JP3924220B2 - Waste gasification system - Google Patents

Waste gasification system Download PDF

Info

Publication number
JP3924220B2
JP3924220B2 JP2002234686A JP2002234686A JP3924220B2 JP 3924220 B2 JP3924220 B2 JP 3924220B2 JP 2002234686 A JP2002234686 A JP 2002234686A JP 2002234686 A JP2002234686 A JP 2002234686A JP 3924220 B2 JP3924220 B2 JP 3924220B2
Authority
JP
Japan
Prior art keywords
water
waste
gas
gasification
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002234686A
Other languages
Japanese (ja)
Other versions
JP2004075740A (en
Inventor
要之介 星
岳洋 橘田
浩俊 堀添
裕二 貝原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2002234686A priority Critical patent/JP3924220B2/en
Publication of JP2004075740A publication Critical patent/JP2004075740A/en
Application granted granted Critical
Publication of JP3924220B2 publication Critical patent/JP3924220B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/12Heat utilisation in combustion or incineration of waste
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/58Construction or demolition [C&D] waste

Landscapes

  • Gasification And Melting Of Waste (AREA)
  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は廃棄物を加熱してガス化ガスを生成し、生成されたガス化ガスをもとにエネルギを生成する廃棄物ガス化システムに関する。
【0002】
【従来の技術】
都市ごみ、下水汚泥、産業用廃棄物、バイオマスなどの有機系廃棄物からエネルギ回収を図るために、廃棄物を加熱し熱分解してガス化ガスを生成し、生成されたガス化ガスをもとにエネルギを生成する廃棄物ガス化システムが、環境保全及び省資源の観点から注目されている。
【0003】
このような廃棄物ガス化システムには色々な種類のものがある。例えば、本願出願人が先に出願した特願2001−350415に記載の装置がある。図7に示すのがこの装置の概要であって、流路201を介して導入された廃棄物は乾燥機1で乾燥されてから内部に砂層2aを有する流動床ガス化炉2に送給され燃焼される。
【0004】
流動床ガス化炉2の上部に設けられている送出口は、流路203を通して固形分分離手段、例えばサイクロン3の受入口に接続されている。サイクロン3の底部送出口は流路204を通して灰溶融炉4の受入口に接続され流動床ガス化炉2で発生した固形分を多く含む第1流体が灰溶融炉4に導入され、サイクロン3の上部送出口は流路205を通して改質炉6の下部受入口に接続され流動床ガス化炉2で発生した固形分を少なく含む第2流体が改質炉6に導入される。
【0005】
改質炉6に導入された第2流体を改質炉6で改質した改質ガスは流路207を通して発電機11を駆動するスチームタービン10に蒸気を送るボイラ7に送られ、さらに流路208を通してバグフィルタ8に送られ、バグフィルタ8で除塵された後、流路209を通して凝縮器9に送られ、凝縮器9で水分を除去して精製され燃料ガスとして流路210を通して、燃料ガスを燃料にして発電をおこなう発電装置110に送られる。灰溶融炉4に導入された第1流体は灰溶融炉4で燃焼され、その燃焼排ガスは、流路206を通して改質炉6に導入され、改質炉6を加熱するようにされている。
【0006】
上記の装置では図示されるように、乾燥機1は発電装置110の排ガスで廃棄物を乾燥している。しかしながら、汚泥のような高水分の廃棄物では、このような発電装置110の排ガスではガス化手段へ送給する廃棄物を充分に乾燥することができない場合がある。
【0007】
【発明が解決しようとする課題】
本発明は上記問題に鑑み、廃棄物ガス化システムの乾燥機が高水分の廃棄物でも充分乾燥できるようにすることを目的とする。
【0008】
【課題を解決するための手段】
請求項1の発明によれば、廃棄物を乾燥手段で乾燥してからガス化手段で加熱してガス化ガスを生成し、生成されたガス化ガスをもとにエネルギを生成する廃棄物ガス化システムであって、
ガス化ガス中に含まれる水蒸気の凝縮潜熱を奪って水を加熱する水加熱手段を具備し、乾燥手段が加熱手段で水を加熱して生成される水蒸気で廃棄物を乾燥する、ことを特徴とする廃棄物ガス化システムが提供される。
このように構成される廃棄物ガス化システムでは、乾燥手段は水加熱手段でガス化ガスの有する熱エネルギを奪って水を加熱して生成される水蒸気で廃棄物を乾燥する。
【0009】
請求項2の発明によれば、請求項1の発明において、ガス化ガスを精製するためにガス化ガスを凝縮する凝縮手段を具備し、水加熱手段は凝縮手段がガス化ガスを凝縮した際に発生する水を加熱する、ことを特徴とする廃棄物ガス化システムが提供される。
請求項3の発明によれば、さらに、水加熱手段が凝縮手段と一体に形成されている、廃棄物ガス化システムが提供される。
【0010】
請求項4の発明によれば、請求項1の発明において、水加熱手段で生成された水蒸気を再加熱する水再加熱手段を具備する、廃棄物ガス化システムが提供される。
請求項5の発明によれば、さらに、水再加熱手段は水加熱手段より上流でガス化ガスの有する熱エネルギを奪って水加熱手段で生成された水蒸気を再加熱する、ようにされている廃棄物ガス化システムが提供される。
【0011】
請求項6の発明によれば、請求項1の発明において、水を膨張手段で膨張してから水加熱手段を通過せしめ、水加熱手段通過後に圧縮手段で圧縮する、ようにした廃棄物ガス化システムが提供される。
【0012】
請求項7の発明によれば、請求項1の発明において、水加熱手段が、ガス化ガスの有する熱エネルギを奪う熱回収手段と、熱回収手段と離間した位置に配設され水に熱を与える熱付与手段から成り、熱移送手段により熱回収手段から熱付与手段に熱を移送する、ようにした廃棄物ガス化システムが提供される。
請求項8の発明によれば、さらに、熱移送手段が閉回路内で中間熱媒を循環させる中間熱媒循環手段である、ようにした廃棄物ガス化システムが提供される。
請求項9の発明によれば、さらに、中間熱媒循環手段は、中間熱媒を膨張手段で膨張してから熱回収手段を通過せしめ、熱回収手段通過後に圧縮手段で圧縮してから熱付与手段に中間熱媒を送給する、ようにした廃棄物ガス化システムが提供される。
【0013】
請求項10の発明によれば、請求項1の発明において、水加熱手段で加熱した水の一部を酸素発生装置から供給される酸素と混合してガス化手段に供給するガス化剤を生成するようにした廃棄物ガス化システムが提供される。
【0014】
【発明の実施の形態】
以下、添付の図面を参照して本発明の実施の形態を説明する。
図1は、本発明の廃棄物ガス化システムの第1の実施の形態の概略図であって、流路201を通して廃棄物が投入される乾燥機1は間接加熱式であり、例えば内筒1aと外筒1bの間には流路1cが形成されている。乾燥機1の送出口は、流路202を介して内部に砂層2aを有する流動床ガス化炉2に接続されている。
【0015】
流動床ガス化炉2の上部の送出口は、流路203を通して固形分分離手段としての、サイクロン3の受入口に接続されている。サイクロン3の底部送出口は、流路204を通して灰溶融炉4の受入口に接続されている。サイクロン3の上部送出口は、流路205を通して改質炉6の下部受入口に接続されている。灰溶融炉4の上部は流路206を介して改質炉6に導入される。
【0016】
改質炉6の内部中央には、触媒充填部6aが設けても良い。この触媒は、サイクロン3の上部送出口から送出される後述する第2流体中のガス化ガスの成分(メタン、エタン)等をより低い温度でCO,H2等に低分子化するものである。この触媒としては、Si,Al,Ni,Fe,Cr,Mo,W,Mn,Co,Cu,Pd,Ptから選ばれる少なくとも1つの元素、またはこれらの元素の酸化物から選ばれる少なくとも1つもしくは混合物を用いることができる。
【0017】
改質炉6のガス送出口は、流路207を通してボイラ7のガス受入口に接続されている。このボイラ7のガス送出口は、流路208を通してバグフィルタ8の受入口に接続されている。このバグフィルタ8の送出口は、流路209を通して凝縮器9のガス受入口に接続されている。この凝縮器9のガス送出口は、流路210を通して例えばガスエンジン発電装置110のガス受入側に接続されている。
【0018】
ボイラ7の蒸気送出口は、流路211を通してスチームタービン10の蒸気受入口に接続されている。このスチームタービン10の出力軸は、発電機11の入力軸に連結されている。また、スチームタービン10の蒸気送出口は流路212を通して復水器12の蒸気受入口に接続されている。この復水器12の送水口は、流路213を通してボイラ7の受水口に接続されている。
【0019】
発電装置110は、この第1の実施の形態では、詳細は示さないが、コンプレッサで精製された燃料ガスを圧縮し、圧縮された精製ガスと空気をガスエンジンに送り、ガスエンジン内で燃焼爆発させその力で発電機を回転させるものである。ガスエンジンの排ガスは、排出管301を通して乾燥機1に接続されている。
【0020】
発電装置110は、上記のガスエンジン式の外、ガスタービン式発電装置、燃料電池式発電装置、ガスエンジン−スチームタービン式発電装置、ガスタービン−スチームタービン式発電装置、燃料電池−スチームタービン式発電装置、燃料電池−ガスエンジン−スチームタービン式発電装置等にすることが可能である。
【0021】
そして、本発明の特徴として、凝縮器9でガス化ガスから回収される水を貯留する水タンク13の底部がポンプ14を介装した流路216により膨張弁15の入口と接続され、膨張弁15の出口に接続されている流路217は凝縮機9の内部を通って圧縮機16の入口に接続され、圧縮機16の出口は流路218を介して乾燥機1の内筒1aと外筒1bの間の流路1cに接続されている。
【0022】
次に、前述した廃棄物ガス化システムの作用を説明する。
まず、廃棄物は流路201を通して乾燥機1に投入される。ここで、“廃棄物”とは都市ごみ、木材、建築廃材、廃タイヤ、カーシュレッダーダスト、廃プラスチック等の産業廃棄物、汚泥、バイオマス等をいうが、その他、石炭を燃焼してもかまわない。
【0023】
そして、凝縮器9で改質ガスから回収され水タンク13に貯留された水が、ポンプ14で流路216を通って絞り(圧力損失要素)15に送られ、絞り(圧力損失要素)15で減圧して蒸発せしめられ凝縮器9内で改質ガスの熱を奪い蒸発して水蒸気となって圧縮機16に導入され、この水蒸気が圧縮機16で圧縮されてから流路218を介して乾燥機1の流路1cに送給される。
【0024】
乾燥機1に送られる水蒸気は凝縮器9内で改質ガスの熱を奪っており高温となっており、乾燥機1は汚泥のような高水分の廃棄物でも充分に乾燥することができる。
例えば、汚泥は80%程度の水分率を有するがこれを30%程度にするのに450kcal/kgの熱量が必要であって、汚泥を燃焼した排ガスで乾燥した場合には発電をおこなうだけの熱エネルギが残らず発電することができなかったが、この第1の実施の形態のようにした場合には、汚泥1kg当たり157kcal(処理量100ton/dayの場合、760kW)の発電が可能である。
【0025】
また、この水蒸気は改質ガスから回収された水、すなわち、廃棄物から出た水であり、外部からの水の補給が不要であり節水に寄与でき、コストも低下する。
【0026】
廃棄物は乾燥機1内で排ガスの熱エネルギにより乾燥され、所定の含水率にまで低減されて、流動床ガス化炉2内の砂層2a上に連続的に供給される。なお、乾燥機1で廃棄物を加熱して生じた水分(蒸気)は流動床ガス化炉2内に供給されるか、改質炉6内に供給される。
【0027】
酸素を含む気体(例えば酸素、酸素富化空気または空気)と水蒸気との混合ガスであるガス化剤が、流路214を通して流動床ガス化炉2の内部にその砂層2aの下方から供給される。
【0028】
酸素を含む気体と水蒸気との混合ガスであるガス化剤を連続処理ガス化炉である流動床ガス化炉に供給する際、ガス化剤は例えば水蒸気の流量が連続的に投入される有機系廃棄物中の炭素と水蒸気とのモル比が2:1またはそれより水蒸気過多になるように供給するのが好ましい。
【0029】
流動床ガス化炉2内で、廃棄物は例えば400〜650℃に加熱されながら、浮遊流動する砂層2aにより熱分解されてガス状物質になり、ガス化剤の酸素および水蒸気と接触すると共にその一部が流動床ガス化炉2のフリーボード部2bで例えば450〜800℃の温度で燃焼される。
【0030】
この燃焼において、下記式(1)で示す燃焼反応および下記式(2)で示す水性ガス化反応(改質反応)を起こし、一酸化炭素、水素、メタン、エタン、二酸化炭素等を含むガス化ガスと、タールや煤などの未燃固形物と、飛灰と、不燃物とを生じる。また、メタン、エタン、タールなどの炭化水素や煤などの未燃固形分は、下記式(3)で示す改質反応を起こし、一酸化炭素、水素を生じる。
【0031】
C+O2→O2+熱…(1)
C+H2O→CO+H2…(2)
mn+mH2O→mCO+(m+n/2)H2…(3)
【0032】
不燃物は、流動床ガス化炉2の下部から排出管302を通して系外へ排出される。一方、流動床ガス化炉2内のガス化ガス、未燃固形物および飛灰を含む流体は、その上部から流路203を通してサイクロン3に送給され、サイクロン3で旋回され、サイクロン3の底部側にガス化炉2で発生した粒径3〜100μmの固形分のうち、その85重量%以上、より好ましくは90重量%以上、さらに好ましくは95重量%以上含む第1流体と残りの15重量%以下、より好ましくは残りの10重量%以下、さらに好ましくは残りの5重量%以下の固形分を含む第2流体とにそれぞれ分離される。
【0033】
第1流体は、サイクロン3の底部側から流路204を通して灰溶融炉4の内部に供給され、また、酸素を含むガス化剤(または酸化剤)が流路215を通して灰溶融炉4の内部に供給される。灰溶融炉4内は第1流体の固形分中の未燃固形物および固形分とともに持ち込まれたガス化ガスの燃焼により例えば1300〜1500℃程度に加熱され、未燃固形物および飛灰は灰溶融炉4の内部で旋回しながら加熱される。
【0034】
このため、飛灰(無機物)は溶融されてスラグミスト化し、旋回流の遠心力で炉壁に捕捉され、スラグとなって炉壁を流下して排出管303を通して系外へ排出される。そして、灰溶融炉4の燃焼排ガスは流路206を通って、改質炉6に導入され改質炉6を加熱する。
【0035】
一方、第2流体は流路205を通して加熱された燃焼排ガスが導入された改質炉6に送給され、この第2流体の主要成分であるガス化ガスはこの第2流体に含まれる水蒸気により式(2)と同様な水性ガス化反応(改質反応)がなされる。すなわち、ガス化ガス中のメタン、エタン、場合によって浮遊して混入されたタールや煤などの未燃固形物は低分子されて煤を含まないクリーンなCO、H2 リッチガスを含む改質ガスが生成される。特に、改質炉6内に触媒の充填部6aを設けることによって、改質反応をより円滑に進行させることが可能となる。なお、改質炉6での改質反応において水蒸気量が不足する場合には、別途、水蒸気を送給してもよい。
【0036】
改質ガスは、改質炉6から流路207を通してボイラ7に送給され、ここで熱回収される。ボイラ7は、改質ガスから回収した熱で水を加熱して蒸気を発生させる。この蒸気は、流路211を通してスチームタービン10に送給され、このタービン10を回転させ、発電機11を駆動させることにより発電を行う。スチームタービン10から排出された蒸気は、流路212を通して復水器12に送給され、ここで水に戻され、その水の流路213を通してボイラ7に再び供給される。廃棄物の処理量が少ない場合には、ボイラ7とスチームタービン10による発電効率が低くなるので、コスト評価により、ボイラ7およびスチームタービン10が無い場合もあり得る。
【0037】
ボイラ7を通過した改質ガスは、流路208を通してバグフィルタ8に送給され、ここでダストや塩酸分が除去された後、流路209を通して凝縮器9に送られ凝縮されて燃料ガスとされる(なおボイラ7出口の改質ガス中にSO等の腐食性ガス成分を含む場合、ボイラ管の低温腐食防止のためにボイラ出口ガス温度をバグフィルタ8の耐熱温度より高い温度に設定する。この場合、ボイラ7を通過した改質ガスは、減温塔を介して温度を低下せしめてバグフィルタ8に送給しても良い。減温塔は通常、水を噴霧して蒸発させることによって、改質ガス温度を低下させる)。凝縮器の冷却水は排出管304を通して系外へ取り除かれる。すなわち、改質炉6で得られた改質ガスは改質ガス精製装置としてのバグフィルタ8と凝縮器9で精製されて燃料ガスとされる。そして燃料ガスは流路210を通って、ガスを燃料とするエネルギ生成手段であるガスエンジン発電装置110に送給され、発電装置110の排ガスは放出される。
【0038】
次に第2の実施の形態について説明する。図2が第2の実施の形態の構成を概略的に示す図であって、第1の実施の形態に比較して、ボイラ7とバグフィルタ8を結ぶ流路208に熱交換機17を配設し、圧縮機16から乾燥機1の流路1cに向かう流路218を熱交換器17の内部を通過せしめるようにした点が異なる。したがって、この第2の実施の形態では圧縮機16を出た水蒸気は熱交換器17で改質ガスの熱を奪ってさらに高温になってから乾燥機1に送給され乾燥機1の乾燥能力が向上する。この場合、第1の実施の形態に比較して、ボイラ7による熱回収量は少なくなり、場合によってボイラ7が無い場合もあり得る。
【0039】
次に第3の実施の形態について説明する。図3が第3の実施の形態の構成を概略的に示す図であって、第2の実施の形態に比較して、流路218から分岐する流路219が設けられ、流路219は発電装置110から流路225で送給される排気ガスが通過する熱交換器18を通って、酸素発生器19から延伸する流路220とともに流路221に結合され、流路221が熱交換器17を通って、流動床ガス化炉2に接続される流路214および、サイクロン3から灰溶融炉4に向かう流路204に向かう流路215に接続されている。
【0040】
圧縮機16を出た水蒸気の一部は熱交換器18で発電装置110の排気ガスで加熱されてから酸素発生装置19から供給される酸素と混合され、さらに、熱交換器17で加熱されてガス化剤となって流動床ガス化炉2および灰溶融炉4に供給される。したがって、この第3の実施の形態では、発電装置110の排気ガスの熱が有効に利用され、また、熱交換器17も乾燥機1に送る水蒸気の加熱のみならずガス化剤の加熱もおこない装置の有効利用度が高い。
【0041】
次に第4の実施の形態について説明する。図4が第4の実施の形態の構成を概略的に示す図である。この第4の実施の形態では、第1〜3の実施の形態と同様に絞り(圧力損失要素)15、凝縮器9、圧縮機16が流路17を介して接続されているが、圧縮機16の出口は熱交換器20が介装された流路222を介して絞り(圧力損失要素)15と接続され、一つの閉回路223が形成されている。そして、この閉回路223内を封印された中間熱媒が循環する。一方、流路224が水タンク13の底部からポンプ14、熱交換器20内部を通って乾燥機1の流路1cに接続されている。
【0042】
中間熱媒が奪った熱は熱交換器20において水タンク13からポンプ14で乾燥機1の流路1cに供給される水を加熱して水蒸気とし、乾燥機1はこの水蒸気で廃棄物を乾燥する。このように中間熱媒を使用することにより、ガス化ガスから熱エネルギを奪う場所と、奪った熱エネルギを水に付与する場所を、別個にすることができるので各装置の配設の自由度が高い。
【0043】
図5に示すのは第5の実施の形態であって、第4の実施の形態において第2の実施の形態のように、熱交換器17で乾燥機1に向かう水蒸気を再度加熱するようにしたものであり、第2の実施の形態と同様の効果を得ることができる。
【0044】
図6に示すのは第6の実施の形態であって、第4の実施の形態において第3の実施の形態のように、流路224から分岐する流路219が設けられ、流路219は発電装置110から流路225で送給される排気ガスが通過する熱交換器18を通って、酸素発生器19から延伸する流路220とともに流路221に結合され、流路221が熱交換器17を通って、流動床ガス化炉2に接続される流路214および、サイクロン3から灰溶融炉4に向かう流路204に向かう流路215に接続されており、第3の実施の形態と同様な効果を得ることができる。
【0045】
【発明の効果】
請求項1の発明は、廃棄物を乾燥手段で乾燥してからガス化手段で加熱してガス化ガスを生成し、生成されたガス化ガスをもとにエネルギを生成する廃棄物ガス化システムであるが、ガス化ガスの有する熱エネルギ(特にガス化ガス中に含まれる水蒸気の凝縮潜熱)を奪って水を加熱する水加熱手段を具備し、乾燥手段が加熱手段で水を加熱して生成される水蒸気で廃棄物を乾燥する、ようにされている。したがって、乾燥手段は水加熱手段でガス化ガスの有する熱エネルギを奪って水を加熱して生成される水蒸気で廃棄物を乾燥し、ガス化ガスの熱エネルギを有効利用でき効率が向上する。
【0046】
特に、請求項2の発明のように、ガス化ガスを精製するためにガス化ガスを凝縮する凝縮手段を具備し、水加熱手段は凝縮手段がガス化ガスを凝縮した際に発生する水を加熱するようにすれば、水を外部から供給する必要がなく効率がよく、節水、低コスト化に貢献できる。
特に、請求項3の発明のように、水加熱手段を凝縮手段ガス化ガスを精製するためにガス化ガスを凝縮する凝縮手段と一体に形成すれば、装置が小形、簡素化できる。
【0047】
特に、請求項4の発明のように、水再加熱手段で、水加熱手段で生成された水蒸気を再加熱すれば、より高温の水蒸気を乾燥手段に送給でき乾燥手段の乾燥能力を向上できる。
特に、請求項7の発明のように、水加熱手段を、ガス化ガスの有する熱エネルギを奪う熱回収手段と、熱回収手段と離間した位置に配設され水に熱を与える熱付与手段で構成し、熱移送手段により熱回収手段から熱付与手段に熱を移送するようにすれば、構成手段の配置の自由度が大きい。
【0048】
特に、請求項10の発明のように、水加熱手段で加熱した水の一部を酸素発生装置から供給される酸素と混合してガス化手段に供給するガス化剤を生成するようにすれば、ガス化剤を生成するための水蒸気を生成するための水を別途供給する必要がなく節水、低コスト化が達成できる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態の概略図である。
【図2】本発明の第2の実施の形態の概略図である。
【図3】本発明の第3の実施の形態の概略図である。
【図4】本発明の第4の実施の形態の概略図である。
【図5】本発明の第5の実施の形態の概略図である。
【図6】本発明の第6の実施の形態の概略図である。
【図7】従来技術の概略図である。
【符号の説明】
1…乾燥機
2…流動床ガス化炉
2a…砂層
2b…フリーボード
3…サイクロン
4…灰溶融炉
6…改質炉
6a…触媒
7…ボイラ
8…バグフィルタ
9…凝縮器
13…水タンク
14…ポンプ
15…絞り(圧力損失要素)
16…圧縮機
17…熱交換器
18…熱交換器
19…酸素発生装置
110…ガスエンジン発電装置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a waste gasification system that heats waste to generate gasified gas and generates energy based on the generated gasified gas.
[0002]
[Prior art]
In order to recover energy from organic waste such as municipal waste, sewage sludge, industrial waste, and biomass, the waste is heated and pyrolyzed to produce gasified gas. At the same time, waste gasification systems that generate energy are attracting attention from the viewpoints of environmental protection and resource saving.
[0003]
There are various types of such waste gasification systems. For example, there is an apparatus described in Japanese Patent Application No. 2001-350415 filed earlier by the present applicant. FIG. 7 shows an outline of this apparatus. Waste introduced through the flow path 201 is dried by the dryer 1 and then fed to the fluidized bed gasification furnace 2 having a sand layer 2a therein. Burned.
[0004]
The outlet provided in the upper part of the fluidized bed gasification furnace 2 is connected to the inlet of the solid content separation means, for example, the cyclone 3 through the flow path 203. The bottom outlet of the cyclone 3 is connected to the inlet of the ash melting furnace 4 through the flow path 204, and a first fluid containing a large amount of solids generated in the fluidized bed gasification furnace 2 is introduced into the ash melting furnace 4. The upper delivery port is connected to the lower receiving port of the reforming furnace 6 through the flow path 205, and the second fluid containing a small amount of solid content generated in the fluidized bed gasification furnace 2 is introduced into the reforming furnace 6.
[0005]
The reformed gas obtained by reforming the second fluid introduced into the reforming furnace 6 in the reforming furnace 6 is sent to the boiler 7 that sends steam to the steam turbine 10 that drives the generator 11 through the flow path 207, and further to the flow path. It is sent to the bag filter 8 through 208, and after the dust is removed by the bag filter 8, it is sent to the condenser 9 through the flow path 209. The water is removed by the condenser 9 and purified, and the fuel gas is passed through the flow path 210 as fuel gas. The fuel is sent to a power generation device 110 that generates power using as a fuel. The first fluid introduced into the ash melting furnace 4 is combusted in the ash melting furnace 4, and the combustion exhaust gas is introduced into the reforming furnace 6 through the flow path 206 to heat the reforming furnace 6.
[0006]
In the above apparatus, as shown in the figure, the dryer 1 dries waste with the exhaust gas of the power generation apparatus 110. However, in the case of waste having a high water content such as sludge, there is a case where the waste to be supplied to the gasification means cannot be sufficiently dried by the exhaust gas of such a power generation device 110.
[0007]
[Problems to be solved by the invention]
In view of the above problems, an object of the present invention is to enable a dryer of a waste gasification system to sufficiently dry even a high moisture waste.
[0008]
[Means for Solving the Problems]
According to the first aspect of the present invention, the waste gas is generated by drying the waste by the drying means and then heating the gas by the gasification means to generate gasified gas, and generating energy based on the generated gasified gas. System
A water heating means for heating the water by removing the latent heat of condensation of the water vapor contained in the gasification gas is provided, and the drying means dries the waste with the water vapor generated by heating the water with the heating means. A waste gasification system is provided.
In the waste gasification system configured as described above, the drying means dries the waste with water vapor generated by heating the water by taking the heat energy of the gasification gas by the water heating means.
[0009]
According to the invention of claim 2, in the invention of claim 1, there is provided a condensing means for condensing the gasification gas in order to purify the gasification gas, and the water heating means is provided when the condensation means condenses the gasification gas. A waste gasification system is provided that heats water generated in the waste water.
According to the invention of claim 3, there is further provided a waste gasification system in which the water heating means is formed integrally with the condensing means.
[0010]
According to the invention of claim 4, in the invention of claim 1, comprising a water reheating means for reheating the water vapor produced by the water heating means, the waste gasification system is provided.
According to the invention of claim 5, further water reheating means are takes heat energy possessed by the gasification gas upstream of the water heating means for reheating the water vapor produced by the water heating means, as in A waste gasification system is provided.
[0011]
According to a sixth aspect of the invention, in the first aspect of the invention, the waste gasification according to the first aspect, wherein water is expanded by the expansion means and then allowed to pass through the water heating means and is compressed by the compression means after passing through the water heating means. A system is provided.
[0012]
According to the invention of claim 7, in the invention of claim 1, the water heating means is disposed at a position separated from the heat recovery means, the heat recovery means depriving the heat energy possessed by the gasification gas, and heats the water. There is provided a waste gasification system comprising a heat applying means for supplying heat and transferring heat from the heat recovery means to the heat applying means by the heat transfer means.
According to the eighth aspect of the present invention, there is further provided a waste gasification system in which the heat transfer means is an intermediate heat medium circulation means for circulating the intermediate heat medium in a closed circuit.
According to the invention of claim 9, the intermediate heat medium circulating means further expands the intermediate heat medium with the expansion means and then passes the heat recovery means, and after passing through the heat recovery means, compresses with the compression means and then applies heat. A waste gasification system is provided which delivers an intermediate heating medium to the means.
[0013]
According to the invention of claim 10, in the invention of claim 1, a gasifying agent is produced in which a part of the water heated by the water heating means is mixed with oxygen supplied from the oxygen generator and supplied to the gasification means. A waste gasification system is provided.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
FIG. 1 is a schematic diagram of a first embodiment of a waste gasification system according to the present invention. A dryer 1 into which waste is introduced through a flow path 201 is an indirect heating type, for example, an inner cylinder 1a. A flow path 1c is formed between the outer cylinder 1b and the outer cylinder 1b. The outlet of the dryer 1 is connected to a fluidized bed gasification furnace 2 having a sand layer 2a inside through a flow path 202.
[0015]
The upper outlet of the fluidized bed gasification furnace 2 is connected to the inlet of the cyclone 3 as solid content separation means through the flow path 203. The bottom outlet of the cyclone 3 is connected to the inlet of the ash melting furnace 4 through the flow path 204. The upper delivery port of the cyclone 3 is connected to the lower reception port of the reforming furnace 6 through the flow path 205. The upper part of the ash melting furnace 4 is introduced into the reforming furnace 6 through the flow path 206.
[0016]
A catalyst filling unit 6 a may be provided in the center of the reforming furnace 6. This catalyst reduces the molecular components of gasification gas (methane, ethane) and the like in the second fluid, which will be described later, delivered from the upper delivery port of the cyclone 3 to CO, H 2 , etc. at a lower temperature. . The catalyst includes at least one element selected from Si, Al, Ni, Fe, Cr, Mo, W, Mn, Co, Cu, Pd, and Pt, or at least one selected from oxides of these elements. Mixtures can be used.
[0017]
The gas outlet of the reforming furnace 6 is connected to the gas inlet of the boiler 7 through the flow path 207. The gas outlet of the boiler 7 is connected to the inlet of the bag filter 8 through the flow path 208. The outlet of the bag filter 8 is connected to the gas inlet of the condenser 9 through the flow path 209. The gas outlet of the condenser 9 is connected to the gas receiving side of the gas engine power generator 110 through the flow path 210, for example.
[0018]
The steam outlet of the boiler 7 is connected to the steam inlet of the steam turbine 10 through the flow path 211. The output shaft of the steam turbine 10 is connected to the input shaft of the generator 11. In addition, the steam outlet of the steam turbine 10 is connected to the steam inlet of the condenser 12 through the channel 212. The water supply port of the condenser 12 is connected to the water receiving port of the boiler 7 through the flow path 213.
[0019]
Although details are not shown in the first embodiment, the power generation apparatus 110 compresses the fuel gas purified by the compressor, sends the compressed purified gas and air to the gas engine, and burns and explodes in the gas engine. The generator is rotated by that force. The exhaust gas from the gas engine is connected to the dryer 1 through the discharge pipe 301.
[0020]
In addition to the gas engine type described above, the power generation device 110 includes a gas turbine type power generation device, a fuel cell type power generation device, a gas engine-steam turbine type power generation device, a gas turbine-steam turbine type power generation device, and a fuel cell-steam turbine type power generation. It is possible to use a device, a fuel cell, a gas engine, a steam turbine power generator, and the like.
[0021]
As a feature of the present invention, the bottom of the water tank 13 for storing the water recovered from the gasified gas by the condenser 9 is connected to the inlet of the expansion valve 15 by the flow path 216 having the pump 14 interposed therebetween. The flow path 217 connected to the outlet 15 is connected to the inlet of the compressor 16 through the inside of the condenser 9, and the outlet of the compressor 16 is connected to the inner cylinder 1 a of the dryer 1 and the outside through the flow path 218. It is connected to the flow path 1c between the cylinders 1b.
[0022]
Next, the operation of the waste gasification system described above will be described.
First, waste is introduced into the dryer 1 through the flow path 201. Here, “waste” refers to municipal waste, wood, building waste, waste tires, car shredder dust, waste plastic, and other industrial waste, sludge, biomass, etc., but coal may also be burned. .
[0023]
Then, the water recovered from the reformed gas by the condenser 9 and stored in the water tank 13 is sent to the throttle (pressure loss element) 15 through the flow path 216 by the pump 14. The pressure is reduced and evaporated, the reformed gas is deprived of heat in the condenser 9, evaporated and converted into water vapor and introduced into the compressor 16, and the water vapor is compressed by the compressor 16 and then dried through the flow path 218. It is fed to the flow path 1 c of the machine 1.
[0024]
The water vapor sent to the dryer 1 is deprived of heat of the reformed gas in the condenser 9 and has a high temperature, and the dryer 1 can sufficiently dry even a high moisture waste such as sludge.
For example, although sludge has a moisture content of about 80%, a heat quantity of 450 kcal / kg is required to make this about 30%, and heat is sufficient to generate electricity when the sludge is dried with exhausted flue gas. Although energy could not be generated and power could not be generated, in the case of the first embodiment, power generation of 157 kcal per kg of sludge (760 kW in the case of a processing amount of 100 ton / day) is possible.
[0025]
Further, the water vapor is water recovered from the reformed gas, that is, water discharged from the waste, which does not require replenishment of water from the outside, can contribute to water saving, and costs are reduced.
[0026]
The waste is dried by the thermal energy of the exhaust gas in the dryer 1, reduced to a predetermined moisture content, and continuously supplied onto the sand layer 2 a in the fluidized bed gasification furnace 2. The moisture (steam) generated by heating the waste in the dryer 1 is supplied into the fluidized bed gasification furnace 2 or supplied into the reforming furnace 6.
[0027]
A gasifying agent which is a mixed gas of oxygen-containing gas (for example, oxygen, oxygen-enriched air or air) and water vapor is supplied from below the sand layer 2 a to the inside of the fluidized bed gasification furnace 2 through the flow path 214. .
[0028]
When supplying a gasifying agent, which is a mixed gas of oxygen-containing gas and water vapor, to a fluidized bed gasification furnace which is a continuous processing gasification furnace, the gasifying agent is, for example, an organic system in which the flow rate of water vapor is continuously charged It is preferable to supply such that the molar ratio of carbon to water vapor in the waste is 2: 1 or more.
[0029]
In the fluidized bed gasification furnace 2, the waste is heated to, for example, 400 to 650 ° C., and is thermally decomposed into a gaseous substance by the floating and flowing sand layer 2 a, and comes into contact with oxygen and water vapor of the gasifying agent. A part is combusted at a temperature of, for example, 450 to 800 ° C. in the free board portion 2 b of the fluidized bed gasification furnace 2.
[0030]
In this combustion, a combustion reaction represented by the following formula (1) and a water gasification reaction (reforming reaction) represented by the following formula (2) are caused, and gasification including carbon monoxide, hydrogen, methane, ethane, carbon dioxide, etc. This produces gas, unburned solids such as tar and soot, fly ash, and incombustibles. In addition, hydrocarbons such as methane, ethane, and tar and unburned solids such as soot cause a reforming reaction represented by the following formula (3) to generate carbon monoxide and hydrogen.
[0031]
C + O 2 → O 2 + heat… (1)
C + H 2 O → CO + H 2 (2)
C m H n + mH 2 O → mCO + (m + n / 2) H 2 (3)
[0032]
Incombustibles are discharged out of the system from the lower part of the fluidized bed gasifier 2 through the discharge pipe 302. On the other hand, the fluid containing gasified gas, unburned solids and fly ash in the fluidized bed gasification furnace 2 is fed to the cyclone 3 from the upper part through the flow path 203, swirled by the cyclone 3, and the bottom of the cyclone 3. The first fluid containing 85% by weight or more, more preferably 90% by weight or more, and further preferably 95% by weight or more of the solid content having a particle diameter of 3 to 100 μm generated in the gasification furnace 2 on the side and the remaining 15% by weight %, More preferably 10% by weight or less, more preferably 5% by weight or less, and more preferably 5% by weight or less.
[0033]
The first fluid is supplied from the bottom side of the cyclone 3 to the inside of the ash melting furnace 4 through the flow path 204, and a gasifying agent (or oxidizing agent) containing oxygen is supplied to the inside of the ash melting furnace 4 through the flow path 215. Supplied. The inside of the ash melting furnace 4 is heated to, for example, about 1300 to 1500 ° C. by the combustion of the unburned solid in the solid content of the first fluid and the gasified gas brought together with the solid content. It is heated while swirling inside the melting furnace 4.
[0034]
For this reason, the fly ash (inorganic matter) is melted to form slag mist, captured by the furnace wall by the centrifugal force of the swirling flow, flows down the furnace wall and is discharged out of the system through the discharge pipe 303. The combustion exhaust gas from the ash melting furnace 4 is introduced into the reforming furnace 6 through the flow path 206 and heats the reforming furnace 6.
[0035]
On the other hand, the second fluid is sent to the reforming furnace 6 into which the combustion exhaust gas heated through the flow path 205 is introduced, and the gasified gas that is the main component of the second fluid is caused by the water vapor contained in the second fluid. A water gasification reaction (reforming reaction) similar to the formula (2) is performed. In other words, methane, ethane in gasification gas, and unburned solids such as tar and soot that are suspended in some cases are low-molecular and reformed gas containing clean CO and H 2 rich gas that does not contain soot. Generated. In particular, by providing the catalyst filling portion 6a in the reforming furnace 6, the reforming reaction can proceed more smoothly. In addition, when the amount of water vapor is insufficient in the reforming reaction in the reforming furnace 6, water vapor may be separately supplied.
[0036]
The reformed gas is supplied from the reforming furnace 6 to the boiler 7 through the flow path 207, where heat is recovered. The boiler 7 generates steam by heating water with heat recovered from the reformed gas. The steam is supplied to the steam turbine 10 through the flow path 211, and the turbine 10 is rotated and the generator 11 is driven to generate electric power. The steam discharged from the steam turbine 10 is supplied to the condenser 12 through the flow path 212, returned to the water here, and supplied again to the boiler 7 through the water flow path 213. When the amount of waste processing is small, the power generation efficiency by the boiler 7 and the steam turbine 10 is low, and therefore there may be no boiler 7 and the steam turbine 10 due to cost evaluation.
[0037]
The reformed gas that has passed through the boiler 7 is sent to the bag filter 8 through the flow path 208, where dust and hydrochloric acid are removed, and then sent to the condenser 9 through the flow path 209, where it is condensed and fuel gas. (Note that when the reformed gas at the outlet of the boiler 7 contains a corrosive gas component such as SO x , the boiler outlet gas temperature is set higher than the heat resistance temperature of the bag filter 8 to prevent low temperature corrosion of the boiler pipe. In this case, the reformed gas that has passed through the boiler 7 may be supplied to the bag filter 8 with the temperature lowered through the temperature reducing tower, which is usually evaporated by spraying water. This reduces the reformed gas temperature). The condenser cooling water is removed from the system through the discharge pipe 304. That is, the reformed gas obtained in the reforming furnace 6 is purified by a bag filter 8 and a condenser 9 as a reformed gas purifying device to be a fuel gas. Then, the fuel gas passes through the flow path 210 and is supplied to the gas engine power generation device 110 which is energy generation means using the gas as fuel, and the exhaust gas of the power generation device 110 is released.
[0038]
Next, a second embodiment will be described. FIG. 2 is a diagram schematically showing the configuration of the second embodiment. Compared to the first embodiment, the heat exchanger 17 is disposed in the flow path 208 connecting the boiler 7 and the bag filter 8. However, the difference is that the flow path 218 from the compressor 16 toward the flow path 1 c of the dryer 1 is allowed to pass through the inside of the heat exchanger 17. Therefore, in this second embodiment, the steam that has exited the compressor 16 takes the heat of the reformed gas in the heat exchanger 17 and becomes higher in temperature before being fed to the dryer 1 to be dried. Will improve. In this case, compared with the first embodiment, the amount of heat recovered by the boiler 7 is reduced, and in some cases, the boiler 7 may not be provided.
[0039]
Next, a third embodiment will be described. FIG. 3 is a diagram schematically showing the configuration of the third embodiment. Compared to the second embodiment, a flow path 219 branched from the flow path 218 is provided, and the flow path 219 generates power. The exhaust gas fed from the apparatus 110 through the flow path 225 passes through the heat exchanger 18 and is coupled to the flow path 221 together with the flow path 220 extending from the oxygen generator 19. The flow path 221 is coupled to the heat exchanger 17. And a flow path 214 connected to the fluidized bed gasification furnace 2 and a flow path 215 directed to the flow path 204 from the cyclone 3 toward the ash melting furnace 4.
[0040]
A part of the water vapor exiting the compressor 16 is heated by the heat exchanger 18 with the exhaust gas of the power generation device 110, mixed with oxygen supplied from the oxygen generator 19, and further heated by the heat exchanger 17. A gasifying agent is supplied to the fluidized bed gasification furnace 2 and the ash melting furnace 4. Therefore, in the third embodiment, the heat of the exhaust gas of the power generation apparatus 110 is effectively used, and the heat exchanger 17 not only heats the steam sent to the dryer 1 but also heats the gasifying agent. Effective utilization of equipment is high.
[0041]
Next, a fourth embodiment will be described. FIG. 4 is a diagram schematically showing the configuration of the fourth embodiment. In the fourth embodiment, a throttle (pressure loss element) 15, a condenser 9, and a compressor 16 are connected via a flow path 17 as in the first to third embodiments. The outlet of 16 is connected to the throttle (pressure loss element) 15 through a flow path 222 in which the heat exchanger 20 is interposed, and one closed circuit 223 is formed. Then, the sealed intermediate heat medium circulates in the closed circuit 223. On the other hand, the flow path 224 is connected from the bottom of the water tank 13 to the flow path 1 c of the dryer 1 through the pump 14 and the heat exchanger 20.
[0042]
The heat deprived by the intermediate heat medium heats the water supplied from the water tank 13 to the flow path 1c of the dryer 1 by the pump 14 in the heat exchanger 20 into steam, and the dryer 1 dries the waste with this steam. To do. By using the intermediate heat medium in this way, the place where the heat energy is taken away from the gasification gas and the place where the taken heat energy is applied to the water can be made separate, so the degree of freedom of arrangement of each device Is expensive.
[0043]
FIG. 5 shows a fifth embodiment. In the fourth embodiment, as in the second embodiment, the heat exchanger 17 reheats the water vapor toward the dryer 1 in the heat exchanger 17. Thus, the same effects as those of the second embodiment can be obtained.
[0044]
FIG. 6 shows a sixth embodiment. In the fourth embodiment, a flow path 219 branched from the flow path 224 is provided as in the third embodiment. The exhaust gas fed from the power generation device 110 through the flow path 225 passes through the heat exchanger 18 and is coupled to the flow path 221 together with the flow path 220 extending from the oxygen generator 19, and the flow path 221 is connected to the heat exchanger. 17 is connected to a flow path 214 connected to the fluidized bed gasification furnace 2 and a flow path 215 directed to the flow path 204 directed from the cyclone 3 to the ash melting furnace 4, and the third embodiment and Similar effects can be obtained.
[0045]
【The invention's effect】
The invention according to claim 1 is a waste gasification system in which waste is dried by a drying means and then heated by a gasification means to generate a gasification gas, and energy is generated based on the generated gasification gas. However, it is equipped with a water heating means for heating the water by taking away the heat energy (especially condensation condensation heat of water vapor contained in the gasification gas) of the gasification gas, and the drying means heats the water with the heating means. The waste is dried with the steam generated. Therefore, the drying means takes the heat energy of the gasification gas by the water heating means and dries the waste with water vapor generated by heating the water, so that the heat energy of the gasification gas can be used effectively and the efficiency is improved.
[0046]
In particular, as in the second aspect of the present invention, it comprises a condensing means for condensing the gasified gas in order to purify the gasified gas, and the water heating means supplies water generated when the condensing means condenses the gasified gas. If heated, there is no need to supply water from the outside, which is efficient and can contribute to water saving and cost reduction.
In particular, if the water heating means is formed integrally with the condensing means for condensing the gasified gas in order to purify the condensing means gasified gas as in the invention of claim 3, the apparatus can be reduced in size and simplified.
[0047]
In particular, improved as in the invention of claim 4, with water reheating means, if re-heating the water vapor produced by the water heating means, the drying capacity of the drying means can further feeding hot steam to the drying means it can.
In particular, as in the invention of claim 7, the water heating means includes a heat recovery means for depriving the heat energy of the gasification gas, and a heat application means for disposing heat to the water disposed at a position separated from the heat recovery means. If configured and heat is transferred from the heat recovery means to the heat application means by the heat transfer means, the degree of freedom of arrangement of the configuration means is large.
[0048]
In particular, as in the invention of claim 10, if a part of the water heated by the water heating means is mixed with oxygen supplied from the oxygen generator, a gasifying agent supplied to the gasification means is generated. Further, it is not necessary to separately supply water for generating water vapor for generating the gasifying agent, and water saving and cost reduction can be achieved.
[Brief description of the drawings]
FIG. 1 is a schematic view of a first embodiment of the present invention.
FIG. 2 is a schematic view of a second embodiment of the present invention.
FIG. 3 is a schematic view of a third embodiment of the present invention.
FIG. 4 is a schematic view of a fourth embodiment of the present invention.
FIG. 5 is a schematic view of a fifth embodiment of the present invention.
FIG. 6 is a schematic view of a sixth embodiment of the present invention.
FIG. 7 is a schematic diagram of the prior art.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Dryer 2 ... Fluidized bed gasification furnace 2a ... Sand layer 2b ... Free board 3 ... Cyclone 4 ... Ash melting furnace 6 ... Reforming furnace 6a ... Catalyst 7 ... Boiler 8 ... Bag filter 9 ... Condenser 13 ... Water tank 14 ... Pump 15 ... Throttle (pressure loss factor)
16 ... Compressor 17 ... Heat exchanger 18 ... Heat exchanger 19 ... Oxygen generator 110 ... Gas engine power generator

Claims (10)

廃棄物を乾燥手段で乾燥してからガス化手段で加熱してガス化ガスを生成し、生成されたガス化ガスをもとにエネルギを生成する廃棄物ガス化システムであって、
ガス化ガス中に含まれる水蒸気の凝縮潜熱を奪って水を加熱する水加熱手段を具備し、乾燥手段が水加熱手段で水を加熱して生成される水蒸気で廃棄物を乾燥する、ことを特徴とする廃棄物ガス化システム。
A waste gasification system for drying waste with a drying means and then heating with a gasification means to generate gasified gas, and generating energy based on the generated gasified gas,
It comprises water heating means for heating the water by removing the condensation latent heat of the water vapor contained in the gasification gas , and the drying means dries the waste with the water vapor generated by heating the water with the water heating means. Characteristic waste gasification system.
ガス化ガスを精製するためにガス化ガスを凝縮する凝縮手段を具備し、水加熱手段は凝縮手段がガス化ガスを凝縮した際に発生する水を加熱する、ことを特徴とする請求項1に記載の廃棄物ガス化システム。  2. A condensation means for condensing the gasification gas for purifying the gasification gas is provided, and the water heating means heats water generated when the condensation means condenses the gasification gas. The waste gasification system described in 1. 水加熱手段が凝縮手段と一体に形成されている、ことを特徴とする請求項2に記載の廃棄物ガス化システム。  The waste gasification system according to claim 2, wherein the water heating means is formed integrally with the condensing means. 水加熱手段で生成された水蒸気を再加熱する水再加熱手段を具備する、ことを特徴とする請求項1に記載の廃棄物ガス化システム。Waste gasification system of claim 1 having a water reheating means for reheating the water vapor produced by the water heating means, characterized in that. 水再加熱手段は水加熱手段より上流でガス化ガスの有する熱エネルギを奪って水加熱手段で生成された水蒸気を再加熱する、ことを特徴とする請求項に記載の廃棄物ガス化システム。Water reheating means for reheating takes heat energy possessed by the gasification gas water vapor produced by the water heating means upstream of the water heating means, the waste gas of claim 4, characterized in that system. 水を減圧手段で減圧してから水加熱手段を通過せしめ、水加熱手段通過後に圧縮手段で圧縮する、ことを特徴とする請求項1に記載の廃棄物ガス化システム。  The waste gasification system according to claim 1, wherein the pressure of the water is reduced by the pressure reducing means, the water heating means is allowed to pass through, and the water compression means is compressed after passing through the water heating means. 水加熱手段が、ガス化ガスの有する熱エネルギを奪う熱回収手段と、熱回収手段と離間した位置に配設され水に熱を与える熱付与手段から成り、熱移送手段により熱回収手段から熱付与手段に熱を移送する、ことを特徴とする請求項1に記載の廃棄物ガス化システム。  The water heating means comprises a heat recovery means for depriving the heat energy of the gasification gas, and a heat applying means disposed at a position separated from the heat recovery means for applying heat to the water, and the heat transfer means heats the heat recovery means. The waste gasification system according to claim 1, wherein heat is transferred to the applying means. 熱移送手段が閉回路内で中間熱媒を循環させる中間熱媒循環手段である、ことを特徴とする請求項7に記載の廃棄物ガス化システム。  The waste gasification system according to claim 7, wherein the heat transfer means is an intermediate heat medium circulation means for circulating the intermediate heat medium in a closed circuit. 中間熱媒循環手段は、中間熱媒を膨張手段で膨張してから熱回収手段を通過せしめ、熱回収手段通過後に圧縮手段で圧縮してから熱付与手段に中間熱媒を送給する、ことを特徴とする請求項8に記載の廃棄物ガス化システム。  The intermediate heat medium circulating means allows the intermediate heat medium to be expanded by the expansion means and then passed through the heat recovery means. The waste gasification system according to claim 8. 水加熱手段で加熱した水の一部を酸素発生装置から供給される酸素と混合してガス化手段に供給するガス化剤を生成することを特徴とする請求項1に記載の廃棄物ガス化システム。  The waste gasification according to claim 1, wherein a part of the water heated by the water heating means is mixed with oxygen supplied from an oxygen generator to produce a gasifying agent to be supplied to the gasification means. system.
JP2002234686A 2002-08-12 2002-08-12 Waste gasification system Expired - Lifetime JP3924220B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002234686A JP3924220B2 (en) 2002-08-12 2002-08-12 Waste gasification system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002234686A JP3924220B2 (en) 2002-08-12 2002-08-12 Waste gasification system

Publications (2)

Publication Number Publication Date
JP2004075740A JP2004075740A (en) 2004-03-11
JP3924220B2 true JP3924220B2 (en) 2007-06-06

Family

ID=32019425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002234686A Expired - Lifetime JP3924220B2 (en) 2002-08-12 2002-08-12 Waste gasification system

Country Status (1)

Country Link
JP (1) JP3924220B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105423308A (en) * 2015-11-08 2016-03-23 广东工业大学 Petroleum coke assisted refuse disposal system combining microwave drying and plasma gasification

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3613567B1 (en) * 2004-03-26 2005-01-26 株式会社西村組 Fuel production apparatus and fuel production method
JP4966239B2 (en) * 2008-03-28 2012-07-04 メタウォーター株式会社 Organic waste treatment method, gasification furnace, reforming furnace, organic waste treatment equipment
JP5521187B2 (en) * 2008-09-25 2014-06-11 株式会社神鋼環境ソリューション Combustible gas generator for gasifying waste and method for producing combustible gas
JP5995685B2 (en) * 2012-11-27 2016-09-21 クボタ環境サ−ビス株式会社 Waste heat recovery equipment
KR101920559B1 (en) * 2017-04-17 2018-11-20 내외기계공업(주) Evaporative purification and concentration system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105423308A (en) * 2015-11-08 2016-03-23 广东工业大学 Petroleum coke assisted refuse disposal system combining microwave drying and plasma gasification

Also Published As

Publication number Publication date
JP2004075740A (en) 2004-03-11

Similar Documents

Publication Publication Date Title
US5050375A (en) Pressurized wet combustion at increased temperature
AU2015371529B2 (en) Device and method for thermal exhaust gas cleaning
US6141796A (en) Use of carbonaceous fuels
US6877322B2 (en) Advanced hybrid coal gasification cycle utilizing a recycled working fluid
CN101200655A (en) Systems and methods using an unmixed fuel processor
US5000099A (en) Combination of fuels conversion and pressurized wet combustion
EP1027408A1 (en) Process and apparatus for gasifying solid carbonaceous material
JP2005274123A (en) Power generation system and control method thereof
US20060137579A1 (en) Gasification system
JP3924220B2 (en) Waste gasification system
JP2002327183A (en) Gasification power generation equipment for waste
JP2005321131A (en) Sludge incinerating system
JP3831588B2 (en) Waste gasification treatment facility and gasification power generation facility using the same
JP2004076968A (en) Combustion method and system using biomass as fuel and generating method and system
JP2002038165A (en) System and method for gasification of wet fuel
WO1997005216A1 (en) Improvements in the use of carbonaceous fuels
JP3776692B2 (en) Waste gasification treatment facility and gasification power generation facility using the same
JP2011214818A (en) Fluidized bed drying equipment
JP2002030289A (en) Gasification treatment installation for waste and gasification power generating plant
JP3924172B2 (en) Waste pyrolysis gasification system
JP4241578B2 (en) Method and apparatus for burning hydrous waste
JP4089079B2 (en) Waste treatment method and waste treatment system
JP2000328074A (en) Coal gasification system
JP3862057B2 (en) Method and apparatus for recovering energy from waste gasification gas
JPH11200882A (en) Sludge power generation equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041214

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060217

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070223

R151 Written notification of patent or utility model registration

Ref document number: 3924220

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100302

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100302

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100302

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100302

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100302

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100302

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100302

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140302

Year of fee payment: 7

EXPY Cancellation because of completion of term