WO2008050463A1 - Volatile organic compound-containing waste gas treatment system - Google Patents

Volatile organic compound-containing waste gas treatment system Download PDF

Info

Publication number
WO2008050463A1
WO2008050463A1 PCT/JP2006/321806 JP2006321806W WO2008050463A1 WO 2008050463 A1 WO2008050463 A1 WO 2008050463A1 JP 2006321806 W JP2006321806 W JP 2006321806W WO 2008050463 A1 WO2008050463 A1 WO 2008050463A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic compound
volatile organic
compressor
air
adsorbent
Prior art date
Application number
PCT/JP2006/321806
Other languages
French (fr)
Japanese (ja)
Inventor
Susumu Nakano
Tadaharu Kishibe
Kiyoshi Seo
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Priority to JP2008540877A priority Critical patent/JP4702453B2/en
Priority to PCT/JP2006/321806 priority patent/WO2008050463A1/en
Publication of WO2008050463A1 publication Critical patent/WO2008050463A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas- turbine plants for special use
    • F02C6/18Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas- turbine plants for special use using the waste heat of gas-turbine plants outside the plants themselves, e.g. gas-turbine power heat plants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/06Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with moving adsorbents, e.g. rotating beds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/20Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
    • F02C3/24Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products the fuel or oxidant being liquid at standard temperature and pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/08Heating air supply before combustion, e.g. by exhaust gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/708Volatile organic compounds V.O.C.'s
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Definitions

  • the present invention relates to a volatile organic compound-containing exhaust gas treatment system, and in particular, heat emitted from a printing factory, painting factory, semi-conductor manufacturing factory, etc., containing volatile organic compounds.
  • This relates to an exhaust gas treatment system containing volatile organic compounds that converts energy into energy such as electric power. Background Technology '.
  • VOC-containing exhaust gas treatment system (VOC-containing exhaust gas decomposition / extinguishing system) that uses the heat of oxidative decomposition generated when oxidative decomposition of exhaust gas containing volatile organic compounds (hereinafter abbreviated as VOC) is used for power generation.
  • VOC volatile organic compounds
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2000-3.6 5 2 3
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2 0 0 1-7 0750
  • the gas enriched with VOC in the exhaust gas is guided to the gas turbine system, pressurized by the compressor of the gas turbine system, and combusted with the turbine fuel in the combustor, thereby oxidizing and decomposing VOC.
  • the heat of decomposition generated at that time is used for power generation. Disclosure of the invention
  • VOC concentrated gas is introduced directly from the intake side of the compressor. There is a possibility of leakage to the generator side along the generator rotor. Yes, acetic acid-based components such as ethyl acetate contained in V-rich gas may corrode the generator parts.
  • An object of the present invention is cis to handle V_ ⁇ C exhaust gas by using the gas turbine, in Temu, VOC-containing exhaust gas treatment system that can prevent damage to the generator components by concentration VOC Gaz (VO C containing Haika;. Scan Decomposition power generation system)
  • the present invention provides a concentrator for concentrating VOC in the VOC-containing exhaust gas to compress the gas turbine device. It is configured to be installed on the machine discharge side. '
  • the VOC concentrating gas is taken into the turbine system from the compressor discharge side by installing a concentrating device on the compressor discharge side. This prevents damage such as corrosion of low-temperature parts such as generator parts.
  • First view A diagram showing a first embodiment of an exhaust gas treatment system containing a volatile organic compound according to the present invention.
  • Fig. 2 A schematic diagram of the VOC concentrator.
  • FIG. 3 is a diagram showing a second embodiment of the volatile organic compound-containing exhaust gas treatment system according to the present invention.
  • FIG. 4 is a diagram showing a third embodiment of an exhaust gas treatment system containing a volatile organic compound according to the present invention.
  • FIG. 5 is a diagram showing an embodiment of an exhaust gas treatment system containing a volatile organic compound combined with an absorption refrigerator.
  • Figure 6 Containing volatile organic compounds in combination with power generation system and absorption refrigerator The figure which shows embodiment of an exhaust gas treatment system.
  • Fig. 7 Front view of V O C. Concentrator with seal 'structure. .
  • Fig. 8 Cross section taken along line AA in Fig. 7.
  • the VOC exhaust gas decomposition treatment system 'shown in Fig. 1 consists of a gas evening bottle device, a VOC exhaust gas blower 9 and a concentrator 7.
  • the gas turbine unit consists of a generator 1, a compressor 2, an evening bin 3, and a combination of them.
  • Generator 1 is a generator incorporating a permanent magnet generator port.
  • the generator 1 is preferably arranged away from the high temperature component Yuichi 'bin 3, in this embodiment, the generator 1, the compressor 2, and the turbine 3 are arranged around jl. ing. Compressor Air 1 1 is taken into the compressor from the atmosphere through the suction fill 10.
  • the air 11 is pressurized by the compressor 2 and introduced into the concentrating device 7 as compressor discharge air 12.
  • the concentrated VOC is heated and separated into the compressor discharge air 1 2.
  • the concentrated VOC-containing compressed air 13 passes through the regenerative heat exchanger 6 and is sent to the combustor 5.
  • the concentrated VOC-containing compressed air 13 is mixed with the fuel 14 sent to the combustor 5 and combusted in the combustor 5 and sent to the turbine 3 as combustion gas 15.
  • the generator row 4 is rotated by the expansion of the combustion gas 15.
  • Turbine exhaust gas 1 6 which expanded in the evening bottle 3 passes through the regenerative heat exchanger 6 and becomes exhaust 1 7 again. To the atmosphere.
  • the turbine exhaust gas 16 is regenerated in the regenerative heat exchanger 6 and heat-exchanged with the concentrated VOC-containing compressed air 13 that has passed through the concentrator 7 to raise the temperature of the concentrated VOC-containing compressed gas 13.
  • the VOC-containing exhaust gas 18 is sent from the VOC exhaust gas generator 8 to the concentrator 7 by the VOC exhaust gas blower 9.
  • -Where:-Concentrator 7 has the structure shown in Fig. 2.
  • Cylindrical VOC P 3 adsorbent filling material 40 is filled with adsorbent 41 made of activated carbon or zeolite.
  • the concentration device 7 includes the process of adsorbing organic compounds from the exhaust gas and the process of desorbing from the adsorbent 41.
  • the VOC-containing exhaust gas indicated by the arrow 18 passes through the adsorbent 41 in the range c_.d-a-o.
  • the VOC-containing exhaust gas 18 is adsorbed on the adsorbent 4 1, and the VOC content is 90% or more removed by the arrow 19.
  • the adsorbent 4 1 is heated to release VOC from the adsorbent 4 1 again.
  • V 0 C leaves the adsorbent 4 1 at a temperature of about 1 80.
  • the a-b-o region in the figure is the separation process region, and arrows 1 2 are compressed soot discharge air 1 2 heated by adiabatic compression in the compressor, while this passes through the rotor 4 Q
  • the VOC adsorbed by the adsorbent 4 1 in a '-b- o is separated and mixed with the compressor discharge air 1 2 and flows out of the concentrator.
  • the VOC adsorbed at the time of passage between c and d and a by rotating by the driving means such as Moyuichi (not shown) around the rotation axis 4 2 is between a and b.
  • the cooling area b-c-o in the figure may be provided.
  • Adsorbent cooling air 2 8 is passed through b—c—o section to cool adsorbent 4 1.
  • the chilled adsorbent 41 again enters the VOC adsorption process. Cooling of the adsorbent 4 1 with adsorbent cooling air 2 8 is effective for shortening the cooling time. Although effective, it may be natural cooling without passing through the adsorbent cooling air 28.
  • the exhaust 19 from which the VOC component has been removed is released into the atmosphere.
  • the P concentrator has an intake flow rate of approximately 60 Nm 3 Zmin, a VOC exhaust gas of 30 Nm Vmin, and an average VO C farming rate of 400 ppm.
  • the VOC concentration can be increased fivefold, so the VOC concentration contained in the air sent to the combustor 5 is 200 ppm. Due to the thermal energy generated when this concentration of VOC is oxidatively decomposed in the combustor 5, the combustor 5 can reduce the originally required fuel by about 40%. Also, in the combustor 5., the combustion temperature reaches above 100000, so the VOC component is completely resolved.
  • the heat recovery rate in the heat exchange is improved as the temperature of the VOC-containing compressed air 13 is lowered.
  • the air temperature is approximately the same as the discharge temperature of the compressor and has a temperature of about 200.
  • the concentrator 7 is passed, the heat energy is lost due to VOC separation in the concentrator 7, so that the air temperature at the outlet of the concentrator decreases to about 50. For this reason, in order to further improve the heat recovery efficiency in the regenerative heat exchanger 6, the efficiency of the evening bin system is also improved.
  • VOC is oxidatively decomposed by the combustor 5 of the evening bin device, so it can be completely decomposed, and the oxidative decomposition heat generated at that time can reduce the fuel required for turbine operation and generate power. It can be performed.
  • VO C Is supplied from the concentrator 7 located between the compressor 2 and the regenerative heat exchanger 6 to the evening bottle apparatus, so that only the high temperature parts of the regenerative heat exchanger 6 and the combustor 5 are touched. Since it is not supplied to the low-temperature and normal-pressure areas such as the compressor 2 intake side and the generator 1, it has the effect of preventing damage to the turbine parts due to VOC, such as corrosion of parts due to leakage of the low-temperature parts.
  • the heat source is required for the processing system ⁇ , and the concentrated air is directly introduced into the compressor of the turbine.
  • the compressor performance decreases as the intake air temperature rises ⁇ and the turbine output decreases. Turbine performance deteriorates because energy for heating is required and the concentrated gas is directly sucked.
  • the heat source for removing VOC is obtained from the exhaust gas of the turbine, and no special heat source is required, but before the concentrated air is taken into the compressor, the air temperature is reduced by the cooling device. Is reduced. For this reason, the system needs a device to cool the compressor intake air. ',
  • the compressor discharge air 12 raised in temperature by the adiabatic crushing action in the compressor 2 is used as the heat source for the heat detachment of the concentrator 7, so that No need for a heat source.
  • the concentrating device is arranged on the compressor discharge side, the temperature of the compressor intake air is not increased by the heating source of the concentrating device.
  • the regenerative heat exchanger 6 was installed in the evening bin. However, even in the evening bin system without the regenerative heat exchanger 6, corrosion of low temperature parts, etc. can be prevented. The same effect is obtained that the compressor discharge air 12 can be effectively used as a heating source for the contribution of VOC to power generation and for the heat separation of the concentrator 7.
  • FIG. 3 is a view showing another embodiment of the present date.
  • FIG. 3 is a system similar to the VOC-containing exhaust gas treatment system shown in FIG. 1, but the intake intake of the compressor 2 of the turbine unit is different from the system shown in FIG. In FIG. 1, all the intake air of the compressor 2 is taken from the atmosphere side. However, in the embodiment of FIG. 3, the air of the compressor 2 fles from the VOC exhaust gas generator 8 through the concentrator 7 and is discharged. Adsorbent 4_ ⁇ in the concentrator. Since the VOC component has been removed, the exhaust gas after passing through the concentrator 7 on the intake side of the compressor 2
  • VOCs concentrated by the concentrator 7 are oxidatively decomposed in the combustor .5, and the fuel that the turbine system originally needs can be reduced by the energy released at that time to generate electricity. :
  • the VOC exhaust gas storm blower 9 that supplies VOC-containing exhaust gas 18 to the concentrator unit 9 is supplied in an amount equal to the amount of intake from the compressor 2. Because it can be reduced, the power can be reduced by approximately 20%.
  • FIG. 4 shows another embodiment of the present invention.
  • Fig. 4 shows basically the same configuration as Fig. 1. The difference is that the concentrator 7 has a cooling air supply line for cooling the adsorbent.
  • Adsorbent cooling air blower blower 20 sucks air and blows it to concentrator 7 to cool adsorbent 41 after VOC release.
  • the cooling air exhaust 21 after passing through the adsorbent is released into the atmosphere as it is.
  • the cooling air blowing line in Fig. 4 can also be applied to the system configuration shown in Fig. 3.
  • the adsorbent 4 1 in the heated state after the VOC separation of the concentrator 7 can be cooled in a short time, the space of the concentrator 7 can be reduced, and the VOC There is an effect that the exhaust gas treatment power generation system can be downsized.
  • FIG. 5 is a view showing another embodiment of the present invention.
  • the previous examples shown in Fig. 1, Fig. 3, Fig. 4 and Fig. 4 use VOC for power generation, but the system shown in Fig. 5 uses VOC for cold supply. It is for use.
  • the VO C_ containing exhaust gas treatment system shown in FIG. 5 is composed of a gas turbine device, a VOC exhaust gas blower 9 and a concentrating device 7, and operating using the energy of the turbine exhaust gas. .2 consists of six.
  • Turbine exhaust gas 30 passing through the regenerative heat exchanger 6 passes through the pipe 3 1 through the three-way valve 2 2 and partly passes to the concentrator 7, and the rest passes through the pipe 23 and absorbs the cooling.
  • the waste heat recovery machine 25 which is the heat source for the freezer 26, and exchanges heat with the refrigerant in the P refrigerating machine 26.
  • the method of blowing the VOC-containing exhaust gas to the concentrator 7 is the same as the method shown in Fig. 4, but after the adsorbent cooling air 28 has passed through the concentrator 7, it is not released into the atmosphere as it is. Return to the turbine exhaust pipe 3 1. Since the adsorbent cooling air 28 passes through the concentrator 7 and cools the adsorbent, it is heated to about 140 at the outlet of the concentrator.
  • the cooling air exhaust 21 after passing through the adsorbent and the evening exhaust gas 30 sent from the regenerative heat exchanger are mixed to separate the VO adsorbed on the adsorbent 4 1 of the concentrator 7. Set the temperature appropriately and send it to the separation side of the concentrator 7.
  • the VOC-concentrated gas 27 after passing through the concentrator 7 is sent to the exhaust heat recovery device 25 of the absorption refrigerator. This VOC-containing gas is used as a fuel for replenishment in the exhaust heat recovery device 25. Until the VOCs self-ignite, use an ignition gas to assist combustion.
  • the ignition gas 3 3 is sent from the ignition gas cylinder 3 2 to the exhaust heat recovery device 25 via the supply valve 3 4.
  • the heat of oxidative decomposition of VO C can be used in addition, so the absorption refrigeration and the cold supply capacity of the machine can be increased.
  • the VOC-containing exhaust gas 18 is not introduced into the compressor intake side, but the QC-containing exhaust gas 3 ⁇ 4 is introduced into the compressor outlet side. This has the effect of preventing damage to turbine parts due to VOO, such as corrosion of parts due to leakage to the parts. ,.
  • FIG. 6 is a diagram showing another embodiment of the present invention.
  • Fig. 6 shows a system that uses both VOC shown in Fig. 4 for power generation and VOC shown in Fig. 5 as a system that uses the absorption chiller 26 for generating cold heat.
  • a large amount of exhaust gas containing V O C can be treated, and there is an effect that the heat of oxidation decomposition of V O C can be converted into both power generation and cold generation.
  • the same effect can be obtained by using the power generation system shown in Fig. 1 or Fig. 3.
  • a concentration apparatus having the structure shown in FIGS. 7 and 8 may be used.
  • This concentrator separates the VOC exhaust gas from the concentrated VOC-containing air, so it needs to be sealed against the VOC concentration, and the enrichment air uses the compressor discharge air, so it has a higher pressure than the VOC exhaust gas. Therefore, a seal structure against pressure is also required.
  • Fig. 7 shows a cross section in a direction perpendicular to the concentrator. In the embodiment of FIG. 7, the circular cross section is divided into eight equal parts, and each divided region is surrounded by an outer frame 10 1, an inner frame 1 0 2, and a radial partition frame 1 0 3. The VOC adsorbent 41 is contained in this.
  • the divided areas are numbered 1 1 0, 1 1 1 and so on from the upper right.
  • the direction of rotation is the direction of arrows 104.
  • the divided area 11 1 is an area through which the compressor discharge air 1 2 passes, and the air that has passed through this area sends concentrated V 0 C to the combustor 5 of the gas evening bottle.
  • Regions 1 1 3 to 1 1 7 are regions where V C exhaust gas 18 passes through the V OC exhaust gas and the V OC adsorbent weeding region.
  • Regions 1 1 0 and 1 1 2 are regions that are not in contact with either the VOC-containing exhaust gas 18 or the compressor discharge air 1 2.
  • FIG. 8 is a cross-sectional view taken along the line A_A of FIG.
  • Protrusion 1 0 5 is provided on the end plate 1 0 6 of the concentration device to seal the regions 1 1 1 and 1 1 7 or 1 1 1 and 1 1 3. ,
  • the method of rotating the VOC adsorbent filling port overnight can be either continuous or intermittent.
  • the amount of air supplied to the combustor 5 and the VOC concentration are constant in relation to the rotation, but the low-pressure low-temperature VOC exhaust gas and the high-pressure high-temperature compressor discharge air 1
  • the interval between the projections 10 5 must be such that the end face of the radial partition frame 1 0 3 is in contact with the projection 1 0 5 during rotation.
  • the rotation by intermittent operation is fixed at the position shown in FIG. 8 when the rotor is stationary, that is, the position where the compressor discharge pipe 10 7 and the radial partition frame 10 3 match. After a certain period of time, the VOC adsorbent filling row 40 rotates quickly and the next divided area is fixed.
  • the projections 105 are densely arranged on the end plate 106 side of the concentrating device facing the end face of the radial partition frame 103. Both low-pressure and low-temperature VOC-containing exhaust gas 1 8 and high-pressure and high-temperature compressor discharge air 1 2 have a sealing effect. Demonstrated. However, because of intermittent operation, before and after low speed rotation, fuel; t
  • the VOC adsorbent-filled rotor 40 is not limited to a cylinder but may be a cylinder with a regular polygonal cross section.
  • the concentrator having the structure shown in FIGS. 7 and 8, the area ratio _ V shed C ⁇ concentrate that passes the compressor unloading ⁇ gas 1 2 and VO .C exhaust gas - 5 times -.
  • the adsorbent cooling air 28 may be passed through the divided areas 1 1 3. In this case, the concentration is quadrupled.

Abstract

This invention provides a volatile organic compound-containing waste gas treatment system for treating a volatile organic compound-containing gas using a gas turbine. In order to prevent damage to components of an electric generator due to attack by a volatile organic compound-containing gas, a volatile organic compound-containing waste gas concentrator is installed between the delivery side in a compressor and a combustor in a gas turbine unit. Air of which the temperature has been raised in the course of compression by adiabatic compression in the compressor is used as heat necessary for eliminating a volatile organic compound from an adsorbent in the concentrator. The volatile organic compound-containing gas is introduced from the delivery side of the compressor into the turbine system. Accordingly, the gas is not leaked into equipments which stand in a row toward an air intake side of the compressor, such as an electric generator, and thus does not damage to these equipments.

Description

明 .、 細 書  Specification
揮発性有機化合物含有排ガス処理システム  Exhaust gas treatment system containing volatile organic compounds
.技術分野 .Technical field
本発明は揮発性有機化合物含有排ガス処理シズテムに.係り、 特に印刷 _工—場 _, 塗装-工場および半.導体製造.ェ場等から排出され 揮発性有.機化合 物含有が有する熱.エネルギーを電力等のエネルギーに変換する揮発性有 機化合物含有排ガス処理シス'テムに関する.。 背景技術 ' .  The present invention relates to a volatile organic compound-containing exhaust gas treatment system, and in particular, heat emitted from a printing factory, painting factory, semi-conductor manufacturing factory, etc., containing volatile organic compounds. This relates to an exhaust gas treatment system containing volatile organic compounds that converts energy into energy such as electric power. Background Technology '.
揮発性有機化合物 (以後 V O Cと略記 : Volatile Organic Compounds) 含有の排ガスを酸化分解させるときに発生する酸化分解熱を発電に利用 する V O C含有排ガス処理システム (VO C含有排ガス分解堯電システ ム) は、 例えば 開 2 0 0 4— 3 .6 5 2 3号公報 (特許文献 1 ) または 特開 2 0 0 1 — 7 0 7 50号公報 (特許文献 2 ) に開示されているよう なものがある。 これらの装置では、 排ガス中の V〇 Cを濃縮したガスを ガスタービンシステムに導き、 ガスタービンシステムの圧縮機によって 加圧して燃焼器にてタービン燃料と一緒に燃焼させることで、 V O Cを 酸化分解すると同時にそのときに発生する分解熱を発電に利用するもの である。 発明の開示  A VOC-containing exhaust gas treatment system (VOC-containing exhaust gas decomposition / extinguishing system) that uses the heat of oxidative decomposition generated when oxidative decomposition of exhaust gas containing volatile organic compounds (hereinafter abbreviated as VOC) is used for power generation. For example, there are those disclosed in Japanese Patent Application Laid-Open No. 2000-3.6 5 2 3 (Patent Document 1) or Japanese Patent Application Laid-Open No. 2 0 0 1-7 0750 (Patent Document 2). . In these devices, the gas enriched with VOC in the exhaust gas is guided to the gas turbine system, pressurized by the compressor of the gas turbine system, and combusted with the turbine fuel in the combustor, thereby oxidizing and decomposing VOC. At the same time, the heat of decomposition generated at that time is used for power generation. Disclosure of the invention
上記特許文献 1, 2に記載の処理システムでは、 VO C濃縮ガスを直 接圧縮機の吸気側から導入しているため、 長期間の運用の間に、 V〇 C 濃縮ガスの一部が、 発電機ロータに沿って発電機側に漏洩する可能性が あり、 Vひ c濃縮ガスに含まれる酢酸ェチル等の酢酸系成分が、 発霄機 部品を腐食させる可能性がある.。 In the processing systems described in Patent Documents 1 and 2 above, VOC concentrated gas is introduced directly from the intake side of the compressor. There is a possibility of leakage to the generator side along the generator rotor. Yes, acetic acid-based components such as ethyl acetate contained in V-rich gas may corrode the generator parts.
本発明の目的は.、 ガスタービンを用いて V〇 C排ガスを処理するシス ,テムにおいて、 濃縮 V O Cガズによる発電機部品のダメージを防止でき る V O C含有排ガス処理システム( V.O C含有排カ ;ス分解発電システム)An object of the present invention is cis to handle V_〇 C exhaust gas by using the gas turbine, in Temu, VOC-containing exhaust gas treatment system that can prevent damage to the generator components by concentration VOC Gaz (VO C containing Haika;. Scan Decomposition power generation system)
—を提供す こ—どにある : ― 一—一 - .—.—二 . 本発明は上記目的を達成するために、 V O C含有排ガス中の V O Cを 濃縮する濃縮 置をガスター'ビ 装置の圧縮機吐出側に設置するよう構 成したものである。 ' In order to achieve the above object, the present invention provides a concentrator for concentrating VOC in the VOC-containing exhaust gas to compress the gas turbine device. It is configured to be installed on the machine discharge side. '
本発明は、 圧縮機吐出側に濃縮.装置を設置す'ることで、 V O C濃縮ガ スは圧縮機の吐出側からタービンシステムに取り込まれるため発電機等 の圧縮機吸気側に連なる機器にもれることはなく、 発電機部品等の低温 側部品の腐食等のダメージを防止できるという効果がある。 . 図面の簡単な説明 '  In the present invention, the VOC concentrating gas is taken into the turbine system from the compressor discharge side by installing a concentrating device on the compressor discharge side. This prevents damage such as corrosion of low-temperature parts such as generator parts. Brief description of the drawings ''
第 1囪 : 本発明による揮発性有機化合物含有排ガス処理システムの第 1 の実施形態を示す図。  First view: A diagram showing a first embodiment of an exhaust gas treatment system containing a volatile organic compound according to the present invention.
第 2図 : V O C濃縮装置の概略構造を ^明する図。  Fig. 2: A schematic diagram of the VOC concentrator.
第 3図 : 本発明による揮発性有機化合物含有排ガス処理システムの第 2 の実施形態を示す図。  FIG. 3 is a diagram showing a second embodiment of the volatile organic compound-containing exhaust gas treatment system according to the present invention.
第 4図 : 本発明による揮発性有機化合物含有排ガス処理システムの第 3 の実施形態を示す図。  FIG. 4 is a diagram showing a third embodiment of an exhaust gas treatment system containing a volatile organic compound according to the present invention.
第 5図 : 吸収冷凍機と組み合わせた揮発性有機化合物含有排ガス処理シ ステムの実施形態を示す図。  FIG. 5 is a diagram showing an embodiment of an exhaust gas treatment system containing a volatile organic compound combined with an absorption refrigerator.
第 6図 : 発電システムと吸収冷凍機と組み合わせた揮発性有機化合物含 有排ガス処理システム、の実施形態を示す図。 Figure 6: Containing volatile organic compounds in combination with power generation system and absorption refrigerator The figure which shows embodiment of an exhaust gas treatment system.
第 7図 : シール'構造を備えた V O C.濃縮装置の正面図。. Fig. 7: Front view of V O C. Concentrator with seal 'structure. .
第 8図 : 第 7図の A— A矢視の断面図。 発明を実施するための最良の形態 Fig. 8: Cross section taken along line AA in Fig. 7. BEST MODE FOR CARRYING OUT THE INVENTION
実—施—例.1 -」―…― , : ― ' . : 一. . …― 以下本発明による第 1の実施の形態を第 1図に示す V O C含有排ガス 分解処理.システム ( V O C含有排ガス分解発電システム) のシステム図 に基づいて説明する。 Example-1-"-...-,:-'.: 1...-VOC-containing exhaust gas decomposition treatment system according to the first embodiment of the present invention shown in Fig. 1 (VOC-containing exhaust gas) This will be explained based on the system diagram of the cracking power generation system.
第 1図に示す V〇 C排ガス分解処理システム'は、 ガス夕一ビン装置と V O C排ガス送風用ブロワ 9及び濃縮装置 7からなる。 'ガスタービン装 置は発電機 1, 圧縮機 2, 夕一ビン 3と、 それらを結合する.発電機口一 夕 4, 燃焼器 5.、 および再生熱交換器 6から成る。 発電機 1ほ、 永久磁 石式発電機口一^を組み込んだ発電機である。 また、 発電機 1は、 高温 部品である夕一'ビン 3から離して配置した方が良いため、 本実施形態で は、 発電機 1, 圧縮機 2, .タービン 3の jl頃序で配置されている。 圧縮機 吸氡フィル夕一 1 0を介して大気から空気 1 1が圧縮機に取り込まれる。 この空気 1 1は圧縮機 2によって昇圧され圧縮機吐出空気 1 2 として濃 縮装置 7に導入される。 濃縮装置 7では、 濃縮された V O Cが圧縮機吐 出空気 1 2中に加熱離脱する。 濃縮 V O C含有圧縮空気 1 3は再生熱交 換器 6を通過して燃焼器 5に送られる。 この濃縮 V O C含有圧縮空気 1 3は、 燃焼器 5で、 燃焼器 5に送られる燃料 1 4と混合して燃焼し、 燃焼ガス 1 5 としてタービン 3に送られる。 タービン 3では燃焼ガス 1 5の膨張により発電機ロー夕 4を回転させる。 夕一ビン 3で膨張仕事 をしたタービン排気ガス 1 6は再び再生熱交換器 6を通り排気 1 7 とし て大気へと排出される。 ここで,、 タービン排気ガス 1 6は再生熱交 器 6で、濃縮装置 7を通過した濃縮 V O C含有圧縮空気 1 3 と熱交換して、 濃縮 V O C含有庄.縮 ¾気 1 3を昇温させる。 また、 V O C含有排ガス . 1 8は、 V O C排ガス発生装置 8から V O C排ガス送風用ブロワ 9によ つて、 濃縮装置 7 に送られる。 The VOC exhaust gas decomposition treatment system 'shown in Fig. 1 consists of a gas evening bottle device, a VOC exhaust gas blower 9 and a concentrator 7. 'The gas turbine unit consists of a generator 1, a compressor 2, an evening bin 3, and a combination of them. A generator port 4 and a combustor 5. And a regenerative heat exchanger 6. Generator 1 is a generator incorporating a permanent magnet generator port. In addition, since the generator 1 is preferably arranged away from the high temperature component Yuichi 'bin 3, in this embodiment, the generator 1, the compressor 2, and the turbine 3 are arranged around jl. ing. Compressor Air 1 1 is taken into the compressor from the atmosphere through the suction fill 10. The air 11 is pressurized by the compressor 2 and introduced into the concentrating device 7 as compressor discharge air 12. In the concentrator 7, the concentrated VOC is heated and separated into the compressor discharge air 1 2. The concentrated VOC-containing compressed air 13 passes through the regenerative heat exchanger 6 and is sent to the combustor 5. The concentrated VOC-containing compressed air 13 is mixed with the fuel 14 sent to the combustor 5 and combusted in the combustor 5 and sent to the turbine 3 as combustion gas 15. In the turbine 3, the generator row 4 is rotated by the expansion of the combustion gas 15. Turbine exhaust gas 1 6 which expanded in the evening bottle 3 passes through the regenerative heat exchanger 6 and becomes exhaust 1 7 again. To the atmosphere. Here, the turbine exhaust gas 16 is regenerated in the regenerative heat exchanger 6 and heat-exchanged with the concentrated VOC-containing compressed air 13 that has passed through the concentrator 7 to raise the temperature of the concentrated VOC-containing compressed gas 13. . Further, the VOC-containing exhaust gas 18 is sent from the VOC exhaust gas generator 8 to the concentrator 7 by the VOC exhaust gas blower 9.
. —ここで、. -濃縮装置 7は第 2.図に示したよう.な構造になっている..。 円筒 形の V O C P¾着材充填ロー夕 4 0に活性炭ゃゼォライ ト等からなる吸着 材 4 1が充填されている。, 濃 装置 7は排.ガスから有機化合物を吸着す る過程と吸着材 4 1から離脱させる過程を含む。 第 2図において c _ .d — a— oの範囲の吸着.材 4 1は、 .矢印 1 8で示される V O C含有排ガス が通過する。 V O C含有排ガス 1 8は吸着材 4 1 に V O Cを吸着させて 矢印 1 9で V O Cの含有量を 9 0 %以上除去された状態になる。 吸着材 4 1から再び V O Cを離脱させるため吸着材 4 1 を加熱する。. 1 8 0 程度の温度で、 とんどの V 0 Cは吸着材 4 1から離脱する。. 図の a— b - oの領域が離脱過程め領域で、 矢印 1 2は圧縮機での断熱圧縮作用 によって加熱された圧縮槔吐出空気 1 2であり、 これがロータ 4 Q内を 通過する間に a '— b— o内の吸着材 4 1 に吸着された V O Cは離脱して 圧縮機吐出空気 1 2 と混合して、 濃縮装置から流出する。 つまり、 ロー 夕 4 0が回転軸 4 2を中心に、 図示しないモー夕一等の駆動手段によつ て回転することによって c — d— a間の通過時に吸着された V O Cは a 一 b間で全て離脱し濃縮される。 加熱空気が通過した吸着材 4 1 を再び V O Cを吸着させるために冷却を行うため、 図の b— c — oの冷却領域 を設ける場合がある。 吸着剤冷却空気 2 8を b— c— o部に通して吸着 材 4 1を冷やす。 冷えた吸着材 4 1は再び V O Cの吸着過程に入る。 吸 着剤冷却空気 2 8による吸着材 4 1の冷却は冷却時間を短くする上で有 効であるが、 吸着剤冷却空気 2 8を通さずに自然冷却としても良い。 VO C成分を除去した排気 1 9は大気に放出される。 ¾:お、 圧縮機 2で の断熱圧縮作用により、 圧縮機吐出空気 1 2の温度は.1 8 0〜 2 0 0 ,になっており、 この空気が濃縮装置 7.を通過する際に吸着材 4 1から V O C成分を離脱させる。 濃縮装置 7を通過して、 離脱した VO C成分 を食有する m縮機 ¾出空気 1_2は、 濃縮 VO— .C盒有圧縮—空気二 L 3 LX 再生熱交換器 6に導入され、 その後、 燃焼器 5に送られる。 -Where:-Concentrator 7 has the structure shown in Fig. 2. Cylindrical VOC P 3 adsorbent filling material 40 is filled with adsorbent 41 made of activated carbon or zeolite. The concentration device 7 includes the process of adsorbing organic compounds from the exhaust gas and the process of desorbing from the adsorbent 41. In Fig. 2, the VOC-containing exhaust gas indicated by the arrow 18 passes through the adsorbent 41 in the range c_.d-a-o. The VOC-containing exhaust gas 18 is adsorbed on the adsorbent 4 1, and the VOC content is 90% or more removed by the arrow 19. The adsorbent 4 1 is heated to release VOC from the adsorbent 4 1 again. Most of the V 0 C leaves the adsorbent 4 1 at a temperature of about 1 80. The a-b-o region in the figure is the separation process region, and arrows 1 2 are compressed soot discharge air 1 2 heated by adiabatic compression in the compressor, while this passes through the rotor 4 Q In addition, the VOC adsorbed by the adsorbent 4 1 in a '-b- o is separated and mixed with the compressor discharge air 1 2 and flows out of the concentrator. In other words, the VOC adsorbed at the time of passage between c and d and a by rotating by the driving means such as Moyuichi (not shown) around the rotation axis 4 2 is between a and b. To leave and concentrate. In order to cool the adsorbent 4 1 through which the heated air has passed in order to adsorb VOC again, the cooling area b-c-o in the figure may be provided. Adsorbent cooling air 2 8 is passed through b—c—o section to cool adsorbent 4 1. The chilled adsorbent 41 again enters the VOC adsorption process. Cooling of the adsorbent 4 1 with adsorbent cooling air 2 8 is effective for shortening the cooling time. Although effective, it may be natural cooling without passing through the adsorbent cooling air 28. The exhaust 19 from which the VOC component has been removed is released into the atmosphere. ¾: Owing to the adiabatic compression action in the compressor 2, the temperature of the compressor discharge air 12 is .180-200, and is adsorbed when this air passes through the concentrator 7. Remove VOC component from material 4 1. The m-reducer that passes through the concentrator 7 and eats the VO C component that has been removed ¾ The extracted air 1_2 is introduced into the concentrated VO-.C-containing compressed-air 2 L 3 LX regenerative heat exchanger 6, and then Sent to combustor 5.
第 1図に示す例では圧歸機' 2の吸気流量は約 6 0 Nm3Zminで、 VOC 排ガスは 3 0 0 Nm Vmin, で VO Cの平均農度は 4 0 0 ppm である P 濃縮装置 7では VO C濃度を 5倍に高めることができるため燃焼器 5に 送られる空気に含まれる VO C濃度は 2 0 0 0 ppm になる。 この濃度の VO Cが燃焼器 5で酸化分解するときに発生する熱エネルギーにより、 燃焼器 5は本来必要とする燃料を約 4 0 %低減できる。 また、 '燃焼器 5. 内では燃焼温度ば 1 0 0 0で以上に達するため、 VO C成分は完全に分 解される。 さらに、 ¾生熱交換器 6.では、 V O C含有圧縮空気 1 3の温 度が低いほど熱交換での熱回収率が向上する。 濃縮 置 7を通過しない で圧縮機 2から直接再生熱交換器 6に流入する場合には空気温度は圧縮 機吐出温度と同等の温度で約 2 0 0 程度の温度を有する。 これに対し て濃縮装置 7を通過させると濃縮装置 7内での VO C離脱のために熱ェ ネルギーを奪われるため濃縮装置出口での空気温度は約 5 0 に低下す る。 このため、 再生熱交換器 6での熱回収効率を更に高めるため夕ービ ンシステムの効率も向上する。 In the example shown in Fig. 1, the P concentrator has an intake flow rate of approximately 60 Nm 3 Zmin, a VOC exhaust gas of 30 Nm Vmin, and an average VO C farming rate of 400 ppm. In 7, the VOC concentration can be increased fivefold, so the VOC concentration contained in the air sent to the combustor 5 is 200 ppm. Due to the thermal energy generated when this concentration of VOC is oxidatively decomposed in the combustor 5, the combustor 5 can reduce the originally required fuel by about 40%. Also, in the combustor 5., the combustion temperature reaches above 100000, so the VOC component is completely resolved. Further, in the heat exchanger 6, the heat recovery rate in the heat exchange is improved as the temperature of the VOC-containing compressed air 13 is lowered. When flowing directly from the compressor 2 into the regenerative heat exchanger 6 without passing through the concentrating unit 7, the air temperature is approximately the same as the discharge temperature of the compressor and has a temperature of about 200. On the other hand, if the concentrator 7 is passed, the heat energy is lost due to VOC separation in the concentrator 7, so that the air temperature at the outlet of the concentrator decreases to about 50. For this reason, in order to further improve the heat recovery efficiency in the regenerative heat exchanger 6, the efficiency of the evening bin system is also improved.
本実施例では、 VO Cを夕一ビン装置の燃焼器 5で酸化分解するため、 完全に分解でき、 またその時に発生する酸化分解熱のため、 タービン駆 動に必要な燃料を低減できて発電を行うことができる。 さらに、 VO C は圧縮機 2 と再生熱交換器 6の間に位置する濃縮装置 7から夕一ビン装 置に供給されるため、 再生熱交換器 6と燃焼器 5の高温部位のみに触れ ることになり、 圧縮機 2吸気側や発電機 1 といった低温, 常圧領域には ,供給されないため、 低温部位べの漏れによる部品の腐食等、 V O Cによ るタービン部品のダメージを防止できるという効果がある。 In this example, VOC is oxidatively decomposed by the combustor 5 of the evening bin device, so it can be completely decomposed, and the oxidative decomposition heat generated at that time can reduce the fuel required for turbine operation and generate power. It can be performed. In addition, VO C Is supplied from the concentrator 7 located between the compressor 2 and the regenerative heat exchanger 6 to the evening bottle apparatus, so that only the high temperature parts of the regenerative heat exchanger 6 and the combustor 5 are touched. Since it is not supplied to the low-temperature and normal-pressure areas such as the compressor 2 intake side and the generator 1, it has the effect of preventing damage to the turbine parts due to VOC, such as corrosion of parts due to leakage of the low-temperature parts.
.尚..、 先に示レ こ特許文献 2._では.、 処 '理シス Λに加熱元.を必要.とする ほか、 濃縮後の空気を直接タービンの圧縮機に導入している。 圧縮機の 性能は吸入空気の温度が ±昇するど低下し.、 タービン出力も低下する。 加熱用のエネルギーが必要な上に、 更に濃縮 スを直接吸気するため、 タービン性能は低下する。さらに特許文献 1 に記載の処理システムでは、 V O C離脱用の熱源はタービンの排ガスから得ており、 特別な熱源を要 しないが、 濃縮後の空気を圧縮機に吸気する前に冷却装置で空気温度を 低下させている。 このため、 システムには圧縮機吸気空気を冷却する装 置が必要になる。 ' ,  In addition, in this patent document 2._, the heat source is required for the processing system Λ, and the concentrated air is directly introduced into the compressor of the turbine. The compressor performance decreases as the intake air temperature rises ± and the turbine output decreases. Turbine performance deteriorates because energy for heating is required and the concentrated gas is directly sucked. Furthermore, in the treatment system described in Patent Document 1, the heat source for removing VOC is obtained from the exhaust gas of the turbine, and no special heat source is required, but before the concentrated air is taken into the compressor, the air temperature is reduced by the cooling device. Is reduced. For this reason, the system needs a device to cool the compressor intake air. ',
これに対し、 '本実施例では、 圧縮機 2での断熱圧綸作用により昇温し た圧縮機吐出空気 1 2を、 濃縮装置 7の加熱離脱用熱源として利用する ため、過熱離脱用の特別な加熱源を必要としない。 また、本実施例では、 濃縮装置を圧縮機吐出側に配置しているため、 濃縮装置の加熱源によつ て圧縮機吸気空気が昇温することはない。  On the other hand, in this embodiment, the compressor discharge air 12 raised in temperature by the adiabatic crushing action in the compressor 2 is used as the heat source for the heat detachment of the concentrator 7, so that No need for a heat source. In this embodiment, since the concentrating device is arranged on the compressor discharge side, the temperature of the compressor intake air is not increased by the heating source of the concentrating device.
尚、 第 1図に示した実施例では夕一ビンは再生熱交換器 6を設置した が、再生熱交換器 6を設置しないタイプの夕一ビンシステムにおいても、 低温部品の腐食等の防止, V O Cの発電への寄与、 及び、 濃縮装置 7の 加熱離脱に圧縮機吐出空気 1 2を加熱源として有効利用できるという同 様な効果は得られる。  In the embodiment shown in Fig. 1, the regenerative heat exchanger 6 was installed in the evening bin. However, even in the evening bin system without the regenerative heat exchanger 6, corrosion of low temperature parts, etc. can be prevented. The same effect is obtained that the compressor discharge air 12 can be effectively used as a heating source for the contribution of VOC to power generation and for the heat separation of the concentrator 7.
実施例 2 第 3図は.本発日月の他の実施例.を示した図である。 第 3図は第 1図に示 した V O C含有排ガス処理システムと同様なシステムであるが、 タービ ン装置の圧縮機 2の吸気の取り入れ口が第 1図に示したシステムと異な .る。 第 1図では圧縮機 2の吸気は全て大気側から取り入れているが、 第 3図の実施例では圧縮機 2の空気は V O C排ガス発生装置 8から濃縮装 置 7を通し fl及:気する。 濃縮装置 で 吸着材 4_Λによ-り. V O C成分が 除去されているため、 圧縮機 2の吸気側に濃縮装置 7通過後の排ガスExample 2 FIG. 3 is a view showing another embodiment of the present date. FIG. 3 is a system similar to the VOC-containing exhaust gas treatment system shown in FIG. 1, but the intake intake of the compressor 2 of the turbine unit is different from the system shown in FIG. In FIG. 1, all the intake air of the compressor 2 is taken from the atmosphere side. However, in the embodiment of FIG. 3, the air of the compressor 2 fles from the VOC exhaust gas generator 8 through the concentrator 7 and is discharged. Adsorbent 4_Λ in the concentrator. Since the VOC component has been removed, the exhaust gas after passing through the concentrator 7 on the intake side of the compressor 2
2 9には y O C成分はほ んど含まれていない。 この空気を圧縮して夕 一ビンを作動させる。 濃縮装置 7によつて濃繪された V O Cが燃焼器.5 で酸化分解され、 そのときの放出エネルギーによってタービンシステム が本来必要とする燃料を低減して発電できる。 : 29 contains almost no y O C component. This air is compressed to operate the evening bottle. VOCs concentrated by the concentrator 7 are oxidatively decomposed in the combustor .5, and the fuel that the turbine system originally needs can be reduced by the energy released at that time to generate electricity. :
本実施例では、 実施例 1 に挙げた効杲に加えて、 濃縮装置マに V O C 含有排ガス 1 8を供給する V〇 C排ガス送嵐用ブロワ 9は圧縮機 2の吸 気分だけ供給量を'低減できるため、 約 2 0 %動力低減できるという効果 がある ' ' '  In this example, in addition to the effects listed in Example 1, the VOC exhaust gas storm blower 9 that supplies VOC-containing exhaust gas 18 to the concentrator unit 9 is supplied in an amount equal to the amount of intake from the compressor 2. Because it can be reduced, the power can be reduced by approximately 20%.
実施例 3 . Example 3.
第 4図は本発明の他の実施例を示した図である。 第 4図は第 1図ど基 本的に同一の構成である。 異なるところは、 濃縮装置 7に吸着材冷却用 の冷却空気供給ラインを設置したところである。 吸着材冷却空気送風用 ブロワ 2 0は大気を吸い込み濃縮装置 7に送風して V O C離脱後の吸着 材 4 1の冷却を行う。 吸着材通過後の冷却空気の排気 2 1はそのまま大 気に放出される。 なお、 第 4図の冷却空気送風ラインは、 第 3図に示し たシステム構成にも適用できる。  FIG. 4 shows another embodiment of the present invention. Fig. 4 shows basically the same configuration as Fig. 1. The difference is that the concentrator 7 has a cooling air supply line for cooling the adsorbent. Adsorbent cooling air blower blower 20 sucks air and blows it to concentrator 7 to cool adsorbent 41 after VOC release. The cooling air exhaust 21 after passing through the adsorbent is released into the atmosphere as it is. The cooling air blowing line in Fig. 4 can also be applied to the system configuration shown in Fig. 3.
本実施例では濃縮装置 7の V O C離脱後の加熱状態にある吸着材 4 1 を短時間に冷却できるので濃縮装置 7のスペースを小さく出来、 V O C 排ガス処理発電システムを小型、化できるという効果がある。 In this embodiment, since the adsorbent 4 1 in the heated state after the VOC separation of the concentrator 7 can be cooled in a short time, the space of the concentrator 7 can be reduced, and the VOC There is an effect that the exhaust gas treatment power generation system can be downsized.
実施例 4 . Example 4.
第 5図は本発明の他の実施例を示した図である。 これまでの第 1図, ,第 3図, 第 4図に示した実施例は、 V〇 Cを発電に利用するものであつ たが、 第 5図に示すシステムは、, V O Cを冷熱供給に利用するものであ る。.—第 5図に示す V O C_含有排ガス処 ¾シス—テムは、 ガスタービン装置 と.、 V O C排ガス送風ブロワ 9および濃縮装置 7 と、 タービン排ガスの エネルギーを利用して作動す ¾吸収冷凍機.2 6から成る。 再生熱交換器 6を通過してくるタービン排ガス 3 0は、 三方弁 2 2で配管 3 1 を通過 して一部は濃縮装置 7へ送られ、 また残りは配管 2 3を通過して吸収冷 凍機 2 6の熱源となる排熱回収機 2 5に送られ、 P 収冷凍機 2 6の冷媒 と熱交換される。 濃縮装置 7への V O C含有排ガスの送風方法は第 4図 に示した方法と同様であるが、 吸着材冷却空気 2 8が濃縮装置 7を通過 した後は、. そのまま大気に放出するのでなくて、 タービン排気ガス用配 管 3 1 に戻す。 吸着材冷却空気 2 8は濃縮装置 7 通過後、 吸着材を冷 却するため、 濃縮装置出口では約 1 4 0 程度まで 温する。 この吸着 材通過後の冷却空気の排気 2 1 と再生熱交換器から送られてくる夕ービ ン排ガス 3 0を混ぜて、 濃縮装置 7の吸着材 4 1 に吸着された V Oじの 離脱に適した温度にして、 濃縮装置 7の離脱側に送る。 濃縮装置 7通過 後の V O C濃縮含有ガス 2 7は吸収冷凍機の排熱回収装置 2 5に送られ る。 この V O C含有ガスは、 排熱回収装置 2 5内で、 追焚用の燃料とし て使用される。 V O Cが自己着火するまでは、 着火用ガスを用いて燃焼 を補助する。 着火用ガス 3 3は着火用ガスボンベ 3 2から供給弁 3 4を 介して排熱回収装置 2 5に送られる。 図示していない点火栓装置で着火 され、 V O C燃焼の種火を発生させ、 V O Cの酸化分解反応を維持させ る。 V O Cの酸化分解が進み温^が上がってきて V O Cの自己分解温度 に到達した後は; 着火用ガス 3 3の供給は止められる。 . FIG. 5 is a view showing another embodiment of the present invention. The previous examples shown in Fig. 1, Fig. 3, Fig. 4 and Fig. 4 use VOC for power generation, but the system shown in Fig. 5 uses VOC for cold supply. It is for use. .—The VO C_ containing exhaust gas treatment system shown in FIG. 5 is composed of a gas turbine device, a VOC exhaust gas blower 9 and a concentrating device 7, and operating using the energy of the turbine exhaust gas. .2 consists of six. Turbine exhaust gas 30 passing through the regenerative heat exchanger 6 passes through the pipe 3 1 through the three-way valve 2 2 and partly passes to the concentrator 7, and the rest passes through the pipe 23 and absorbs the cooling. It is sent to the waste heat recovery machine 25, which is the heat source for the freezer 26, and exchanges heat with the refrigerant in the P refrigerating machine 26. The method of blowing the VOC-containing exhaust gas to the concentrator 7 is the same as the method shown in Fig. 4, but after the adsorbent cooling air 28 has passed through the concentrator 7, it is not released into the atmosphere as it is. Return to the turbine exhaust pipe 3 1. Since the adsorbent cooling air 28 passes through the concentrator 7 and cools the adsorbent, it is heated to about 140 at the outlet of the concentrator. The cooling air exhaust 21 after passing through the adsorbent and the evening exhaust gas 30 sent from the regenerative heat exchanger are mixed to separate the VO adsorbed on the adsorbent 4 1 of the concentrator 7. Set the temperature appropriately and send it to the separation side of the concentrator 7. The VOC-concentrated gas 27 after passing through the concentrator 7 is sent to the exhaust heat recovery device 25 of the absorption refrigerator. This VOC-containing gas is used as a fuel for replenishment in the exhaust heat recovery device 25. Until the VOCs self-ignite, use an ignition gas to assist combustion. The ignition gas 3 3 is sent from the ignition gas cylinder 3 2 to the exhaust heat recovery device 25 via the supply valve 3 4. It is ignited by a spark plug device (not shown) to generate a VOC combustion seed and maintain the oxidative decomposition reaction of VOC. The After the oxidative decomposition of VOC progresses and the temperature rises and reaches the self-decomposition temperature of VOC; the supply of ignition gas 33 is stopped. .
本実施例では、 V〇 Cの酸化分解熱を追焚に使用できるので吸収冷凍 ,機の冷熱供給能力を増加できるという.効果がある.。 また、 上述の実施例 1〜 3 と同様に、圧縮機吸気側に V O C含有排ガス 1 8を導入させずに、 圧縮機— 出側に. y Q C含.有排ガス ¾導入させて るので、 低温部位への 漏れによる部品の腐食等、 V〇 Cによるタービン部品のダメージを防止 できるという効果がある。, . .  In this embodiment, the heat of oxidative decomposition of VO C can be used in addition, so the absorption refrigeration and the cold supply capacity of the machine can be increased. Similarly to Examples 1 to 3 above, the VOC-containing exhaust gas 18 is not introduced into the compressor intake side, but the QC-containing exhaust gas ¾ is introduced into the compressor outlet side. This has the effect of preventing damage to turbine parts due to VOO, such as corrosion of parts due to leakage to the parts. ,.
実施例 5 Example 5
第 6図は本発明の他の実施例を示した図である。. 第 6図は第 4図に示 した V〇 Cを発電に利用するシステムと第 5図に ¾した V O Cを吸収冷 凍機 2 6の冷熱発生に利用するシステムの両方に使用するシステムであ る。 本実施例では大量の V O C含有排ガス 処琿でき、: V O Cの酸化分 解熱を発電と冷熱発生の両方に変換できるという効果がある。.第 6図に おいて、 発電システムは第 1図または第 3図に示し システムを用いて も同様な効果が得られる。  FIG. 6 is a diagram showing another embodiment of the present invention. Fig. 6 shows a system that uses both VOC shown in Fig. 4 for power generation and VOC shown in Fig. 5 as a system that uses the absorption chiller 26 for generating cold heat. The In this embodiment, a large amount of exhaust gas containing V O C can be treated, and there is an effect that the heat of oxidation decomposition of V O C can be converted into both power generation and cold generation. In Fig. 6, the same effect can be obtained by using the power generation system shown in Fig. 1 or Fig. 3.
実施例 6 Example 6
実施例 1ないし 5においては、 第 7図及び第 8図に示された構造の濃 縮装置を用いても良い。 この濃縮装置は、 V O C排ガスと濃縮された V O C含有空気とを分離するため、 V O C濃度に対するシールが必要に なる他、 濃縮用の空気は圧縮機吐出空気を用いるため、 V O C排ガスに 対して高圧になっているため、 圧力に対するシール構造も必要になる。 第 7図は濃縮装置を回転軸に対して直行する方向の断面を示したもので ある。 第 7図の実施例では、 円形断面を 8等分に分割して、 各分割領域 は、 外枠 1 0 1, 内枠 1 0 2、 及び径方向仕切り枠 1 0 3によって囲ま れており、 この中に VO C吸着材 4 1が収納されている。 今、 分割領域 を右上側から 1 1 0, 1 1 1、 と領域の番号をつける。 .回転方向は矢印 1 0 4の方向である。 分割領域 1 1 1は、 圧縮機吐出空気 1 2が通過す ,る領域で、 この部分を通過した空気が濃縮 V〇 Cをガス夕一ビンの燃焼 器 5に送り込む。 領域 1 1 3から 1 1 7までは、 ΫΟ C含有排ガス 1 8 が—通-過する頹域で V O.C排ガス ら、 V O.C 吸着材しこ取り込 領域 である。 領域 1 1 0 と 1 1 2は、 VO C含有排ガス 1 8及び圧縮機吐出 空気 1 2のいずれにも接棒されていない領域である。 半径方向に破線で 示した線 1 0 5は、 濃縮装置の円筒の両端面に設置される突起状のラビ リンスシールである。 第 8図は第 7図の A _ A矢視の断面図である。 濃 縮装置の端板 1 0 6に突起 1 0 5を設けて、 領域 1 1 1と 1 1 7、 また は 1 1 1 と 1 1 3 とをシールする。 , In Examples 1 to 5, a concentration apparatus having the structure shown in FIGS. 7 and 8 may be used. This concentrator separates the VOC exhaust gas from the concentrated VOC-containing air, so it needs to be sealed against the VOC concentration, and the enrichment air uses the compressor discharge air, so it has a higher pressure than the VOC exhaust gas. Therefore, a seal structure against pressure is also required. Fig. 7 shows a cross section in a direction perpendicular to the concentrator. In the embodiment of FIG. 7, the circular cross section is divided into eight equal parts, and each divided region is surrounded by an outer frame 10 1, an inner frame 1 0 2, and a radial partition frame 1 0 3. The VOC adsorbent 41 is contained in this. Now, the divided areas are numbered 1 1 0, 1 1 1 and so on from the upper right. The direction of rotation is the direction of arrows 104. The divided area 11 1 is an area through which the compressor discharge air 1 2 passes, and the air that has passed through this area sends concentrated V 0 C to the combustor 5 of the gas evening bottle. Regions 1 1 3 to 1 1 7 are regions where V C exhaust gas 18 passes through the V OC exhaust gas and the V OC adsorbent weeding region. Regions 1 1 0 and 1 1 2 are regions that are not in contact with either the VOC-containing exhaust gas 18 or the compressor discharge air 1 2. Lines 10 5 indicated by broken lines in the radial direction are protruding labyrinth seals installed on both end faces of the concentrator cylinder. FIG. 8 is a cross-sectional view taken along the line A_A of FIG. Protrusion 1 0 5 is provided on the end plate 1 0 6 of the concentration device to seal the regions 1 1 1 and 1 1 7 or 1 1 1 and 1 1 3. ,
VO C吸着材充填口一夕 4 0の回転の方法は、 連続で.も間欠動作でも どちらでも良い。 '連続回転の場合は、 燃焼器 5への供給空気量と VO C 濃度が回転に関係な 一定するという利点があるが、 低圧低温である VO C排ガスと、 高圧高温である圧縮機吐出空気 1 2 とを回転中にシー ルするため、 突起 1 0 5の設置間隔は、 回転中に径方向仕切り枠 1 0 3 の端面が必ず突起 1 0 5にかかるようにしなければならない。  The method of rotating the VOC adsorbent filling port overnight can be either continuous or intermittent. 'In the case of continuous rotation, there is an advantage that the amount of air supplied to the combustor 5 and the VOC concentration are constant in relation to the rotation, but the low-pressure low-temperature VOC exhaust gas and the high-pressure high-temperature compressor discharge air 1 In order to seal 2 during rotation, the interval between the projections 10 5 must be such that the end face of the radial partition frame 1 0 3 is in contact with the projection 1 0 5 during rotation.
間欠動作による回転とは、 ロータ静止時は第 8図に示した位置関係、 つまり圧縮機吐出配管 1 0 7 と径方向仕切り枠 1 0 3がー致する位置に 定着している。 一定時間経過後、 VO C吸着剤充填ロー夕 4 0が速やか に回転して、 次の分割領域が定着する。 この間欠動作のときは、 第 8図 に示すように径方向仕切り枠 1 0 3の端面に対峙する濃縮装置の端板 1 0 6側には突起 1 0 5を密に配置する。 低圧低温である VO C含有排 ガス 1 8 と、 高圧高温である圧縮機吐出空気 1 2の両方でシール効果が 発揮される。 ただし、 間欠動作のため、 ロー夕回転時の前後で、 燃; t尭器The rotation by intermittent operation is fixed at the position shown in FIG. 8 when the rotor is stationary, that is, the position where the compressor discharge pipe 10 7 and the radial partition frame 10 3 match. After a certain period of time, the VOC adsorbent filling row 40 rotates quickly and the next divided area is fixed. In this intermittent operation, as shown in FIG. 8, the projections 105 are densely arranged on the end plate 106 side of the concentrating device facing the end face of the radial partition frame 103. Both low-pressure and low-temperature VOC-containing exhaust gas 1 8 and high-pressure and high-temperature compressor discharge air 1 2 have a sealing effect. Demonstrated. However, because of intermittent operation, before and after low speed rotation, fuel; t
5への供給空気量と V O C濃度が若干変動する。 なお、.間欠動作の場合 は、 V〇 C吸着材充填ロータ 4 0は円筒に限らず、 正多角形断面の筒型 でも良い。 The amount of air supplied to 5 and the V O C concentration fluctuate slightly. In the case of intermittent operation, the VOC adsorbent-filled rotor 40 is not limited to a cylinder but may be a cylinder with a regular polygonal cross section.
第 7図及び第 8図に示した構造の濃縮装置では、 V O .C排ガスと圧縮 機 出 Φ気 1 2の通過する面積比率 _ Vひ C ©濃縮は- 5倍—にな.る。 第 7図で,、 分割領域 1 1 3に吸着材冷却空気 2 8を通しても良い。 この場 合、 濃縮.は 4倍になる。 The concentrator having the structure shown in FIGS. 7 and 8, the area ratio _ V shed C © concentrate that passes the compressor unloading Φ gas 1 2 and VO .C exhaust gas - 5 times -. In Do Ru. In FIG. 7, the adsorbent cooling air 28 may be passed through the divided areas 1 1 3. In this case, the concentration is quadrupled.

Claims

2 請 求 の 範 囲 2 Scope of request
1 . 空気を吸気して昇圧する圧縮機と、 揮発性有機化合物を含有する気 体から揮発性有機化合物を吸着する吸着材を有し、 前記圧縮機から吐出 された昇圧空気を導入して、 吸着した前記揮発性有機化合物を前記'吸着 材から加熱離脱させる濃縮装置と、 前記濃縮装置を通過レた前記揮発性 有機化合物 :含„有する前記昇圧空気に燃料を投入して燃焼 せる燃焼器 と、 該燃焼器によって生成する燃焼ガスの膨張によって作動する夕一ビ ンとを有することを特徴^ する揮発性有機化合物含有排ガス処理システ ム。  1. It has a compressor that sucks air and pressurizes, and an adsorbent that adsorbs a volatile organic compound from a gas containing a volatile organic compound, and introduces the pressurized air discharged from the compressor, A concentrator that heats and desorbs the adsorbed volatile organic compound from the adsorbent; and a combustor that injects fuel into the pressurized air containing the volatile organic compound passing through the concentrator and burns it. An exhaust gas treatment system containing a volatile organic compound, characterized in that it has an evening bin that operates by expansion of combustion gas generated by the combustor.
2 . 空気を吸気して昇圧する圧縮機と、 該圧縮機から吐出された昇圧空 気に燃料を投入して燃焼させる燃焼器と、 該燃焼 によづて生成する燃 焼ガスの膨張によって作動するタービンと、 該タービンの回転によって 発電する発電機を有し、 前記圧縮機と前記タービンと前記発電機が一軸 上に配置され、 前記圧縮機は、 前記タービンと前記発電機の間に配置さ れるガスタービン装置において、 揮発性有機化合物を含有する気体を導 入して揮発性有機化合物を吸着し、 加熱気体を導入して吸着した前記揮 発性有機化合物を前記加熱気体中に離脱させるようにした濃縮装置を設 け、 該濃縮装置の加熱気体導入側に前記圧縮機の昇圧空気吐出側を接続 させ、 前記濃縮装置の加熱気体吐出側に前記燃焼器の昇圧空気流入側を 接続させることを特徴とするガスタービン装置。  2. A compressor that boosts air by taking in air, a combustor that injects fuel into the boosted air discharged from the compressor, and burns, and operates by expansion of combustion gas generated by the combustion A turbine that generates power by rotating the turbine, the compressor, the turbine, and the generator are arranged on one axis, and the compressor is arranged between the turbine and the generator. In a gas turbine apparatus, a gas containing a volatile organic compound is introduced to adsorb the volatile organic compound, and a heated gas is introduced so that the adsorbed volatile organic compound is separated into the heated gas. And a pressurized air discharge side of the compressor is connected to a heated gas introduction side of the concentrated device, and a pressurized air inflow side of the combustor is connected to a heated gas discharge side of the concentrator. The A gas turbine device that is characterized.
3 . 揮発性有機化合物を有する気体を吸着材を有する濃縮装置に導入し て、 該揮発性有機化合物を吸着し、 大気を吸気して昇圧する圧縮機から 吐出された昇圧空気で加熱して、 前記揮発性有機化合物を前記濃縮装置 から離脱させ、 離脱した前記揮発性有機化合物を昇圧空気と共に燃焼器 に流入させ、 燃焼器において酸化分解させることを特徴とする揮発性有 機化合物処理方法。 3. A gas having a volatile organic compound is introduced into a concentrating device having an adsorbent, the volatile organic compound is adsorbed, heated by pressurized air discharged from a compressor that takes in the air and pressurizes, The volatile organic compound is desorbed from the concentrator, and the desorbed volatile organic compound flows into the combustor together with the pressurized air, and is oxidatively decomposed in the combustor. Compound processing method.
4 . 請求項 1 において、 前記タービンの排ガスと前記琿発性有機化合物 を含有する前記昇圧空気を熱交換させる再生熱交換器を、 前記燃焼器の 上流側に配置したことを特徴とする揮発性有機化合物含有排ガス処理シ ステム。  4. The volatile property according to claim 1, wherein a regenerative heat exchanger for exchanging heat between the exhaust gas of the turbine and the pressurized air containing the sporadic organic compound is disposed upstream of the combustor. Organic compound-containing exhaust gas treatment system.
5—· 請求 1 において、 .前記圧縮—機に 気され ¾空気—は、― -前記揮籠有 機化合物を含有する気体を前記濃縮装置の吸着材を通過させた後の空気 であることを特徴とする掙発性有機化合 含有排ガス処理システム。 5—In claim 1, the air that is evacuated by the compressor—the air after passing the gas containing the volatile organic compound through the adsorbent of the concentrator—is defined as: An exhaust gas treatment system containing a spontaneous organic compound.
6 . 請求項 1 において、 前記揮発性有機化合物が加熱離脱された後の.前 記吸着材に冷却空気を送風して吸着材の温度を'低下させるようにしたこ とを特徴とする揮発性有機化合物含有排ガス処理システム。 6. The volatile composition according to claim 1, wherein after the volatile organic compound is removed by heating, the temperature of the adsorbent is lowered by blowing cooling air to the adsorbent. Organic compound-containing exhaust gas treatment system.
7 . 大気を吸気して昇圧する圧縮機と、 該圧縮機から吐出された昇圧空 気に燃料を投入して燃焼させる燃焼器と、' 該燃焼器によって生成する燃 焼ガスの膨張によって作動するタービンと、 該夕一ビンの回転によって 発電する発電機と、 揮発性有機化合物を含有する気体から揮発性有機化 合物を吸着する吸着材を有し、 前記タービンより.排 される排ガスの一 部を導入して、 吸着した前記揮発性有機化合物を吸着材から加熱離脱さ せる濃縮装置と、 前記夕一ビンより排出される排ガスを導入して排熱を 回収すると供に、 前記濃縮装置での加熱離脱によって揮発性有機化合物 の含有量が増加した排気ガスを追焚用燃料として導入し、 燃焼によって 前記揮発性有機化合物を酸化分解する排熱回収装置と、 該排熱回収装置 と熱交換する冷媒によって作動する吸収冷凍機とを有することを特徴と する揮発性有機化合物含有排ガス処理システム。  7. A compressor that boosts the air pressure by sucking air, a combustor that injects fuel into the boosted air discharged from the compressor, and operates by expansion of combustion gas generated by the combustor. A turbine, a generator that generates electric power by rotating the bin, and an adsorbent that adsorbs a volatile organic compound from a gas containing a volatile organic compound, A concentrating device that heats and separates the adsorbed volatile organic compound from the adsorbent, and an exhaust gas that is discharged from the evening bottle to collect exhaust heat. Exhaust gas whose content of volatile organic compounds has been increased by heating and desorbing is introduced as a fuel for remedy, and an exhaust heat recovery device that oxidizes and decomposes the volatile organic compounds by combustion, Cold Volatile organic compound-containing exhaust gas treatment system characterized by having an absorption refrigerating machine operated by.
8 . 請求項 7において、 前記濃縮装置は、 前記揮発性有機化合物が加熱 離脱された後の前記吸着材に冷却空気を送風して吸着材の温度を低下さ 4 8. The concentration device according to claim 7, wherein the concentrating device lowers the temperature of the adsorbent by blowing cooling air to the adsorbent after the volatile organic compound is heated and separated. Four
せるようにし、 冷却後の前記冷却空気は夕一ビン排ガスと混^して 縮 装置の加熱離脱用気体として前記濃縮装置に供給することも特徴とする 揮発性有機化合物.含有排ガス処理システム。 The volatile organic compound-containing exhaust gas treatment system is characterized in that the cooling air after cooling is mixed with the exhaust gas from the bottle in the evening and supplied to the concentrating device as a heat release gas of the compression device.
,  ,
9 . 請求項 1 において、 前記濃縮装置は、 前記吸着材が充填された筒形 の本体を有し、 前記本体が筒軸を回転軸として回転することによって、 前記吸着 が 予 設けられ ^揮:^性有機化合物を吸 *: T,る範囲 揮発 性有機化合物を加熱離脱する範囲を交互に通過して、 揮発性有機化合物 の吸着と加熱離脱を行う揮発性有機化合物.濃縮装置であって、 前記本体 は前記回転方向に沿って'、 本体外枠, 本体内枠、 及び複数の径方向仕切 り枠によつて仕切られた複数の領域を有し、前記筒形の本体の両端面に、 前記揮発性有機化合物を吸着する領域と、 揮発性有機化合物を加熱離脱 する領域を隔離するシール構造を備えた端板が設けられている揮発性有 機化合物濃縮装置であることを特徴とする揮発性有機化合物靠有排ガス 処理システム。 ' 9. The concentration device according to claim 1, wherein the concentrating device has a cylindrical main body filled with the adsorbent, and the main body rotates about the cylindrical axis as a rotation axis, so that the adsorption is preliminarily provided. A volatile organic compound that absorbs and desorbs volatile organic compounds by alternately passing through the range where volatile organic compounds are absorbed by heat. The main body has a plurality of regions partitioned by a main body outer frame, a main body frame, and a plurality of radial partition frames along the rotation direction, and on both end surfaces of the cylindrical main body, Volatile organic compound concentrating device provided with an end plate having a sealing structure that separates the region for adsorbing the volatile organic compound from the region for heat-releasing the volatile organic compound. Organic compound-containing exhaust gas treatment system. '
PCT/JP2006/321806 2006-10-25 2006-10-25 Volatile organic compound-containing waste gas treatment system WO2008050463A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008540877A JP4702453B2 (en) 2006-10-25 2006-10-25 Exhaust gas treatment system containing volatile organic compounds
PCT/JP2006/321806 WO2008050463A1 (en) 2006-10-25 2006-10-25 Volatile organic compound-containing waste gas treatment system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/321806 WO2008050463A1 (en) 2006-10-25 2006-10-25 Volatile organic compound-containing waste gas treatment system

Publications (1)

Publication Number Publication Date
WO2008050463A1 true WO2008050463A1 (en) 2008-05-02

Family

ID=39324277

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/321806 WO2008050463A1 (en) 2006-10-25 2006-10-25 Volatile organic compound-containing waste gas treatment system

Country Status (2)

Country Link
JP (1) JP4702453B2 (en)
WO (1) WO2008050463A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1930065A2 (en) * 2006-12-08 2008-06-11 Vocci Oy Treating assembly for VOC gases
WO2012121980A1 (en) * 2011-03-04 2012-09-13 Brb / Sherline, Inc. Improved method for imposing variable load on the internal combustion engine used in vapor destruction applications
US9032715B2 (en) 2011-03-24 2015-05-19 Brb/Sherline, Inc. Method of increasing volumetric throughput of internal combustion engines used in vapor destruction applications
CN107477730A (en) * 2017-09-20 2017-12-15 浙江大学 A kind of adsorption runner and Trans-critical cycle heat pump cycle composite gas purifier and application
CN109094178A (en) * 2018-08-27 2018-12-28 青岛成盛林环保设备有限公司 A kind of intaglio press checking enrichment exhaust system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001070750A (en) * 1999-09-06 2001-03-21 Taikisha Ltd Waste gas treatment system
JP2002195052A (en) * 2000-12-26 2002-07-10 Mitsubishi Heavy Ind Ltd Method and device for recycling treatment of waste solvent having organic compound as main agent
JP2004036523A (en) * 2002-07-04 2004-02-05 Toppan Printing Co Ltd Exhaust gas treatment apparatus
JP2005046844A (en) * 2004-10-08 2005-02-24 Nichias Corp Rotor for rotary adsorber
JP2005061353A (en) * 2003-08-18 2005-03-10 Mitsubishi Heavy Ind Ltd Treating apparatus for gas containing low-concentration volatile organic-solvent

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000074819A1 (en) * 1999-06-04 2000-12-14 Flair Corporation Rotating drum adsorber process and system
US6660239B2 (en) * 2001-11-07 2003-12-09 Moez Nagji Method and system for treating volatile organic compounds using a catalytic oxidizer without a burner
US7166149B2 (en) * 2004-01-12 2007-01-23 Uop Llc Adsorption process for continuous purification of high value gas feeds
EP1788222B1 (en) * 2004-08-19 2013-12-11 IHI Corporation Method of treating volatile organic compound with gas turbine and system for treating volatile organic compound

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001070750A (en) * 1999-09-06 2001-03-21 Taikisha Ltd Waste gas treatment system
JP2002195052A (en) * 2000-12-26 2002-07-10 Mitsubishi Heavy Ind Ltd Method and device for recycling treatment of waste solvent having organic compound as main agent
JP2004036523A (en) * 2002-07-04 2004-02-05 Toppan Printing Co Ltd Exhaust gas treatment apparatus
JP2005061353A (en) * 2003-08-18 2005-03-10 Mitsubishi Heavy Ind Ltd Treating apparatus for gas containing low-concentration volatile organic-solvent
JP2005046844A (en) * 2004-10-08 2005-02-24 Nichias Corp Rotor for rotary adsorber

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1930065A2 (en) * 2006-12-08 2008-06-11 Vocci Oy Treating assembly for VOC gases
EP1930065A3 (en) * 2006-12-08 2008-12-03 Formia Technology Group OY Treating assembly for VOC gases
WO2012121980A1 (en) * 2011-03-04 2012-09-13 Brb / Sherline, Inc. Improved method for imposing variable load on the internal combustion engine used in vapor destruction applications
US8936011B2 (en) 2011-03-04 2015-01-20 Brb/Sherline, Inc. Method for imposing variable load on the internal combustion engine used in vapor destruction applications
US9032715B2 (en) 2011-03-24 2015-05-19 Brb/Sherline, Inc. Method of increasing volumetric throughput of internal combustion engines used in vapor destruction applications
US9856770B2 (en) 2011-03-24 2018-01-02 Brb/Sherline, Inc. Method of increasing volumetric throughput of an internal combustion engines used in vapor destruction applications
CN107477730A (en) * 2017-09-20 2017-12-15 浙江大学 A kind of adsorption runner and Trans-critical cycle heat pump cycle composite gas purifier and application
CN107477730B (en) * 2017-09-20 2019-07-02 浙江大学 A kind of adsorption runner and Trans-critical cycle heat pump cycle composite gas purification device and application
CN109094178A (en) * 2018-08-27 2018-12-28 青岛成盛林环保设备有限公司 A kind of intaglio press checking enrichment exhaust system

Also Published As

Publication number Publication date
JPWO2008050463A1 (en) 2010-02-25
JP4702453B2 (en) 2011-06-15

Similar Documents

Publication Publication Date Title
JP4677989B2 (en) Volatile organic compound processing method and volatile organic compound processing system using gas turbine
AU2012278892B2 (en) System and method for integrated adsorptive gas separation of combustion gases
JP3956996B1 (en) Volatile organic compound treatment method and volatile organic compound treatment system
CN105050688B (en) For the system and method that integrated form from burning gases separates carbon dioxide
JP3956993B1 (en) Volatile organic compound processing method and volatile organic compound processing system using gas turbine
WO2008050463A1 (en) Volatile organic compound-containing waste gas treatment system
JP3924209B2 (en) Air and waste liquid treatment equipment containing organic components
JP4669863B2 (en) Gas treatment system containing volatile organic compounds
JP3830872B2 (en) Mixed gas separator
JP2004037038A (en) Method and device for treating organic component-containing air and organic component-containing waste liquid
JP7305924B2 (en) steam generator
JP2005164205A (en) Combustion method for combustion equipment, and combustion equipment
JP2003314297A (en) Gas turbine plant
JP2003288907A (en) Lng hybrid vaporizing power generation device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2008540877

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06822735

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06822735

Country of ref document: EP

Kind code of ref document: A1