及び図5のフローチャートを用いて説明する。本フローチャートでは、平面図生成の過程を強調して説明し、かつ各処理を一連の流れで説明する。また、送電線ー樹木間情報JiはJaとし、離隔距離情報RiはRaとして説明する。
【0044】
初めに、設定情報算出処理部73は、路線、径間、平面図、断面図、写真画像、送電線状態条件等を選択させる図示しない設定画面又は、成長率更新画面若しくは、伐採情報設定画面、集計画面設定画面等の設定画面を表示させる(S1)。
【0045】
次に、設定終了かどうかを判断し(S2)、設定の終了と判断した場合は、送電線−樹木間算出処理部19が設定画面上においてマウス5により設定された路線Aaの径間Baの送電線‐樹木情報Jaをデータベース3から引当て(S3)、この送電線‐樹木情報Jaに基づいて危険度判定処理を行い、処理結果を図3に示すようにデータベース3に記憶する(S4)。このステップS4の導電線‐樹木間算出処理は、離隔計算指示の入力によって行う。
【0046】
また、送電線−樹木情報Jaは、レーザ測距離装置によって測定した樹木等の高さと平面位置とが3次元座標に変換されて記憶されたものである。
【0047】
前述の判定処理は、上記の(1)、(2)、(3)のいずれかの離隔距離を求める処理であり、求められた離隔距離を3軸上の面に定義づけを行って、いずれかの面上における距離が送電線に所定以上近接するおそれがある場合は、例えば、XーY軸面(平面)、XーZ軸面(縦面)、YーZ軸面(横面)におけるいずれかの面成分の離隔距離が数週間以内に送電線に近接する場合には赤色を、数ヶ月以内に送電線に近接する場合には紫色を、その他の樹木情報haには緑色を割り付ける。
【0048】
図3においては、送電線間距離ma1xがX軸成分の離隔距離、送電線間距離ma1yがY軸成分の離隔距離、送電線間距離ma1zがZ成分の離隔距離である。前述の離隔距離計算について、図を用いて後述する。
【0049】
次に、データ読取部10は、送電線−樹木間距離算出処理部19の処理結果であるデータベース3に記憶されている路線Aaの径間Baの範囲の離隔情報Raを主メモリ11にロードする(S5)。
【0050】
平面図生成処理部18は、マウス5によって平面図表示が選択されると、主メモリ11から路線Aiの径間Biの各樹木位置hai(i;1、2、…)のX、Y座標値を投影処理部13に設定して平面座標系に投影させる(S6)。
【0051】
そして、この投影された平面座標に、記号又は符号を割り当てると共に、危険度判定データEaの判定結果に基づいて色別表示させる(S7)。例えば、送電線と樹木との距離が数週間以内に所定以上近接する場合は危険樹木として赤色を、数ヶ月以内に送電線に近接する樹木には紫色を、その他の樹木には割り付けて表示させる。
【0052】
すなわち、平面図生成処理部18は、図6の(a)に示すように、送電線の鉄塔23aと23bの間における危険樹木を上記(1)、(2)、(3)の離隔距離演算を行わせた後の結果を色別で表示する。図6の(a)においては、丸印が緑、△が紫、×印が危険樹木を示す。
【0053】
次に、処理モード判定処理部8は、設定情報読取処理部7に設定されている設定情報の表示形式Ciを読み(S8)、断面画像の表示かどうかを判断する(S9)。ステップS9において、断面画像の表示ではないと判断したときは、縦断画像の表示かどうかを判断する(S10)。
【0054】
ステップS10において、縦断画像の表示と判断したときは、縦図面生成処理部16を起動させる。
【0055】
縦面図生成処理部17は、縦断面図表示指令(マウスによる選択)に伴って、主メモリ11の離隔距離情報Raの全ての樹木情報haの座標(hax、hay)を全て読み(S11)、投影処理部13でXーZ座標系に投影させて、記号又は符号を割り当て表示させると共に、図6の(b)に示すように、判定結果に基づいて色別表示させた縦断画像を表示させる(S12)。このとき、同時に送電線−樹木間算出部19を起動させて鉄塔同士を結ぶ送電線の曲線を、上記(1)、(2)、又は(3)の設定条件に従って求めさせ、この求めた曲線を投影処理部13に設定し、縦座標系に投影させて、樹木位置と共に表示させる。図6の(a)においては、点線が通常送電であり、最悪時が実線としている。
【0056】
次に、表示形式Ciが3次元画像の表示を示しているかどうかを処理モード判定処理部8が判断する(S13)。
【0057】
ステップS13で写真画像の表示と判断した場合は、処理モード判定処理部8は、3次元画像表示処理部14を起動させる。
【0058】
3次元画像表示処理部14は、路線Aaの径間Baに対応する3次元画像を画像メモリ12から読み(S14)、この3次元画像をマルチウィンドウ表示させる(S15)。
【0059】
また、ステップS10において、縦断画像表示ではないと判断した場合は、処理をステップS13に移す。
【0060】
さらに、ステップS9において、断面画像の表示と判断した場合は、断面図生成処理部17を起動させる。断面図生成処理部17は、平面図における縦カーソル位置25を断面画像表示位置Daとして読み(S16)、そのDaに対応する危険度判定データEaと、カーソル位置25における樹木情報haの断面座標(hay、haz)を読み込んで投影処理部13に設定し(S17)、投影処理部13でYーZ座標系に投影された断面座標(hay、haz)に記号又は符号を割り当てると共に、判定結果に基づいて色別表示させた断面画像を表示させて(S18)、処理をステップS13に戻す。
【0061】
この断画像の生成は、上記説明の送電線‐樹木間算出処理部19を用いて図7に示すように、通常送電における送電線を最大風力で振ったときの(点線)画像と、最悪時での画像と、判定した危険樹木の画像とを生成して表示させている。
【0062】
また、この画像の横には、静止時と、横振り時の弛度と、温度と、振れ角度とを数値で表示している。
【0063】
すなわち、平面図、断面図、縦断図の表示に係わる構成は図8に示すように、データベース3に、レーザ測距離装置等で得たデータに基づいた送電線ー樹木間情報Jiを予め記憶し、この送電線ー樹木間情報Jiに基づいて送電線ー樹木間算出処理部19が路線、径間毎の離隔情報Riを予め求めてデータベース3に記憶する。
【0064】
そして、データ読取部10が指定された路線、径間の離隔情報Riをデータベース3から主メモリ11に全てロードした後に、平面図生成処理部18、断面図生成処理部17又は縦図面生成処理部16が投影処理部13を用いて3軸座標系の目的とする座標系に投影してマルチウィンドウ管理部6により画面に表示している。
【0065】
一方、樹木情報更新処理部20は図9及び図10に示す処理を行っている。初めに図9の成長率による更新処理を説明する。
【0066】
初めに路線、径間表を画面に表示させ、路線Aaと径間Baとを選択させる(S20)。次に、各樹木の成長率などを入力させる画面を表示させて、樹木の種類に応じた成長率を入力させる(S21)。
【0067】
そして、成長率で更新させる年月日を入力させ(S22)、この年月日と成長率とから樹木の成長高を計算し、この成長高をデータベース14の樹木情報のZ値に加算する(S23)。
【0068】
次に、送電線‐樹木間算出処理部19を用いて再度離隔計算を行わせ、その結果にデータベース3の離隔距離を更新させる(S24)。
【0069】
また、樹木情報更新処理部20は、伐採時のデータ更新処理も行う。初めに路線、径間表を画面に表示させ、路線Aiと径間Biとを選択させる(S30)。次に、伐採の方法(根切り、芯止め)等を入力させる(S31)。そして、離隔数値図上で伐採範囲をマウスで指示させる(S32)。次に、データベース3の樹木情報のZ値から伐採高を減算する(S33)。
【0070】
次に、送電線‐樹木間算出処理部19を用いて再度離隔計算を行わせ、その結果にデータベース3の離隔距離を更新させる(S34)。
【0071】
次に、送電線‐樹木間算出処理部19について説明を補充する。送電線‐樹木間算出処理19は、電線静止時(通常送電、最悪送電)、電線横振れ時(通常送電、最悪送電)及び倒木時について行う。
【0072】
例えば、電線静止時には、図11に示すように、電線を静止させ、電線の支点の内側にあるケース1の場合と、外側にあって支点の下にあるケース2の場合と、支点の外側にあって、支点の上にあるケース3の場合とに分けて、それぞれの離隔距離rを直線的に求める。
【0073】
また、電線横ぶれ時(風力を考慮した時)は、図12に示すように、電線振れ角θの内側にあるケース1の場合と、電線振れ角θの外側にあって支点の下にあるケース2の場合と、電線振れ角θの外側にあって、支点の上にあるケース3の場合とに分けて、それぞれの離隔距離rを直線的に求める。
【0074】
さらに、倒木に関しては、図13に示すように、樹木が倒木したときの軌跡線と樹木の根と送電線の支点とを結ぶ直線との交点と、支点との距離を離隔距離とする。
【0075】
なお、上記実施の形態では、航空機に搭載したレーザ測距離装置を用いたデータから得た送電線、鉄塔位置、樹木位置を用いるとして説明したが、航空機によって得た3次元画像から得た送電線位置、鉄塔位置、樹木位置であってもよい。
【0076】
【発明の効果】
以上のように本発明によれば、オペレータはどの樹木が送電線に支障を与えることになるかを一目で判断できるという効果が得られている。
【0078】
このため、何時までに支障樹木を伐採すればよいかをコンピュータ画面から容易に把握できる。
【図面の簡単な説明】
【図1】本実施の形態の送電線下支障樹木自動表示装置の概略構成図である。
【図2】ファイル14の送電線ー樹木情報の記憶構成を説明する説明図である。
【図3】ファイル15の送電線ー樹木情報の記憶構成を説明する説明図である。
【図4】実施の形態の動作を説明するフローチャートである。
【図5】実施の形態の動作を説明するフローチャートである。
【図6】平面図生成処理と縦断面図生成処理の画面を説明する説明図である。
【図7】断面図生成処理の断面図を説明する説明図である。
【図8】平面図、断面図、縦断図の生成の概略構成図である。
【図9】成長率のデータ更新処理のフローチャートである。
【図10】伐採時のデータ更新処理のフローチャートである。
【図11】電線静止時の離隔距離の算出を説明する説明図である。
【図12】電線横振れ時の離隔距離の算出を説明する説明図である。
【図13】倒木樹木の離隔距離の算出を説明する説明図である。
【符号の説明】
1 送電線下支障樹木表示装置
2 本体部
3 データベース
6 マルチウィンドウ/管理部
7 設定情報読取処理部
8 処理モード判定処理部
13 投影処理部
14 3次元画像表示処理部
16 縦図面生成処理部
17 断面図生成処理部
18 平面図生成処理部
19 送電線−樹木間判定処理部
20 樹木情報更新処理部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a transmission line under-affected tree automatic display device that automatically informs in a predetermined format whether or not the distance between a transmission line and a tree is appropriately maintained as a tree near the transmission line grows.
[0002]
[Prior art]
In general, a transmission line is constructed by laying a steel tower in a mountain and having a predetermined slack. For this reason, the distance between the power transmission line and the tree cannot be maintained properly due to the growth of the tree near the power transmission line (hereinafter referred to as a transmission line troubled tree).
[0003]
In the past, a troubled tree under the power transmission line was previously selected by a power company appointed worker who actually went under the power transmission line and touched the power transmission line when the power transmission line underwhelmed the tree. (Including trees with fear), and felled as needed.
[0004]
For this reason, a lot of workers are required to check, and the check takes a very long time.
[0005]
Therefore, in recent years, it is sometimes checked whether a tree touches a power transmission line from a three-dimensional photograph obtained by flying over the power transmission line with an aircraft.
[0006]
In this check, a person calculates the height of a tree from a three-dimensional photograph, plots the height of the tree on a drawing in which the height of the transmission line is written, and then writes a range in which the transmission line fluctuates due to wind or the like.
[0007]
Then, it was checked whether or not there are any trees that fall within this range or trees that fall within the aforementioned range in the near future.
[0008]
[Problems to be solved by the invention]
However, from the three-dimensional photographs of forests obtained by aircraft, it is necessary for humans to calculate the height of each hindrance tree near the transmission line and to write the range where the transmission line fluctuates. There was a problem that it took a huge amount of time to find the troubled trees.
[0009]
Therefore, it is desirable to have an automatic transmission line under-affected tree display device that automatically determines and notifies the troubled trees near the transmission line from the three-dimensional data obtained by the aircraft.
[0010]
In addition, automatic detection of troubled trees under the transmission line can be automatically performed in a short time by automatically identifying the troubled tree near the lower part of the transmission line from the three-dimensional data obtained by installing the laser ranging device on the aircraft (including helicopter). A display device is desirable.
[0011]
[Means for Solving the Problems]
  The present invention uses a three-dimensional position of a feature obtained by launching a laser from above, and uses the transmission line between the first steel tower and the second steel tower and the tree information under the power transmission line. Based on the power transmission line under-affected tree automatic display device that displays the relationship between the transmission line and the tree on the display unit,
  For each span, at least the span of the span, the tree information of the tree, the span information of the span, and the transmission line state information are stored, and the separation distance information between the transmission line and the tree; Storage means for storing the determination result information for the separation distance in association with each other;
  When the span is specified, means for fetching the tree information, span information, transmission line state information, and separation distance information corresponding to the span into an internal main memory (data fetch unit),
  It is a curve of the power transmission line having a three-axis coordinate system in which the plane is an XY coordinate system, a longitudinal section is an XZ coordinate system, and a transverse section is a YZ coordinate system. The X, Y coordinate values of the set three-dimensional coordinates of the first, second or third curve are set in the XY coordinate system (plane), and the X, Z coordinate values are set in the XZ coordinate system (longitudinal section). Projected to the YZ coordinate system (cross section) and setSaidX, Y coordinate values of the three-dimensional coordinates of the tree information of the main memory in the XY coordinate system (plane), X, Z coordinate values in the XZ coordinate system (longitudinal section), Y, Z A projection processing unit that projects coordinate values onto the YZ coordinate system (cross section);
  A first curve that is an X, Y coordinate value of a vertex of a tree of the tree information between the spans of the main memory and a transmission line curve of the span information between the first tower and the second tower. Means for setting the X and Y coordinate values of the projection processing unit (plan view generation processing unit);
  The second curve which is the X and Z coordinate values of the vertices of the tree of the tree information between the spans in the main memory and the transmission line curve of the span information between the first pylon and the second pylon Means for setting the X and Z coordinate values of the projection processing unit (vertical view generation processing unit),
  A third curve that is a curve of a transmission line of the span information between the first tower and the second tower and the Y and Z coordinate values of the tree of the tree information between the spans of the main memory and the span information of the main memory Means for setting the Y and Z coordinate values of the projection processing unit (cross section generation processing unit),
  Supply normal power based on the transmission line state information to the transmission line and supply normal power based on the first condition or the transmission line state information that does not consider the influence of wind, and consider the influence of wind Then, means for setting a second condition or a third condition for supplying maximum power based on the transmission line state information to the transmission line and not considering the influence of wind (setting information reading processing unit),
  Said first articleIsWhen set, the X, Y coordinate values and X, Z of the first curve when normal power is supplied to the transmission line between the first steel tower and the second steel tower to make it stationary. Means for setting coordinate values and Y, Z coordinate values in the projection processing unit (transmission line-tree calculation processing unit);
  When the second condition is set, the X, Y coordinate value and the X, Z coordinate value and the Y, Z coordinate value of the second curve when the first curve is swung with the maximum wind force. Means for setting the above-mentioned projection processing unit (transmission line-tree calculation processing unit),
  When the third condition is set, the X, Y coordinate value and the X, Z coordinate value, and the Y, Z coordinate value of the third curve when the maximum power is supplied to the transmission line are projected. Means for setting in the processing unit (transmission line-tree calculation processing unit),
  Means for sequentially obtaining a separation distance between the first curve, the second curve, and the third curve in the YZ coordinate system (cross section) of the projection processing unit and the coordinates of each vertex of the tree of the tree information. And (transmission line-tree calculation processing unit),
  Determining whether the obtained separation distance is a dangerous distance, and storing it in the storage unit in correspondence with the coordinates of the vertex of the tree information together with the risk of the determination result and the color of the risk Electrical wire-tree calculation processing unit),
  The first curve, the second curve, between the first and second steel towers in the XY coordinate system (plane) of the projection processing unit;Third curveThe aboveDisplay sectionMeans for displaying on (plan view generation processing unit),
  The determination results of the first, second, and third curves corresponding to the coordinates of the vertexes are read, and an XY coordinate system (plane ) For each tree in the tree informationDisplay sectionThe gist of the present invention is that it is provided with a means for displaying on the screen (plan view generation processing section).
[0012]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a schematic configuration diagram of an automatic display device for obstructing trees under a transmission line according to the present embodiment. 1 obtains the distance between the tree and the transmission line based on the three-dimensional data of the transmission line and the tree, and the distance between the tree near the transmission line and the transmission line from these distances. Are displayed by color according to the distance.
[0013]
As shown in FIG. 1, the power transmission line lowering tree display device 1 obtains a distance between a tree and a transmission line based on three-dimensional data such as a tree, and based on these distances, between the tree and the transmission line near the transmission line. Of the main body 2 that displays the distance of each color according to the distance, the routes Ai (i; a, b, c,...) Of all the power transmission lines, and all the span information Bi (i; a, b, c,...), all tree information h (i; a, b, c,...), and a database 3 storing transmission line information and the like. In addition, a display unit 4 and a mouse 5 are connected to the main body unit 2. The span mentioned above means between the steel tower of the power transmission line.
[0014]
The main unit 2 includes a multi-window / management unit 6, a setting information reading processing unit 7, a processing mode determination processing unit 8, a data reading unit 10, a main memory 11, an image memory 12, and a projection processing unit 13. 3D image display processing unit 14, vertical drawing generation processing unit 16, sectional view generation processing unit 17, plan view generation processing unit 18, power transmission line-tree calculation processing unit 19, and tree information update processing unit 20 etc.
[0015]
<Details of each part>
In the database 3, three-dimensional data such as trees and steel towers obtained by mounting a laser range finder on an aircraft (including a helicopter) and three-dimensional data obtained by the aircraft are stored in advance in a hierarchical structure. In addition, a three-dimensional image of a forest obtained by an aircraft is stored.
[0016]
For example, as shown in FIG. 2, the route Ai (i; a, b, c,...) Of the power transmission line, the terrain data Gi (i; a, b, c,...) Of the route Ai, and the route Ai. A plurality of span information Bi (i; a1, a2,..., B1, b2,...), An image number ki (i; a1, a2,..., B1, b2,...), A span Bi. The transmission line-to-tree information Ji including the tree information h (i; a1, a2,..., B1, b2,...) Is hierarchically stored.
[0017]
The span information Bi described above includes a transmission line number, a tower number, a tower height, a transmission line type, transmission power (at the maximum time and normal time), a fulcrum position of the transmission line, and the like. Further, the tree information h includes each tree position (hix, hiy, hiz, i; a, b, c,...) In the image ki and terrain data (ix, iy, iz, i; a, b, c, ...). These pieces of information are stored separately for each route (Aa, Ab,...).
[0018]
Furthermore, the database 3 stores the separation distance information Ri obtained by the transmission line-tree calculation processing unit 19 in a hierarchical manner as shown in FIG. The separation distance information Ri includes the span information Bi (i; a, b, c,...) And the transmission line state information Li (i; a, b) of the route Ai (i; a, b, c,...). , C,...), The tree position hi of the span information Bi, and the separation distance mi (i; a1, a2,..., B1, b2,...) Are stored in association with each other. These pieces of information are stored separately for each route.
[0019]
The multi-window management unit 6 manages each program and simultaneously opens a plurality of desired screens on the display unit 4. Further, the position on the screen instructed by the mouse 5 is sent to the setting information reading processing unit 7.
[0020]
The setting information reading processing unit 7 uses the multi-window management unit 6 to display a display format selection screen such as a route, a span, a plan view, a cross-sectional view, a photographic image, and a transmission line state condition, a growth rate update screen, and logging information setting. A screen, a total screen setting screen, and the like are displayed, and a flag indicating the condition of the screen from the position on the screen designated by the mouse 5 is set in the flag register on these screens.
[0021]
The above-mentioned power transmission line condition is a condition for setting at least whether to transmit the maximum power transmission to the power transmission line, whether to consider the influence of wind, and the like.
[0022]
The processing mode determination processing unit 8 includes a data reading unit 10, a three-dimensional image display processing unit 14, a vertical drawing generation processing unit 16, a sectional view generation processing unit 17, a plan view generation processing unit 18, depending on the type of flag in the flag register. Either the power transmission line-tree calculation processing unit 19 or the tree information update processing unit 20 is activated, and the setting contents of the flag register are set in the processing unit.
[0023]
When the route Ai and the span Bi are specified, the data reading unit 10 stores the separation distance information Ri and the transmission line-tree information Ji related to the span of the route in the main memory 11, and three-dimensionally. The image is stored in the image memory 12.
[0024]
The projection processing unit 13 has a three-axis coordinate system, projects X and Y coordinate values onto an XY coordinate system, projects X and Z coordinate values onto an X-Z coordinate system, and Y, Z The coordinate values are projected onto the YZ coordinate system.
[0025]
The three-dimensional image display processing unit 14 displays the three-dimensional image stored in the image memory 12 using the multi-window management unit 6.
[0026]
The vertical drawing generation processing unit 16 sends the hx and hy of all the tree information h of the separation distance information Ri corresponding to the span Bi of the route Ai of the main memory 11 to the projection processing unit 13 in accordance with the vertical sectional view display command. The symbols and codes are assigned to the coordinates projected and projected onto the X-Z coordinate system by the projection processing unit 13 and displayed according to the color based on the determination result.
[0027]
At the same time, the power transmission line-tree calculating unit 19 is activated to determine the curve of the power transmission line connecting the steel towers according to the setting conditions of (1), (2), and (3), which will be described later. It is set in the projection processing unit 13, projected onto the ordinate system, and displayed together with the tree position.
[0028]
In response to the sectional view display command, the sectional view generation processing unit 17 reads the vertical cursor position of the displayed plan view and sets the sectional coordinates (hy, hz) of the tree information h at the cursor position in the projection processing unit 13. Then, the projection processing unit 13 assigns and displays symbols or symbols to the coordinates projected on the YZ coordinate system, and displays them by color based on the determination result.
[0029]
At the same time, the power transmission line-tree calculating unit 19 is activated to obtain a curve of the power transmission line connecting the steel towers according to the setting conditions (1), (2), and (3) described later, and the obtained curve is projected. It is set in the unit 13, projected onto the ordinate system, and displayed together with the tree position.
[0030]
Projection of this curve projects a cross-sectional view of a normal power transmission tower or a worst-case steel tower or both.
[0031]
When the transmission line is shaken during normal power transmission, a semicircle centered on the fulcrum of the cross section of the steel tower is obtained and projected. When the wind is considered at the worst, the fulcrum of the steel tower is extended based on a predetermined condition, and a semicircle centered on the fulcrum at this time is obtained and projected.
[0032]
The transmission line-tree calculation processing unit 19 reads the tree position hi of the span Bi and the pylon position of the transmission line from the database 3, obtains a curve of the transmission line connecting the pylons, and is separated from the tree position hi. Find the distance in three dimensions. These pieces of information are stored in the database 3 in the predetermined format shown in FIG.
[0033]
This separation distance is obtained according to the transmission line state setting conditions described above. For example,
(1) When the maximum power is not supplied to the transmission line and it is set not to consider the influence of wind, it is simply obtained as the separation distance between the tree and the transmission line.
[0034]
(2) When the maximum power is not supplied to the transmission line and the effect of wind is taken into consideration, the distance between the tree and the transmission line when the transmission line during normal power transmission is shaken with the maximum wind is obtained.
[0035]
(3) If it is set that the maximum power is supplied to the transmission line (also called the worst) and the effect of wind is not taken into account, the maximum power is sent to the transmission line and relaxed, and the tree and the transmission line are separated. Find the distance.
[0036]
Moreover, the transmission line-tree calculation processing unit 19 sets the curves of the transmission lines connecting the steel towers to the above-described (1), (2), and (3) when displaying a plan view, a cross-sectional view, and a longitudinal view. According to the conditions, the obtained curve is set in the projection processing unit 13, projected onto the plane coordinate system, the cross-sectional coordinate system, or the ordinate system, and displayed together with the tree position.
[0037]
In particular, in the display of the cross-sectional view, when the transmission line is shaken during normal power transmission, a semicircle centered on the fulcrum of the cross section of the steel tower is obtained. In the worst case, when the wind is considered, the fulcrum of the steel tower is extended based on a predetermined condition, and a semicircle centered on the fulcrum at this time is obtained.
[0038]
Further, when the update of the tree information h is notified, the tree information is allocated from the database 3, and the separation distance on the three axes between the transmission line and the tree is obtained based on the information, and the distance between the route and the diameter is correlated. Stored in the database 3.
[0039]
Moreover, the risk level described below is assigned to the above-mentioned separation distance. For example, the separation distance of any surface component on the XY axis plane (plane), X-Z axis plane (vertical plane), and Y-Z axis plane (horizontal plane) is within a predetermined number of weeks on the transmission line. Is assigned to red, purple is assigned to the transmission line within a few months, and green is assigned to other tree information h.
[0040]
That is, in the database 3, the distance between the transmission lines of the separation distance information Ri according to the conditions set on the transmission line state setting screen is divided into three axial plane components and stored, and the determination result of the three axial components is stored. Is done.
[0041]
The tree information update processing unit 20 searches the database 3 for the tree information h of the set track Ai and span Bi, and updates the tree height based on the input date. When logging is set, the logging length is subtracted from the tree height of the tree information.
[0042]
The projection processing unit 13 has a three-axis coordinate system, projects X and Y coordinate values onto an XY coordinate system, projects X and Z coordinate values onto an X-Z coordinate system, and Y, Z The coordinate values are projected onto the YZ coordinate system.
[0043]
The operation of the power transmission line lowering tree automatic display device configured as described above will be described with reference to the flowcharts of FIGS. In this flowchart, the process of generating a plan view will be emphasized and each process will be described in a series of flows. Further, the transmission line-tree information Ji is assumed to be Ja, and the separation distance information Ri is assumed to be Ra.
[0044]
First, the setting information calculation processing unit 73 is configured to select a route, span, plan view, cross-sectional view, photographic image, power transmission line condition, etc., a setting screen (not shown), a growth rate update screen, a logging information setting screen, A setting screen such as a total screen setting screen is displayed (S1).
[0045]
Next, it is determined whether or not the setting is completed (S2). If it is determined that the setting is completed, the transmission line-tree calculation processing unit 19 sets the distance Ba of the route Aa set by the mouse 5 on the setting screen. The transmission line-tree information Ja is allocated from the database 3 (S3), a risk determination process is performed based on the transmission line-tree information Ja, and the processing result is stored in the database 3 as shown in FIG. 3 (S4). . The calculation process between the conductive wire and the tree in step S4 is performed by inputting a distance calculation instruction.
[0046]
The power transmission line-tree information Ja is obtained by converting the height of a tree or the like measured by the laser distance measuring device and the plane position into three-dimensional coordinates and storing them.
[0047]
The above-described determination process is a process for obtaining the separation distance of any one of the above (1), (2), and (3). If there is a possibility that the distance on the surface is closer to the power transmission line than a predetermined distance, for example, the XY axis surface (plane), the X-Z axis surface (vertical surface), the Y-Z axis surface (horizontal surface) If the separation distance of any surface component in is close to the transmission line within a few weeks, red is assigned, purple is assigned to the transmission line within a few months, and green is assigned to the other tree information ha .
[0048]
In FIG. 3, the transmission line distance ma1x is the X-axis component separation distance, the transmission line distance ma1y is the Y-axis component separation distance, and the transmission line distance ma1z is the Z-component separation distance. The aforementioned separation distance calculation will be described later with reference to the drawings.
[0049]
Next, the data reading unit 10 loads the distance information Ra of the range Ba of the route Aa stored in the database 3 as the processing result of the transmission line-tree distance calculation processing unit 19 into the main memory 11. (S5).
[0050]
When the plan view display is selected by the mouse 5, the plan view generation processing unit 18 selects the X and Y coordinate values of each tree position hai (i; 1, 2,...) From the main memory 11 in the span Bi of the route Ai. Is set in the projection processing unit 13 and projected onto the plane coordinate system (S6).
[0051]
Then, a symbol or code is assigned to the projected plane coordinates and displayed according to color based on the determination result of the risk determination data Ea (S7). For example, if the distance between a transmission line and a tree is closer than a predetermined distance within a few weeks, red is displayed as a dangerous tree, purple is displayed for a tree close to the transmission line within a few months, and other trees are assigned and displayed. .
[0052]
That is, as shown in FIG. 6A, the plan view generation processing unit 18 calculates the distance tree of the above-mentioned (1), (2), and (3) for the dangerous tree between the steel towers 23a and 23b of the transmission line. The result after performing is displayed in different colors. In FIG. 6A, the circle mark is green, Δ is purple, and the x mark indicates a dangerous tree.
[0053]
Next, the processing mode determination processing unit 8 reads the setting information display format Ci set in the setting information reading processing unit 7 (S8), and determines whether to display a cross-sectional image (S9). If it is determined in step S9 that the cross-sectional image is not displayed, it is determined whether or not a longitudinal image is displayed (S10).
[0054]
If it is determined in step S10 that a vertical image is displayed, the vertical drawing generation processing unit 16 is activated.
[0055]
The longitudinal view generation processing unit 17 reads all the coordinates (hax, hay) of all the tree information ha of the separation distance information Ra of the main memory 11 in accordance with the longitudinal section display command (selection by the mouse) (S11). Then, the projection processing unit 13 projects the image on the X-Z coordinate system, displays the assigned symbol or code, and displays the longitudinal image displayed by color based on the determination result as shown in FIG. 6B. (S12). At this time, the transmission line-tree calculation unit 19 is activated at the same time, and the curve of the transmission line connecting the steel towers is obtained according to the setting condition of (1), (2), or (3), and the obtained curve Is set in the projection processing unit 13, projected onto the ordinate system, and displayed together with the tree position. In FIG. 6A, the dotted line is normal power transmission, and the worst time is a solid line.
[0056]
Next, the processing mode determination processing unit 8 determines whether or not the display format Ci indicates display of a three-dimensional image (S13).
[0057]
If it is determined in step S13 that a photographic image is displayed, the processing mode determination processing unit 8 activates the three-dimensional image display processing unit 14.
[0058]
The three-dimensional image display processing unit 14 reads a three-dimensional image corresponding to the span Ba of the route Aa from the image memory 12 (S14), and displays the three-dimensional image in a multiwindow (S15).
[0059]
If it is determined in step S10 that the image is not displayed vertically, the process proceeds to step S13.
[0060]
Furthermore, when it is determined in step S9 that the cross-sectional image is displayed, the cross-sectional view generation processing unit 17 is activated. The sectional view generation processing unit 17 reads the vertical cursor position 25 in the plan view as the sectional image display position Da (S16), the risk determination data Ea corresponding to the Da, and the sectional coordinates of the tree information ha at the cursor position 25 ( (hay, haz) is read and set in the projection processing unit 13 (S17), and a symbol or sign is assigned to the cross-sectional coordinates (hay, haz) projected onto the Y-Z coordinate system by the projection processing unit 13, and the determination result is displayed. The cross-sectional images displayed based on the colors are displayed (S18), and the process returns to step S13.
[0061]
As shown in FIG. 7, using the transmission line-tree calculation processing unit 19 described above, the broken image is generated as shown in FIG. And an image of the determined dangerous tree are generated and displayed.
[0062]
Next to this image, numerical values are displayed for the stillness, the sag during the horizontal swing, the temperature, and the swing angle.
[0063]
That is, as shown in FIG. 8, the configuration related to the display of the plan view, the cross-sectional view, and the longitudinal section is stored in advance in the database 3 as the transmission line-tree information Ji based on the data obtained by the laser distance measuring device or the like. Based on the transmission line-tree information Ji, the transmission line-tree calculation processing unit 19 obtains distance information Ri for each route and span in advance and stores it in the database 3.
[0064]
Then, after the data reading unit 10 loads all the specified route / diameter separation information Ri from the database 3 to the main memory 11, the plan view generation processing unit 18, the sectional view generation processing unit 17, or the vertical drawing generation processing unit 16 is projected onto the target coordinate system of the three-axis coordinate system using the projection processing unit 13 and displayed on the screen by the multi-window management unit 6.
[0065]
On the other hand, the tree information update processing unit 20 performs the processing shown in FIGS. First, the update process based on the growth rate in FIG. 9 will be described.
[0066]
First, the route and span table are displayed on the screen, and the route Aa and span Ba are selected (S20). Next, a screen for inputting the growth rate of each tree is displayed, and a growth rate corresponding to the type of the tree is input (S21).
[0067]
Then, the date to be updated with the growth rate is input (S22), the growth height of the tree is calculated from this date and the growth rate, and this growth height is added to the Z value of the tree information in the database 14 ( S23).
[0068]
Next, the separation calculation is performed again using the transmission line-tree calculation processing unit 19, and the separation distance of the database 3 is updated to the result (S24).
[0069]
The tree information update processing unit 20 also performs data update processing at the time of logging. First, the route and span table are displayed on the screen, and the route Ai and span Bi are selected (S30). Next, a logging method (root cutting, centering) or the like is input (S31). Then, the felling range is indicated with the mouse on the remote numerical diagram (S32). Next, the logging height is subtracted from the Z value of the tree information in the database 3 (S33).
[0070]
Next, the separation calculation is performed again using the transmission line-tree calculation processing unit 19, and the separation distance in the database 3 is updated to the result (S34).
[0071]
Next, the description of the transmission line-tree calculation processing unit 19 will be supplemented. The transmission line-tree calculation processing 19 is performed when the electric wire is stationary (normal power transmission, worst power transmission), when the electric wire sways (normal power transmission, worst power transmission), and when the tree falls.
[0072]
For example, when the electric wire is stationary, as shown in FIG. 11, the electric wire is stopped and the case 1 inside the fulcrum of the electric wire, the case 2 outside and under the fulcrum, and the outside of the fulcrum Thus, the separation distance r is determined linearly for the case 3 on the fulcrum.
[0073]
Further, when the electric wire is shaken (when the wind force is taken into consideration), as shown in FIG. 12, the case 1 is inside the electric wire deflection angle θ, and the outer side of the electric wire deflection angle θ is below the fulcrum. The separation distance r is determined linearly for the case 2 and for the case 3 outside the wire deflection angle θ and above the fulcrum.
[0074]
Further, regarding the fallen tree, as shown in FIG. 13, the distance between the fulcrum and the intersection of the trajectory line when the tree fell and the straight line connecting the root of the tree and the fulcrum of the transmission line is defined as the separation distance.
[0075]
In the above embodiment, the transmission line obtained from the data using the laser distance measuring device mounted on the aircraft, the steel tower position, and the tree position are used. However, the transmission line obtained from the three-dimensional image obtained by the aircraft. It may be a position, a steel tower position, or a tree position.
[0076]
【The invention's effect】
  As described above, according to the present invention,The operator can determine at a glance which tree will interfere with the transmission line.
[0078]
For this reason, it can be easily grasped from the computer screen by what time the troubled tree should be cut.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a schematic configuration diagram of a power transmission line lowering tree automatic display device according to an embodiment.
FIG. 2 is an explanatory diagram illustrating a storage configuration of power transmission line-tree information in a file 14;
FIG. 3 is an explanatory diagram illustrating a storage configuration of transmission line-tree information in a file 15;
FIG. 4 is a flowchart illustrating the operation of the embodiment.
FIG. 5 is a flowchart illustrating the operation of the embodiment.
FIG. 6 is an explanatory diagram illustrating screens of a plan view generation process and a longitudinal section generation process.
FIG. 7 is an explanatory diagram illustrating a cross-sectional view of a cross-sectional view generation process.
FIG. 8 is a schematic configuration diagram of generation of a plan view, a cross-sectional view, and a longitudinal view.
FIG. 9 is a flowchart of growth rate data update processing;
FIG. 10 is a flowchart of data update processing at the time of logging.
FIG. 11 is an explanatory diagram illustrating calculation of a separation distance when the electric wire is stationary.
FIG. 12 is an explanatory diagram for explaining the calculation of the separation distance at the time of electric wire lateral deflection.
FIG. 13 is an explanatory diagram illustrating calculation of a separation distance of fallen tree trees.
[Explanation of symbols]
1 Obstacle tree display device under transmission line
2 Body
3 Database
6 Multi-Window / Management Department
7 Setting information reading processing section
8 Processing mode judgment processing part
13 Projection processing unit
14 3D image display processing unit
16 Vertical drawing generation processing unit
17 Cross section generation processing unit
18 Plan view generation processing unit
19 Transmission line-tree determination processing unit
20 Tree information update processing section

Claims (6)

上空からレーザを発射させて得た地物の3次元位置を用いて、第1の鉄塔と第2の鉄塔との径間の送電線と、この送電線下の樹木情報とに基づいて、送電線と樹木との関係を表示部に表示する送電線下支障樹木自動表示装置において、
前記径間毎に、少なくも、前記径間一帯の、前記樹木の樹木情報と前記径間の径間情報と送電線状態情報とが記憶され、前記送電線と前記樹木との離隔距離情報とこの離隔距離に対しての判定結果情報とが対応させられて記憶される記憶手段と、
前記径間が指定されると、その径間に対応する前記樹木情報、径間情報、送電線状態情報、離隔距離情報を内部の主メモリに取り込む手段と、
前記径間の、平面をX−Y座標系に、縦断面をX−Z座標系に、横断面をY−Z座標系にした3軸の座標系を有し、前記送電線の曲線である、設定された第1、第2又は第3の曲線の3次元座標のX、Y座標値を前記X−Y座標系(平面)に、X、Z座標値を前記X−Z座標系(縦断面)に、Y、Z座標値を前記Y−Z座標系(横断面)に投影し、また設定された前記主メモリの前記樹木情報の3次元座標の、X、Y座標値を前記X−Y座標系(平面)に、X、Z座標値を前記X−Z座標系(縦断面)に、Y、Z座標値を前記Y−Z座標系(横断面)に投影する投影処理部と、
前記主メモリの前記径間の前記樹木情報の樹木の頂点のX、Y座標値並びに前記第1の鉄塔と第2の鉄塔の間の前記径間情報の送電線の曲線である第1の曲線のX、Y座標値を前記投影処理部に設定する手段と、
前記主メモリの前記径間の前記樹木情報の樹木の頂点のX、Z座標値並びに前記第1の鉄塔と第2の鉄塔の間の前記径間情報の送電線の曲線である第2の曲線のX、Z座標値を前記投影処理部に設定する手段と、
前記主メモリの前記径間の前記樹木情報の樹木の頂点のY、Z座標値並びに前記第1の鉄塔と第2の鉄塔の間の前記径間情報の送電線の曲線である第3の曲線のY、Z座標値を前記投影処理部に設定する手段と、
前記送電線に対して前記送電線状態情報に基づく通常電力を供給し、風の影響を考慮しないとする第1の条件又は前記送電線状態情報に基づく通常電力を供給し、風の影響を考慮するとする第2の条件若しくは前記送電線に前記送電線状態情報に基づく最大電力を供給し、風の影響を考慮しないとする第3の条件を設定する手段と、
前記第1の条件が設定されたときは、前記第1の鉄塔と第2の鉄塔との間で前記送電線に通常電力を供給して静止させたときの前記第1の曲線のX、Y座標値とX、Z座標値とY、Z座標値とを前記投影処理部に設定する手段と、
前記第2の条件が設定されたときは、前記第1の曲線を前記最大風力で振ったときの前記第2の曲線のX、Y座標値とX、Z座標値とY、Z座標値とを前記投影処理部に設定する手段と、
前記第3の条件が設定されたときは、前記送電線に最大電力を供給したときの前記第3の曲線のX、Y座標値とX、Z座標値とY、Z座標値とを前記投影処理部に設定する手段と、
前記投影処理部の前記Y−Z座標系(横断面)における前記第1の曲線、第2の曲線、第3の曲線と前記樹木情報の樹木の各頂点の座標との離隔距離を順次求める手段と、
前記求めた離隔距離が危険な距離かどうかを判定し、該判定結果の危険度と該危険度の色と共に前記樹木情報の前記頂点の座標に対応させて前記記憶手段に記憶する手段と、
前記投影処理部のX−Y座標系(平面)の第1の鉄塔と第2の鉄塔との間の前記第1の曲線、第2の曲線、第3の曲線を前記表示部に表示する手段と、
前記頂点の座標に対応させている前記第1、第2、第3の曲線の前記判定結果を読み込み、この判定結果の危険度に応じた色で前記投影処理部のX−Y座標系(平面)の前記樹木情報の各樹木を前記表示部に表示する手段と
を有することを特徴とする送電線下支障樹木自動表示装置。
Based on the transmission line between the first tower and the second tower, and the tree information under this transmission line, using the three-dimensional position of the feature obtained by launching the laser from above. In the automatic display device for trees under the transmission line that displays the relationship between the electric wire and the tree on the display unit,
For each span, at least the span of the span, the tree information of the tree, the span information of the span, and the transmission line state information are stored, and the separation distance information between the transmission line and the tree; Storage means for storing the determination result information for the separation distance in association with each other;
When the span is specified, means for fetching the tree information, span information, transmission line state information, and separation distance information corresponding to the span into an internal main memory;
It is a curve of the power transmission line having a three-axis coordinate system in which the plane is an XY coordinate system, a longitudinal section is an XZ coordinate system, and a transverse section is a YZ coordinate system. The X, Y coordinate values of the set three-dimensional coordinates of the first, second or third curve are set in the XY coordinate system (plane), and the X, Z coordinate values are set in the XZ coordinate system (longitudinal section). wherein the surface), Y, and project the Z coordinate values in the Y-Z coordinate system (cross-section), and the 3-dimensional coordinates of the tree information of the main memory that has been set, X, Y coordinate values X- A projection processing unit that projects X and Z coordinate values onto the XZ coordinate system (longitudinal section) and Y and Z coordinate values onto the YZ coordinate system (transverse section) on the Y coordinate system (plane);
A first curve that is an X, Y coordinate value of a vertex of a tree of the tree information between the spans of the main memory and a transmission line curve of the span information between the first tower and the second tower. Means for setting the X and Y coordinate values of the projection processing unit;
The second curve which is the X and Z coordinate values of the vertices of the tree of the tree information between the spans in the main memory and the transmission line curve of the span information between the first pylon and the second pylon Means for setting the X and Z coordinate values of the projection processing unit;
A third curve that is a curve of a transmission line of the span information between the first tower and the second tower and the Y and Z coordinate values of the tree of the tree information between the spans of the main memory and the span information of the main memory Means for setting the Y and Z coordinate values of the projection processing unit;
Supply normal power based on the transmission line state information to the transmission line and supply normal power based on the first condition or the transmission line state information that does not consider the influence of wind, and consider the influence of wind Then, a second condition or means for supplying the maximum power based on the transmission line state information to the transmission line and setting a third condition that does not consider the influence of wind;
When said first condition has been set, X of the first curve when normally at rest by supplying power to the transmission line between the first tower and a second tower, Means for setting a Y coordinate value and X, Z coordinate value and Y, Z coordinate value in the projection processing unit;
When the second condition is set, the X, Y coordinate value and the X, Z coordinate value and the Y, Z coordinate value of the second curve when the first curve is swung with the maximum wind force. Means for setting in the projection processing unit;
When the third condition is set, the X, Y coordinate value and the X, Z coordinate value, and the Y, Z coordinate value of the third curve when the maximum power is supplied to the transmission line are projected. Means for setting in the processing unit;
Means for sequentially obtaining a separation distance between the first curve, the second curve, and the third curve in the YZ coordinate system (cross section) of the projection processing unit and the coordinates of each vertex of the tree of the tree information. When,
Determining whether or not the obtained separation distance is a dangerous distance, and storing in the storage means in association with the coordinates of the vertex of the tree information together with the risk of the determination result and the color of the risk;
Means for displaying the first curve, the second curve , and the third curve between the first tower and the second tower in the XY coordinate system (plane) of the projection processing unit on the display unit. When,
The determination results of the first, second, and third curves corresponding to the coordinates of the vertexes are read, and an XY coordinate system (plane ) of the transmission line under hindrance trees automatic display apparatus characterized by having a means for displaying the tree of the tree information to the display unit.
前記離隔距離の算出は、
前記Y−Z座標系(横断面)における前記樹木の頂点の横断面におけるY−Z座標値が、前記第1、第2、第3の曲線のY−Z座標値に対して内側か外側か或いは前記樹木の頂点のZ座標値が前記第1、第2、第3の曲線のZ座標値より上か下かに分けて前記離隔距離を求めることを特徴とする請求項1記載の送電線下支障樹木自動表示装置。
The calculation of the separation distance is as follows:
Whether the YZ coordinate value in the cross section of the top of the tree in the YZ coordinate system (cross section) is inside or outside the YZ coordinate value of the first, second, and third curves 2. The transmission line according to claim 1, wherein the distance is determined by dividing the Z coordinate value of the top of the tree into upper or lower Z coordinate values of the first, second, and third curves. Underlying tree automatic display device.
前記離隔距離の算出は、
前記Y−Z座標系(横断面)における前記樹木の頂点のZ座標値が前記第1、第2、第3の曲線のZ座標値より上となる樹木を判定し、該上と判定した樹木を前記第1,第2、第3の曲線の内側に倒したときの頂点の軌跡を求め、この軌跡の座標と前記第1、第2、第3の曲線との座標との離隔距離を順次求めて、前記判定させることを特徴とする請求項2記載の送電線下支障樹木自動表示装置。
The calculation of the separation distance is as follows:
A tree in which the Z coordinate value of the top of the tree in the YZ coordinate system (cross section) is higher than the Z coordinate values of the first, second, and third curves is determined, and the tree determined to be above The trajectory of the vertex when the angle is tilted to the inside of the first, second, and third curves is obtained, and the separation distance between the coordinates of the trajectory and the coordinates of the first, second, and third curves is sequentially determined. 3. The automatic display device for obstructed trees under a power transmission line according to claim 2, wherein the determination is made and determined.
前記X−Z座標系(縦断面)の表示に伴って、前記投影処理部のX−Z座標系(縦断面)の前記第1の曲線、第2の曲線又は第3の曲線及び前記判定結果を表示する手段とを有することを特徴とする請求項1、2又は3記載の送電線下支障樹木自動表示装置。  With the display of the XZ coordinate system (longitudinal section), the first curve, the second curve, or the third curve of the XZ coordinate system (vertical section) of the projection processing unit and the determination result 4. The automatic transmission line lowering tree automatic display device according to claim 1, 2 or 3, further comprising means for displaying 前記樹木情報の樹木の成長率が入力されると、該成長率に基づいて前記記憶手段の径間の樹木の高さを更新する手段と、
を有することを特徴とする請求項1、2、3又は4記載の送電線下支障樹木自動表示装置。
When the growth rate of the tree of the tree information is input, means for updating the height of the tree between the storage means based on the growth rate;
5. The automatic transmission line lowering tree display device according to claim 1, wherein:
前記樹木情報を読み、該樹木の伐採方法が入力されたときは、これらの樹木の高さを前記伐採方法に基づいて減算する手段と
を有することを特徴とする請求項1、2、3、4又は5記載の送電線下支障樹木自動表示装置。
The tree information is read, and when a tree cutting method is input, means for subtracting the height of these trees based on the tree cutting method is provided. 4. The automatic display device for obstructive trees under the power transmission line according to 4 or 5.
JP24922397A 1997-09-12 1997-09-12 Automatic display device for trees under the transmission line Expired - Lifetime JP3927660B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24922397A JP3927660B2 (en) 1997-09-12 1997-09-12 Automatic display device for trees under the transmission line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24922397A JP3927660B2 (en) 1997-09-12 1997-09-12 Automatic display device for trees under the transmission line

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006239581A Division JP4286854B2 (en) 2006-09-04 2006-09-04 Automatic display device for trees under the transmission line

Publications (2)

Publication Number Publication Date
JPH1198634A JPH1198634A (en) 1999-04-09
JP3927660B2 true JP3927660B2 (en) 2007-06-13

Family

ID=17189756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24922397A Expired - Lifetime JP3927660B2 (en) 1997-09-12 1997-09-12 Automatic display device for trees under the transmission line

Country Status (1)

Country Link
JP (1) JP3927660B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010112889A (en) * 2008-11-07 2010-05-20 Asia Air Survey Co Ltd Recognition system, recognition method, and recognition program

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002318835A (en) * 2001-04-19 2002-10-31 Kansai Electric Power Co Inc:The Cutting plan management system for trees nearby transmission line
JP4526804B2 (en) * 2003-07-17 2010-08-18 東京電力株式会社 Object position guidance system
JP2007107962A (en) * 2005-10-12 2007-04-26 Yamamoto Denko Kk Measuring system of measuring object and separated measuring system under transmission line
JP4743771B2 (en) * 2006-05-08 2011-08-10 コニカミノルタセンシング株式会社 Section data acquisition method, system, and section inspection method
JP5294567B2 (en) * 2007-04-06 2013-09-18 中国電力株式会社 Felled tree separation measuring method and felled tree separation measuring device
JP5048121B2 (en) * 2010-12-27 2012-10-17 株式会社 ケイソク Transmission line bottom cross-sectional view generation method and apparatus
JP7235921B1 (en) * 2022-07-14 2023-03-08 九州電技開発株式会社 Support device, support method and program

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010112889A (en) * 2008-11-07 2010-05-20 Asia Air Survey Co Ltd Recognition system, recognition method, and recognition program

Also Published As

Publication number Publication date
JPH1198634A (en) 1999-04-09

Similar Documents

Publication Publication Date Title
US8249909B2 (en) System and method for visualizing the construction progress of scaffolding utilizing 3D CAD models
CN107767108B (en) Job site management system, method of operating BIM function, and machine-readable medium
JP4286854B2 (en) Automatic display device for trees under the transmission line
ES2368948T3 (en) PLANER FOR THE USE OF CRANES.
CN103793936A (en) Automated frame of reference calibration for augmented reality
JP3927660B2 (en) Automatic display device for trees under the transmission line
CN107220741A (en) Method and system using the construction site management of marking machine people with supporting system
CN102947766B (en) Method for inputting a spatial structure of production devices to a computer-aided planning program and for optimizing the latter
JP2005049148A (en) Device for visualizing distribution of radiation dose rate
CN108664722A (en) Satellite cable based on augmented reality is laid with guidance system and guidance method
CN108563851A (en) A kind of mountain tunnel BIM modeling methods quickly refined
US20230026605A1 (en) Method and system for determining optimal pathways for installing cables in an infrastructure
JP2016177466A (en) Temporary scaffold planning support system
CN117280374A (en) 3D object management data, computer, and distributed management method for 3D object
US11765308B2 (en) Visualization device and method for visualizing the interior or exterior of a vehicle
KR101476909B1 (en) Real-time Process Monitoring System using Block Image
JP5947666B2 (en) Traveling road feature image generation method, traveling road feature image generation program, and traveling road feature image generation apparatus
JP6253834B1 (en) Virtual work display method, virtual work data creation method, and three-dimensional space marking data creation method
KR20220080885A (en) BIM-based remote collaboration construction management simulation server using mixed reality
KR101995898B1 (en) Method for calculating dip of aerial transmission line using electric wire survey and program
KR102006706B1 (en) Working area visualization apparatus and working area visualization method
JP5964611B2 (en) 3D map display system
JP2016149142A (en) Three-dimensional map display system
JP3563927B2 (en) Temporary storage position determination device and recording medium recording temporary storage position determination program
JP7410417B2 (en) Inspection work order display device and inspection work support system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060704

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060904

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070305

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110309

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120309

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130309

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130309

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140309

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term