JP3924209B2 - Air and waste liquid treatment equipment containing organic components - Google Patents

Air and waste liquid treatment equipment containing organic components Download PDF

Info

Publication number
JP3924209B2
JP3924209B2 JP2002194855A JP2002194855A JP3924209B2 JP 3924209 B2 JP3924209 B2 JP 3924209B2 JP 2002194855 A JP2002194855 A JP 2002194855A JP 2002194855 A JP2002194855 A JP 2002194855A JP 3924209 B2 JP3924209 B2 JP 3924209B2
Authority
JP
Japan
Prior art keywords
organic component
waste liquid
air
containing air
combustor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002194855A
Other languages
Japanese (ja)
Other versions
JP2004036492A (en
Inventor
良輔 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niigata Power Systems Co Ltd
Original Assignee
Niigata Power Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Niigata Power Systems Co Ltd filed Critical Niigata Power Systems Co Ltd
Priority to JP2002194855A priority Critical patent/JP3924209B2/en
Publication of JP2004036492A publication Critical patent/JP2004036492A/en
Application granted granted Critical
Publication of JP3924209B2 publication Critical patent/JP3924209B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、印刷工場、半導体製造工場や塗装工場等において発生する有機溶剤ガス、有機溶剤廃液等の有機成分含有空気および有機成分含有廃液を処理する処理装置に関する。
【0002】
【従来の技術】
従来、塗装工場等において塗装作業に伴って発生する低濃度の有機溶剤ガス(悪臭ガス)を除去処理するため、前記有機溶剤ガスを含む空気をダクトに集めてガスタービンのコンプレッサーに送って圧縮し、この圧縮された空気をガスタービンの燃焼器に供給し、燃焼器に投入された燃料油を燃焼させ、この燃料油の燃焼により発生した高温の燃焼ガスで前記有機溶剤ガスである悪臭成分を分解、除去すると共に、燃焼ガスによってタービンを駆動させるようにした有機溶剤ガス処理装置が知られている(特開2002−4890号公報)。
【0003】
【発明が解決しようとする課題】
しかしながら、前記従来の有機溶剤ガス処理装置は、ガスタービンの燃焼器においてその燃焼温度によって有機溶剤ガスである悪臭成分は分解、除去できるものの、例えば、塗装工場等において有機溶剤ガスと一緒に発生する有機溶剤廃液を同時に処理することができない。このため、前記有機溶剤廃液を処理するには別途に処理装置を設備する必要があり、この場合には、その処理装置のために余分な設置スペースや設備費用の発生を余儀なくされる問題がある。
【0004】
本発明は、前記事情に鑑みてなされたもので、有機溶剤ガスを含む空気等の有機成分含有空気と有機成分含有廃液とを同時に効率的に処理することができ、設備費が低廉で済む有機成分含有空気および廃液の処理装置を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明は、前記課題を解決するために、以下の点を特徴としている。
すなわち、請求項1に係る有機成分含有空気および廃液の処理装置は、ガスタービンと、該ガスタービンのコンプレッサーの空気入口に連絡され、コンプレッサーに有機成分含有空気を供給するダクトと、前記ガスタービンの燃焼器に燃料油を供給する燃料油管と、前記燃焼器に有機成分含有廃液を供給する廃液供給管と、前記ガスタービンのタービンからの排気により、前記コンプレッサーで圧縮されて燃焼器に供給される前記有機成分含有空気を加熱する再生用熱交換器とを備えた有機成分含有空気および廃液処理装置であって、前記ダクトには、上流側に前記ガスタービンのタービンからの排気熱が熱投入されて前記有機成分含有空気中の有機成分の濃度を高める濃縮装置が設けられ、下流側に前記有機成分含有空気を空気によって強制冷却する吸気冷却装置が設けられ、該吸気冷却装置は前記再生用熱交換器と同一の型式であることを特徴としている。
【0006】
この有機成分含有空気および廃液の処理装置では、有機廃棄物排出源からの有機成分含有空気が濃縮装置で濃縮されて冷却された後にガスタービンのコンプレッサーに吸引、圧縮されて燃焼器に送られると共に、有機成分含有廃液が適時に廃液供給管を経て前記燃焼器に供給されて燃焼され、この燃焼により発生する高温の燃焼ガスで有機成分含有空気と有機成分含有廃液の中の有機成分が同時に分解、除去される。その際、前記濃縮装置で投熱されて昇温された前記有機成分含有空気が前記吸気冷却装置で適切に冷却されて前記コンプレッサーに送られるため、ガスタービンはコンプレッサーに高温の有機成分含有空気が吸引されて出力の低下を来すことがない。
【0008】
また、請求項に係る有機成分含有空気および廃液の処理装置は、請求項1または2に記載の処理装置において、前記廃液供給管に蒸留装置が設けられ、前記タービンの排気熱によって蒸留装置内で有機成分含有廃液が蒸留されて、有機成分液として前記燃焼器に送られるようになっていることを特徴としている。
さらに、請求項に係る有機成分含有空気および廃液の処理装置は、請求項1〜3のいずれかにおいて、前記吸気冷却装置と前記再生用熱交換器とが、プレート式熱交換器であることを特徴としている。
【0009】
【発明の実施の形態】
以下、本発明に係る有機成分含有空気および廃液の処理装置の実施の形態について図面を参照して説明する。
図1は本発明の一実施の形態に係る有機成分含有空気および廃液の処理装置1を示す。
この実施の形態に係る有機成分含有空気および廃液の処理装置1は、印刷工場、半導体製造工場、塗装工場等の有機成分含有空気および廃液を排出する設備(以下、有機廃棄物排出源Wと言う。)に隣接して設置されるガスタービン2と、前記有機廃棄物排出源Wから前記ガスタービン2のコンプレッサー3に有機溶剤ガスW1を含む空気(有機成分含有空気)を燃焼用空気として送るダクト4と、ガスタービン2の燃焼器5に燃料油を供給する燃料油管6と、前記有機廃棄物排出源Wからガスタービン2の燃焼器5に有機溶剤廃液(有機成分含有廃液)W2を供給する廃液供給管7と、燃料油管6から前記燃焼器5への燃料油の供給と前記廃液供給管7から燃焼器5への有機溶剤廃液の供給とを切り換える自動切替弁(切換手段)8と、前記廃液供給管7の途中に設けた蒸留装置9と、ガスタービン2のタービン10に減速機11aを介して連結された発電機11とを備えている。
【0010】
前記コンプレッサー3と燃焼器5を連絡する通路12には、再生用熱交換器13が設けられており、この再生用熱交換器13に、燃焼器5から通路14を通って前記タービン10を駆動した後の燃焼ガスを排気として流す排気ダクト15が接続され、前記通路12を通る前記有機成分含有空気が排気ダクト15を流れる排気によって加熱されるようになっている。なお、前記燃焼器5は、パイロット燃料とパイロット燃焼空気を導入して予混合するパイロット予混合管と、メイン燃料とメイン燃焼空気を導入して予混合するメイン予混合管とをそれぞれ複数有し、低NOx、高燃焼効率を有する型式のものとなっている。
前記ガスタービン2には、前記通路12における前記燃焼器5の入口近くに温度センサ16が設けられ、この温度センサ16によって前記有機成分含有空気の燃焼器5への導入時の温度が検出されるようになっている。
【0011】
前記自動切替弁8は、前記燃料油管6と前記廃液供給管7との合流部に設けた三方弁からなり、前記温度センサ16の検出温度が所定の設定温度以下のときは、廃液供給管7側を遮断して燃料油が燃料油管6によって前記燃焼器5に供給されるように管路を自動的に切り換え、また、前記所定の設定温度を超えるときは、燃料油管6の上流側管6aを遮断し、前記有機溶剤廃液W2が廃液供給管7から燃料油管6の下流側管6bを経て燃焼器5に供給されるように管路を自動的に切り換える構成となっている。
【0012】
前記蒸留装置9は、ポンプ、貯留槽等の付属機器について図示しないが、前記廃液供給管7で内部に導入された有機廃棄物排出源Wからの有機溶剤廃液W2を、前記再生用熱交換器13の下流側の排気ダクト15を通る排気によって加熱し、蒸発した有機溶媒蒸気を冷却水で冷却して凝縮させ、これにより精製、濃縮された有機溶剤液(有機成分液)として前記燃料油管6の下流側管6bに送るようになっている。
また、前記ダクト4には、上流側に濃縮装置17が設けられ、下流側(濃縮装置17と前記コンプレッサー3との間)に吸気冷却装置18が設けられている。
【0013】
前記濃縮装置17は、ブロア等の付属機器について図示しないが、前記有機廃棄物排出源Wからダクト4によって内部に導入された有機成分含有空気を吸着処理域で吸着剤層を通過させて、該吸着剤層に有機成分含有空気中の有機溶剤ガスW1を吸着させ、脱着処理域で、前記再生用熱交換器13の下流側の排気ダクト15から分岐した分岐ダクト(排気ダクト)15aを通る排気から熱投入されて加熱された脱着用空気中に、吸着剤層に吸着捕集された有機溶剤ガスW1を脱着放出させることにより、装置の入口側より出口側の有機溶剤ガスW1の濃度を高めた有機成分含有空気を、下流側のダクト4に送るようになっている。前記濃縮装置17としては吸着ロータを有して前記吸着と脱着を連続的に繰り返して行える回転型濃縮装置を好適に使用することができる。
【0014】
前記吸気冷却装置18は、電動モータ19で駆動されるファン20から空気ダクト21を介して送風される冷却空気によって、前記濃縮装置17から前記コンプレッサー3に送られる高温の有機成分含有空気を強制的に冷却するものであり、その構造は、前記再生用熱交換器13を流れるタービン10からの排気の流量(一次側流体流量)と燃焼器5への有機成分含有空気の流量(2次側流体流量)、および吸気冷却装置18を流れる濃縮装置17からの有機成分含有空気の流量(2次側流体流量)とファン20からの冷却空気の流量(1次側流体流量)がともに略同一となっていることから、内部を流れる流体の温度は異なるが、前記再生用熱交換器13と同様に構成することができ、該再生用熱交換器13が代替流用されている。
【0015】
前記再生用熱交換器13は、図2、図3に示すように、両端部に1次側流体の入口側と出口側にそれぞれ接続されるフランジ22a,22bを有する直方体箱状のケーシング22の内部に、熱交換器本体23が周囲にセラミックウール等の断熱性を有する断熱材(緩衝材)24を介在させて装着されている。前記熱交換器本体23の一端側(ケーシング22の1次流体入口室h1側)(図2で左側)の上部と他端側(ケーシング22の一次流体出口室h2側)(図2で右側)の下部には、半円筒状の2次側流体用の出口ヘッダタンク25bと入口ヘッダタンク25aが、それぞれ、熱交換器本体23の幅方向(図2で紙面に垂直な方向、図3で左右方向)に沿って溶接m等によって固着され、2次流体出口室k2と2次流体入口室k1を形成している。
【0016】
前記熱交換器本体23は、詳細は図示しないが、例えば、前記ケーシング22の1次流体入口室h1に入った一次流体を1次流体出口室h2に導く流路を形成したプレートと、前記2次流体入口室k1に導入された2次流体を2次流体出口室k2に導く流路を形成したプレートとを、熱交換器本体23の幅方向に交互に複数個積層して構成され、1次流体と2次流体とが前記各プレートを介して間接的に熱交換が行われるようになっている。
そして、前記再生用熱交換器13は、前記ケーシング22の1次流体入口室h1に前記排気ダクト15の上流側が連絡され、1次流体出口室h2に排気ダクト15の下流側が連絡され、また、前記入口ヘッダタンク25aの2次流体入口室k1に前記通路12の上流側が連絡され、出口ヘッダタンク25bの2次流体出口室k2に通路12の下流側が連絡されている。
【0017】
また、前記再生用熱交換器13を前記吸気冷却装置18に代替流用する場合には、前記ケーシング22の1次流体入口室h1に前記空気ダクト21の上流側21aが連絡され、1次流体出口室h2に空気ダクト21の下流側21bが連絡され、また、前記入口ヘッダタンク25aの2次流体入口室k1に前記ダクト4の上流側4aが連絡され、出口ヘッダタンク25bの2次流体出口室k2にダクト4の下流側4bが連絡される。
なお、前記再生熱交換器13は、前記熱交換器本体23をプレート式の熱交換器で構成したが、これに限らず、他の形式の熱交換器を使用してもよい。
【0018】
次に、前記実施の形態に係る有機成分含有空気および廃液の処理装置の作用について説明する。
ガスタービン2の起動時には、温度センサ16による検出温度は自動切替弁8の流路を切り換える設定温度(例えば500〜600℃)より当然低くなっており、自動切替弁8は前記燃料油管6(6a,6b)をガスタービン2の燃焼器5に連絡している。
この状態で、ガスタービン2の操作盤等のスイッチで始動指令が出されると、ガスタービン2のコンプレッサー3が回転されると共に、灯油等の燃料油のパイロット燃料が燃料油管6を介して燃焼器5の前記パイロット予混合管に送られて燃焼し、これにより、燃焼器5で発生した燃焼ガスでタービン10が回転してコンプレッサー3が回転し、処理装置1の暖機運転が行われる。
【0019】
パイロット燃料による暖機運転の後、タービン10に前記発電機11が減速機11aを介して連結されて回転して電力Eが供給される。その際は、前記タービン10は、パイロット燃料とメイン燃料が、それぞれ燃焼器5のパイロット予混合管とメイン予混合管に供給されて燃焼し、必要な電力量に応じて処理装置1を運転する。
続いて、例えば、印刷工場で印刷機(有機廃棄物排出源W)が運転されると、そこから有機溶剤であるガス状のトルエン(有機成分)を含む空気(有機成分含有空気)とトルエン含有廃液(有機成分含有廃液)が発生し、前記ガス状のトルエンを低濃度に含む40℃程度の空気(有機成分含有空気)が、ダクト4を介して濃縮装置17に送られ、有機成分含有空気中のトルエンの濃度が高められて、150℃程度に昇温して吸気冷却装置18に送られる。そして、吸気冷却装置18に送られた有機成分含有空気は、ファン20から空気ダクト21を介して送風された冷却空気で50℃程度に冷却された後、コンプレッサー3に吸引、圧縮されて190℃程度に昇温される。この昇温された有機成分含有空気は再生用熱交換器13で630℃程度に加熱された後、前記燃焼器5に送られ、これにより、燃料油管6からの燃料油が燃焼器5で燃焼して高温(900℃程度)の燃焼ガスが発生してタービン10が回転し、処理装置1によるトルエン含有空気およびトルエン含有廃液(有機成分含有空気および廃液)の処理の運転が開始される。
【0020】
前記処理装置1の運転が開始されても、ガスタービン2の負荷が全負荷の70%(有機成分含有空気の燃焼器5の入口の設定温度500〜600℃に相当)に満たない状態のときは、前記自動切替弁8は管路を廃液供給管7側に切り換えることがなく、前記燃焼器5では燃料油が燃焼され、この高温の燃焼ガスによって前記有機成分含有空気中の高濃度のトルエン(臭気成分)が分解、除去される。タービン10を出た650℃程度の燃焼ガスの排気は、排気ダクト15を通って再生用熱交換器13で前記通路12からの有機成分含有空気を加熱して240℃程度に温度降下した後、一部が、前記蒸留装置9に送られて有機廃棄物排出源Wから蒸留装置9に送られた有機溶剤廃液(有機成分含有廃液)を加熱する熱源として利用され、残部が、排気ダクト15の分岐ダクト15aを経て前記濃縮装置19へ熱投入してから、前記蒸留装置9を通過した排気ダクト15に合流されて系外へ排出される。
【0021】
ガスタービン2が起動されてその負荷が70%を超える運転状態になったときは、前記燃焼器5の入口における有機成分含有空気の温度が温度センサ16の前記設定温度を超えるので、温度センサ16から指令で前記自動切替弁8が管路を廃液供給管7と燃料油管6の下流側管6bとを連絡するように切り換えるので、蒸留装置9で精製、濃縮されたトルエン溶液(有機成分液)が廃液供給管7、燃料油管6の下流側管6bを通って前記燃焼器5に供給され、該燃焼器5における燃料として燃焼される。このため、ガスタービン2ではトルエンガスとトルエン溶液の両方が同時に燃焼処理されることとなる。
【0022】
前記処理装置1の運転中は、前記再生用熱交換器13においては、タービン10からの高温(630℃程度)の排気がケーシング22の1次側流体入口室h1に入る一方、コンプレッサー3から低温(190℃程度)のトルエンガスを含む空気(有機成分含有空気)が入口ヘッダタンク25aに入って、排気と有機成分含有空気との熱交換が行われる間に、前記熱交換器本体23が前記排気と有機成分含有空気との温度差にもとづいて、例えば、図2、図4の鎖線で示すように、温度の等高線a(650℃)、b(630℃)、c(500℃)、d(370℃)、e(240℃)、f(240℃)、g(190℃)となる温度分布をもった加熱状態となる。
【0023】
このため、図5に示すように、前記熱交換器本体23は、1次側流体入口室h1が1次側流体出口室h2よりも大きく変形し、前記入口ヘッダタンク25aと出口ヘッダタンク25bの幅方向(図5で左右方向)の両側には、1次側流体入口室h1に近い側に引張り応力イが、また、その反対側に圧縮応力ロが、それぞれ、入口ヘッダタンク25aと出口ヘッダタンク25bの長さ方向(図5で上下方向)に作用する。しかし、ケーシング22と熱交換器本体23との間には前記断熱材24が介在されているので、該断熱材24によってケーシング22の表面の温度勾配が緩和され、ケーシング22の変形が抑制されると共に、ケーシング22と熱交換器本体23との変形が分離される。これにより、断熱材24を設けない場合に比べて、前記入口ヘッダタンク25aと出口ヘッダタンク25bやそれらの熱交換器本体23との溶接部mに生じる熱応力を大幅に低減させることができる。
【0024】
この実施の形態に係る有機成分含有空気および廃液の処理装置1によれば、有機廃棄物排出源Wからガスタービン2のコンプレッサー3に送るトルエンガスを含む空気(有機成分含有空気)が、前記濃縮装置17で濃縮操作によって昇温しても、前記吸気冷却装置18で適切に冷却されるので、ガスタービン2の出力を向上させることができる。
また、前記吸気冷却装置18は、コンプレッサー3から燃焼器5に送る有機成分含有空気を加熱する再生用熱交換器13と同一構造の熱交換器を使用して、ファン20から送風される空気で前記有機成分含有空気を強制冷却することができるので、吸気冷却装置18を再生用熱交換器13と別個に製作する必要がなく、再生用熱交換器13を流用することにより、高価な熱交換器の量産によるコスト低減を図ることができる。さらに、前記吸気冷却装置18は、前記有機成分含有空気中に純水を噴射して有機成分含有空気を直接冷却したり、1次側冷却流体を得るために冷凍機等の冷熱源を設ける必要がないので、処理装置1の付帯設備を低廉にすることができる。
なお、この実施の形態においては、前記吸気冷却装置18を、コンプレッサー3から燃焼器5に送る有機成分含有空気を加熱する再生用熱交換器13と同一構造の熱交換器としたが、単に型式が同じであれば寸法、能力が異なっていてもよい。型式が共通であれば、これら熱交換器を構成する部品が共通となり、これによっても量産によるコスト低減を図ることができる。特に、前記吸気冷却装置18と再生用熱交換器13とをレート式熱交換器とすると、プレート数の増減により、簡単に熱交換能力の調整ができ、この量産によるコスト低減効果がより相乗的に奏する。
【0025】
また、前記ガスタービン2の燃焼器5の入口における有機成分含有空気の温度が温度センサ16に設定した所定の設定温度(例えば500〜600℃)より低いときは、灯油等の通常の燃料油を燃焼器5に送り、前記設定温度を超えた適時には、トルエン廃液を蒸留して得たトルエン溶液を燃焼器5に送って燃焼させるようにしたので、トルエンガスおよびトルエン廃液の両方をガスタービン2を含む1台の処理装置1で同時に効率よく処理することができる。
しかも、処理装置1の起動時に、前記温度センサ16における設定温度を前記所定の設定温度より低く設定すると、タービン10からの排気中にトルエンガス等が未燃のまま含まれて排気ダクト15から排出されるおそれがあるが、前記のように温度センサ16の設定温度が適切に設定されているので、この実施の形態の処理装置1ではそのようなおそれはない。
【0026】
また、タービン10からの排気によって、前記再生用熱交換器13で燃焼器5に入る有機成分含有空気の温度を有効に高めることができると共に、前記蒸留装置9からのトルエン廃液(トルエン溶液)を前記燃焼器5での燃料として有効に回収することができ、処理装置1を運転するための燃料を節約することができる。
また、燃焼器5で燃焼させる燃料油を灯油等とトルエン溶液とに使い分けができるので、処理装置1におけるトルエンガス、廃液の処理量が低下しても、ガスタービン2を一定の運転条件で運転できるので、発電機11で一定電圧を確保することができる。
【0027】
また、印刷機のように頻繁に運転、停止を繰り返す有機廃棄物排出源Wの運転、停止に合わせて処理装置1の運転、停止を頻繁に行うと、ガスタービン2、蒸留装置9や濃縮装置17が故障を起こしてそれらの寿命が短くなるが、前記実施の形態に係る有機成分含有空気および廃液の処理装置1によれば、印刷機の運転の停止時には、前記自動切替弁8の切換によってガスタービン2を待機運転で運転を継続することができるので、前記問題を解決することができる。
【0028】
なお、前記各実施の形態に係る有機溶剤ガス、廃液処理装置1では、燃料油管6と廃液供給管7とを燃料油管6の途中で合流させ、この合流部に三方弁からなる自動切替弁8を設けたが、燃料油管6と廃液供給管7を合流させずに、前記燃焼器5に並列に接続し、それらの燃料油管6と廃液供給管7に個別に自動開閉弁(切換手段)を設け、一方の自動開閉弁が管路を前記燃焼器に連絡したとき、他方の自動開閉弁が管路を閉鎖するように、それらの自動開閉弁を連動切換えするようにしてもよい。
【0029】
また、前記自動切替弁8を、燃料油とトルエン溶液の一方が燃焼器5に供給されているとき、他方が燃焼器5への供給を停止される単なる流路切換式の切替弁とせずに、前記燃料油とトルエン溶液の燃焼器5への供給の切換えと、両者の燃焼器5への供給割合の調節とが可能である自動切替混合弁として構成し、トルエン溶液を燃焼器5に送って運転中、ガスタービン2の出力に見合うトルエン溶液が供給できなくなったとき、その不足分だけ前記自動切替混合弁の調節によって燃料油をトルエン溶液に混入させて燃焼器5に供給するようにしてもよい。
また、前記各実施の形態に係る有機成分含有空気および廃液の処理装置1では、トルエン含む空気および廃液を処理対象としたが、本発明においては、有機成分含有空気および廃液はトルエンを含む空気、廃液に限らず、メタノール、メチルエチルケトン、イソプロピレンアルコール等の混合溶剤含有空気および廃液を処理対象とすることができる。
【0030】
【発明の効果】
以上説明したように、本発明によれば以下の優れた効果を奏する。
請求項1に記載の有機成分含有空気および廃液の処理装置によれば、有機廃棄物排出源からの有機成分含有空気が濃縮装置で濃縮されて吸気冷却装置で冷却された後にガスタービンのコンプレッサーに吸引されて燃焼器に有機成分含有空気として送られる一方、有機廃棄物排出源からの有機成分含有廃液が適時に廃液供給管を経て前記燃焼器に供給されて燃焼され、この燃焼により発生した高温の燃焼ガスで有機成分含有空気と有機成分含有廃液の中の有機成分が同時に分解、除去されるので、有機成分含有空気と有機成分含有廃液の両方をガスタービンを含む1台の処理装置よって同時に、効率よく処理することができる。
【0031】
また、前記濃縮装置で投熱されて昇温した有機成分含有空気が吸気冷却装置で冷却されて前記コンプレッサーに送るので、コンプレッサーに高温の有機成分含有空気が吸引されることがなく、ガスタービンの出力を向上させることができる。
さらに、有機成分含有空気を冷却する吸気冷却装置がガスタービンの再生用熱交換器と型式を同じにしたので、これら熱交換器を構成する部品が共通となり、量産によるコスト低減を図ることができる。
さらに、前記吸気冷却装置は、1次側冷却流体が空気であり、前記有機成分含有空気中に純水を噴射して有機成分含有空気を直接冷却したり、1次側冷却流体を得るために冷凍機等の冷熱源を設ける必要がないので、処理装置の付帯設備を低廉にすることができる。
【0032】
また、濃縮装置にガスタービンのタービンからの排気熱が熱投入されるので、タービンの排気熱が有効に利用され、ガスタービン(処理装置)の運転効率を高めることができると共に、濃縮装置に別個の加熱装置を付加する必要がなくて処理装置の設備費を低減することができる。
【0033】
また、請求項に記載の有機成分含有空気および廃液の処理装置によれば、廃液供給管に蒸留装置が設けられ、ガスタービンのタービンの排気熱によって蒸留装置内で有機成分含有廃液が蒸留されて、有機成分含有液として燃焼器に送られるので、タービンの排気によって、有機廃棄物排出源からの有機成分廃液が前記燃焼器での燃料として有効に回収することができ、処理装置を運転するための燃料を節約することができる。
また、請求項に記載の有機成分含有空気および廃液の処理装置によれば、吸気冷却装置と再生用熱交換器とをプレート式熱交換器とすることにより、プレート数の増減によって、簡単に熱交換能力の調整ができ、熱交換器を構成する部品を共通とすることによる量産によるコスト低減が、より相乗的に奏する。
【図面の簡単な説明】
【図1】 本発明の一実施の形態に係る有機成分含有空気および廃液の処理装置を示す系統図である。
【図2】 本発明の一実施の形態に係る有機成分含有空気および廃液の処理装置における再生熱交換器を示す縦断面図である。
【図3】 図2のA−A断面図である。
【図4】 図2のB矢視における再生熱交換器の使用時温度分布図である。
【図5】 図2のB矢視における再生熱交換器の熱変形概念図である。
【符号の説明】
1 有機成分含有空気および廃液の処理装置 2 ガスタービン
3 コンプレッサー 4 ダクト
5 燃焼器 6 燃料油管
7 廃液供給管 9 蒸留装置
10 タービン 11 発電機
12,14 通路 13 再生用熱交換器
15 排気ダクト 17 濃縮装置
18 吸気冷却装置 20 ファン
22 ケーシング 23 熱交換器本体
24 断熱材(緩衝材) W 有機廃棄物排出源
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a processing apparatus for processing organic component-containing air and organic component-containing waste liquid such as organic solvent gas and organic solvent waste liquid generated in a printing factory, a semiconductor manufacturing factory, a coating factory, and the like.
[0002]
[Prior art]
Conventionally, in order to remove low-concentration organic solvent gas (bad odor gas) generated during painting operations in a painting factory, air containing the organic solvent gas is collected in a duct and sent to a gas turbine compressor for compression. The compressed air is supplied to the combustor of the gas turbine, the fuel oil charged in the combustor is combusted, and the malodorous component that is the organic solvent gas is generated by the high-temperature combustion gas generated by the combustion of the fuel oil. There is known an organic solvent gas processing apparatus that decomposes and removes and drives a turbine with combustion gas (Japanese Patent Laid-Open No. 2002-4890).
[0003]
[Problems to be solved by the invention]
However, the conventional organic solvent gas processing apparatus can decompose and remove malodorous components, which are organic solvent gas, depending on the combustion temperature in the combustor of the gas turbine, but it is generated together with the organic solvent gas in, for example, a painting factory. The organic solvent waste liquid cannot be treated at the same time. For this reason, in order to process the organic solvent waste liquid, it is necessary to install a separate processing apparatus. In this case, there is a problem that extra installation space and equipment costs are inevitably generated for the processing apparatus. .
[0004]
The present invention has been made in view of the above circumstances, and can efficiently treat organic component-containing air such as air containing an organic solvent gas and organic component-containing waste liquid at the same time. An object of the present invention is to provide a treatment apparatus for component-containing air and waste liquid.
[0005]
[Means for Solving the Problems]
The present invention is characterized by the following points in order to solve the above problems.
That is, the organic component-containing air and waste liquid treatment apparatus according to claim 1 is connected to the gas turbine, the air inlet of the compressor of the gas turbine and supplying the organic component-containing air to the compressor, and the gas turbine A fuel oil pipe that supplies fuel oil to the combustor, a waste liquid supply pipe that supplies organic component-containing waste liquid to the combustor, and an exhaust from the turbine of the gas turbine that is compressed by the compressor and supplied to the combustor An organic component-containing air and waste liquid treatment apparatus comprising a regeneration heat exchanger for heating the organic component-containing air, wherein the duct has an upstream side The exhaust heat from the turbine of the gas turbine is Concentrating device for increasing concentration of organic component in air containing organic component Is provided And an intake air cooling device that forcibly cools the organic component-containing air with air on the downstream side Where The intake air cooling device is of the same type as the heat exchanger for regeneration.
[0006]
In this organic component-containing air and waste liquid treatment device, the organic component-containing air from the organic waste discharge source is condensed by the concentrator and cooled, and then sucked and compressed by the compressor of the gas turbine and sent to the combustor. The organic component-containing waste liquid is timely supplied to the combustor through the waste liquid supply pipe and burned, and the organic component-containing air and the organic component in the organic component-containing waste liquid are simultaneously decomposed by the high-temperature combustion gas generated by this combustion. Removed. At that time, since the organic component-containing air heated and heated by the concentrator is appropriately cooled by the intake air cooling device and sent to the compressor, the gas turbine has a high-temperature organic component-containing air in the compressor. The suction does not cause a decrease in output.
[0008]
Claims 2 The processing apparatus for organic component-containing air and waste liquid according to claim 1, wherein a distillation apparatus is provided in the waste liquid supply pipe, and the organic component-containing waste liquid is disposed in the distillation apparatus by exhaust heat of the turbine. Is distilled and sent to the combustor as an organic component liquid.
And claims 3 The organic component-containing air and waste liquid treatment apparatus according to any one of claims 1 to 3, wherein the intake air cooling device and the regeneration heat exchanger are plate heat exchangers.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of an organic component-containing air and waste liquid treatment apparatus according to the present invention will be described below with reference to the drawings.
FIG. 1 shows an organic component-containing air and waste liquid treatment apparatus 1 according to an embodiment of the present invention.
The organic component-containing air and waste liquid treatment apparatus 1 according to this embodiment is a facility (hereinafter referred to as an organic waste discharge source W) that discharges organic component-containing air and waste liquid, such as a printing factory, a semiconductor manufacturing factory, and a painting factory. )) And a duct for sending air (organic component-containing air) containing organic solvent gas W1 from the organic waste discharge source W to the compressor 3 of the gas turbine 2 as combustion air. 4, a fuel oil pipe 6 for supplying fuel oil to the combustor 5 of the gas turbine 2, and an organic solvent waste liquid (organic component-containing waste liquid) W 2 from the organic waste discharge source W to the combustor 5 of the gas turbine 2 A waste liquid supply pipe 7; an automatic switching valve (switching means) 8 for switching between the supply of fuel oil from the fuel oil pipe 6 to the combustor 5 and the supply of organic solvent waste liquid from the waste liquid supply pipe 7 to the combustor 5; in front A distillation apparatus 9 which middle provided the waste supply pipe 7, and a generator 11 connected via a reduction gear 11a to the turbine 10 of the gas turbine 2.
[0010]
A regeneration heat exchanger 13 is provided in a passage 12 connecting the compressor 3 and the combustor 5, and the turbine 10 is driven by the regeneration heat exchanger 13 from the combustor 5 through the passage 14. Then, an exhaust duct 15 for flowing the combustion gas after being exhausted is connected, and the organic component-containing air passing through the passage 12 is heated by the exhaust flowing through the exhaust duct 15. The combustor 5 has a plurality of pilot premixing tubes for introducing and premixing pilot fuel and pilot combustion air, and a plurality of main premixing tubes for introducing and premixing main fuel and main combustion air. , Low NOx and high combustion efficiency.
The gas turbine 2 is provided with a temperature sensor 16 near the inlet of the combustor 5 in the passage 12, and the temperature when the organic component-containing air is introduced into the combustor 5 is detected by the temperature sensor 16. It is like that.
[0011]
The automatic switching valve 8 is a three-way valve provided at the junction of the fuel oil pipe 6 and the waste liquid supply pipe 7. When the temperature detected by the temperature sensor 16 is equal to or lower than a predetermined set temperature, the waste liquid supply pipe 7 The pipe line is automatically switched so that the fuel oil is supplied to the combustor 5 by the fuel oil pipe 6 when the side is cut off, and when the predetermined set temperature is exceeded, the upstream pipe 6a of the fuel oil pipe 6 The organic solvent waste liquid W2 is automatically switched from the waste liquid supply pipe 7 to the combustor 5 through the downstream pipe 6b of the fuel oil pipe 6.
[0012]
Although the distillation apparatus 9 is not shown with respect to accessories such as a pump and a storage tank, the organic solvent waste liquid W2 from the organic waste discharge source W introduced into the waste liquid supply pipe 7 is converted into the regeneration heat exchanger. The fuel oil pipe 6 is heated by exhaust gas passing through the exhaust duct 15 on the downstream side of 13 and the evaporated organic solvent vapor is cooled and condensed with cooling water, thereby purifying and concentrating the organic solvent liquid (organic component liquid). To the downstream side pipe 6b.
The duct 4 is provided with a concentrating device 17 on the upstream side and an intake air cooling device 18 on the downstream side (between the concentrating device 17 and the compressor 3).
[0013]
Although the concentrator 17 is not illustrated for an accessory device such as a blower, the organic component-containing air introduced into the inside by the duct 4 from the organic waste discharge source W is passed through the adsorbent layer in the adsorption treatment area, and the concentrator 17 The organic solvent gas W1 in the organic component-containing air is adsorbed on the adsorbent layer, and the exhaust gas passes through the branch duct (exhaust duct) 15a branched from the exhaust duct 15 on the downstream side of the regeneration heat exchanger 13 in the desorption treatment area. The concentration of the organic solvent gas W1 on the outlet side is increased from the inlet side of the apparatus by desorbing and releasing the organic solvent gas W1 adsorbed and collected in the adsorbent layer into the desorption air heated and supplied from The organic component-containing air is sent to the duct 4 on the downstream side. As the concentrating device 17, a rotary concentrating device having an adsorbing rotor and capable of continuously repeating the adsorption and desorption can be preferably used.
[0014]
The intake air cooling device 18 forcibly supplies high-temperature organic component-containing air sent from the concentrating device 17 to the compressor 3 by cooling air blown from a fan 20 driven by an electric motor 19 through an air duct 21. The structure is composed of a flow rate of exhaust gas from the turbine 10 (primary fluid flow rate) flowing through the regeneration heat exchanger 13 and a flow rate of organic component-containing air to the combustor 5 (secondary fluid). Flow rate), and the flow rate (secondary fluid flow rate) of the organic component-containing air from the concentrator 17 flowing through the intake air cooling device 18 and the fan. 20 Since the flow rate of the cooling air from both (primary fluid flow rate) is substantially the same, the temperature of the fluid flowing through the inside is different, but it can be configured in the same manner as the regeneration heat exchanger 13, The regeneration heat exchanger 13 is used as an alternative.
[0015]
As shown in FIGS. 2 and 3, the regeneration heat exchanger 13 includes a rectangular parallelepiped box-shaped casing 22 having flanges 22a and 22b respectively connected to the inlet side and the outlet side of the primary fluid at both ends. Inside, a heat exchanger body 23 is mounted with a heat insulating material (buffer material) 24 having heat insulating properties such as ceramic wool interposed therebetween. The upper and other ends (primary fluid outlet chamber h2 side of the casing 22) (right side in FIG. 2) of the heat exchanger body 23 at one end side (primary fluid inlet chamber h1 side of the casing 22) (left side in FIG. 2). In the lower part of the pipe, there are a semi-cylindrical secondary fluid outlet header tank 25b and an inlet header tank 25a, respectively, in the width direction of the heat exchanger body 23 (the direction perpendicular to the paper surface in FIG. 2, left and right in FIG. The secondary fluid outlet chamber k2 and the secondary fluid inlet chamber k1 are formed by welding m or the like along the direction).
[0016]
Although not shown in detail in the heat exchanger body 23, for example, a plate that forms a flow path for guiding the primary fluid that has entered the primary fluid inlet chamber h1 of the casing 22 to the primary fluid outlet chamber h2, and the 2 A plurality of plates in which a flow path for guiding the secondary fluid introduced into the secondary fluid inlet chamber k1 to the secondary fluid outlet chamber k2 is alternately stacked in the width direction of the heat exchanger body 23. The secondary fluid and the secondary fluid exchange heat indirectly through the plates.
The regeneration heat exchanger 13 is connected to the primary fluid inlet chamber h1 of the casing 22 on the upstream side of the exhaust duct 15, and to the primary fluid outlet chamber h2 on the downstream side of the exhaust duct 15, The upstream side of the passage 12 is connected to the secondary fluid inlet chamber k1 of the inlet header tank 25a, and the downstream side of the passage 12 is connected to the secondary fluid outlet chamber k2 of the outlet header tank 25b.
[0017]
Further, when the regeneration heat exchanger 13 is used as an alternative to the intake air cooling device 18, the upstream side 21a of the air duct 21 is connected to the primary fluid inlet chamber h1 of the casing 22, and the primary fluid outlet. The downstream side 21b of the air duct 21 is connected to the chamber h2, and the upstream side 4a of the duct 4 is connected to the secondary fluid inlet chamber k1 of the inlet header tank 25a, and the secondary fluid outlet chamber of the outlet header tank 25b is connected. The downstream side 4b of the duct 4 is connected to k2.
In the regenerative heat exchanger 13, the heat exchanger body 23 is constituted by a plate-type heat exchanger. However, the present invention is not limited to this, and other types of heat exchangers may be used.
[0018]
Next, the operation of the organic component-containing air and waste liquid treatment apparatus according to the embodiment will be described.
When the gas turbine 2 is started, the temperature detected by the temperature sensor 16 is naturally lower than a set temperature (for example, 500 to 600 ° C.) for switching the flow path of the automatic switching valve 8, and the automatic switching valve 8 is connected to the fuel oil pipe 6 (6a). , 6b) to the combustor 5 of the gas turbine 2.
In this state, when a start command is issued by a switch such as an operation panel of the gas turbine 2, the compressor 3 of the gas turbine 2 is rotated, and a pilot fuel such as kerosene is combusted through the fuel oil pipe 6. 5 is sent to the pilot premixing pipe 5 and combusted. As a result, the turbine 10 is rotated by the combustion gas generated in the combustor 5 and the compressor 3 is rotated, so that the processing apparatus 1 is warmed up.
[0019]
After the warm-up operation with the pilot fuel, the generator 11 is connected to the turbine 10 via the speed reducer 11a and rotates to supply electric power E. In that case, the turbine 10 supplies the pilot fuel and the main fuel to the pilot premixing pipe and the main premixing pipe of the combustor 5 for combustion, and operates the processing apparatus 1 according to the required amount of electric power. .
Subsequently, for example, when a printing press (organic waste discharge source W) is operated in a printing factory, air (organic component-containing air) containing gaseous toluene (organic component) that is an organic solvent and toluene content are contained therein. Waste liquid (organic component-containing waste liquid) is generated, and air (organic component-containing air) of about 40 ° C. containing the gaseous toluene at a low concentration is sent to the concentrator 17 via the duct 4, and the organic component-containing air The concentration of toluene in the inside is increased, and the temperature is raised to about 150 ° C. and sent to the intake air cooling device 18. The organic component-containing air sent to the intake air cooling device 18 is sent from the fan 20 to the air duct. 21 After being cooled to about 50 ° C. with the cooling air blown through, the compressor 3 sucks and compresses the air and raises the temperature to about 190 ° C. This temperature was raised Contains organic components The air is heated to about 630 ° C. by the regeneration heat exchanger 13 and then sent to the combustor 5, whereby the fuel oil from the fuel oil pipe 6 is combusted by the combustor 5 to a high temperature (about 900 ° C.). The combustion gas is generated and the turbine 10 rotates, and the processing apparatus 1 starts the operation of processing the toluene-containing air and the toluene-containing waste liquid (organic component-containing air and waste liquid).
[0020]
Even when the operation of the processing apparatus 1 is started, the load of the gas turbine 2 is less than 70% of the total load (corresponding to the set temperature 500 to 600 ° C. at the inlet of the combustor 5 of the organic component-containing air). The automatic switching valve 8 does not switch the pipe line to the waste liquid supply pipe 7 side, the fuel oil is burned in the combustor 5, and high-temperature toluene in the organic component-containing air is burned by this high-temperature combustion gas. (Odor component) is decomposed and removed. Exhaust gas of about 650 ° C. exiting the turbine 10 passes through the exhaust duct 15 and heats the organic component-containing air from the passage 12 in the regeneration heat exchanger 13 to drop the temperature to about 240 ° C. A part is used as a heat source for heating the organic solvent waste liquid (organic component-containing waste liquid) sent to the distillation apparatus 9 from the organic waste discharge source W by being sent to the distillation apparatus 9, and the remainder is used for the exhaust duct 15. Heat is supplied to the concentrating device 19 through the branch duct 15a, and then joined to the exhaust duct 15 that has passed through the distillation device 9 and discharged out of the system.
[0021]
When the gas turbine 2 is started and its load exceeds 70%, the temperature of the organic component-containing air at the inlet of the combustor 5 exceeds the set temperature of the temperature sensor 16. From the command, the automatic switching valve 8 switches the pipeline so as to connect the waste liquid supply pipe 7 and the downstream pipe 6b of the fuel oil pipe 6 so that the toluene solution (organic component liquid) purified and concentrated by the distillation device 9 Is supplied to the combustor 5 through the waste liquid supply pipe 7 and the downstream pipe 6 b of the fuel oil pipe 6 and burned as fuel in the combustor 5. For this reason, both the toluene gas and the toluene solution are simultaneously burned in the gas turbine 2.
[0022]
During the operation of the processing apparatus 1, in the regeneration heat exchanger 13, high-temperature (about 630 ° C.) exhaust from the turbine 10 enters the primary fluid inlet chamber h 1 of the casing 22, while low temperature from the compressor 3. While the air (organic component-containing air) containing toluene gas (about 190 ° C.) enters the inlet header tank 25a and the heat exchange between the exhaust gas and the organic component-containing air is performed, the heat exchanger body 23 is Based on the temperature difference between the exhaust gas and the organic component-containing air, for example, as shown by the chain lines in FIGS. 2 and 4, temperature contour lines a (650 ° C.), b (630 ° C.), c (500 ° C.), d (370 ° C.), e (240 ° C.), f (240 ° C.), and g (190 ° C.).
[0023]
For this reason, as shown in FIG. 5, in the heat exchanger body 23, the primary fluid inlet chamber h1 is deformed to be larger than the primary fluid outlet chamber h2, and the inlet header tank 25a and the outlet header tank 25b On both sides in the width direction (left-right direction in FIG. 5), tensile stress i is on the side close to the primary fluid inlet chamber h1, and compressive stress b is on the opposite side, respectively, for the inlet header tank 25a and the outlet header. It acts in the length direction (vertical direction in FIG. 5) of the tank 25b. However, since the heat insulating material 24 is interposed between the casing 22 and the heat exchanger main body 23, the temperature gradient on the surface of the casing 22 is relaxed by the heat insulating material 24, and deformation of the casing 22 is suppressed. At the same time, the deformation of the casing 22 and the heat exchanger body 23 is separated. Thereby, compared with the case where the heat insulating material 24 is not provided, the thermal stress which arises in the welding part m with the said inlet header tank 25a, the outlet header tank 25b, and those heat exchanger main bodies 23 can be reduced significantly.
[0024]
According to the organic component-containing air and waste liquid treatment apparatus 1 according to this embodiment, the air containing the toluene gas (organic component-containing air) sent from the organic waste discharge source W to the compressor 3 of the gas turbine 2 is concentrated. Even if the temperature is raised by the concentration operation in the device 17, the intake air cooling device 18 is appropriately cooled, so that the output of the gas turbine 2 can be improved.
In addition, the intake air cooling device 18 is an air blown from a fan 20 using a heat exchanger having the same structure as the regeneration heat exchanger 13 for heating the organic component-containing air sent from the compressor 3 to the combustor 5. Since the organic component-containing air can be forcibly cooled, there is no need to manufacture the intake air cooling device 18 separately from the regeneration heat exchanger 13, and expensive heat exchange can be achieved by diverting the regeneration heat exchanger 13. The cost can be reduced by mass production. Further, the intake air cooling device 18 needs to provide a cooling heat source such as a refrigerator to directly cool the organic component-containing air by injecting pure water into the organic component-containing air or to obtain a primary side cooling fluid. Therefore, the incidental equipment of the processing apparatus 1 can be made inexpensive.
In this embodiment, the intake air cooling device 18 is a heat exchanger having the same structure as the regeneration heat exchanger 13 for heating the organic component-containing air sent from the compressor 3 to the combustor 5. May be different in size and ability. If the model is common, the parts constituting these heat exchangers are common, which can also reduce the cost by mass production. In particular, the intake air cooling device 18 and the regeneration heat exchanger 13 are connected to each other. The When the rate heat exchanger is used, the heat exchange capacity can be easily adjusted by increasing or decreasing the number of plates, and the cost reduction effect by mass production is more synergistic.
[0025]
Further, when the temperature of the organic component-containing air at the inlet of the combustor 5 of the gas turbine 2 is lower than a predetermined set temperature (for example, 500 to 600 ° C.) set in the temperature sensor 16, normal fuel oil such as kerosene is used. Since the toluene solution obtained by distilling the toluene waste liquid is sent to the combustor 5 to be combusted at the appropriate time when the temperature exceeds the preset temperature, both the toluene gas and the toluene waste liquid are removed from the gas turbine. Can be efficiently processed simultaneously by one processing apparatus 1 including two.
In addition, when the set temperature in the temperature sensor 16 is set lower than the predetermined set temperature when the processing apparatus 1 is started, the exhaust gas from the turbine 10 contains toluene gas or the like unburned and is discharged from the exhaust duct 15. However, since the set temperature of the temperature sensor 16 is appropriately set as described above, there is no such risk in the processing apparatus 1 of this embodiment.
[0026]
In addition, the exhaust from the turbine 10 can effectively increase the temperature of the organic component-containing air entering the combustor 5 in the regeneration heat exchanger 13, and the toluene waste liquid (toluene solution) from the distillation apparatus 9 can be removed. The fuel can be effectively recovered as the fuel in the combustor 5, and the fuel for operating the processing apparatus 1 can be saved.
Further, since the fuel oil burned in the combustor 5 can be properly used for kerosene or the like and the toluene solution, the gas turbine 2 is operated under a constant operating condition even when the processing amount of the toluene gas and waste liquid in the processing apparatus 1 is reduced. Therefore, a constant voltage can be secured by the generator 11.
[0027]
Further, when the operation and stop of the processing apparatus 1 are frequently performed in accordance with the operation and stop of the organic waste discharge source W that is frequently operated and stopped like a printing press, the gas turbine 2, the distillation apparatus 9 and the concentrator However, according to the organic component-containing air and waste liquid treatment apparatus 1 according to the embodiment, when the operation of the printing press is stopped, the automatic switching valve 8 is switched. Since the operation of the gas turbine 2 can be continued in the standby operation, the above problem can be solved.
[0028]
In the organic solvent gas / waste liquid treatment apparatus 1 according to each of the above-described embodiments, the fuel oil pipe 6 and the waste liquid supply pipe 7 are joined in the middle of the fuel oil pipe 6, and the automatic switching valve 8 comprising a three-way valve is formed at this joining portion. However, the fuel oil pipe 6 and the waste liquid supply pipe 7 are not joined but connected in parallel to the combustor 5, and an automatic on-off valve (switching means) is individually connected to the fuel oil pipe 6 and the waste liquid supply pipe 7. The automatic open / close valve may be linked and switched so that the other automatic open / close valve closes the pipe line when one of the automatic open / close valves communicates the line to the combustor.
[0029]
Further, the automatic switching valve 8 is not a simple flow path switching valve that stops the supply to the combustor 5 when one of the fuel oil and the toluene solution is supplied to the combustor 5. The fuel oil and the toluene solution can be switched to the combustor 5 and the supply ratio of the fuel oil and the toluene solution to the combustor 5 can be adjusted, and the toluene solution is sent to the combustor 5. During operation, when the toluene solution corresponding to the output of the gas turbine 2 can no longer be supplied, fuel oil is mixed into the toluene solution and supplied to the combustor 5 by adjusting the automatic switching mixing valve by the shortage. Also good.
Further, in the organic component-containing air and waste liquid treatment apparatus 1 according to each of the above embodiments, the air and waste liquid containing toluene are treated, but in the present invention, the organic component-containing air and waste liquid are air containing toluene, Not only waste liquid but also mixed solvent-containing air such as methanol, methyl ethyl ketone, isopropylene alcohol, and waste liquid can be treated.
[0030]
【The invention's effect】
As described above, according to the present invention, the following excellent effects are obtained.
According to the organic component-containing air and waste liquid processing apparatus according to claim 1, the organic component-containing air from the organic waste discharge source is concentrated by the concentrating device and cooled by the intake air cooling device, and is then supplied to the compressor of the gas turbine. While being sucked and sent to the combustor as organic component-containing air, the organic component-containing waste liquid from the organic waste discharge source is supplied to the combustor through the waste liquid supply pipe and burned in a timely manner, and the high temperature generated by this combustion Since the organic component-containing air and the organic component in the organic component-containing waste liquid are simultaneously decomposed and removed by the combustion gas, both the organic component-containing air and the organic component-containing waste liquid are simultaneously removed by a single processing device including a gas turbine. Can be processed efficiently.
[0031]
In addition, since the organic component-containing air heated and heated by the concentrator is cooled by the intake air cooling device and sent to the compressor, the high-temperature organic component-containing air is not sucked into the compressor, and the gas turbine The output can be improved.
Furthermore, since the intake air cooling device that cools the organic component-containing air has the same model as the heat exchanger for gas turbine regeneration, the components that make up these heat exchangers are common, and the cost can be reduced through mass production. .
Further, in the intake air cooling device, the primary side cooling fluid is air, and in order to directly cool the organic component containing air by injecting pure water into the organic component containing air or to obtain the primary side cooling fluid Since it is not necessary to provide a cold heat source such as a refrigerator, the incidental facilities of the processing apparatus can be made inexpensive.
[0032]
Also , Dark Since the exhaust heat from the turbine of the gas turbine is input to the compressor, the exhaust heat of the turbine can be used effectively, and the operating efficiency of the gas turbine (processing device) can be increased, and the concentrator can be heated separately. It is not necessary to add an apparatus, and the equipment cost of the processing apparatus can be reduced.
[0033]
Claims 2 According to the organic component-containing air and waste liquid treatment apparatus described in 1., the waste liquid supply pipe is provided with a distillation device, and the organic component-containing waste liquid is distilled in the distillation device by the exhaust heat of the turbine of the gas turbine. Because it is sent to the combustor as a liquid, the organic component waste liquid from the organic waste discharge source can be effectively recovered as the fuel in the combustor by the exhaust of the turbine, saving the fuel for operating the processing equipment can do.
Claims 3 According to the processing apparatus for organic component-containing air and waste liquid described in 1., the heat exchanger capacity can be easily adjusted by increasing or decreasing the number of plates by adopting a plate-type heat exchanger for the intake air cooling device and the regeneration heat exchanger. The cost reduction by mass production by making the components constituting the heat exchanger in common is more synergistic.
[Brief description of the drawings]
FIG. 1 is a system diagram showing an organic component-containing air and waste liquid treatment apparatus according to an embodiment of the present invention.
FIG. 2 is a longitudinal sectional view showing a regenerative heat exchanger in the organic component-containing air and waste liquid treatment apparatus according to one embodiment of the present invention.
3 is a cross-sectional view taken along a line AA in FIG.
FIG. 4 is a temperature distribution diagram when the regenerative heat exchanger is in use as viewed in the direction of arrow B in FIG. 2;
FIG. 5 is a conceptual diagram of thermal deformation of the regenerative heat exchanger as viewed in the direction of arrow B in FIG.
[Explanation of symbols]
1 Organic component-containing air and waste liquid treatment equipment 2 Gas turbine
3 Compressor 4 Duct
5 Combustor 6 Fuel oil pipe
7 Waste liquid supply pipe 9 Distillation equipment
10 Turbine 11 Generator
12, 14 passage 13 heat exchanger for regeneration
15 Exhaust duct 17 Concentrator
18 Intake air cooling device 20 Fan
22 Casing 23 Heat exchanger body
24 Insulation (buffer material) W Organic waste emission source

Claims (3)

ガスタービンと、該ガスタービンのコンプレッサーの空気入口に連絡され、コンプレッサーに有機成分含有空気を供給するダクトと、前記ガスタービンの燃焼器に燃料油を供給する燃料油管と、前記燃焼器に有機成分含有廃液を供給する廃液供給管と、前記ガスタービンのタービンからの排気により、前記コンプレッサーで圧縮されて燃焼器に供給される前記有機成分含有空気を加熱する再生用熱交換器とを備えた有機成分含有空気および廃液の処理装置であって、
前記ダクトには、上流側に前記ガスタービンのタービンからの排気熱が熱投入されて前記有機成分含有空気中の有機成分の濃度を高める濃縮装置が設けられ、下流側に前記有機成分含有空気を空気によって強制冷却する吸気冷却装置が設けられ、該吸気冷却装置は前記再生用熱交換器と同一の型式であることを特徴とする有機成分含有空気および廃液の処理装置。
A gas turbine, a duct connected to an air inlet of a compressor of the gas turbine, supplying organic component-containing air to the compressor, a fuel oil pipe supplying fuel oil to the combustor of the gas turbine, and an organic component to the combustor An organic apparatus comprising: a waste liquid supply pipe that supplies a waste liquid containing a regenerator; and a regeneration heat exchanger that heats the organic component-containing air that is compressed by the compressor and supplied to the combustor by exhaust from a turbine of the gas turbine. An apparatus for treating component-containing air and waste liquid,
The duct is provided with a concentrating device for increasing the concentration of the organic component in the organic component-containing air by heating the exhaust heat from the turbine of the gas turbine on the upstream side, and the organic component-containing air on the downstream side. provided intake air cooling equipment to force cooled by air, organic components containing air and waste processing apparatus, wherein the intake cooler of the same type as the regeneration heat exchanger.
前記廃液供給管には蒸留装置が設けられ、前記タービンの排気熱によって蒸留装置内で有機成分含有廃液が蒸留されて、有機成分含有液として前記燃焼器に送られるようになっていることを特徴とする請求項1に記載の有機成分含有空気および廃液の処理装置。 The waste liquid supply pipe is provided with a distillation device, and the organic component-containing waste liquid is distilled in the distillation device by the exhaust heat of the turbine, and is sent to the combustor as the organic component-containing liquid. The processing apparatus of the organic component containing air and waste liquid of Claim 1. 前記吸気冷却装置と前記再生用熱交換器とは、プレート式熱交換器であることを特徴とする請求項1または2に記載の有機成分含有空気および廃液の処理装置。 The intake air cooling device and the A playback heat exchanger, an organic component-containing air and waste processing apparatus according to claim 1 or 2, characterized in der Rukoto plate heat exchanger.
JP2002194855A 2002-07-03 2002-07-03 Air and waste liquid treatment equipment containing organic components Expired - Lifetime JP3924209B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002194855A JP3924209B2 (en) 2002-07-03 2002-07-03 Air and waste liquid treatment equipment containing organic components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002194855A JP3924209B2 (en) 2002-07-03 2002-07-03 Air and waste liquid treatment equipment containing organic components

Publications (2)

Publication Number Publication Date
JP2004036492A JP2004036492A (en) 2004-02-05
JP3924209B2 true JP3924209B2 (en) 2007-06-06

Family

ID=31703441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002194855A Expired - Lifetime JP3924209B2 (en) 2002-07-03 2002-07-03 Air and waste liquid treatment equipment containing organic components

Country Status (1)

Country Link
JP (1) JP3924209B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8142555B2 (en) 2004-08-19 2012-03-27 Ishikawajima-Harima Heavy Industries Co., Ltd. Method of treating volatile organic compound and system for treating volatile organic compound using gas turbine
JP4686311B2 (en) * 2004-09-22 2011-05-25 新潟原動機株式会社 VOC combustion equipment
JP4607720B2 (en) * 2005-09-09 2011-01-05 新潟原動機株式会社 Gas turbine fuel control system
JP2007177779A (en) * 2005-12-26 2007-07-12 Nippon Dengi Kk Treatment method for volatile organic compound (voc gas)
JP3956993B1 (en) * 2006-01-30 2007-08-08 石川島播磨重工業株式会社 Volatile organic compound processing method and volatile organic compound processing system using gas turbine
JP3956996B1 (en) 2006-02-22 2007-08-08 石川島播磨重工業株式会社 Volatile organic compound treatment method and volatile organic compound treatment system
JP2007278147A (en) * 2006-04-05 2007-10-25 Ebara Corp Deodorizing device
JP3948486B1 (en) 2006-07-10 2007-07-25 石川島播磨重工業株式会社 Method for treating volatile organic compound, adsorption / desorption device, and system for treating volatile organic compound
JP5254072B2 (en) * 2009-02-18 2013-08-07 三井造船株式会社 Treatment system for volatile organic compounds

Also Published As

Publication number Publication date
JP2004036492A (en) 2004-02-05

Similar Documents

Publication Publication Date Title
JP7083783B2 (en) Integrated adsorption gas separation system for separating at least a part of the combustion gas flow
CN103764254B (en) For the system and method that the integrated form adsorbed gas of burning gases separates
JP4677989B2 (en) Volatile organic compound processing method and volatile organic compound processing system using gas turbine
JP3956996B1 (en) Volatile organic compound treatment method and volatile organic compound treatment system
JP3924209B2 (en) Air and waste liquid treatment equipment containing organic components
CN1809684A (en) Use of VOC as fuel for an engine
CN105854434A (en) VOCs resourceful treatment system
WO2008050463A1 (en) Volatile organic compound-containing waste gas treatment system
JP5234194B2 (en) Organic solvent-containing gas treatment system
JP2004037038A (en) Method and device for treating organic component-containing air and organic component-containing waste liquid
RU2194870C2 (en) Method of operation and design of gas turbine plant with complex system of deep recovery of heat and production of harmful effluents
CN219050819U (en) Comprehensive waste gas purifying equipment
CN111467926A (en) Energy-saving processing device applied to organic waste gas industry
RU2342980C2 (en) Adsorption plant for dried-up gas cleaning
EP0718025B1 (en) Method for the recovery of ammonia escaping from a denitrification process
RU2000131473A (en) METHOD OF OPERATION AND DEVICE OF A GAS-TURBINE INSTALLATION WITH AN INTEGRATED SYSTEM OF DEEP HEAT DISPOSAL AND REDUCTION OF HARMFUL EMISSIONS IN THE ATMOSPHERE
CN220677314U (en) Industrial VOC waste gas collection desorption purification wind cabinet based on heating ventilation air conditioning principle
JP5152422B2 (en) Organic solvent-containing gas treatment system
WO2024122500A1 (en) Carbon dioxide recovery device
WO2024122501A1 (en) Carbon dioxide collection apparatus
US5770163A (en) System for the recovery of ammonia escaping from an ammonia reduction denitrator
CN113634085A (en) Heat recovery type catalytic combustion waste gas treatment equipment and working method thereof
SU1314203A1 (en) Method for recovering waste heat energy of exhaust air
JP2024092345A (en) Exhaust Gas Purification System
JP2000282841A (en) Exhaust emission control device for diesel engine

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040512

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060919

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070223

R150 Certificate of patent or registration of utility model

Ref document number: 3924209

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140302

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term