JP3924879B2 - Nuclear medicine diagnostic equipment - Google Patents

Nuclear medicine diagnostic equipment Download PDF

Info

Publication number
JP3924879B2
JP3924879B2 JP33776797A JP33776797A JP3924879B2 JP 3924879 B2 JP3924879 B2 JP 3924879B2 JP 33776797 A JP33776797 A JP 33776797A JP 33776797 A JP33776797 A JP 33776797A JP 3924879 B2 JP3924879 B2 JP 3924879B2
Authority
JP
Japan
Prior art keywords
radioactivity
image
distribution
suv
subject
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP33776797A
Other languages
Japanese (ja)
Other versions
JPH11153669A (en
Inventor
敏彦 原
昌治 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP33776797A priority Critical patent/JP3924879B2/en
Publication of JPH11153669A publication Critical patent/JPH11153669A/en
Application granted granted Critical
Publication of JP3924879B2 publication Critical patent/JP3924879B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、放射性化合物を癌患者に静脈内投与し、これが癌に集積したとき、そこから放出される放射線を体外で計測して放射能分布を画像化し、これにより癌の診断を行う、核医学診断装置に関する。
【0002】
【従来の技術】
C−11−コリンやF−18−FDG等の放射性化合物は、癌に集積する。これら化合物の局所集積度、およびその範囲を決定することは、有効な癌診断手段である。この集積度を表す一つの指標として、SUV( Standardized Uptake Value )、別名DUR( Differential Uptake Ratio )が用いられる。SUVとは、体内特定領域で実測された放射能濃度(A)と放射能の全身均一分布を仮定したときの全身平均放射能濃度(B)との比A/B、すなわち体内特定領域における放射能集積倍率である。このSUVの計算は、従来、手作業により行われている。
【0003】
【発明が解決しようとする課題】
しかしながら、SUVの計算を手作業で行うことは非常に煩雑であり、画像として表示することも難しい、という問題があった。
【0004】
この発明は、上記に鑑み、SUVの計算およびその結果得られるSUVの分布を画像として表示することが自動的に行われるように改善した、核医学診断装置を提供することを目的とする。
【0005】
【課題を解決するための手段】
上記の目的を達成するため、この発明による核医学診断装置においては、被検者に静脈内投与された放射性化合物の全放射能を測定する手段と、放射性化合物が投与された被検者の体内放射能濃度分布を測定する手段と、該体内放射能濃度分布、上記の投与放射性化合物の全放射能および被検者の体積から全身放射能濃度平均値に対する集積倍率の分布を計算する手段と、計算された該集積倍率が癌診断の判定基準を超えた領域を他の領域と異なる色に着色して該集積倍率の分布を画像として表示するとともに、該判定基準を超えた領域における該集積倍率の平均値を求めて数値として表示する画像表示手段とが備えられることが特徴となっている。
【0006】
まず、被検者に投与された放射性化合物の全放射能(単位;Bg)は、注射液の一部(注射液フラクション・サンプル)の放射能(単位;Bg)と、注射液の全液量(単位;ミリリットル)対注射液フラクション・サンプルの液量(たとえば0.1ミリリットル)の比、この両者から計算で求めることができる。また、人体の比重を1と見なせば、被検者の体積(単位;ミリリットル)は体重(単位;g)に等しい。投与した全放射能を被検者の体積で除すれば、放射能全身均一分布を仮定したときの単位体積当たりの放射能、つまり全身放射能濃度平均値(単位;Bg/ミリリットル)を得ることができる。このときSUVは1である。一方、PET装置などにより被検体内放射能濃度分布(ピクセル値の単位;Bg/ミリリットル)を実測する。この実測された体内放射能濃度分布を、全身放射能濃度平均値を用いてSUVの分布として計算し、このSUVの分布をピクセルごとに段階的に色分けして画像表示する。これらの一連の処理が自動的に行われる。
【0007】
さらに必要があれば、画像上で任意に設定した関心領域(ROI)におけるSUVのピクセル平均値を数値として表示することも可能であり、その場合、癌診断の判定基準がたとえばSUV>4と設定されたとすると、SUV分布として表示された画像においてそのSUV>4の領域を色分け表示することによって、癌の所在領域を他から明瞭に区別して表示することができる。
【0008】
【発明の実施の形態】
つぎに、この発明の実施の形態について図面を参照しながら詳細に説明する。図1において、PET装置(ポジトロン・エミッション・コンピュータ・トモグラフィ装置)11により、C−11−コリンの投与された脳腫瘍患者(図示しない)の頭部の計測を行なうものとする。C−11−コリンは脳腫瘍に集積し、その集積度は腫瘍の悪性度を反映する。
【0009】
PET装置11では、体内の放射能より放出される放射線を体外で検出し、検出器感度を補正した後、そのデータを用いてPET画像を再構成する。このPET画像は、ピクセル値が単位;Bg/ミリリットルで求められた体内放射能分布(所定断面での放射能分布画像)である。このPET画像データは、画像処理装置12を経て画像表示装置13に送られ、図2に示すようにPET画像(ピクセル値の単位;Bg/ミリリットル)21が表示される。この段階では、腫瘍部22では放射能集積度が相対的に高いことは分かるが、絶対的な放射能集積度は不明である。
【0010】
つぎに、たとえばウェルカウンタなどの放射能測定器14により測定された注射液フラクション・サンプル(たとえば0.1ミリリットル)の放射能a(単位;Bg)と、注射液の全液量b(単位;ミリリットル)と、被検者の体重w(単位;g)とを、演算処理装置15のSUV計算部16に入力し、SUV=1に相当する放射能濃度つまり全身放射能濃度平均値(単位;Bg/ミリリットル)を計算する。PET装置11による測定時刻t1と放射能測定器14による測定時刻t2が異なる場合には、核種の種類と各々の測定時刻t1、t2とをSUV計算部16に入力し、核種の種類に応じた減衰定数を用いてt1、t2の時間差による放射能の減衰を補正する。
【0011】
なお、PET装置11で計測中に生じる放射能の減衰は自動的に補正されるようになっている。
【0012】
上記のようにPET装置11を用いて得られたPET画像(図2)はピクセル値をBg/ミリリットルの単位としてまず表示されるが、この画像データが画像処理装置12において前述のSUV=1に相当する放射能濃度(単位;Bg/ミリリットル)で除算されてSUV値に変換され、その変換後の分布画像21が最終的に画像表示装置13によって表示される。
【0013】
このピクセル値がSUV値とされた画像21において、腫瘍部22を横切るたとえば線23−23上のピクセル値のプロファイルは図3のようになる。癌診断の判定基準がたとえばSUV>4と設定されたとすると、画像処理装置12がSUV>4の領域を他の領域と異なる色に着色し、この画像が画像表示装置13において表示されることになる。これにより、SUV値で表示された画像21において癌の所在領域22を他から明瞭に区別できるようにして表示することができる。
【0014】
さらに必要があれば、画像21上の任意の領域を関心領域(ROI)として設定し、その関心領域におけるSUV平均値(ピクセル平均値)を求めて数値として表示することも可能である。この数値は、癌の悪性度の判定、癌の治療効果の判定に用いる指標として有用である。
【0015】
なお、上記の記述はこの発明の一つの実施形態に関するものであり、この発明はこれらの記述に限定されない。したがって、具体的な構成等についてはつぎに述べるように様々に変更することができる。すなわち、PET装置11の仕様や、画像処理装置12、画像表示装置13および演算処理装置15を構成するコンピュータの仕様等は、種々に変更可能である。放射能測定器14等からの外部データの入力については、手動入力、自動入力のいずれも可能である。被検者に投与される放射性化合物はC−11−コリンやF−18−FDGに限定されない。頭部以外にも全身のあらゆる部位が計測対象となり得る。シングルフォトン放出性核種を用いる場合は、PET装置11でなく、SPECT装置(シングルフォトン・エミッションCT装置)を用いる。
【0016】
【発明の効果】
以上説明したように、この発明の核医学診断装置によれば、SUV値の高い領域が他と区別して表示されている画像を自動的に得ることができる。この画像は、癌の診断においてきわめて有効である。
【図面の簡単な説明】
【図1】この発明の実施の形態を示すブロック図。
【図2】脳腫瘍への放射能集積例を示すPET画像の図。
【図3】脳腫瘍への放射能集積を示すPET画像において、これを横切る線上の放射能集積度分布を示すグラフ。
【符号の説明】
11 PET装置
12 画像処理装置
13 画像表示装置
14 放射能測定器
15 演算処理装置
16 SUV計算部
21 PET画像
22 腫瘍部
[0001]
BACKGROUND OF THE INVENTION
In this invention, a radioactive compound is intravenously administered to a cancer patient, and when it accumulates in the cancer, the radiation emitted therefrom is measured outside the body to image the radioactivity distribution, thereby diagnosing the cancer. The present invention relates to a medical diagnostic apparatus.
[0002]
[Prior art]
Radioactive compounds such as C-11-choline and F-18-FDG accumulate in cancer. Determining the local accumulation degree and range of these compounds is an effective cancer diagnostic tool. SUV (Standardized Uptake Value), also known as DUR (Differential Uptake Ratio), is used as one index representing the degree of integration. SUV is the ratio A / B between the radioactivity concentration (A) actually measured in a specific region of the body and the whole body average radioactivity concentration (B) assuming a whole body uniform distribution of the radioactivity, that is, radiation in the specific region of the body. It is the capacity integration magnification. This SUV calculation is conventionally performed manually.
[0003]
[Problems to be solved by the invention]
However, there is a problem that it is very complicated to perform the SUV calculation manually, and it is difficult to display it as an image.
[0004]
In view of the above, an object of the present invention is to provide a nuclear medicine diagnostic apparatus that is improved so that the calculation of SUV and the distribution of SUV obtained as a result are automatically displayed as an image.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, in the nuclear medicine diagnostic apparatus according to the present invention, means for measuring the total radioactivity of a radioactive compound intravenously administered to a subject, and the body of the subject to which the radioactive compound has been administered. Means for measuring the radioactivity concentration distribution, means for calculating the distribution of the integration magnification with respect to the whole body radioactivity concentration average value from the in-vivo radioactivity concentration distribution, the total radioactivity of the administered radioactive compound and the volume of the subject, A region where the calculated integration magnification exceeds the determination criterion for cancer diagnosis is colored in a color different from other regions and the distribution of the integration magnification is displayed as an image, and the integration magnification in the region where the integration criterion is exceeded And an image display means for obtaining an average value of these and displaying them as numerical values.
[0006]
First, the total radioactivity (unit: Bg) of the radioactive compound administered to the subject is the radioactivity (unit: Bg) of a part of the injection solution (injection fraction sample) and the total amount of the injection solution. The ratio of (unit: milliliter) to the liquid volume of the injection liquid fraction sample (for example, 0.1 milliliter) can be calculated from both. If the specific gravity of the human body is regarded as 1, the volume (unit: milliliter) of the subject is equal to the body weight (unit: g). If the total radioactivity administered is divided by the volume of the subject, the radioactivity per unit volume assuming the uniform distribution of radioactivity throughout the body, that is, the average value of the whole body radioactivity concentration (unit: Bg / milliliter) is obtained. Can do. At this time, SUV is 1. On the other hand, the radioactive concentration distribution in the subject (pixel value unit: Bg / milliliter) is measured by a PET apparatus or the like. This actually measured in-vivo radioactivity concentration distribution is calculated as an SUV distribution using the whole-body radioactivity concentration average value, and this SUV distribution is color-coded stepwise for each pixel and displayed as an image. A series of these processes is automatically performed.
[0007]
If necessary, the SUV pixel average value in the region of interest (ROI) arbitrarily set on the image can be displayed as a numerical value. In this case, the determination criterion for cancer diagnosis is set to SUV> 4, for example. If this is done, the region where SUV> 4 is displayed in a color-coded manner in the image displayed as the SUV distribution, so that the region where the cancer is located can be clearly distinguished from the others.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described in detail with reference to the drawings. In FIG. 1, it is assumed that the head of a brain tumor patient (not shown) to which C-11-choline has been administered is measured by a PET device (positron emission computer tomography device) 11. C-11-choline accumulates in brain tumors and the degree of accumulation reflects the malignancy of the tumor.
[0009]
In the PET apparatus 11, the radiation emitted from the radioactivity in the body is detected outside the body, the detector sensitivity is corrected, and then the PET image is reconstructed using the data. This PET image is an in-vivo radioactivity distribution (radioactivity distribution image at a predetermined cross section) obtained in units of pixels; Bg / milliliter. This PET image data is sent to the image display device 13 via the image processing device 12, and a PET image (unit of pixel values; Bg / milliliter) 21 is displayed as shown in FIG. At this stage, it can be seen that the tumor site 22 has a relatively high radioactivity accumulation level, but the absolute radioactivity accumulation level is unknown.
[0010]
Next, the radioactivity a (unit: Bg) of the injection liquid fraction sample (for example, 0.1 ml) measured by the radioactivity measuring instrument 14 such as a well counter, and the total liquid volume b (unit; Milliliter) and the weight w (unit; g) of the subject are input to the SUV calculator 16 of the arithmetic processing unit 15, and the radioactivity concentration corresponding to SUV = 1, that is, the whole body radioactivity concentration average value (unit; Bg / milliliter). When the measurement time t1 by the PET apparatus 11 and the measurement time t2 by the radioactivity measuring device 14 are different, the type of the nuclide and each measurement time t1, t2 are input to the SUV calculation unit 16, and according to the type of the nuclide. The attenuation of radioactivity due to the time difference between t1 and t2 is corrected using the attenuation constant.
[0011]
The attenuation of radioactivity that occurs during measurement by the PET apparatus 11 is automatically corrected.
[0012]
The PET image (FIG. 2) obtained using the PET apparatus 11 as described above is first displayed with the pixel value as a unit of Bg / milliliter, and this image data is set to the aforementioned SUV = 1 in the image processing apparatus 12. Divided by the corresponding radioactivity concentration (unit: Bg / milliliter) and converted to an SUV value, the converted distribution image 21 is finally displayed by the image display device 13.
[0013]
In the image 21 in which the pixel value is the SUV value, the profile of the pixel value on, for example, a line 23-23 crossing the tumor portion 22 is as shown in FIG. If the determination criterion for cancer diagnosis is set as SUV> 4, for example, the image processing device 12 colors the region of SUV> 4 in a color different from other regions, and this image is displayed on the image display device 13. Become. Thereby, in the image 21 displayed with the SUV value, the cancer location region 22 can be displayed in a clearly distinguishable manner from others.
[0014]
If necessary, an arbitrary region on the image 21 can be set as a region of interest (ROI), and an SUV average value (pixel average value) in the region of interest can be obtained and displayed as a numerical value. This numerical value is useful as an index used for determination of malignancy of cancer and determination of therapeutic effect of cancer.
[0015]
The above description relates to one embodiment of the present invention, and the present invention is not limited to these descriptions. Therefore, the specific configuration and the like can be variously changed as described below. In other words, the specifications of the PET apparatus 11 and the specifications of the computers constituting the image processing apparatus 12, the image display apparatus 13, and the arithmetic processing apparatus 15 can be variously changed. As for the input of external data from the radioactivity measuring instrument 14 or the like, either manual input or automatic input is possible. The radioactive compound administered to the subject is not limited to C-11-choline or F-18-FDG. In addition to the head, any part of the whole body can be measured. When a single photon emitting nuclide is used, a SPECT device (single photon emission CT device) is used instead of the PET device 11.
[0016]
【The invention's effect】
As described above, according to the nuclear medicine diagnosis apparatus of the present invention, it is possible to automatically obtain an image in which a region having a high SUV value is displayed separately from others. This image is very effective in cancer diagnosis.
[Brief description of the drawings]
FIG. 1 is a block diagram showing an embodiment of the present invention.
FIG. 2 is a view of a PET image showing an example of radioactive accumulation in a brain tumor.
FIG. 3 is a graph showing a radioactivity accumulation distribution on a line across a PET image showing radioactivity accumulation in a brain tumor.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 11 PET apparatus 12 Image processing apparatus 13 Image display apparatus 14 Radioactivity measuring device 15 Arithmetic processing apparatus 16 SUV calculation part 21 PET image 22 Tumor part

Claims (1)

被検者に静脈内投与された放射性化合物の全放射能を測定する手段と、放射性化合物が投与された被検者の体内放射能濃度分布を測定する手段と、該体内放射能濃度分布、上記の投与放射性化合物の全放射能および被検者の体積から全身放射能濃度平均値に対する集積倍率の分布を計算する手段と、計算された該集積倍率が癌診断の判定基準を超えた領域を他の領域と異なる色に着色して該集積倍率の分布を画像として表示するとともに、該判定基準を超えた領域における該集積倍率の平均値を求めて数値として表示する画像表示手段とを備えることを特徴とする核医学診断装置。  Means for measuring the total radioactivity of a radioactive compound administered intravenously to a subject; means for measuring the in-vivo radioactivity concentration distribution of the subject administered with the radioactive compound; A means for calculating the distribution of the accumulation factor with respect to the average value of the whole body radioactivity concentration from the total radioactivity of the administered radioactive compound and the volume of the subject, and other areas where the calculated integration factor exceeded the criteria for cancer diagnosis An image display means for displaying the distribution of the integration magnification as an image colored in a color different from that of the area, and obtaining an average value of the integration magnification in an area exceeding the determination criterion and displaying it as a numerical value. Features nuclear medicine diagnostic equipment.
JP33776797A 1997-11-21 1997-11-21 Nuclear medicine diagnostic equipment Expired - Lifetime JP3924879B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33776797A JP3924879B2 (en) 1997-11-21 1997-11-21 Nuclear medicine diagnostic equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33776797A JP3924879B2 (en) 1997-11-21 1997-11-21 Nuclear medicine diagnostic equipment

Publications (2)

Publication Number Publication Date
JPH11153669A JPH11153669A (en) 1999-06-08
JP3924879B2 true JP3924879B2 (en) 2007-06-06

Family

ID=18311778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33776797A Expired - Lifetime JP3924879B2 (en) 1997-11-21 1997-11-21 Nuclear medicine diagnostic equipment

Country Status (1)

Country Link
JP (1) JP3924879B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4586473B2 (en) * 2004-09-22 2010-11-24 株式会社島津製作所 Medical diagnostic imaging equipment
JP4640143B2 (en) * 2005-12-02 2011-03-02 株式会社島津製作所 Diagnostic imaging support device
JP4656008B2 (en) * 2006-06-13 2011-03-23 株式会社島津製作所 Nuclear medicine diagnostic equipment
JP2010154944A (en) * 2008-12-26 2010-07-15 Toshiba Corp Medical image diagnostic apparatus and fusion image generation method
JP2012058061A (en) * 2010-09-08 2012-03-22 Shimadzu Corp Radiation tomographic apparatus
EP2643710B1 (en) 2010-11-23 2017-01-11 Koninklijke Philips N.V. Pet calibrations with varying coincidence windows
JP6026089B2 (en) * 2011-08-23 2016-11-16 東芝メディカルシステムズ株式会社 Medical image diagnostic apparatus, image information display apparatus, and control program
JP5930193B2 (en) * 2012-05-29 2016-06-08 日本メジフィジックス株式会社 SPECT image conversion apparatus, image conversion program, and image conversion method
JP5801850B2 (en) * 2013-06-27 2015-10-28 日本メジフィジックス株式会社 Quantification of nuclear medicine image data
JP6294105B2 (en) * 2014-03-03 2018-03-14 キヤノンメディカルシステムズ株式会社 Nuclear medicine diagnostic apparatus and medical image processing apparatus
JP6060301B1 (en) * 2016-06-08 2017-01-11 日本メジフィジックス株式会社 Method and apparatus for analyzing myocardial nuclear medicine image data

Also Published As

Publication number Publication date
JPH11153669A (en) 1999-06-08

Similar Documents

Publication Publication Date Title
Desmonts et al. Evaluation of a new multipurpose whole-body CzT-based camera: comparison with a dual-head Anger camera and first clinical images
Kaneta et al. SUV measurement of normal vertebrae using SPECT/CT with Tc-99m methylene diphosphonate
Reichenbach et al. Acute stroke evaluated by time-to-peak mapping during initial and early follow-up perfusion CT studies
Varrone et al. EANM procedure guidelines for PET brain imaging using [18 F] FDG, version 2
Meltzer et al. Comparative evaluation of MR-based partial-volume correction schemes for PET
US20210065877A1 (en) Method and system for calculating SUV normalization coefficient in a SPECT quantitative tomographic image
JP4767512B2 (en) Automatic calibration method for perfusion parameter images
Jaszczak et al. Single photon emission computed tomography (SPECT) principles and instrumentation
Si-Mohamed et al. Head-to-head comparison of lung perfusion with dual-energy CT and SPECT-CT
JP3924879B2 (en) Nuclear medicine diagnostic equipment
JP4656008B2 (en) Nuclear medicine diagnostic equipment
Devous Sr SPECT Functional Brain Imaging; Technical Considerations
US8682044B2 (en) Methods of analyzing and correcting medical imaging data
Shimosegawa et al. Quantitative CBF measurement using an integrated SPECT/CT system: validation of three-dimensional ordered-subset expectation maximization and CT-based attenuation correction by comparing with O-15 water PET
IIDA et al. Quantitation of Physiological Functional Parametric Images
JP6823310B2 (en) Exposure dose control method and control device
Jonsson et al. Reproducibility and repeatability of 99Tcm-HMPAO rCBF SPET in normal subjects at rest using brain atlas matching
Baron et al. Myocardial single-photon emission computed tomographic quality assurance
JPH0815439A (en) Blood-stream quantity measuring device
Ogasawara et al. Simultaneous acquisition of iodine-123 emission and technetium-99m transmission data for quantitative brain single-photon emission tomographic imaging
Ahonen et al. Non-invasive external regional measurement of cerebral circulation time changes in supratentorial infarctions using pertechnetate.
Graham Quantification of Radiotracer Uptake into Tissue
Stapleton et al. Effects of non-linear flow and spatial orientation on technetium-99m hexamethylpropylene amine oxime single-photon emission tomography
Trevisan et al. Comparison between OSEM and FBP reconstruction algorithms for the qualitative and quantitative interpretation of brain DAT-SPECT using an anthropomorphic striatal phantom: implications for the practice
Shahbazi-Gahrouei et al. Comparison of accuracy in calculation of absorbed dose to patients following bone scan with 99mTc-marked diphosphonates by two different background correction methods

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040420

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050331

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060815

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070219

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100309

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110309

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110309

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120309

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120309

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130309

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140309

Year of fee payment: 7

EXPY Cancellation because of completion of term