JP3925367B2 - Cooked rice incubator - Google Patents

Cooked rice incubator Download PDF

Info

Publication number
JP3925367B2
JP3925367B2 JP2002269555A JP2002269555A JP3925367B2 JP 3925367 B2 JP3925367 B2 JP 3925367B2 JP 2002269555 A JP2002269555 A JP 2002269555A JP 2002269555 A JP2002269555 A JP 2002269555A JP 3925367 B2 JP3925367 B2 JP 3925367B2
Authority
JP
Japan
Prior art keywords
nitrogen
inner pot
cooked rice
rice
storage means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002269555A
Other languages
Japanese (ja)
Other versions
JP2004105332A (en
Inventor
孝裕 梅田
祐 福田
章広 梅田
彪 長井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2002269555A priority Critical patent/JP3925367B2/en
Publication of JP2004105332A publication Critical patent/JP2004105332A/en
Application granted granted Critical
Publication of JP3925367B2 publication Critical patent/JP3925367B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Cookers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、米飯の黄変化や食味の際の物性低下を抑制し、保温してもおいしい米飯が得られる米飯保温器に関するものである。
【0002】
【従来の技術】
従来、この種の米飯保温器としては、内釜(炊飯釜)の空気を減圧する減圧装置と、空気中の酸素のみを通過させる気体分離膜とを備えたものが知られている(例えば特許文献1参照)。
【0003】
これは、減圧装置の前段に空気中の酸素のみを通過させる気体分離膜を備え、減圧装置を動作させることにより、内釜内の空気を、気体分離膜を通して外部に排出させ、内釜内の酸素の絶対量を減少させるものである。これにより、保温中の米飯の黄変化や保温臭の発生を防止していた。
【0004】
【特許文献1】
特開平5−154039号公報
【0005】
【発明が解決しようとする課題】
しかしながら、前記従来の米飯保温器では、内釜内の空気を減圧装置で排出させる構成であり、内釜内は高度な密閉性が要求され、また、長時間高度な密閉性を維持することは難しく、一般家庭用として適しているとは言い難い。
【0006】
本発明は、前記従来の課題を解決するもので、窒素富化な空気により、米飯の黄変化や食味の際の物性低下を抑制し、保温してもおいしい米飯が得られる米飯保温器を提供することを目的とする。
【0007】
【課題を解決するための手段】
前記目的を達成するために、本発明の米飯保温器は、大気中に含まれる酸素を除去し窒素富化なガスを供給する窒素供給手段と、窒素富化なガスを貯蔵する窒素貯蔵手段と、窒素供給量を制御する制御手段とを備え、制御手段により窒素貯蔵手段から内釜への窒素富化なガスの供給量を制御するようにしたものである。
【0008】
これにより、窒素富化なガスの供給により内釜内に発生した不快な保温臭気を飛散させ、米飯の黄変化や食味の際の物性低下を抑制することができ、保温してもおいしい米飯を提供することができる。
【0009】
【発明の実施の形態】
請求項1に記載の発明は、米飯を収容する内釜と、前記内釜の上方に設けた開閉可能な蓋と、前記内釜の米飯を加熱する加熱手段と、前記内釜の温度を検出する温度検出手段と、大気中に含まれる酸素を除去し窒素富化なガスを内釜へ供給する窒素供給手段と、窒素富化なガスを運搬するガス輸送手段と、前記窒素供給手段からの窒素富化なガスを貯蔵する窒素貯蔵手段と、前記温度検出手段の検出値をもとに前記加熱手段を用いて前記米飯を所定温度に加熱制御するとともに、前記窒素貯蔵手段から内釜への窒素富化なガスの供給量を制御する制御手段とを備えてなる米飯保温器とすることにより、窒素富化なガスの供給により内釜内に発生した不快な保温臭気を飛散させ、米飯の黄変化や食味の際の物性低下を抑制することができ、保温してもおいしい米飯を提供することができる。
【0010】
請求項に記載の発明は、窒素供給手段、内釜、および窒素貯蔵手段間にバルブを備え、炊飯中は、前記バルブで窒素供給手段と窒素貯蔵手段を導通させ、炊飯終了後、前記バルブで窒素貯蔵手段と内釜を導通させる請求項1に記載の米飯保温器とすることにより、炊飯後に窒素貯蔵手段に貯蔵された窒素富化なガスを内釜内に供給し、内釜内の酸素濃度を速やかに低下させることができる。このため、内釜内の酸素濃度を低く保つことができ、かつ米飯の保温臭気や黄変化を防ぎ、食味の低下を防止することができる。
【0011】
【実施例】
以下、本発明の実施例について、図面を参照しながら説明する。
【0012】
図1は本発明の実施例における米飯保温器を組み込んだジャー炊飯器を示している。図において、1は本体2内に装備した内釜であり、所定量の米飯と水とを収容して加熱調理を行う。内釜1の底には、内釜1の温度を検出する温度検出手段4が内釜1に接するように設けられており、また、内釜1を加熱する電磁誘導の加熱コイルからなる加熱手段5が設けられている。
【0013】
6は温度検出手段4の検出値をもとに加熱手段5を用いて米飯を所定温度に加熱制御するとともに、窒素貯蔵手段(後記)から内釜1への窒素富化なガスの供給量を制御する制御手段であり、加熱手段5に電力を供給する高周波電源も備えている。
【0014】
7は内釜1の側部の上部に設けた保温用の加熱手段である。
【0015】
8は内釜1の上方に設けた開閉可能な蓋で、その下部の放熱板9には、蓋用の加熱手段10、および内釜1の温度を検出する蓋用の温度検出手段11が設けられている。前記加熱手段7は制御手段6により加熱制御され、温度検出手段11による検出値は制御手段6に入力されるものである。
【0016】
また、蓋8には大気中に含まれる酸素を除去し窒素富化なガスを供給する窒素供給手段15と、ガスを運搬するポンプやファンなどから成るガス輸送手段16aおよび16bと、窒素富化なガスを貯蔵する窒素貯蔵手段17が設けられている。ガス輸送手段16aあるいは16bを動作させて内釜1あるいは窒素貯蔵手段17から内部ガスを矢印aのように排出することにより、外部空気は、蓋8の開口を介して矢印bのように窒素供給手段15へと導かれ、窒素供給手段15で窒素と酸素に分離され、酸素は窒素供給手段15を介して再び開口より矢印cのように外部へ放出される。
【0017】
一方、分離された窒素は、再び大気と混合され窒素富化なガスとなり、ガス輸送手段16aあるいは16bによりそれぞれ内釜1あるいは窒素貯蔵手段17内へと導かれる。内釜1内は窒素供給手段15あるいは窒素貯蔵手段17により速やかに窒素富化なガスに置換され、内釜1内に存在していた高濃度の酸素を含むガスは、ガス輸送手段16aにより開口を介して大気へと排出される。内釜1内のガスを大気へと排出する開口は、炊飯時には蒸気抜きとしても働くものである。
【0018】
また、内釜1から窒素供給手段15へ高濃度の酸素を含むガスが逆流しないように逆止弁が設けられ、さらに窒素供給手段15と窒素貯蔵手段17および内釜1の間にはバルブ18が設けられており、窒素供給手段15と内釜1を隔離できる構成となっている。
【0019】
したがって、炊飯により発生する水蒸気やおねばが窒素供給手段15やガス輸送手段16bなどに付着しないので、長期間窒素供給能力を維持することができ、配管や窒素供給手段15などに結露した水が溜まらず、腐敗などが起こりにくく、米飯保温器を長期間清潔に維持することができる。同時に、内釜1内の酸素濃度を効率よく常時低く保つことができる。
【0020】
また、蓋8の上部には操作パネル部12が設けられ、本体2と蓋8の接する場所には開閉検知手段19が設けられている。この開閉検知手段19はリードスイッチのようなもので構成されており、開閉検知手段19の情報より蓋8の開閉状態を制御手段6で検知している。
【0021】
なお、この図では電源線や信号線などの結線は省略されている。この米飯保温器では、炊飯後、保温中の米飯の温度を内釜1の底に接する温度検出手段4で検知する。この情報は制御手段6に送られ、米飯の温度が保温設定温度である72℃となるように加熱手段5に電力を供給して磁力を発生させ、ステンレスとアルミニウムから成るクラッド材で構成された内釜1のステンレス層を電磁誘導により加熱し、米飯を保温する。
【0022】
また、加熱手段7や10の入力を制御手段6が電子制御することにより、米飯の量に応じた加熱熱量を与え、保温設定温度72℃ に米飯温度を保つようになっている。
【0023】
さらに、制御手段6が窒素供給手段15と、バルブ18およびガス輸送手段16a、16bをコントロールし、窒素富化なガスを連続供給、あるいは一定時間毎に供給を繰り返す間欠供給により内釜1内の保温臭気を飛散させ、米飯の黄変化や食味の際の物性低下を抑制し、長時間蓋8を密閉していても、おいしい米飯を提供することができる。すなわち、炊飯中は、バルブ18で窒素供給手段15と内釜1を隔離する。
【0024】
また、炊飯中は、バルブ18で窒素供給手段15と窒素貯蔵手段17を導通させ、炊飯終了後、バルブ18で窒素貯蔵手段17と内釜1を導通させる。さらに、開閉検知手段19で蓋8が開となったことを検知したとき、バルブ18で窒素供給手段15と窒素貯蔵手段17を導通させ、開閉検知手段19で蓋8が閉となったことを検知したとき、バルブ18で窒素貯蔵手段17と内釜1を導通させるようにしている。
【0025】
なお、これらの動作中は、ガス輸送手段16a、16bは適宜コントロールされるものである。
【0026】
次に、窒素供給手段15について、図2を基に説明する。これは、酸素イオン導電性を有する固体電解質20と、前記固体電解質20の互いに異なる表面に形成された一対の電極21、22と、前記一対の電極21、22間に接続された電圧供給装置23と、前記固体電解質20を加熱するヒータ24と、前記ヒータ24に電圧を供給するヒータ電源25と、前記固体電解質20および前記ヒータ24の周囲に設けられた断熱材26とを備えており、外部空気中に含まれる酸素を除去して外部に排出し、残りの窒素富化なガスを内釜1に供給するものである。前記固体電解質20と一対の電極21、22とで酸素ポンプを構成している。この酸素ポンプの電圧−電流特性を図3に示している。
【0027】
また、断熱材26は、ヒータ24で固体電解質20を効率よく加熱するために設けられているもので、ヒータ24は断熱材26に埋設され、一体で形成され、窒素供給手段15の小型化をはかっている。
【0028】
また、断熱材26は、多孔性であり通気性を有するので、ガスは十分に流出入し、外部と一対の電極21、22の間で酸素の授受が滞ることなく行われ、効率よく窒素富化なガスを供給することができる。
【0029】
また、一対の電極21、22の形成された互いに異なる空間を気密よく分離するためにシール材27を有し、固体電解質20を気密よく断熱材26および金属製の筐体に固定し、一方の電極21(カソード)で分離した窒素富化の空気と、もう一方の電極22(アノード)から放出される酸素を混合することなく分離しており、効率よく窒素富化なガスを供給することができるようにしている。
【0030】
固体電解質20には酸素イオン導電性を有するランタンガリウム酸化物から成る直径約20mm厚さ1mmのディスクを用い、この両面に一対の電極21、22としてペロブスカイト酸化物から成るペーストを印刷し、乾燥後、さらにその上に集電体を積層し、金属箔からなるシール材27と、リード線を取り付け電気炉で焼成した。固体電解質20には他の酸素イオン導電性を有する安定化ジルコニア、安定化セリアなども使用することができ、実施例で用いたランタンガリウム酸化物の酸素イオン導電性を向上させるためにランタンサイトおよびガリウムサイトの一部に遷移金属やアルカリ土類金属など異種金属を置換してもよい。
【0031】
また、電圧供給装置23と、固体電解質20の間に固体電解質20に流れる電流を検出する電流検出手段28を接続した。落下や、耐久劣化などの原因により固体電解質20、一対の電極21、22あるいはヒータ24が劣化した場合、固体電解質20に流れる電流に変化が現れるため、電流検出手段28の検出値をもとに制御手段6が、窒素供給手段15の状態を自己診断し、電流検出手段28の検出値が予め設定した閾値を越えた場合、おいしい米飯を提供できる期間を判定し、窒素供給手段15の交換を促したり、寿命を報知させたりすることができる。
【0032】
外部より取り込まれ窒素供給手段15に供給された大気は、多孔質な断熱材26を介し、一方の電極21(カソード)に到達し、大気に含まれる酸素がカソード21上に吸着する。そして、電圧供給装置23により一対の電極21、22間に電圧が与えられると、吸着した酸素は電子を受け取り、電極21と固体電解質20と気相との間に形成される三相界面より固体電解質20中へ取り込まれ、酸素イオンとなり固体電解質20中を移動する。もう一方の電極22(アノード)に到達した酸素イオンは電極22と固体電解質20と気相との間に形成される三相界面で電子を放ち、再び酸素となり大気へ排出される。
【0033】
酸素が除去された窒素富化なガスは、ガス輸送手段16aあるいは16bの動作により、内釜1に供給され、高濃度な酸素を含むガスと置換され、高濃度な酸素を含むガスは外部へと排出される。その結果、内釜1内は低酸素濃度となり、米飯中の脂質、タンパク質および炭水化物が空気中の酸素と酸化反応したり、これらの物質が分解あるいは重合反応したりすることが抑制され、米飯の黄変化、保温臭の発生を低減することができる。また、細菌の活性を抑えることができ、米飯の腐敗を遅延させることができる。
【0034】
上記のように構成された米飯保温器を用いて米飯の保温状態について調べた。まず、内釜1内に米飯の原料である米と水を入れ、炊飯を行った。また、同時に炊飯する一方で、窒素供給手段15のヒータ24にヒータ電源25を用いて10〜20Wの電力を供給し、固体電解質20および一対の電極21、22で構成される酸素ポンプの動作温度が600〜700℃になるように加熱した。
【0035】
そして、一対の電極21、22間に電圧供給装置23で所定の電圧を供給し、さらにガス輸送手段16bを作動させ、窒素貯蔵手段17内に窒素富化なガスを取り込んだ。窒素供給量は、電圧供給装置23およびガス輸送手段16bを制御することで変化させることができる。炊飯直後の窒素貯蔵手段17内の酸素濃度は約2%であった。
【0036】
また、炊飯直後における内釜1内のガスの酸素濃度はほぼ0%であったが、内部が冷えて飽和蒸気圧が下がるとともに外部から空気が流入し、徐々に酸素濃度は上昇した。
【0037】
そこで、制御手段6により、内釜1を隔離していたバルブ18およびガス輸送手段16aを操作し、窒素貯蔵手段17に貯蔵された酸素濃度の十分に低い窒素富化なガスを内釜1内に速やかに導入した。
【0038】
図4は、窒素供給手段15および窒素貯蔵手段17で内釜1内の空気を窒素富化なガスに置換したときの保温時間と内釜1内の酸素濃度の関係を示した。酸素ポンプにより分離された酸素は毎分10〜30ccで外部へ排出され、分離された窒素は再び空気と混合され、窒素富化なガスとなり、連続して毎分40〜120ccで窒素貯蔵手段17に供給された。バルブ18で窒素貯蔵手段17と内釜1を導通すると、内釜1内の空気は速やかに窒素富化なガスに置換され、20〜60分で内釜1内の酸素濃度は2〜4%となったので、窒素供給量を減らし、そのまま保持した。しばらくして外部空気の流入により内釜1内の酸素濃度が増加したが、ある程度、低濃度の段階で再び窒素供給量を増加することにより、迅速に内釜1内の酸素濃度を低下させることができた。
【0039】
また、このとき内釜1の内部はほぼ大気圧であり、気密構成も簡単でよいことが判った。
【0040】
次に、炊飯直後、内釜1内の酸素濃度を2〜4%に保持したときの官能評価を行った。大気で保持した場合は、米飯の酸化がわずかに起こっており、保温臭と食味の評価が低かったのに対して、低酸素濃度で保持した場合は、保温臭も少なく、食味もよかった。
【0041】
さらに、この状態で12時間および24時間保温した米飯の官能評価を行ったところ、いずれも保温臭が少なく、炊き立ての匂いを有しており、黄変化も少なく、食味評価も粘り、弾力性など優れており、総合評価が高かった。これに対して、大気中で12時間および24時間保温した米飯は、いずれも保温臭がきつく、黄変化が発生しており、食味もまずく、総合評価が低かった。
【0042】
次に、蓋8を開閉させた場合の米飯の保温状態について調べた。蓋8が閉まっている間、窒素供給手段15は窒素貯蔵手段17に窒素富化なガスを供給しており、蓋8を開けた直後は、内釜1内の酸素濃度は大気中の酸素濃度と等しくなり20.8%となった。蓋8を閉めると開閉検知手段19が、蓋8が閉まったことを検知し、バルブ18およびガス輸送手段16aが動作した。
【0043】
内釜1内の空気は窒素貯蔵手段17に貯蔵された酸素濃度の十分に低い窒素富化なガスに速やかに置換され、20〜60分で内釜1内の酸素濃度は2〜4%となったので、窒素供給量を減らし、そのまま保持した。しばらくして外部空気の流入により内釜1内の酸素濃度が増加したが、ある程度、低濃度の段階で再び窒素供給量を増加することにより、迅速に内釜1内の酸素濃度を低下させることができた。
【0044】
蓋8を開閉した場合の米飯の官能評価も保温臭、米飯の黄変化および食味の物性など総合的によい結果が得られた。
【0045】
また、保温する米飯の量に応じて窒素富化なガスの供給量を変化させることにより、保温臭の少ないおいしい米飯を提供できることが判った。
【0046】
【発明の効果】
以上のように、本発明の米飯保温器によれば、大気中に含まれる酸素を除去し窒素富化なガスを供給する窒素供給手段と、窒素富化なガスを貯蔵する窒素貯蔵手段と、窒素供給量を制御する制御手段とを備え、制御手段により窒素貯蔵手段から内釜への窒素富化なガスの供給量を制御するようにしたものであり、窒素富化なガスの供給により内釜内に発生した不快な保温臭気を飛散させ、米飯の黄変化や食味の際の物性低下を抑制することができ、保温してもおいしい米飯を提供することができる。
【図面の簡単な説明】
【図1】 本発明の実施例における米飯保温器の概略構成を示す断面図
【図2】 同米飯保温器の窒素供給手段の断面図
【図3】 同窒素供給手段の電圧―電流の特性図
【図4】 同米飯保温器の保温時間と酸素濃度の関係を示す特性図
【符号の説明】
1 内釜
4、11 温度検出手段
5、7、10 加熱手段
6 制御手段
8 蓋
15 窒素供給手段
16a、16b ガス輸送手段
17 窒素貯蔵手段
18 バルブ
19 開閉検知手段
20 固体電解質
21、22 一対の電極
23 電圧供給装置
24 ヒータ
25 ヒータ電源
26 断熱材
27 シール材
28 電流検出手段
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a cooked rice warmer that suppresses yellowing of cooked rice and deterioration of physical properties during eating, and can provide delicious cooked rice even when kept warm.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, as this kind of cooked rice incubator, one having a decompression device that decompresses air in an inner pot (rice cooker) and a gas separation membrane that allows only oxygen in the air to pass through is known (for example, a patent) Reference 1).
[0003]
This is provided with a gas separation membrane that allows only oxygen in the air to pass through at the front stage of the decompression device, and by operating the decompression device, the air in the inner pot is exhausted to the outside through the gas separation membrane. It reduces the absolute amount of oxygen. As a result, yellowing of the cooked rice during the heat insulation and the generation of the heat insulation odor were prevented.
[0004]
[Patent Document 1]
Japanese Patent Laid-Open No. 5-154039
[Problems to be solved by the invention]
However, the conventional cooked rice warmer has a configuration in which the air in the inner pot is discharged by the decompression device, and the inner pot is required to have a high degree of hermeticity, and the high degree of hermeticity can be maintained for a long time. It is difficult to say that it is suitable for general household use.
[0006]
The present invention solves the above-described conventional problems, and provides a cooked rice warmer that suppresses yellowing of rice and deterioration of physical properties during eating with nitrogen-enriched air, and provides delicious cooked rice even when kept warm. The purpose is to do.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the cooked rice warmer of the present invention comprises a nitrogen supply means for removing oxygen contained in the atmosphere and supplying a nitrogen-enriched gas, and a nitrogen storage means for storing the nitrogen-enriched gas. And a control means for controlling the supply amount of nitrogen, and the control means controls the supply amount of nitrogen-enriched gas from the nitrogen storage means to the inner pot.
[0008]
As a result, the unpleasant warming odor generated in the inner pot due to the supply of nitrogen-enriched gas is scattered, and the yellowing of the cooked rice and the deterioration of the physical properties during the taste can be suppressed. Can be provided.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The invention according to claim 1 is an inner pot for storing cooked rice, an openable / closable lid provided above the inner pot, a heating means for heating the cooked rice in the inner pot, and detecting the temperature of the inner pot. Temperature detection means for removing oxygen contained in the atmosphere and supplying nitrogen-rich gas to the inner kettle, gas transport means for carrying the nitrogen-rich gas, and from the nitrogen supply means Nitrogen storage means for storing nitrogen-enriched gas, and heating control of the cooked rice to a predetermined temperature using the heating means based on the detection value of the temperature detection means, and from the nitrogen storage means to the inner pot The rice cooker is provided with a control means for controlling the supply amount of the nitrogen-enriched gas, so that the unpleasant warming odor generated in the inner pot by the supply of the nitrogen-enriched gas is scattered, Can suppress yellowing and deterioration of physical properties during eating And it is also possible to provide a delicious cooked rice.
[0010]
The invention according to claim 2 is provided with a valve between the nitrogen supply means, the inner pot, and the nitrogen storage means. During rice cooking, the valve supplies the nitrogen supply means and the nitrogen storage means to each other, and after the rice cooking is finished, the valve In the rice cooker according to claim 1, wherein the nitrogen storage means and the inner pot are electrically connected to each other, the nitrogen-enriched gas stored in the nitrogen storage means after rice cooking is supplied into the inner pot, The oxygen concentration can be quickly reduced. For this reason, the oxygen concentration in the inner pot can be kept low, and the warming odor and yellowing of the cooked rice can be prevented, and the deterioration of the taste can be prevented.
[0011]
【Example】
Embodiments of the present invention will be described below with reference to the drawings.
[0012]
FIG. 1 shows a jar rice cooker incorporating a rice cooker in an embodiment of the present invention. In the figure, reference numeral 1 denotes an inner pot installed in the main body 2, which heats and cooks a predetermined amount of cooked rice and water. A temperature detecting means 4 for detecting the temperature of the inner hook 1 is provided at the bottom of the inner hook 1 so as to be in contact with the inner hook 1, and a heating means comprising an electromagnetic induction heating coil for heating the inner hook 1. 5 is provided.
[0013]
6 controls the heating temperature of the cooked rice to a predetermined temperature using the heating means 5 based on the detection value of the temperature detection means 4 and the amount of nitrogen-enriched gas supplied from the nitrogen storage means (described later) to the inner pot 1. It is a control means for controlling, and is also provided with a high frequency power source for supplying power to the heating means 5.
[0014]
Reference numeral 7 denotes a heating means for heat insulation provided at the upper part of the side portion of the inner pot 1.
[0015]
Reference numeral 8 denotes an openable / closable lid provided above the inner hook 1, and the lower heat sink 9 is provided with a heating means 10 for the lid and a temperature detecting means 11 for the lid for detecting the temperature of the inner hook 1. It has been. The heating means 7 is heated and controlled by the control means 6, and the value detected by the temperature detection means 11 is input to the control means 6.
[0016]
Further, the lid 8 has a nitrogen supply means 15 for removing oxygen contained in the atmosphere and supplying a nitrogen-enriched gas, gas transport means 16a and 16b comprising pumps and fans for carrying the gas, and nitrogen enrichment. Nitrogen storage means 17 for storing various gases is provided. By operating the gas transport means 16a or 16b and exhausting the internal gas from the inner pot 1 or the nitrogen storage means 17 as shown by the arrow a, the external air is supplied with nitrogen as shown by the arrow b through the opening of the lid 8. It is led to the means 15 and separated into nitrogen and oxygen by the nitrogen supply means 15, and the oxygen is released to the outside through the nitrogen supply means 15 again from the opening as indicated by the arrow c.
[0017]
On the other hand, the separated nitrogen is mixed again with the atmosphere to become a nitrogen-enriched gas, and is introduced into the inner pot 1 or the nitrogen storage means 17 by the gas transport means 16a or 16b, respectively. The inner pot 1 is quickly replaced with nitrogen-enriched gas by the nitrogen supply means 15 or the nitrogen storage means 17, and the gas containing high-concentration oxygen existing in the inner pot 1 is opened by the gas transport means 16a. It is discharged to the atmosphere through. The opening through which the gas in the inner pot 1 is discharged to the atmosphere also functions as a steam vent during rice cooking.
[0018]
A check valve is provided so that a gas containing high-concentration oxygen does not flow backward from the inner pot 1 to the nitrogen supply means 15, and a valve 18 is provided between the nitrogen supply means 15, the nitrogen storage means 17 and the inner pot 1. Is provided so that the nitrogen supply means 15 and the inner pot 1 can be isolated.
[0019]
Therefore, since water vapor and rice balls generated by rice cooking do not adhere to the nitrogen supply means 15 and the gas transport means 16b, the nitrogen supply capability can be maintained for a long time, and water condensed on the piping, the nitrogen supply means 15 and the like can be maintained. It does not accumulate and is less likely to rot and keeps the cooked rice incubator clean for a long time. At the same time, the oxygen concentration in the inner pot 1 can be efficiently kept low at all times.
[0020]
An operation panel 12 is provided at the top of the lid 8, and an open / close detection means 19 is provided at a place where the main body 2 and the lid 8 are in contact. The open / close detection means 19 is configured as a reed switch, and the control means 6 detects the open / closed state of the lid 8 based on information from the open / close detection means 19.
[0021]
In this figure, connections such as power lines and signal lines are omitted. In this cooked rice warmer, after cooking, the temperature of the cooked rice is detected by the temperature detecting means 4 in contact with the bottom of the inner pot 1. This information is sent to the control means 6, and the heating means 5 is supplied with electric power to generate a magnetic force so that the temperature of the cooked rice becomes 72 ° C., which is the heat retention set temperature, and is composed of a clad material made of stainless steel and aluminum. The stainless steel layer of the inner pot 1 is heated by electromagnetic induction to keep the cooked rice warm.
[0022]
In addition, the control means 6 electronically controls the input of the heating means 7 and 10, thereby giving a heating heat amount corresponding to the amount of cooked rice and keeping the cooked rice temperature at the heat retention set temperature 72 ° C.
[0023]
Further, the control means 6 controls the nitrogen supply means 15, the valve 18 and the gas transport means 16 a and 16 b, and continuously supplies nitrogen-rich gas, or intermittent supply in which the supply is repeated at regular intervals. Even if the lid 8 is sealed for a long time, it is possible to provide delicious cooked rice by scattering the warming odor, suppressing yellowing of the cooked rice and deterioration of physical properties during eating. That is, during rice cooking, the valve 18 isolates the nitrogen supply means 15 and the inner pot 1.
[0024]
Further, during rice cooking, the nitrogen supply means 15 and the nitrogen storage means 17 are electrically connected by the valve 18, and after the completion of rice cooking, the nitrogen storage means 17 and the inner pot 1 are electrically connected by the valve 18. Further, when the opening / closing detection means 19 detects that the lid 8 is opened, the nitrogen supply means 15 and the nitrogen storage means 17 are electrically connected by the valve 18, and the opening / closing detection means 19 indicates that the lid 8 is closed. When detected, the nitrogen storage means 17 and the inner pot 1 are electrically connected by the valve 18.
[0025]
During these operations, the gas transport means 16a and 16b are appropriately controlled.
[0026]
Next, the nitrogen supply means 15 is demonstrated based on FIG. This includes a solid electrolyte 20 having oxygen ion conductivity, a pair of electrodes 21 and 22 formed on different surfaces of the solid electrolyte 20, and a voltage supply device 23 connected between the pair of electrodes 21 and 22. A heater 24 for heating the solid electrolyte 20, a heater power supply 25 for supplying a voltage to the heater 24, and a heat insulating material 26 provided around the solid electrolyte 20 and the heater 24, Oxygen contained in the air is removed and discharged to the outside, and the remaining nitrogen-enriched gas is supplied to the inner pot 1. The solid electrolyte 20 and the pair of electrodes 21 and 22 constitute an oxygen pump. The voltage-current characteristics of this oxygen pump are shown in FIG.
[0027]
The heat insulating material 26 is provided to efficiently heat the solid electrolyte 20 with the heater 24, and the heater 24 is embedded in the heat insulating material 26 and formed integrally to reduce the size of the nitrogen supply means 15. It's striking.
[0028]
Further, since the heat insulating material 26 is porous and has air permeability, the gas can flow in and out sufficiently, and oxygen can be exchanged between the outside and the pair of electrodes 21 and 22 without delay, and the nitrogen-rich material can be efficiently enriched. Gas can be supplied.
[0029]
In addition, a sealing material 27 is provided for airtightly separating different spaces in which the pair of electrodes 21 and 22 are formed, and the solid electrolyte 20 is airtightly fixed to the heat insulating material 26 and a metal housing, The nitrogen-enriched air separated at the electrode 21 (cathode) and the oxygen released from the other electrode 22 (anode) are separated without mixing, and an efficient nitrogen-enriched gas can be supplied. I can do it.
[0030]
As the solid electrolyte 20, a disk made of lanthanum gallium oxide having oxygen ion conductivity and having a diameter of about 20 mm and a thickness of 1 mm was used. A paste made of perovskite oxide was printed on both sides as a pair of electrodes 21 and 22 and dried. Further, a current collector was laminated thereon, and a sealing material 27 made of metal foil and lead wires were attached and fired in an electric furnace. The solid electrolyte 20 can also use other stabilized zirconia having stabilized oxygen ion conductivity, stabilized ceria, and the like. In order to improve the oxygen ion conductivity of the lanthanum gallium oxide used in the examples, A part of the gallium site may be substituted with a different metal such as a transition metal or an alkaline earth metal.
[0031]
Further, a current detection means 28 for detecting a current flowing through the solid electrolyte 20 is connected between the voltage supply device 23 and the solid electrolyte 20. When the solid electrolyte 20, the pair of electrodes 21, 22 or the heater 24 deteriorates due to a drop or deterioration of durability, a change appears in the current flowing through the solid electrolyte 20. Therefore, based on the detection value of the current detection means 28. When the control means 6 self-diagnose the state of the nitrogen supply means 15 and the detection value of the current detection means 28 exceeds a preset threshold value, it determines a period during which delicious cooked rice can be provided and replaces the nitrogen supply means 15. You can prompt or let you know the life.
[0032]
The atmosphere taken in from the outside and supplied to the nitrogen supply means 15 reaches one electrode 21 (cathode) via the porous heat insulating material 26, and oxygen contained in the atmosphere is adsorbed on the cathode 21. When a voltage is applied between the pair of electrodes 21 and 22 by the voltage supply device 23, the adsorbed oxygen receives electrons and is solid from a three-phase interface formed between the electrode 21, the solid electrolyte 20, and the gas phase. It is taken into the electrolyte 20 and becomes oxygen ions and moves through the solid electrolyte 20. Oxygen ions that have reached the other electrode 22 (anode) emit electrons at the three-phase interface formed between the electrode 22, the solid electrolyte 20, and the gas phase, become oxygen again, and are discharged to the atmosphere.
[0033]
The nitrogen-enriched gas from which oxygen has been removed is supplied to the inner pot 1 by the operation of the gas transport means 16a or 16b, and is replaced with a gas containing high-concentration oxygen, and the gas containing high-concentration oxygen is discharged to the outside. And discharged. As a result, the inner pot 1 has a low oxygen concentration, and it is suppressed that lipids, proteins and carbohydrates in the cooked rice are oxidized with oxygen in the air, and these substances are not decomposed or polymerized. The occurrence of yellowing and warming odor can be reduced. Moreover, the activity of bacteria can be suppressed and the decay of cooked rice can be delayed.
[0034]
Using the cooked rice warmer configured as described above, the heat insulation state of cooked rice was examined. First, rice and water, which are raw materials for cooked rice, were put into the inner pot 1 and cooked. In addition, while cooking rice at the same time, the heater 24 of the nitrogen supply means 15 is supplied with power of 10 to 20 W using the heater power supply 25, and the operating temperature of the oxygen pump composed of the solid electrolyte 20 and the pair of electrodes 21 and 22 is achieved. Was heated to 600 to 700 ° C.
[0035]
Then, a predetermined voltage was supplied between the pair of electrodes 21 and 22 by the voltage supply device 23, and the gas transport means 16 b was operated to take in nitrogen-rich gas into the nitrogen storage means 17. The nitrogen supply amount can be changed by controlling the voltage supply device 23 and the gas transport means 16b. The oxygen concentration in the nitrogen storage means 17 immediately after cooking rice was about 2%.
[0036]
Moreover, although the oxygen concentration of the gas in the inner pot 1 immediately after cooking rice was almost 0%, the inside cooled and the saturated vapor pressure decreased, and air flowed in from the outside, and the oxygen concentration gradually increased.
[0037]
Therefore, the control means 6 operates the valve 18 and the gas transport means 16a that have isolated the inner pot 1 to supply a nitrogen-enriched gas having a sufficiently low oxygen concentration stored in the nitrogen storage means 17 in the inner pot 1. Introduced promptly.
[0038]
FIG. 4 shows the relationship between the heat retention time and the oxygen concentration in the inner pot 1 when the air in the inner pot 1 is replaced with nitrogen-enriched gas in the nitrogen supply means 15 and the nitrogen storage means 17. The oxygen separated by the oxygen pump is discharged to the outside at 10 to 30 cc per minute, and the separated nitrogen is again mixed with air to become a nitrogen-enriched gas, and continuously the nitrogen storage means 17 at 40 to 120 cc per minute. Supplied to When the nitrogen storage means 17 and the inner pot 1 are connected by the valve 18, the air in the inner pot 1 is quickly replaced with a nitrogen-enriched gas, and the oxygen concentration in the inner pot 1 is 2 to 4% in 20 to 60 minutes. Therefore, the nitrogen supply amount was reduced and kept as it was. The oxygen concentration in the inner pot 1 increased due to the inflow of external air after a while, but the oxygen concentration in the inner pot 1 can be quickly reduced by increasing the nitrogen supply amount again at a low concentration stage to some extent. I was able to.
[0039]
Further, at this time, it was found that the inside of the inner pot 1 is almost at atmospheric pressure, and the airtight structure is simple.
[0040]
Next, immediately after cooking, sensory evaluation was performed when the oxygen concentration in the inner pot 1 was maintained at 2 to 4%. When kept in the atmosphere, the rice was slightly oxidized and the evaluation of the warm odor and taste was low, whereas when kept at a low oxygen concentration, the warm odor was small and the taste was good.
[0041]
Furthermore, when the sensory evaluation of the cooked rice that had been kept warm for 12 hours and 24 hours in this state, both had a little warming odor, had a freshly cooked odor, little yellowing, sticky taste evaluation, and elasticity The overall evaluation was high. On the other hand, the cooked rice that had been kept warm for 12 hours and 24 hours in the atmosphere had a warm odor, yellowing, poor taste, and low overall evaluation.
[0042]
Next, the heat insulation state of the cooked rice when the lid 8 was opened and closed was examined. While the lid 8 is closed, the nitrogen supply means 15 supplies nitrogen-rich gas to the nitrogen storage means 17, and immediately after the lid 8 is opened, the oxygen concentration in the inner pot 1 is the oxygen concentration in the atmosphere. It became equal to 20.8%. When the lid 8 was closed, the open / close detection means 19 detected that the lid 8 was closed, and the valve 18 and the gas transport means 16a were operated.
[0043]
The air in the inner pot 1 is immediately replaced with a nitrogen-enriched gas having a sufficiently low oxygen concentration stored in the nitrogen storage means 17, and the oxygen concentration in the inner pot 1 is 2 to 4% in 20 to 60 minutes. Therefore, the nitrogen supply amount was reduced and kept as it was. The oxygen concentration in the inner pot 1 increased due to the inflow of external air after a while, but the oxygen concentration in the inner pot 1 can be quickly reduced by increasing the nitrogen supply amount again at a low concentration stage to some extent. I was able to.
[0044]
The sensory evaluation of the cooked rice when the lid 8 was opened and closed also showed comprehensively good results such as a warm odor, yellowing of cooked rice, and physical properties of the taste.
[0045]
Moreover, it turned out that delicious cooked rice with little heat retention odor can be provided by changing supply_amount | feed_rate of nitrogen-enriched gas according to the quantity of cooked rice to heat retention.
[0046]
【The invention's effect】
As described above, according to the cooked rice incubator of the present invention, nitrogen supply means for removing oxygen contained in the atmosphere and supplying nitrogen-rich gas, nitrogen storage means for storing nitrogen-rich gas, Control means for controlling the supply amount of nitrogen, and the control means controls the supply amount of nitrogen-rich gas from the nitrogen storage means to the inner pot. The unpleasant warming odor generated in the kettle can be scattered to prevent yellowing of the cooked rice and physical properties from being deteriorated during eating, and a delicious cooked rice can be provided even if kept warm.
[Brief description of the drawings]
1 is a cross-sectional view showing a schematic configuration of a rice cooker according to an embodiment of the present invention. FIG. 2 is a cross-sectional view of a nitrogen supply unit of the rice cooker. FIG. 3 is a voltage-current characteristic diagram of the nitrogen supply unit. [Chart 4] Characteristic diagram showing the relationship between the heat retention time and oxygen concentration of the rice cooker
DESCRIPTION OF SYMBOLS 1 Inner pot 4,11 Temperature detection means 5, 7, 10 Heating means 6 Control means 8 Cover 15 Nitrogen supply means 16a, 16b Gas transport means 17 Nitrogen storage means 18 Valve 19 Opening / closing detection means 20 Solid electrolyte 21, 22 Pair of electrodes 23 Voltage supply device 24 Heater 25 Heater power supply 26 Heat insulation material 27 Seal material 28 Current detection means

Claims (2)

米飯を収容する内釜と、前記内釜の上方に設けた開閉可能な蓋と、前記内釜の米飯を加熱する加熱手段と、前記内釜の温度を検出する温度検出手段と、大気中に含まれる酸素を除去し窒素富化なガスを内釜へ供給する窒素供給手段と、窒素富化なガスを運搬するガス輸送手段と、前記窒素供給手段からの窒素富化なガスを貯蔵する窒素貯蔵手段と、前記温度検出手段の検出値をもとに前記加熱手段を用いて前記米飯を所定温度に加熱制御するとともに、前記窒素貯蔵手段から内釜への窒素富化なガスの供給量を制御する制御手段とを備えてなる米飯保温器。An inner pot for storing cooked rice, an openable / closable lid provided above the inner pot, heating means for heating the cooked rice in the inner pot, temperature detecting means for detecting the temperature of the inner pot, and in the atmosphere Nitrogen supply means for removing contained oxygen and supplying nitrogen-enriched gas to the inner kettle, gas transport means for transporting nitrogen-enriched gas, and nitrogen for storing nitrogen-enriched gas from said nitrogen supply means Based on the detected value of the storage means and the temperature detection means, the heating means is used to heat the cooked rice to a predetermined temperature, and the supply amount of nitrogen-enriched gas from the nitrogen storage means to the inner pot is controlled. A rice cooker comprising control means for controlling. 窒素供給手段、内釜、および窒素貯蔵手段間にバルブを備え、炊飯中は、前記バルブで窒素供給手段と窒素貯蔵手段を導通させ、炊飯終了後、前記バルブで窒素貯蔵手段と内釜を導通させる請求項1に記載の米飯保温器。  A valve is provided between the nitrogen supply means, the inner pot, and the nitrogen storage means. During rice cooking, the nitrogen supply means and the nitrogen storage means are conducted with the valve, and after the completion of rice cooking, the nitrogen storage means and the inner kettle are conducted with the valve. The cooked rice warmer according to claim 1.
JP2002269555A 2002-09-17 2002-09-17 Cooked rice incubator Expired - Fee Related JP3925367B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002269555A JP3925367B2 (en) 2002-09-17 2002-09-17 Cooked rice incubator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002269555A JP3925367B2 (en) 2002-09-17 2002-09-17 Cooked rice incubator

Publications (2)

Publication Number Publication Date
JP2004105332A JP2004105332A (en) 2004-04-08
JP3925367B2 true JP3925367B2 (en) 2007-06-06

Family

ID=32267456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002269555A Expired - Fee Related JP3925367B2 (en) 2002-09-17 2002-09-17 Cooked rice incubator

Country Status (1)

Country Link
JP (1) JP3925367B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4135560B2 (en) * 2003-05-29 2008-08-20 松下電器産業株式会社 Cooked rice incubator

Also Published As

Publication number Publication date
JP2004105332A (en) 2004-04-08

Similar Documents

Publication Publication Date Title
JP2010243103A (en) Method of adjusting oxygen concentration in food storage space
CN101368781B (en) Fresh-keeping refrigerator
JP3918693B2 (en) Cooked rice incubator
JP3925367B2 (en) Cooked rice incubator
JP3900038B2 (en) Cooked rice incubator
WO1996028589A1 (en) Gas-permselective pneumatic pump and incubator using the same
JPH04346774A (en) Storage apparatus for regulating atmosphere
CN207118812U (en) Cooking apparatus
JP3358125B2 (en) rice cooker
JP4135560B2 (en) Cooked rice incubator
JP3998214B2 (en) Heater integrated negative charge oxygen atom generator
JP2010144992A (en) Storage
JPH11137424A (en) Cooked rice heat insulator
JP2006166831A (en) Oxygen concentration changeable storage
JP2002253422A (en) Rice cooker
JP2000152867A (en) Boiled-rice warmer
JP7433143B2 (en) heating cooker
JP7229147B2 (en) heating cooker
JP2502660B2 (en) Cooking device
JP2019080753A (en) Heating cooker
JPH09276128A (en) Electric rice cooker using oxygen reduction means by solid polymer electrolyte membrane
JP3829763B2 (en) Cooked rice incubator
JPS602054B2 (en) storage
JP2001070149A (en) Rice cooker
JP2023076087A (en) Cooker

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041122

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060718

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070219

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110309

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees