JP3926636B2 - 駆動装置 - Google Patents

駆動装置 Download PDF

Info

Publication number
JP3926636B2
JP3926636B2 JP2002016044A JP2002016044A JP3926636B2 JP 3926636 B2 JP3926636 B2 JP 3926636B2 JP 2002016044 A JP2002016044 A JP 2002016044A JP 2002016044 A JP2002016044 A JP 2002016044A JP 3926636 B2 JP3926636 B2 JP 3926636B2
Authority
JP
Japan
Prior art keywords
compressed air
air supply
air
driving
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002016044A
Other languages
English (en)
Other versions
JP2003214115A (ja
Inventor
篤 鶴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitutoyo Corp
Original Assignee
Mitutoyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitutoyo Corp filed Critical Mitutoyo Corp
Priority to JP2002016044A priority Critical patent/JP3926636B2/ja
Publication of JP2003214115A publication Critical patent/JP2003214115A/ja
Application granted granted Critical
Publication of JP3926636B2 publication Critical patent/JP3926636B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Magnetic Bearings And Hydrostatic Bearings (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は駆動装置、特にその駆動方式の改良に関する。
【0002】
【従来の技術】
従来より、例えば円柱、円筒等の被測定物について、真円度、同心度あるいは同軸度などの真円度に関する各種データを得るため、真円度測定機が用いられている。
【0003】
図10に示すように真円度測定機10は、本体部12と、電装部14と、演算表示部16を備える。本体部12と電装部14間、電装部14と演算表示部16間は、それぞれ制御線17で接続されている。
前記本体部12は、回転テーブル18と、駆動装置20と、検出ヘッド22を備える。
【0004】
そして、回転テーブル18の上に被測定物24を載置し、電装部14からの制御により回転テーブル18を回転させることにより被測定物24を回転させつつ、その形状を検出ヘッド22により検出し、被測定物の表面形状情報を演算表示部16に集積する。
演算表示部16では、被測定物の表面形状情報に基づき真円度を算出し、その結果を表示している。
【0005】
前述のような真円度測定機10の回転テーブル18の回転運動、検出ヘッド22の直線送り移動等の直線運動をはじめ、様々な精密駆動装置には、ボールベアリング等の機械的な接触のある軸受に比較し、精度の安定性に優れた流体軸受、特に空気軸受が多用されている(例えば特開昭60−55610号、特開平7−317767号公報等)。
【0006】
例えば、図11に示されるような回転型駆動装置20は、ステータ26と、ロータ28と、上板30と、下板32を供える。ロータ28は上板30と下板32と一体化され、ステータ26に支えられている。
そして、上板30の下面とステータ26の上面間、ステータ26の下面と下板32の上面間、ロータ28の外径面とステータ26の内径面間に対し直交する方向より圧縮空気34を供給することにより、該圧縮空気34の層を形成している。
【0007】
この回転型駆動装置20は、モータ36と、モータ36の駆動力を回転軸38に伝達するベルト40を備える。
そして、モータ36からの駆動力をベルト40を介して回転軸38に伝達することにより、ステータ26に対してロータ28を上板30及び下板32と共に、滑らかに回転運動させることができる。
【0008】
【発明が解決しようとする課題】
しかしながら、前記駆動装置にあっても、精密機械の駆動装置として用いるには、まだまだ運動精度の改善の余地が残されていたものの、従来はこれを解決することのできる適切な技術が存在しなかった。
本発明は前記従来技術の課題に鑑みなされたものであり、その目的は運動精度の向上を図ることのできる駆動装置を提供することにある。
【0009】
【課題を解決するための手段】
本発明者が駆動装置の運動精度に関し研究を進めた結果、該運動部の運動精度を向上するためには、まず運動部を運動あるいは駆動させる駆動機構の振動、発熱を低減させることが有効であるとの知見に至った。
この駆動機構の振動、発熱を低減させる手法としては、運動部の駆動力として圧縮空気を用いることが考えられる。測定機の駆動装置ではないが、従来より例えば平面ステップモータの脱調復帰に圧縮空気を用いる技術がある(例えば特開平7−31126号公報等)。
【0010】
この技術は、スライダの側壁に吹出口を設け、該吹出口より外部の斜め方向に圧縮空気を噴射させることにより、その反動でスライダの姿勢を変化させるものであるが、この技術を、そのまま測定機の駆動機構に用いると、運動方向、運動速度等の運動の制御のしやすさの面では改善の余地があった。また移動するスライダ側に圧縮空気を供給する配管を接続する必要があり、構造が複雑であった。
【0011】
さらに本発明者が運動の制御性に関し研究を進めた結果、該制御性を高めるためには、平行に対向配置される基部と運動部のいずれか一方に吹出口を設け、他方に対し圧縮空気を、その拡散を極めて低減し当てることにより、運動部が、基部より圧縮空気による抵抗力(推進力)をしっかりと得ることが有効であるとの知見に至った。
【0012】
すなわち、単に基部ないし運動部の側壁に吹出口を設けただけでは、該吹出口からの圧縮空気は拡散してしまい、その反動だけでは、運動部の運動制御までは困難である。これに対し、前記基部ないし運動部のいずれか一方に吹出口を設けると、他方に対し圧縮空気を実質的に拡散させることなく当てることができる。これにより、圧縮空気で基部ないし運動部のいずれかをしっかりと蹴り飛ばすことができるので、安定した駆動力が運動部に生じるのである。
【0013】
すなわち、前記目的を達成するために本発明にかかる駆動装置は、基部と、該基部に対し支持部を介して対向配置され、該基部に対し相対運動する運動部と、を備え、該基部は該支持部側のガイド部を含み、該運動部は該支持部側の被ガイド部を含み、該運動部を該基部のガイド部に沿って駆動する駆動装置において、圧縮空気源と、駆動用給気路と、制御弁と、制御情報記憶手段と、弁制御手段と、を備えることを特徴とする
【0014】
ここで、前記圧縮空気源は、前記運動部を運動させる駆動力となる圧縮空気を供給する。
また、前記制御弁は、前記各駆動用給気路中に設けられ、該各駆動用給気路の吹出口よりの圧縮空気の噴出を制御する。
前記制御情報記憶手段は、前記運動部の速度に対応する駆動用給気路中の制御弁の制御情報を予め記憶している。
前記弁制御手段は、前記運動部の運動速度が指定されると、該指定速度で運動部を運動させるための駆動用給気路中の制御弁の制御情報を、前記制御情報記憶手段より得、得た制御情報に基づき該制御弁を制御する。
【0015】
そして、前記駆動用給気路は同一方向に複数の異なる角度で設けられ、前記同一方向で角度が異なる駆動用給気路からの圧縮空気の吹出比率を変えることにより、前記運動部を所望の速度で運動させる。
【0016】
ここにいう制御弁の制御情報とは、制御弁の開閉と、制御弁が開の状態では、その開き具合等を含めていう。
またここにいう圧縮空気の吹出比率とは、0〜100%のことをいう。
【0017】
なお、本発明においては、支持用給気路を備え、前記支持部は、該支持用吹出口からの圧縮空気の層であることが好適である。
【0018】
ここで、前記支持用給気路は、前記ガイド部ないし被ガイド部のいずれかに支持用吹出口が設けられ、前記圧縮空気源からの圧縮空気を該支持用吹出口より、該支持用吹出口が開口している基部側平面ないし運動部側平面とは反対側の、該基部側平面ないし運動部側平面に対し直交方向より当てる。
【0019】
また本発明において、前記運動部は回転軸を中心に回転運動し、前記駆動用給気路は、前記圧縮空気源からの圧縮空気を、前記運動部の回転軸の接線方向に対し斜め方向より当てることが好適である。
【0020】
また本発明において、前記運動部は直線運動し、前記駆動用給気路は、前記圧縮空気源からの圧縮空気を前記駆動用吹出口より、該駆動用吹出口が開口している基部側平面ないし運動部側平面とは反対側の、該基部側平面ないし運動部側平面に対し斜め方向より当てることが好適である。
【0021】
また本発明において、前記駆動用給気路は、複数の異なる方向に設けられ、また制御弁と、制御情報記憶手段と、弁制御手段と、を備え、前記方向が異なる駆動用給気路からの圧縮空気の吹出比率を変えることにより、前記運動部を所望の方向に運動させることが好適である。
【0022】
ここで、前記制御弁は、前記各駆動用給気路中に設けられ、該各駆動用給気路の吹出口よりの圧縮空気の噴出を制御する。
また前記制御情報記憶手段は、前記運動部の運動方向に対応する駆動用給気路中の制御弁の制御情報を予め記憶している。
前記弁制御手段は、前記運動部の運動方向が指定されると、該指定方向に運動部を運動させるための駆動用給気路中の制御弁の制御情報を、前記制御情報記憶手段より得、得た制御情報に基づき該制御弁を制御する。
【0023】
また本発明においては、前記駆動用給気路の吹出口よりの圧縮空気の噴出によって前記運動部が駆動される際に、前記異なる方向に設けられた駆動用給気路の吹出口より圧縮空気を噴出して、運動部の速度安定化あるいは制動を行うことが好適である。
【0024】
また本発明においては、前記運動部の速度安定化あるいは制動を行う整速手段を、前記基部あるいは運動部のいずれかに更に備えることが好適である。
また本発明において、前記整速手段は、所定の圧力によって押圧される摩擦板を含むことが好適である。
【0025】
また本発明においては、前記基部と運動部の間隙が変化しないように、前記駆動用吹出口および支持用吹出口から噴出された圧縮空気を排気する排気管を、前記基部あるいは運動部のいずれかに更に備えることが好適である。
【0026】
また本発明においては、前記排気管から排気される圧縮空気の量が、前記駆動用吹出口および支持用吹出口から噴出された圧縮空気の量と略等しくなるように制御する排気制御部を更に備えることが好適である。
【0027】
また本発明においては、前記駆動用吹出口が開口している基部ないし運動部とは反対側の、前記圧縮空気が斜め方向より当てられる基部ないし運動部の面に凹凸形状を更に備え、前記駆動力を増加させることが好適である。
【0028】
【発明の実施の形態】
以下、図面に基づき本発明の好適な一実施形態について説明する。
【0029】
第一実施形態
図1には本発明の一実施形態にかかる駆動装置を用いた真円度測定機の概略構成が示されており、本実施形態では、駆動装置を真円度測定機の回転テーブルの回転型駆動装置として用いた例について説明する。なお、前記従来技術と対応する部分には符号100を加えて示し説明を省略する。
【0030】
同図に示す真円度測定機110の本体112は、基台142と、回転テーブル118と、駆動装置120と、検出ヘッド122を備える。
基台142の上には駆動装置120を介して回転テーブル118が設けられ、該回転テーブル118の上に略円柱状の被測定物124が載置され、回転テーブル118を一定速度で回転する。この回転は回転テーブル118の下方のロータリーエンコーダ(図示省略)で逐次検出され、デジタル信号で得られる。
【0031】
一方、検出ヘッド122からの変位検出信号は逐次、後段の電装部114でデジタル信号に変換され、さらに後段のコンピュータ116に入力される。検出ヘッド122の先端にはスタイラス144が取り付けられており、スタイラス144は検出ヘッド122に対して例えば回転テーブル118の半径方向に常に付勢されている。
【0032】
測定の際には、スタイラス144の先端を被測定物124に接触させた状態で被測定物124を回転テーブル118により回転させると、被測定物124の形状の凹凸によるスタイラス144の変位量が検出ヘッド122により検出される。検出ヘッド122からの変位検出信号は、ロータリーエンコーダからの回転角度の検出信号と共にコンピュータ116に格納される。測定データはコンピュータ116により適宜、例えば最小自乗法、最小領域法等により真円度計算、同軸度計算等が行われる。
【0033】
ところで、真円度測定機では、表面形状の測定精度を向上させるために、回転テーブル118の回転精度は非常に重要である。このために本実施形態においては、駆動装置120が、図2に示すようなエアーベアリングを用いている。
【0034】
すなわち、同図に示すように駆動装置120は、圧縮空気源146と、支持用吹出路148を備える。圧縮空気源146と支持用吹出路148間は、圧縮空気管150と、制御弁152を介して接続されている。
ここで、前記圧縮空気源146は、圧縮エアー(圧縮空気)を供給する。
【0035】
また前記支持用吹出路148は、ステータ126にて、上板側浮上用エアー吹出路154と、下板側浮上用エアー吹出路156と、軸受用エアー吹出路158に分岐されている。
【0036】
前記上板側浮上用エアー吹出路154は、上板130の下面(被ガイド部)と対向するステータ126の上面(ガイド部)に浮上用エアー吹出口(支持用吹出口)が設けられる。該ステータ126の上面の浮上用エアー吹出口より上板130下面に対し直交方向より圧縮空気源146からの圧縮エアーを当てる。
【0037】
前記下板側浮上用エアー吹出路156は、下板132の上面(被ガイド部)と対向するステータ126の下面(ガイド部)に浮上用エアー吹出口が設けられる。該ステータ126下面の浮上用エアー吹出口より下板132上面に対し直交方向より前記圧縮エアーを当てる。
【0038】
軸受用エアー吹出路158は、ロータ128の外径面(被ガイド部)と対向するステータ126の内径面(ガイド部)に軸受用エアー吹出口(支持用吹出口)が設けられる。該ステータ126の軸受用エアー吹出口よりロータ128の外径面に対し直交方向より前記圧縮エアーを当てる。
【0039】
このように本実施形態では、給気路154,156,158を設けることにより、ロータ128を上板130及び下板132と共にステータ126に対し圧縮エアーで精度よく支持することができる。
【0040】
本発明において特徴的なことは、回転駆動源として一般的なモータの代わりに圧縮エアーを用いたことである。このために本実施形態においては、同図に示すように圧縮空気源146と、回転用エアー給気路(駆動用給気路)160と、制御弁162と、コンピュータ116を備えている。
【0041】
圧縮空気源146と回転用エアー給気路160間は、圧縮空気管150と、制御弁162を介して接続されている。各制御弁162とコンピュータ116間は、制御線166で接続されている。
ここで、前記圧縮空気源146は、ロータ128の回転駆動源(駆動力)となる圧縮エアーを供給する。
【0042】
また回転用エアー給気路160は、ロータ128の外径面と対向するステータ126の内径面に回転用エアー吹出口(駆動用吹出口)が設けられる。該ステータ126の回転用エアー吹出口よりロータ128の外径面の接線方向に対しロータ128の回転方向(運動方向)と同じ方向の斜めより、圧縮空気源146からの圧縮エアーを当てる。
【0043】
また前記制御弁162は、各回転用エアー給気路160中にそれぞれ設けられ、該各回転用エアー給気路160の回転用エアー吹出口よりの圧縮エアーの噴出を制御する。
【0044】
前記コンピュータ116は、例えばHDD等よりなる制御情報記憶手段168と、CPU等よりなる弁制御手段170を備える。
前記制御情報記憶手段168は、制御弁162の開閉、開き具合等の制御情報を予め記憶している。
【0045】
前記弁制御手段170は、ロータ128の回転方向が指定されると、制御情報記憶手段168の制御情報にアクセスし、該指定方向にロータ128を回転させるための回転用エアー給気路160中の制御弁162の制御情報を得る。弁制御手段170は、このようにして得た制御情報に基づき各制御弁162の動作を制御する。
【0046】
次に本実施形態において特徴的な給気路の配置について説明する。
図3に示すようにステータ126を上方より見ると、上板側浮上用エアー吹出路の浮上用エアー吹出口153a〜153hが開口している。浮上用エアー吹出口153a〜153hより上板の下面に対し直交方向より圧縮エアーを当てることとなる。これによりステータ126上面と上板下面との間に圧縮エアーの層を設け、ステータ126と上板間の間隙を圧縮エアーで一定に保つことができる。
【0047】
本実施形態では、ステータ126の内径面(ガイド部)の、中心よりある角度を持った方向より、ロータ(図示省略)の外径面(被ガイド部)に圧縮エアー134を当てる。このために本実施形態では、図4に示すようにステータ126に回転用エアー給気路(駆動用給気路)160a〜160dを設けている。
【0048】
同図(A)はステータ126及びロータ128を上方より見た図、同図(B)は側方より見た図である。
同図に示すようにステータ126の中心よりある角度で回転用エアー給気路160a〜160dが設けられている。この結果、本実施形態では、ステータ126の各回転用エアー吹出口(駆動用吹出口)161よりロータ128に対し斜め方向より圧縮エアーを当てることができる。
【0049】
また回転用エアー給気路160a〜160dは、ロータ側の回転用エアー吹出口(駆動用吹出口)が他の部位、ステータ126の外側開口163の径より小径で構成されており、圧縮エアーを吹出した際の拡散を防止して、より効率的に駆動力を得るようにしている。
このように本実施形態では、ステータ126に回転用エアー給気路160a〜160dを設けることにより、ロータ128を上板及び下板(図示省略)と共に例えば、図中時計回りに回転させることができる。
【0050】
また本実施形態では、ステータ126に軸受用エアー吹出路158a〜158hが、ロータ128外径面の接線方向に対し直交する方向に設けられている。そして、軸受用エアー吹出口157よりロータ128の外径面の接線方向に対し直交方向より圧縮エアーを当てる。これによりステータ126の内径面とロータ128の外径面との間に圧縮エアーの層を設け、ステータ126の内径面とロータ128の外径面との間隙を圧縮エアーで一定に保つことができる。
【0051】
このように本実施形態では、図5に示すようにステータ126にロータ128の中心172に対しある角度で、回転用エアー吹出路160を設け、該ステータ126の内径面に、前記回転用エアー吹出口161を設けている。
【0052】
この結果、本実施形態では、回転用エアー吹出口161よりロータ128の外径面に対し斜め方向より圧縮エアー134を実質的に拡散させることなく当てることができるので、ロータ128は、該ロータ128の外径面に対し接線方向の圧縮エアー134の力をしっかりと得ることができる。したがって、圧縮エアー134でステータ126に対しロータ128がしっかりと蹴り飛ばされるので、ロータ128の圧縮エアーが当る部位では、接線方向の右方向に安定した駆動力が働く。これによりロータ128には図中時計回りに安定した回転力が生じるので、ロータ128と共に上板及び下板を回転精度よく回転させることができる。
【0053】
しかも、本実施形態は、回転駆動源としてモータの代わりに圧縮エアーを用いるため、発熱、振動を大幅に低減することができるので、回転テーブルの回転精度が引出し易いと共に、構造を簡略化することができる。
【0054】
また本実施形態は、圧縮エアーによりロータ128の軸受と回転を同時に行うので、加工、仕上げの工程数の削減、部品点数の削減等を行えるので、コスト削減が行える。
なお、本発明は前記構成に限定されるものではなく、発明の要旨の範囲内で種々の変形が可能である。
【0055】
<回転速度>
例えば前記駆動装置120では、回転速度の調節が重要であり、前記構成ではロータ128を上板及び下板と共に所望の速度で回転させることができる。
このために本実施形態では、さらに図6(A)に示すような回転用エアー給気路174を設けている。
同図に示す回転用エアー給気路174は、前記回転用エアー給気路160とは異なる浅い角度で設けられている。
【0056】
また同図では制御弁162と、制御情報記憶手段168と、弁制御手段170を備える。
ここで、前記制御弁162は、前記各回転用エアー給気路160,174中に設けられ、該各回転用エアー給気路160,174の回転用エアー吹出口よりの圧縮エアーの噴出を制御する。
【0057】
また前記制御情報記憶手段168は、速度情報記憶部176を備え、該速度情報記憶部176は、ロータ128の速度に対応する回転用エアー給気路160,174中の制御弁162の制御情報を予め記憶している。
【0058】
前記弁制御手段170は、ロータ128の速度が指定されると、速度情報記憶部176の制御情報にアクセスし、該指定速度でロータ128を回転させるための回転用エアー給気路160,174中の制御弁162の制御情報を得る。弁制御手段170は、このようにして得た制御情報に基づき各制御弁162を制御する。
例えば、弁制御手段170は、同一方向で角度が異なる回転用エアー給気路160,174からの圧縮エアーの吹出比率を変えることにより、ロータ128を所望の速度で回転させる。
【0059】
すなわち、同図(B)に示すように回転用エアー給気路174は、回転用エアー給気路160と同様、ロータ128の半径方向に対し反時計方向に傾いているが、回転用エアー給気路160に比較し浅い角度で設けられている。
このため、回転用エアー給気路174は低速駆動用給気路、回転用エアー給気路160は高速駆動用給気路として用いられる。すなわち、回転用エアー給気路160は回転用エアー給気路174に比較し角度が深い。このため、回転用エアー給気路160の回転用エアー吹出口161からの圧縮エアー134は、回転用エアー給気路174の回転用エアー吹出口173からの圧縮エアー134に比較し、ロータ128の外径面の接線方向の力が大きくなるので、より大きな回転力が得られる。これによりロータ128の回転速度を上げることができる。
【0060】
例えば低速回転時は、回転用エアー給気路174中の制御弁を100%開、回転用エアー給気路160中の制御弁を閉の状態とすることにより、回転用エアー給気路174からの圧縮エアー134が、ステータ126の回転用エアー吹出口173からロータ128の外径面に対し浅い角度で吹出し、ロータ128を時計回りに低速で回転させることができる。
【0061】
一方、高速回転時は、回転用エアー給気路174中の制御弁を閉、回転用エアー給気路160を100%開の状態とすることにより、回転用エアー給気路160の回転用エアー吹出口161からの圧縮エアー134が、ロータ128の外径面に対し深い角度で吹出し、ロータ128を時計回りに高速で回転させることができる。
【0062】
また任意の速度が指定されると、前記弁制御手段は、この指定速度でロータ128を運動させるための駆動用給気路中の制御弁の制御情報を、前記速度情報記憶部より得、得た制御情報に基づき該制御弁を制御する。
例えば、回転用エアー給気路174中の制御弁を40%開、回転用エアー給気路160中の制御弁を60%開の状態というように、各制御弁の開き具合を調節することにより、圧縮エアー134が各吹出口161,173から対応制御弁の開き具合に応じてロータ128の外径面に吹出す。これによりロータ128を時計方向に、前記吹出口161,173からの圧縮エアーの吹出力と方向を合成した結果に応じた任意の速度で回転運動させることができる。
【0063】
<回転方向>
例えば、前記駆動装置120では、回転方向の制御も重要であり、前記構成ではロータ126を上板及び下板と共に、前記時計方向に加えて、反時計方向にも回転させることができる。
このために本実施形態では、さらに図7(A)に示すような回転用エアー吹出路(駆動用給気路)180a〜180dを設けている。
同図に示す回転用エアー吹出路180a〜180dは、前記回転用エアー吹出路160とは反対方向の時計方向に寝ている。
【0064】
また本実施形態では、制御弁162と、制御情報記憶手段168と、弁制御手段170を備える。
また前記制御弁162は、前記回転用エアー吹出路160,180中に設けられ、該各回転用エアー吹出路160,180の回転用エアー吹出口よりの圧縮エアーの噴出を制御する。
前記制御情報記憶手段168は、方向情報記憶部178を備え、該方向情報記憶部178はロータ128の回転方向に対応する回転用エアー吹出路160,180中の制御弁162の制御情報を予め記憶している。
【0065】
弁制御手段170は、ロータ128の回転方向が指定されると、方向情報記憶部178の方向情報にアクセスし、該指定方向にロータ128を回転させるための回転用エアー吹出路160,180中の制御弁162の制御情報を得る。弁制御手段170は、このようにして得た制御情報に基づき該各制御弁162を制御する。
例えば、弁制御手段170は、回転用エアー給気路160からの圧縮エアーと、回転用エアー給気路180からの圧縮エアーとの吹出比率を変えることにより、ロータ128を時計方向、反時計方向の所望の方向に回転させる。
【0066】
同図(B)に示すように弁制御手段170は、反時計方向の回転が指定されると、該反時計方向にロータ128を回転させるための駆動用給気路180中の制御弁の制御情報を、方向情報記憶部より得、得た制御情報に基づき該制御弁を制御する。
例えば弁制御手段170は、回転用圧縮エアー給気路160中の制御弁を閉、回転用圧縮エアー給気路180中の制御弁を100%開の状態とすることにより、圧縮エアーが回転用圧縮エアー給気路180の回転用圧縮エアー吹出口179からロータ128の外径面に対し斜め方向より吹出し、ロータ128を上板及び下板と共に反時計方向に回転させることができる。
【0067】
以上のように本実施形態にかかる駆動装置は、ステータの内径面に回転用エアー吹出口が設けられ、該ステータ内径面の吹出口よりロータ外径面の接線方向に対し斜め方向より圧縮エアーを当てる回転用エアー給気路を備えることとした。この結果、本実施形態では、振動、発熱の低減により回転精度と信頼性の向上が図られると共に、部品の減少による低価格化が実現される。
【0068】
また本実施形態においては、回転用エアー給気路を反時計方向及び時計方向に設け、指定方向に応じて、弁制御手段により該給気路中の制御弁を制御することにより、ロータを時計方向、反時計方向のうちの、所望の方向に精度よく回転させることができる。
また本実施形態においては、回転用エアー給気路を複数の異なる角度で設け、指定速度に応じて、弁制御手段により該給気路中の制御弁を制御することにより、ロータを所望の速度で精度よく回転させることができる。
【0069】
また本実施形態においては、ステータに対しエアーベアリングでロータを支持することにより、ロータの回転精度を更に向上させることができる。
なお、前記各構成では、図8に示すようにロータの回転を一定を保つために、駆動装置120の下方に例えば摩擦板、整速装置等の整速手段182を設けることができる。
【0070】
この整速手段は、摩擦板を下板132の下面あるいは側面へ所定の押圧力によって押し当てることによって回転速度の上昇を防止すると共に、速度を安定化させる役割を果たす。つまり、軽度の制動効果を有する。また、回転テーブル118の回転時に、緊急停止を行う必要が生じた場合には、この押圧力を増大させることによって回転テーブル118の急制動を行っても良い。この押圧力は通常のばねによるほか、圧縮エアーによって生じさせても良い。このように圧縮エアーによって押圧力を生じさせる場合は、制御弁によってエアー量を変化させて、押圧力を容易に変化させることが出来る。
【0071】
本実施形態において、図7に示す反時計方向及び時計方向に設けた回転用エアー給気路を用いて整速手段とすることも出来る。すなわち、例えば回転用エアー給気路180から圧縮エアーを吹出してロータ128を反時計方向へ回転させる場合において、ロータリーエンコーダの出力を監視して回転速度を常時確認し、指定の回転速度になるように回転用エアー給気路180中に配置された制御弁162を制御すると共に、回転用エアー給気路160中に配置された制御弁162を制御して速度を一定に保つようにしても良い。
【0072】
この場合、回転用エアー給気路160中に配置された制御弁162の開度を適度に制御すれば、制動力を制御することになるので、任意速度での一定回転速度を保つことが出来る。急制動を行う必要がある場合は、回転用エアー給気路180中に配置された制御弁162を閉じると共に、回転用エアー給気路160中に配置された制御弁162を全開とし、回転テーブルがほぼ停止した時点で両制御弁とも全閉とする。
【0073】
また本実施形態の支持部としてボールベアリング等の機械的な接触のある軸受等の任意のものを用いることができるが、精度の安定性を得るため、流体、特に前記構成のような圧縮エアーを用いることが特に好ましい。
【0074】
また本実施形態では、ロータの外径面よりステータの内径面に対し圧縮エアーを当てることもできるが、固定側のステータの内径面よりロータの外径面に対し圧縮エアーを当てることが、制御のしやすさの面で特に好ましい。また前記構成では、ステータの内径面よりロータの外径面に対し圧縮エアーを当てた例について説明したが、上板の下面とステータの上面間の対向面、ステータの下面と下板の上面間の対向面に適用することもできる。
【0075】
第二実施形態
また前記構成では、回転型駆動装置について説明したが、三次元測定機や表面粗さ測定器、輪郭形状測定機等の所謂、表面性状測定機等に用いられる図9に示すような直線型駆動装置にも適用することができる。なお、前記第一実施形態と対応する部分には符号100を加えて示し説明を省略する。
【0076】
同図に示す直線型駆動装置220は、ガイド(基部)284と、該ガイド284の上面に対しスライダ下面が圧縮エアーで平行に対向配置され、相対的に例えば図中左右方向等に直線運動するスライダ(運動部)286と、圧縮空気源246と、浮上用給気路(支持用給気路)248を備える。
前記浮上用給気路248は、スライダ286の下面(被ガイド部)に浮上用吹出口247が設けられる。該スライダ286の浮上用吹出口247より、ガイド284の上面(ガイド部)に対し直交方向より圧縮空気源246からの圧縮エアーを当てる。これにより圧縮エアーの層でガイド284とスライダ286の間隙を一定に保つことができる。
【0077】
また本実施形態は、駆動用給気路と、制御弁262と、制御情報記憶手段268と、弁制御手段270を備える。
また駆動用給気路は、高速負方向駆動用給気路260と、低速負方向駆動用給気路274と、低速正方向駆動用給気路288と、高速正方向駆動用給気路280を備える。
【0078】
高速負方向駆動用給気路260は、スライダ286の略中心部を基準に、低速負方向駆動用給気路274と同一方向の負方向で、該給気路274に比較し深い角度で設けられている。
高速正方向駆動用給気路280は、スライダ286の略中心部を基準に、低速正方向駆動用給気路288と同一方向の正方向で、該給気路288に比較し深い角度で設けられている。
【0079】
また前記給気路260,274,288,280は、それぞれ吹出口261,273,287,279が設けられている。
この給気路260,274,288,280は、スライダの対応吹出口261,273,287,279よりガイド284の上面に対し斜め方向より、前記圧縮空気源246からの圧縮エアーを当てる。
【0080】
例えば、給気路260,274からの圧縮エアーをガイド284に当てると、スライダ286を負方向に直線運動させることができる。一方、例えば給気路280,288からの圧縮エアーをガイド284に当てると、スライダ286を正方向に直線運動させることができる。
【0081】
また高速負方向駆動用給気路260は、低速負方向駆動用給気路274に比較し角度が深いので、給気路260の高速負方向駆動用吹出口261からの圧縮エアーは、給気路274の低速負方向駆動用吹出口273からの圧縮エアーに比較し、ガイド284面方向の力が大きくなるので、負方向に、より大きな直線駆動力が得られる。これによりスライダ286の直線運動の速度を上げることができる。
【0082】
また制御弁262a〜262dは、前記各駆動用給気路260,274,288,280中にそれぞれ設けられ、該各駆動用給気路260,274,288,280の各対応吹出口261,273,287,279よりの圧縮エアーの噴出を制御する。
【0083】
制御情報記憶手段268は、方向情報記憶部276と、速度情報記憶部278を備える。
ここで、前記方向情報記憶部276は、スライダ286の運動方向に対応する駆動用給気路中の制御弁の制御情報を予め記憶している。
また前記速度情報記憶部278は、スライダ286の速度に対応する駆動用給気路中の制御弁の制御情報を予め記憶している。
【0084】
そして、弁制御手段270は、スライダ286の運動方向、速度が指定されると、制御情報記憶手段268にアクセスし、該指定方向に指定速度でスライダ286を運動させるための駆動用給気路中の制御弁の制御情報を得る。弁制御手段270は、このようにして得た制御情報に基づき制御弁262を制御する。
つまり、弁制御手段270は、吹出口261ないし273と、吹出口287ないし279とからの圧縮エアーの吹出比率を変えることにより、スライダ286を正方向ないし負方向に直線運動させることができる。
【0085】
また弁制御手段270は、吹出口261と吹出口273との圧縮エアーの吹出比率を変えることにより、スライダ286を負方向に所望の速度で直線運動させることができる。また弁制御手段270は、吹出口279と吹出口287とからの圧縮エアーの吹出比率を変えることにより、スライダ286を正方向に所望の速度で直線運動させることができる。
【0086】
例えば、負方向に低速駆動時は、弁制御手段270が、駆動用給気路274中の制御弁262bを100%開、その他の制御弁262a,262c,262dを閉の状態とすることにより、駆動用給気路274の吹出口273からの圧縮エアーがガイド284に対し浅い角度で吹出し、スライダ286を負方向に低速で直線運動させることができる。
【0087】
一方、負方向に高速駆動時は、弁制御手段270が、駆動用給気路260中の制御弁262aを100%開、その他の制御弁262b,262c,262dを閉の状態とすることにより、駆動用給気路260の吹出口261からの圧縮エアーがガイドに深い角度で吹出し、スライダ286を負方向に高速で直線運動させることができる。
また任意の速度が指定されると、前記弁制御手段270は、該指定速度でスライダ286を運動させるための駆動用給気路中の制御弁の制御情報を、前記制御情報記憶手段286より得、得た制御情報に基づき該制御弁を制御する。
【0088】
すなわち、弁制御手段270は、給気路260中の制御弁262aを60%開、給気路274中の制御弁262bを40%開、その他の制御弁262c、262dを閉の状態というように、各制御弁262の開き具合を調節することにより、圧縮エアーが、吹出口261,273から各制御弁262a,bの開き具合に応じてガイド284に吹出す。これによりスライダ286を負方向に、前記吹出口261,273からの圧縮エアーの吹出力と方向を合成した結果に応じた所望の速度で直線運動させることができる。
正方向についても同様に、スライダ286に対し所望の運動方向、速度を得ることができる。
【0089】
以上のように本実施形態にかかる駆動装置は、スライダの下面に吹出口が設けられ、該スライダの吹出口より反対側のガイド面に対し斜め方向より圧縮エアーを当てる駆動用給気路を備えることとした。
【0090】
この結果、本実施形態では、前記第一実施形態と同様、振動、発熱の低減により直線運動精度と信頼性の向上が図られると共に、部品の減少による低価格化が実現される。
【0091】
また本実施形態においては、駆動用給気路を正負方向に設け、指定方向に応じて、弁制御手段により該給気路中の制御弁を制御することにより、スライダを正負方向のうちの、所望の方向に精度よく直線運動させることができる。
また本実施形態においては、駆動給気路を複数の異なる角度で設け、指定速度に応じて、弁制御手段により該給気路中の制御弁を制御することにより、スライダを所望の速度で精度よく直線運動させることができる。
【0092】
また本実施形態においては、ガイドに対しエアーベアリングでスライダを支持することにより、前記第一実施形態と同様、スライダの直線運動精度を更に向上させることができる。
なお、本実施形態では、スライダよりガイドに対し圧縮エアーを当てた例について説明したが、ガイドよりスライダに対し圧縮エアーを当てることもできる。
【0093】
前記構成では正負方向に駆動用給気路を設けた例について説明したが、そのほか、該方向に直交する方向に駆動用給気路を設けることにより、ガイドに対し2次元方向に直線運動することができる。
また、本実施形態においても第一実施形態と同様に整速手段を設けても良い。
【0094】
すなわち、スライダ286又はガイド284に摩擦板を設置して、他方に対して摩擦力により軽度の制動効果を生じさせれば良い。さらに、正方向と負方向の給気路への圧縮エアーの流量を調節して、第一実施形態同様に速度安定化効果や制動効果を生じさせることができる。
【0095】
いずれの実施形態においても、駆動時には浮上用エアーの他に駆動用エアーが運動部と基部間に送り込まれるので、非駆動時に比べて運動部と基部との間隙が変化する可能性がある。これを防止するには、駆動用吹出口および支持用吹出口から噴出したエアーを排気する排気管を設け、支持部(エアーベアリング部)の増加エアーを排気すれば良い。
【0096】
より具体的には、吹出口261、273、287、279、247の近辺(例えばスライダ286の中央部)に、スライダ286とガイド284の間隙部分からエアーを排気するための排気管と排気制御弁を設ける。そして、基部と運動部間の隙間をギャップセンサで測定して弁制御手段へ入力し、その測定結果が常に一定となるように弁制御手段によって排気制御弁を制御すれば良い。
【0097】
あるいは、駆動用吹出口と支持用吹出口から噴出されるエアー量を給気流量計で測定すると共に排気管から排気されるエアー量を排気流量計で測定して、これらを弁制御手段へ入力し、その両者の測定結果が常に略一定となるように弁制御手段によって排気制御弁を制御しても良い。
【0098】
また、排気制御弁を用いるほかに真空ポンプを単独あるいは排気制御弁と併用して排気エアー量を制御しても良い。
これによって、運動部の駆動時と非駆動時を問わず、常にエアーベアリングの間隙を一定にすることができるので、この駆動装置を用いた測定機や加工機の精度を大幅に向上することが出来る。
【0099】
さらに排気管を備えた駆動装置は、圧縮空気のエアーベアリング外部への流出を防止できるので、真空中などの特殊な雰囲気中においても、この駆動装置を用いることが出来る。具体的には超高精度電子ビーム半導体露光装置などに用いることができる。
【0100】
さらに、いずれの実施形態においても運動部と基部間がエアー層を形成する間隙部(エアーベアリング部)へ駆動用エアーを吹出す構成を説明したが、駆動用エアーは、このエアーベアリング部以外へ吹出す構成としても良い。
例えば、スライダ286における浮上用吹出口247から隔壁(一例としてスライダ286からガイド284に対して垂下する壁構造)を介して離れた外側に駆動用吹出口を設ければ良い。
【0101】
また、スライダが一または複数のエアーベアリングを備える場合、エアーベアリング機能を備えない駆動装置(例えば図9における浮上用給気管248と対応する制御弁を削除した構成)の構成としても良い。これによって支持装置(エアーベアリングなど)と駆動装置を分離できるので、各種機器の設計の自由度が向上する。
【0102】
また、必要に応じて、ガイド284の表面に直交する直交ガイドを設け、ガイド284とこの直交ガイドの面の両方に対してスライダ286を同時に案内させることによって、駆動の直線方向をより明確に規制するようにしても良い。
さらに具体的には、ガイドとして上面1面と左右の側面2面の計3面のガイド面を備える角柱状ガイドを用い、スライダはこの3面を跨ぐ形状として、それぞれの面に空気軸受けを構成し、そのうちのいずれか1面あるいは複数の面において本件発明による駆動用吹出口を設けて、直線型駆動装置を構成しても良い。
【0103】
さらに、図9に示す第二実施形態においては、スライダ286は左右方向の直線運動する構成を示したが、スライダ286を任意方向へ運動可能な構成としても良い。
すなわち、スライダ286中に、ガイド284の面内において複数方向(例えば0°、90°、180°、270°の4方向)に駆動用給気路を設け、この複数方向へ噴出する圧縮エアーの噴出量を制御することによって、実際に噴出された圧縮エアーによる駆動力の合成方向へスライダ286を駆動するようにしても良い。
【0104】
また、第一実施形態と第二実施形態のいずれにおいても、駆動用給気路先端の吹出口から噴出された圧縮エアーが当てられる面(基部あるいは運動部)側に凹凸形状を設けても良い。
この凹凸形状は例えば、ピニオンラックにおけるラックの歯のような形状(歯を山部分として出っぱらすのではなく、谷部分のみを設けるのが好適である。)や、あるいは一般の摺動部において摩擦低減のために設けられる「きさげ」と同様の凹凸形状とし、それらの凹凸部分に圧縮エアーを当てることによって、圧縮エアーの拡散を防止して駆動力を更に向上させても良い。
【0105】
【発明の効果】
以上説明したように本発明にかかる駆動装置は、基部ないし運動部面のいずれかに設けられた駆動用吹出口より、該吹出口とは反対側の基部ないし運動部面に対し斜め方向より圧縮空気を当てる駆動用給気路を備えることとしたので、運動部の運動精度を向上させることができる。
また本発明においては、前記基部ないし運動部面のいずれかに設けられた浮上用吹出口より、該吹出口とは反対側の基部ないし運動部面に対し直交方向より圧縮空気を当てる浮上用給気路を備えることにより、運動部の運動精度を更に向上させることができる。
また本発明において、前記駆動用給気路は、前記運動部の回転軸の接線方向に対し斜め方向より圧縮空気を当てることにより、運動部の回転精度を向上させることができる。
また本発明において、前記駆動用給気路は、前記基部ないし運動部面に対し斜め方向より圧縮空気を当てることにより、運動部の直線運動の精度を向上させることができる。
また本発明において、前記駆動用給気路は複数の異なる方向に設けられ、また該各駆動用給気路中に設けられ、各対応吹出口よりの圧縮空気の噴出を制御する制御弁と、指定方向に運動部を運動させるための駆動用給気路中の制御弁の制御情報を制御情報記憶手段より得、該制御弁を制御する弁制御手段を備えることにより、運動部を所望の方向に精度よく運動させることができる。
また本発明において、前記駆動用給気路は複数の異なる角度で設けられ、また該各駆動用給気路中に設けられ、各対応吹出口よりの圧縮空気の噴出を制御する制御弁と、指定速度で運動部を運動させるための駆動用給気路中の制御弁の制御情報を制御情報記憶手段より得、該制御弁を制御する弁制御手段を備えることにより、運動部を所望の速度で精度よく運動させることができる。
【図面の簡単な説明】
【図1】本発明の一実施形態にかかる駆動装置を用いた測定機の概略構成の説明図である。
【図2】本発明の第一実施形態にかかる駆動装置の概略構成の説明図である。
【図3】,
【図4】本実施形態において特徴的な駆動用給気路の説明図である。
【図5】本実施形態にかかる駆動装置の作用の説明図である。
【図6】本実施形態にかかる駆動装置における回転速度の変更機構の説明図である。
【図7】本実施形態にかかる駆動装置における回転方向の変更機構の説明図である。
【図8】本実施形態にかかる駆動装置において付加可能な整速手段の説明図である。
【図9】本発明の第二実施形態にかかる駆動装置の概略構成の説明図である。
【図10】駆動装置を適用可能な測定機の概略構成の説明図である。
【図11】一般的な駆動装置の概略構成の説明図である。
【符号の説明】
126 ステータ(基部)
128 ロータ(運動部)
130 上板(運動部)
132 下板(運動部)
134 圧縮エアー(圧縮空気)
146 圧縮空気源
160 回転用エアー給気路(駆動用給気路)
161 回転用エアー吹出口(駆動用吹出口)

Claims (11)

  1. 基部と、該基部に対し支持部を介して対向配置され、該基部に対し相対運動する運動部と、を備え、該基部は該支持部側のガイド部を含み、該運動部は該支持部側の被ガイド部を含み、該運動部を該基部のガイド部に沿って駆動する駆動装置において、
    前記運動部を運動させる駆動力となる圧縮空気を供給する圧縮空気源と、
    前記基部ないし前記運動部のいずれかに駆動用吹出口が開口され、前記圧縮空気源からの圧縮空気を該駆動用吹出口より、該駆動用吹出口が開口している基部ないし運動部とは反対側の、該基部ないし運動部に対し斜め方向より当てる駆動用給気路と、
    前記各駆動用給気路中に設けられ、該各駆動用給気路の吹出口よりの圧縮空気の噴出を制御する制御弁と、
    前記運動部の速度に対応する駆動用給気路中の制御弁の制御情報を予め記憶している制御情報記憶手段と、
    前記運動部の運動速度が指定されると、該指定速度で運動部を運動させるための駆動用給気路中の制御弁の制御情報を、前記制御情報記憶手段より得、得た制御情報に基づき該制御弁を制御する弁制御手段と、
    を備え
    前記駆動用給気路は同一方向に複数の異なる角度で設けられ、前記同一方向で角度が異なる駆動用給気路からの圧縮空気の吹出比率を変えることにより、前記運動部を所望の速度で運動させることを特徴とする駆動装置。
  2. 請求項1記載の駆動装置において、
    前記ガイド部ないし被ガイド部のいずれかに支持用吹出口が設けられ、前記圧縮空気源からの圧縮空気を該支持用吹出口より、該支持用吹出口が開口しているガイド部ないし被ガイド部とは反対側の、該ガイド部ないし被ガイド部に対し直交方向より当てる支持用給気路を備え、
    前記支持部は、該支持用給気路からの圧縮空気の層であることを特徴とする駆動装置。
  3. 請求項1または2記載の駆動装置において、
    前記運動部は回転軸を中心に回転運動し、
    前記駆動用給気路は、前記圧縮空気源からの圧縮空気を、前記運動部の回転軸の接線方向に対し斜め方向より当てることを特徴とする駆動装置。
  4. 請求項1又は2記載の駆動装置において、
    前記運動部は直線運動し、
    前記駆動用給気路は、前記圧縮空気源からの圧縮空気を前記駆動用吹出口より、該駆動用吹出口が開口しているガイド部ないし被ガイド部とは反対側の、該ガイド部ないし被ガイド部に対し斜め方向より当てることを特徴とする駆動装置。
  5. 請求項1〜4のいずれかに記載の駆動装置において、
    前記駆動用給気路は、複数の異なる方向に設けられ、
    また前記各駆動用給気路中に設けられ、該各駆動用給気路の吹出口よりの圧縮空気の噴出を制御する制御弁と、
    前記運動部の運動方向に対応する駆動用給気路中の制御弁の制御情報を予め記憶している制御情報記憶手段と、
    前記運動部の運動方向が指定されると、該指定方向に運動部を運動させるための駆動用給気路中の制御弁の制御情報を、前記制御情報記憶手段より得、得た制御情報に基づき該制御弁を制御する弁制御手段と、
    を備え、前記方向が異なる駆動用給気路からの圧縮空気の吹出比率を変えることにより、前記運動部を所望の方向に運動させることを特徴とする駆動装置。
  6. 請求項5記載の駆動装置において、
    前記駆動用給気路の吹出口よりの圧縮空気の噴出によって前記運動部が駆動される際に、前記異なる方向に設けられた駆動用給気路の吹出口より圧縮空気を噴出して、運動部の速度安定化あるいは制動を行うことを特徴とする駆動装置。
  7. 請求項1〜のいずれかに記載の駆動装置において、
    前記運動部の速度安定化あるいは制動を行う整速手段を、前記基部あるいは運動部のいずれかに更に備えたことを特徴とする駆動装置。
  8. 請求項記載の駆動装置において、
    前記整速手段は、所定の圧力によって押圧される摩擦板を含むことを特徴とする駆動装置。
  9. 請求項2〜のいずれかに記載の駆動装置において、
    前記基部と運動部の間隙が変化しないように、前記駆動用吹出口および支持用吹出口から噴出された圧縮空気を排気する排気管を、前記基部あるいは運動部のいずれかに更に備えたことを特徴とする駆動装置。
  10. 請求項記載の駆動装置において、
    前記排気管から排気される圧縮空気の量が、前記駆動用吹出口および支持用吹出口から噴出された圧縮空気の量と略等しくなるように制御する排気制御部を更に備えたことを特徴とする駆動装置。
  11. 請求項1〜のいずれかに記載の駆動装置において、
    前記駆動用吹出口が開口している基部ないし運動部とは反対側の、前記圧縮空気が斜め方向より当てられる基部ないし運動部の面に凹凸形状を更に備え、前記駆動力を増加させたことを特徴とする駆動装置。
JP2002016044A 2002-01-24 2002-01-24 駆動装置 Expired - Fee Related JP3926636B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002016044A JP3926636B2 (ja) 2002-01-24 2002-01-24 駆動装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002016044A JP3926636B2 (ja) 2002-01-24 2002-01-24 駆動装置

Publications (2)

Publication Number Publication Date
JP2003214115A JP2003214115A (ja) 2003-07-30
JP3926636B2 true JP3926636B2 (ja) 2007-06-06

Family

ID=27652229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002016044A Expired - Fee Related JP3926636B2 (ja) 2002-01-24 2002-01-24 駆動装置

Country Status (1)

Country Link
JP (1) JP3926636B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016010738A (ja) * 2014-06-27 2016-01-21 株式会社島津製作所 回転駆動機構及びその回転駆動機構を利用した振とう装置
JP6618110B2 (ja) * 2015-09-24 2019-12-11 三井精機工業株式会社 工作機械における移動体支持装置

Also Published As

Publication number Publication date
JP2003214115A (ja) 2003-07-30

Similar Documents

Publication Publication Date Title
CN105277152B (zh) 用于测量系统的探头支架
US8038385B2 (en) Spindle device with rotor jetting driving fluid
TWI292356B (ja)
JP3926636B2 (ja) 駆動装置
CN210435727U (zh) 一种气体静压转台
JP6385006B2 (ja) 直動機構、弁装置、及び蒸気タービン
JP2011135751A (ja) 駆動装置および測定装置
JP2010025224A (ja) 案内装置
JP4059361B2 (ja) 直動駆動装置
JP4553422B2 (ja) 回転軸の冷却制御装置
JP3098421B2 (ja) 静圧空気軸受け式案内装置
JP4740605B2 (ja) 気体制御回転移動装置及び気体制御アクチュエータ
JP4845114B2 (ja) スピンドル装置
JPH11257346A (ja) 滑り軸受
JPH1026203A (ja) 摩擦駆動機構
JPH10205537A (ja) 回転型静圧軸受装置
CN216768106U (zh) 可调节气膜的磁气混合轴承
JP2007313589A (ja) 位置決め装置
JP7373886B2 (ja) シリンダ装置
JP2004036748A (ja) 主軸装置及び予圧制御方法
CN102444669B (zh) 用于气浮轴承的气浮垫
JPH10545A (ja) 研磨ヘッド
JP4322494B2 (ja) 磁気軸受装置
JP2008023684A (ja) 工作機械
JP2001050212A (ja) 流体圧アクチュエータ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060829

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070228

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees