JP3924114B2 - Stay limit state detection method - Google Patents

Stay limit state detection method Download PDF

Info

Publication number
JP3924114B2
JP3924114B2 JP2000191813A JP2000191813A JP3924114B2 JP 3924114 B2 JP3924114 B2 JP 3924114B2 JP 2000191813 A JP2000191813 A JP 2000191813A JP 2000191813 A JP2000191813 A JP 2000191813A JP 3924114 B2 JP3924114 B2 JP 3924114B2
Authority
JP
Japan
Prior art keywords
room
temperature
smoke
fire
smoke layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000191813A
Other languages
Japanese (ja)
Other versions
JP2002008155A (en
Inventor
嘉郎 矢代
秀史 掛川
和生 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Shimizu Corp
Original Assignee
Shimizu Corp
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Corp, Matsushita Electric Works Ltd filed Critical Shimizu Corp
Priority to JP2000191813A priority Critical patent/JP3924114B2/en
Publication of JP2002008155A publication Critical patent/JP2002008155A/en
Application granted granted Critical
Publication of JP3924114B2 publication Critical patent/JP3924114B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Fire Alarms (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、火災における出火室及び周辺の居室等への滞在限界状態の検出方法に関するものである。
【0002】
【従来の技術】
火災の発生を感知して警報を発するものとして従来から自動火災報知設備がある。自動火災報知設備は、火災現象に伴う温度(熱)、輻射(炎)、燃焼生成物(煙)等の物理量を検出して火災の発生を感知して発報するものである。一般的には上記の物理量を検出する方法のいずれかを利用した火災感知器により火災の発生を自動的に感知しようとするものであるが、火災以外の場合にも発報してしまう、いわゆる誤報の割合が高いことが課題であった。
【0003】
従って、自動火災報知設備の発報があれば直ちに現場に駆けつけて、火災の発生をまず人的に確認し、その確認結果により非常警報設備及び防火・防煙区画等の防災設備を作動させ、初期消火や避難誘導等の初期対応活動を行うという緊急時の手順となっている。即ち、現在の自動火災報知設備は火災の発生を知らせるためだけの機能で、しかも信頼性が低いという課題を抱えている。
【0004】
【発明が解決しようとする課題】
ところで、初期消火に失敗した場合、出火室の火煙が危険なレベルになる即ち滞在限界時間に達することになる。このような段階では防火戸を閉鎖し、公設消防隊の活動を待つ一方、出火階の在館者の避難を完了させ、その他の階の在館者も避難を開始するよう指示する必要がでてくる。この重要な判断をするための情報として出火室の滞在限界時間が位置付けられる。
【0005】
本発明は、この点に鑑みて為されたもので、その目的とするところは、火災の進展拡大状況を確実に把握でき、出火室において火煙が危険なレベルに達しているか否かの確実な判断情報を得ることができる滞在限時状態検出方法を提供することにある。
【0006】
【課題を解決するための手段】
上記目的を達成するために、請求項1の発明では、監視対象となる部屋における滞在限界状態の検知レベルとして、当該部屋の用途、居室面積、天井高さをパラメータとした防災特性に応じた部屋の天井面における煙層が人の背の高さまで降下する時の煙層温度及び煙層の輻射強度が危険なレベルに達する時の煙層の輻射温度の内の低い方の値を設定し、当該部屋の天井面に配設した耐熱性を有する温度検知手段の検知温度が上記値に至った時に当該部屋の火煙が危険なレベルに達したことを報知することを特徴とする。
また、請求項2の発明では、監視対象となる部屋における滞在限界状態の検知レベルとして、当該部屋の用途、居室面積、天井高さをパラメータとした防災特性に応じた当該部屋の開口部近傍の隣接区画の天井面の煙層が人の背の高さまで降下する時の煙層温度及び煙層の輻射強度が危険なレベルに達する時の煙層の輻射温度の内の低い方の値を設定し、当該隣接区画の天井面に配設した耐熱性を有する温度検知手段の検知温度が上記値に至った時に当該部屋の火煙が危険なレベルに達したことを報知することを特徴とする。
更に、請求項3の発明では、監視対象となる部屋における滞在限界状態の検知レベルとして、当該部屋の用途、居室面積、天井高さをパラメータとした防災特性に応じた部屋の天井面における煙層が人の背の高さまで降下する時の煙層温度及び煙層の輻射強度が危険なレベルに達する時の煙層の輻射温度の内の低い方の上昇率の値を設定し、当該部屋の天井面に配設した耐熱性を有する温度検知手段の検知温度の上昇率が上記値に至った時に当該部屋の火煙が危険なレベルに達したことを報知することを特徴とする。
【0009】
而して請求項1の発明によれば、監視対象の部屋で出火したときに当該部屋の天井面に配設した温度検知手段の検知温度が、当該部屋の天井面における煙層が人の背の高さまで降下する時の煙層温度及び煙層の輻射強度が危険なレベルに達する時の煙層の輻射温度の内の低い方の値に至った時に、当該部屋の火煙が危険なレベルに達したことを報知するので、その結果初期消火活動が可能な状態か、避難が可能な状態かを把握することが可能となる。
また請求項2の発明によれば、監視対象の部屋で出火したときに当該部屋の開口部近傍の隣接区画の天井面に配設した温度検知手段の検知温度が、監視対象の部屋の用途、居室面積、天井高さをパラメータとした防災特性に応じた前記隣接区画の天井面における煙層が人の背の高さまで降下する時の煙層温度及び煙層の輻射強度が危険なレベルに達する時の煙層の輻射温度の内の低い方の値に至った時に、監視対象の部屋の火煙が危険なレベルに達したことを報知するので、その結果初期消火活動が可能な状態か、避難が可能な状態かを把握することが可能となり、その初期消火活動が可能な状態か、避難が可能な状態かを把握することが可能となる。
更に、請求項3の発明によれば、監視対象の部屋が出火したときに、当該部屋の天井8面に配設した温度検知手段の検知温度の上昇率が、当該部屋の用途、居室面積、天井高さをパラメータとした防災特性に応じた部屋の天井面における煙層が人の背の高さまで降下する時の煙層温度及び煙層の輻射強度が危険なレベルに達する時の煙層の輻射温度の内の低い方の上昇率の値に至った時に、当該部屋の火煙が危険なレベルに達したことを報知するので、初期消火活動が可能な状態か、避難が可能な状態かを把握することが可能となる。
【0012】
【発明の実施の形態】
まず本発明方法が検出する滞在限界状態に達するまでの時間、つまり滞在限界時間について説明する。
【0013】
出火して人間の管理の手を離れた火が大きくなり、出火室において煙層が人の背の高さまで降下してきたり、輻射強度が危険なレベルに達するまでになると、人は火災室に滞在したり、消火活動等ができなくなる。この出火室において火煙が危険なレベルに達する状態を出火室の滞在限界状態という。
【0014】
換言すると、滞在限界状態に至るまでの滞在限界時間は、火災が発生した初期において人的対応活動又は避難活動が可能な時間である。即ち、燻焼段階での自動火災報知設備の煙感知器からの発報信号により、防災管理要員が初期対応活動を開始してから、火災が着炎段階に進み出火室の煙層降下又は輻射強度が限度に達するまでの時間が出火室での活動可能時間であり、火災の発生を確認して避難開始指示を行ってからの時間が避難可能時間である。
【0015】
そして出火室の滞在限界時間は、出火室の大きさ、内装仕様、収容可燃物の種類・量・密度から推定される火災成長率の値、スプリンクラー設備の有無等により大きく変ってくる。
【0016】
上記の滞在限界状態に至るまでの滞在限界時間を出火室の煙層温度により求める式は既に公知となっている。この式を次に示す。
【0017】
まず、数1は出火室避難限界時点での出火室の煙層温度の算定式を示す。
【0018】
【数1】

Figure 0003924114
【0019】
ここで、
Ts :出火室の煙層温度(℃) α :火災成長率(kW/s2
crit:出火室の滞在(避難)限界時間(sec) hk:周壁の熱特性(kW/m2K)
T :周壁の面積(m2) A:開口部の面積(m2
H :開口部の高さ(m) T∞:雰囲気温度(K)
上記数1より出火室の滞在限界時間tcritは、以下の数2に示す式により算出する。
【0020】
【数2】
Figure 0003924114
【0021】
ここで、
ρs :煙の比重(=0.7[kg/m3])
k :ブリュームの巻き込み係数(=0.076[kg/s/m5/3/kW1/3])
room:出火室の床面積(m2
room:出火室の天井高さ(m)
次の数3は出火室避難限界時点での廊下天井面の煙層温度の算定式を示す。
【0022】
【数3】
Figure 0003924114
【0023】
ここで、
Sc:廊下天井面の煙層温度(℃) g:重力加速度(m/s2
cρ :定圧比熱(kJ/kgK) ρ:空気の比重(=1.2[kg/m3])
Q :廊下へ流出する煙の発熱速度(kW) Z0:仮想点熱源の距離(m)
Z :開口部状態から廊下天井面までの距離(m)
また廊下へ流出する煙の発熱速度Qは、数4に示す式により算出する。
【0024】
【数4】
Figure 0003924114
【0025】
ここで、
αd :開口部の流量係数(=0.7) Bd :開口部の幅(m)
d :開口部の高さ(m)
本発明方法は上記の滞在限界状態の検知レベルを、監視対象となる部屋の天井面の気流の温度或いは上昇率若しくは当該部屋の開口部に隣接する区画の天井面の気流の温度或いは上昇率により設定し、気流の温度或いは気流の温度上昇率が設定している検知レベルに達したときに、監視対象の部屋(出火室)の火煙が危険なレベルに達したことを報知するものである。
【0026】
ところで滞在限界時間は、出火室の大きさ、内装仕様、収容可燃物の種類・量・密度から推定される火災成長率の値、スプリンクラー設備の有無等の防災特性により大きく変ってくる。
【0027】
ここで部屋の使用形態に応じて夫々の部屋の滞在限界時間と、煙層温度の算出を行った例を表1、表2に示す。
【0028】
【表1】
Figure 0003924114
【0029】
【表2】
Figure 0003924114
【0030】
尚上記表1、表2で示す算出結果の前提条件は次の通りである。
▲1▼出火室は、排煙設備、スプリンクラー設備無しとする。
▲2▼出火室の滞在(避難)限界時間は、煙層高さ(S)が,S<1.6+0.1Hとなる時間とする(H:出火室天井高)
▲3▼居室−廊下間の扉は、常時開放とする。
【0031】
また事務所、物販店舗、ホテルの客室が夫々出火室の場合の煙層温度の時間変化の時間変化の算出例を図2〜図4に示す。
【0032】
図2で示す事務所の場合、執務空間である部屋の面積等をパラメータとした煙層温度の時間的変化を示しており、火災成長率は可燃物量等の用途毎に設定された事務所空間の値を使った。出火室での火煙は面積が広いと天井面に拡散し、煙層降下は遅くなる。このような事務所の部屋では出火からの時間経過とともに煙層温度は上昇するから、面積が広くなると限界時間に達した時の煙層温度は高くなる。
【0033】
図3で示す物販店舗の場合、その店舗空間である部屋は事務所の場合よりも天井高さを高く設定したが、可燃物量が非常に多く、火災成長率を大きく設定しなければならない。このことから出火室が滞在限界状態に達した時の煙層温度が非常に高くなる。このような場合、出火室に設けた火災感知器の耐熱温度を越えてしまうため、煙層降下時間の検出は、廊下などの隣接区画での天井面温度の検知によって行うが、出火室の滞在(避難)の限界時間は、火煙の輻射熱で決定される場合も出てくる。従って、煙層の降下か、煙層からの輻射熱からくる滞在限界条件の内、どちらか早く来る方の煙層温度を設定して滞在限界状態の検出をすればよいことが判る。
【0034】
図4で示すホテルの小さな客室空間のような部屋の場合、着炎から煙層降下までの時間が短い。本図は客室面積30m2の場合の算出例であるが、25秒で煙層が人の活動領域まで降下してしまう。このような場合は、火災の燻焼段階を煙検知器で検知し、就寝施設での警報発生から避難行動開始までの時間を確保する必要がある。同時に、滞在限界状態に達する際の煙層温度49℃を25秒以内に検出するには規格省令の差動式スポット型感知器程度の性能が必要である。
【0035】
而してこれら算出例を基に、建築空間を構成する部屋毎に上記条件を設定すれば、煙層降下及び輻射強度が危険なレベルに達した時の天井面温度が推定できる。逆に、天井面の温度を計測すれば滞在限界状態の検出が可能ということになる。尚輻射強度を煙層からのものと仮定して煙層温度に換算することができる。
【0036】
次に本発明者らは、監視対象となる部屋の形態毎の滞在限界状態について下記のように検討した。
【0037】
図5(a)は、一般的な耐火構造の事務所ビルの例で、居室(執務室)である部屋1と廊下2が区画され、更に排煙設備を有する附室3によって煙が階段室4に流入しないような構成となっている場合を示す。この場合部屋1の天井面1aには煙・熱複合型の火災感知器5を設置している。
【0038】
居室である部屋1において火源6が可燃物に着火して、燻焼段階を火災感知器5の煙感知部で火災の発生を検知し、この火災発生情報を受けた防災監視盤(図示せず)において避難の開始を指示する。
【0039】
火煙(ハッチングで示す)は天井面1aに上昇し、時間とともに蓄積され図においてハッチングで示すように下降する。この場合火煙が人Mの活動領域に下降するまでに、即ち出火室の滞在限界時間までに初期消火を成功させ、且つ避難を完了させねばならない。一方大型建築物では、火災の発生が分かっても、全館一斉に避難開始すると危険な混乱を招く恐れがあるところから、出火階、とその直上階の在館者を先ず避難させ、火災の進展によって全館避難の指示をすることになる。その場合、出火室の滞在限界状態、即ち初期消火に失敗したという情報は、全館避難に踏み切る重要な判断情報となる。そこで部屋1の天井面1aに設置した火災感知器5で当該部屋1の天井面1aでの火煙の温度を検知することで、当該部屋1の滞在限界状態を間接的に検出しようとするものである。
【0040】
図5(b)は広い部屋1の空間に大量の可燃物を収容している物販店舗のような例を示し、このような部屋1の場合には火煙が人Mの背の高さまで降下してきた時の煙層温度が、部屋1の天井面1aに設置した火災感知器5の耐熱温度以上になっている状態を示す。従って、出火室の開口部1bから廊下2に流出した火煙の温度を廊下2の天井面2aに設置した火災感知器5で検知することで、当該部屋1の滞在限界状態を間接的に検出しようとするものである。
【0041】
図5(c)は、隣接する二つ部屋1A,1Bが開口部により連通している例を示しており、この場合図5(b)の例と同様の考え方で、例えば出火した部屋1Aから隣接する部屋1Bに流出した火煙の温度を部屋1Bの天井面1aに設置した火災感知器5で検知することで部屋1Aの滞在限界状態を間接的に検出しようとするものである。
【0042】
図5(d)は、ホテルの客室のような空間が狭い部屋1の例で、このような場合火煙の降下時間が早いため、滞在限界状態に達した時の煙層温度を設定して検知しようとしても、火災感知器5を構成する温度センサーの時定数により、高感度の定温式熱感知器をもってしても難しい場合がある。
【0043】
従ってこの場合は、滞在限界状態に達するまでの煙層の温度上昇率を設定し、温度上昇率を検出する差動式熱感知器を火災感知器5として用い、検知される温度上昇率によって滞在限界状態を検出しようとするものである。
【0044】
例えば、客室面積30m2での火災成長率0.05(kW/s2)の火災の場合、滞在限界状態に至る時間は25秒でその時の天井面温度上昇は49度と推定される。熱感知器のうち気流が一定温度以上になったことを検出する方法のものを定温式と呼ぶが、定温式1種の規格品を採用しても限界時間内に作動するようにはできない。そこで、気流の温度上昇率が一定以上になったことを検出する差動式熱感知器を採用する。差動式2種の規格品は30度の温度上昇気流中で30秒以内に作動する特性を有することから滞在限界状態に至るまでの作動が可能である。このように、ホテルの客室のような小さな部屋1での滞在限界状態は、天井面1aでの気流温度の上昇率により検出するのが有効である。
【0045】
次に本発明方法を用いたシスステムにより本発明の実施形態を説明する。
【0046】
図1は本発明方法を用いた滞在限界状態検出システムの概念的な構成を示す。
【0047】
システムとしては上述したように各部屋の形態に合わせて監視対象となる部屋1の天井面1a或いは監視対象となる部屋の開口部に隣接する区画(例えば廊下2の天井面2a)等に、アナログ式の熱感知器或いは熱感知と煙感知とが行える複合型のアナログ感知器或いは差動式スポット感知器からなる火災感知器5を気流温度の検知手段として設ける。図示例では上記図5(b)の事務所の部屋1の例を示す。勿論図5(a)〜(d)の各例で示すように部屋1の形態に併せて気流温度検知用の火災感知器5の種類、設置場所を決定する。
【0048】
上記の気流温度を検知する火災感知器5は感知器回線11を介して、限界時間検出部10に接続され、火災感知器5の感知情報は滞在限界状態検出部10に送られるようになっている。
【0049】
滞在限界状態検出部10は予め各部屋1の形態に応じて算出した滞在限界状態の検知レベルとしての気流温度或いは温度上昇率を記憶設定しており、各部屋1の滞在限界状態を検知するために設置した各火災感知器5からの感知情報に示される気流温度或いは温度上昇率が当該部屋1に対応して設定している検知レベルに至ると、当該部屋1の火煙が危険なレベルに達したと判断して画像装置や、その他の報知装置からなる報知手段12にて報知する。
【0050】
尚本実施形態のシステムで用いるアナログ式の火災感知器5は、人が日常使用する火気から発生する熱や煙と、火災による異常な熱や煙の発生とを識別するために、感度調節機能を生かした、日常環境でのセンサー出力に応じた感度設定が可能であり、早期発見と誤報削減を両立させるようにできるようにしたものである。さらに、熱・煙複合型のアナログ式火災感知器を採用することで、天井面の気流温度と煙濃度情報による判断が可能となり、火災信号の信頼性を高めることができる。また滞在限界状態の検出のための温度検知手段としての火災感知器5は、火災の発生を監視するだけでなく、その後の進展状況の監視を可能にする。
【0051】
【発明の効果】
請求項1の発明は、監視対象となる部屋における滞在限界状態の検知レベルとして、当該部屋の用途、居室面積、天井高さをパラメータとした防災特性に応じた部屋の天井面における煙層が人の背の高さまで降下する時の煙層温度及び煙層の輻射強度が危険なレベルに達する時の煙層の輻射温度の内の低い方の値を設定し、当該部屋の天井面に配設した耐熱性を有する温度検知手段の検知温度が上記値に至った時に当該部屋の火煙が危険なレベルに達したことを報知するので、また請求項2の発明は、監視対象となる部屋における滞在限界状態の検知レベルとして、当該部屋の用途、居室面積、天井高さをパラメータとした防災特性に応じた当該部屋の開口部近傍の隣接区画の天井面の煙層が人の背の高さまで降下する時の煙層温度及び煙層の輻射強度が危険なレベルに達する時の煙層の輻射温度の内の低い方の値を設定し、当該隣接区画の天井面に配設した耐熱性を有する温度検知手段の検知温度が上記値に至った時に当該部屋の火煙が危険なレベルに達したことを報知するので、更に請求項3の発明は、監視対象となる部屋における滞在限界状態の検知レベルとして、当該部屋の用途、居室面積、天井高さをパラメータとした防災特性に応じた部屋の天井面における煙層が人の背の高さまで降下する時の煙層温度及び煙層の輻射強度が危険なレベルに達する時の煙層の輻射温度の内の低い方の上昇率の値を設定し、当該部屋の天井面に配設した耐熱性を有する温度検知手段の検知温度の上昇率が上記値に至った時に当該部屋の火煙が危険なレベルに達したことを報知するので、監視対象の部屋の火煙が危険なレベルに達したことを報知するので、初期消火活動が可能な状態か、避難が可能な状態かを把握することが可能となるという効果がある。
【図面の簡単な説明】
【図1】本発明方法を用いた一実施形態のシステムの概念的な構成図である。
【図2】本発明方法の滞在限界状態の検知レベルの設定のための出火室(事務所)の煙層温度の時間変化の算出例を示すグラフである。
【図3】本発明方法の滞在限界状態の検知レベルの設定のための出火室(物販店舗)の煙層温度の時間変化の算出例を示すグラフである。
【図4】本発明における滞在限界状態の検知レベルの設定のための出火室(ホテルの客室)の煙層温度の時間変化の算出例を示すグラフである。
【図5】本発明方法における出火室の形態毎の滞在限界状態の説明図であって、(a)は事務所の居室のような部屋の例、(b)は物販店舗の例、(c)は広い空間の事務所の居室の例、(d)はホテルの客室の例を示す。
【符号の説明】
1 部屋
1a 天井面
2 廊下
2a 天井面
4 階段
5 火災感知器
10 限界限界状態検出部
11 感知器回線
12 報知手段[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a detection method of a stay limit state in a fire room and surrounding living rooms in a fire.
[0002]
[Prior art]
Conventionally, there has been an automatic fire alarm system for detecting an occurrence of a fire and generating an alarm. Automatic fire alarm equipment detects the occurrence of a fire by detecting physical quantities such as temperature (heat), radiation (flame), and combustion products (smoke) associated with a fire phenomenon. Generally, it is intended to automatically detect the occurrence of a fire with a fire detector using one of the methods for detecting physical quantities described above, but it is also reported in cases other than fire. The problem was a high rate of false alarms.
[0003]
Therefore, if there is a report from the automatic fire alarm system, immediately rush to the site, first confirm the occurrence of the fire, and activate the emergency alarm system and the fire prevention / smoke proof disaster prevention equipment according to the confirmation result, It is an emergency procedure to perform initial response activities such as initial fire fighting and evacuation guidance. That is, the current automatic fire alarm system has a problem that it is a function only for notifying the occurrence of a fire and is not reliable.
[0004]
[Problems to be solved by the invention]
By the way, when the initial fire extinguishment fails, the fire smoke in the fire chamber becomes a dangerous level, that is, the stay limit time is reached. At this stage, it is necessary to close the fire doors and wait for the activities of the public fire brigade, complete the evacuation of residents on the fire floor, and instruct people on other floors to start evacuation. Come. The time limit for staying in the fire room is positioned as information for making this important decision.
[0005]
The present invention has been made in view of this point. The purpose of the present invention is to ascertain whether or not the progress of the fire has been expanded and to ensure whether or not the smoke has reached a dangerous level in the fire chamber. Another object of the present invention is to provide a stay time limit state detection method capable of obtaining accurate judgment information.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, according to the first aspect of the present invention, the room according to the disaster prevention characteristics using the room usage, the room area, and the ceiling height as parameters as the detection level of the stay limit state in the room to be monitored. Set the lower value of the smoke layer temperature when the smoke layer on the ceiling surface of the ceiling descends to the height of the person and the radiation temperature of the smoke layer when the radiation intensity of the smoke layer reaches a dangerous level, When the temperature detected by the temperature detecting means having heat resistance arranged on the ceiling surface of the room reaches the above value, it is notified that the smoke in the room has reached a dangerous level .
In the invention of claim 2, as the detection level of the stay limit state in the room to be monitored, the vicinity of the opening of the room according to the disaster prevention characteristics with the use of the room, the room area, and the ceiling height as parameters. Set the lower value of the smoke layer temperature when the smoke layer on the ceiling surface of the adjacent section falls to the height of the person and the radiation temperature of the smoke layer when the radiation intensity of the smoke layer reaches a dangerous level And when the temperature detected by the temperature detecting means having heat resistance arranged on the ceiling surface of the adjacent section reaches the above value, it is notified that the smoke in the room has reached a dangerous level. .
Furthermore, in the invention of claim 3, the smoke layer on the ceiling surface of the room according to the disaster prevention characteristics with the use, room area, and ceiling height as parameters as the detection level of the stay limit state in the room to be monitored Set the value of the lower rate of rise of the smoke layer temperature when the person descends to the height of the person and the radiation temperature of the smoke layer when the radiation intensity of the smoke layer reaches a dangerous level. When the rate of increase in the detected temperature of the temperature detecting means having heat resistance arranged on the ceiling surface reaches the above value, it is notified that the smoke in the room has reached a dangerous level.
[0009]
Thus, according to the invention of claim 1, when a fire breaks out in the room to be monitored, the temperature detected by the temperature detecting means disposed on the ceiling surface of the room is such that the smoke layer on the ceiling surface of the room is When the smoke layer temperature and the radiation intensity of the smoke layer reach a dangerous level when descending to the lower level of the smoke layer, the smoke level in the room is at a dangerous level. As a result, it is possible to grasp whether the initial fire extinguishing activity is possible or whether evacuation is possible.
According to the invention of claim 2, the temperature detected by the temperature detecting means disposed on the ceiling surface of the adjacent section near the opening of the room when a fire breaks out in the room to be monitored is the use of the room to be monitored, The smoke layer temperature and the radiation intensity of the smoke layer reach dangerous levels when the smoke layer on the ceiling surface of the adjacent section falls to the height of the person's back according to the disaster prevention characteristics with the room area and ceiling height as parameters. When it reaches the lower value of the radiation temperature of the smoke layer at the time, it notifies that the fire smoke in the monitored room has reached a dangerous level, so that the initial fire extinguishing activity is possible as a result, It is possible to grasp whether the evacuation is possible, and it is possible to grasp whether the initial fire fighting activity is possible or whether the evacuation is possible.
Further, according to the invention of claim 3, when the room to be monitored is lit out, the rate of increase in the temperature detected by the temperature detecting means disposed on the ceiling 8 surface of the room is the use of the room, the room area, The smoke layer temperature and the radiation intensity of the smoke layer when the smoke layer on the ceiling surface of the room descends to the height of the person's back according to the disaster prevention characteristics with the ceiling height as a parameter. When it reaches the value of the lower rate of increase in radiation temperature, it notifies that the smoke in the room has reached a dangerous level, so it is possible to perform initial fire fighting or evacuation Can be grasped.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
First, the time until reaching the stay limit state detected by the method of the present invention, that is, the stay limit time will be described.
[0013]
A person stays in a fire room when a fire that breaks out of human control becomes large and the smoke layer falls to the height of a person in the fire room or the radiation intensity reaches a dangerous level. Or fire extinguishing activities become impossible. A state where the smoke reaches a dangerous level in the fire chamber is called a stay limit state of the fire chamber.
[0014]
In other words, the stay limit time until reaching the stay limit state is a time in which a human response activity or an evacuation activity is possible in the initial stage of the fire. In other words, the fire alarm goes on to the ignition stage after the disaster management personnel start the initial response activity by the alarm signal from the smoke detector of the automatic fire alarm equipment at the smoldering stage, and the smoke layer descends or radiates in the fire chamber. The time until the strength reaches the limit is the available time in the fire room, and the time after confirming the occurrence of a fire and issuing an evacuation start instruction is the evacuable time.
[0015]
And the staying limit time of the fire chamber varies greatly depending on the size of the fire chamber, the interior specifications, the value of the fire growth rate estimated from the type, amount, and density of combustible materials, the presence or absence of sprinkler facilities, and the like.
[0016]
The formula for obtaining the stay limit time until reaching the stay limit state from the smoke layer temperature of the fire chamber is already known. This formula is shown below.
[0017]
First, Formula 1 shows the calculation formula of the smoke layer temperature of the fire chamber at the time of the fire chamber evacuation limit.
[0018]
[Expression 1]
Figure 0003924114
[0019]
here,
Ts : Smoke layer temperature in the fire chamber (° C) α: Fire growth rate (kW / s 2 )
t crit : Firehouse stay (evacuation) limit time (sec) h k : Thermal characteristics of the peripheral wall (kW / m 2 K)
A T : Area of the peripheral wall (m 2 ) A: Area of the opening (m 2 )
H: Height of opening (m) T∞: Atmospheric temperature (K)
From the above equation 1, the stay limit time t crit of the fire chamber is calculated by the following equation 2.
[0020]
[Expression 2]
Figure 0003924114
[0021]
here,
ρ s : Specific gravity of smoke (= 0.7 [kg / m 3 ])
k: Entrainment factor of brume (= 0.076 [kg / s / m 5/3 / kW 1/3 ])
A room : Floor area of the fire room (m 2 )
H room : Ceiling height of fire room (m)
Equation 3 below shows the calculation formula for the smoke layer temperature on the ceiling surface of the corridor at the fire chamber evacuation limit.
[0022]
[Equation 3]
Figure 0003924114
[0023]
here,
T Sc : Smoke layer temperature on the ceiling of the hallway (° C) g: Gravity acceleration (m / s 2 )
: Specific pressure specific heat (kJ / kgK) ρ: Specific gravity of air (= 1.2 [kg / m 3 ])
Q: Heat generation rate (kW) of smoke flowing out to the corridor Z 0 : Distance of virtual point heat source (m)
Z: Distance from opening state to hallway ceiling surface (m)
Further, the heat generation rate Q of the smoke flowing out into the corridor is calculated by the equation shown in Equation 4.
[0024]
[Expression 4]
Figure 0003924114
[0025]
here,
α d : Flow coefficient of opening (= 0.7) B d : Width of opening (m)
H d : Height of the opening (m)
In the method of the present invention, the detection level of the stay limit state is determined by the temperature or increase rate of the airflow on the ceiling surface of the room to be monitored or the temperature or increase rate of the airflow on the ceiling surface of the section adjacent to the opening of the room. When the airflow temperature or the rate of temperature increase of the airflow reaches the set detection level, it is notified that the smoke in the monitored room (fire chamber) has reached a dangerous level. .
[0026]
By the way, the stay limit time greatly varies depending on the disaster prevention characteristics such as the size of the fire chamber, the interior specifications, the value of the fire growth rate estimated from the type, amount, and density of the combustible material, the presence or absence of sprinkler facilities, and the like.
[0027]
Tables 1 and 2 show examples in which the stay limit time of each room and the smoke layer temperature are calculated according to the use form of the room.
[0028]
[Table 1]
Figure 0003924114
[0029]
[Table 2]
Figure 0003924114
[0030]
The preconditions for the calculation results shown in Tables 1 and 2 are as follows.
(1) The fire chamber shall have no smoke exhausting equipment or sprinkler equipment.
(2) The stay (evacuation) limit time of the fire chamber is the time when the smoke layer height (S) becomes S <1.6 + 0.1H (H: fire chamber ceiling height)
(3) The door between the room and the hallway is always open.
[0031]
Moreover, FIGS. 2-4 shows the example of calculation of the time change of the time change of the smoke layer temperature when the office, the merchandise store, and the guest room of the hotel are the fire room, respectively.
[0032]
In the case of the office shown in Fig. 2, it shows the temporal change of the smoke layer temperature with parameters such as the area of the room that is the office space, and the fire growth rate is the office space set for each use such as the amount of combustibles The value of was used. If the fire smoke in the fire chamber is large, it spreads to the ceiling surface and the smoke layer descent slows down. In such an office room, the smoke layer temperature rises with the passage of time from the fire, so the smoke layer temperature when the limit time is reached increases as the area increases.
[0033]
In the case of the merchandise store shown in FIG. 3, the room which is the store space has a ceiling height higher than that of the office, but the amount of combustible material is very large and the fire growth rate must be set large. This makes the smoke layer temperature very high when the fire chamber reaches the limit of stay. In such a case, because the temperature exceeds the heat resistance temperature of the fire detector installed in the fire chamber, the smoke layer descent time is detected by detecting the ceiling surface temperature in the adjacent section such as a corridor. The limit time for (evacuation) may be determined by the radiant heat of fire smoke. Therefore, it is understood that the stay limit state may be detected by setting the smoke layer temperature that comes earlier, whichever is the stay limit condition that comes from the smoke layer fall or the radiant heat from the smoke layer.
[0034]
In the case of a room such as a small guest room space of a hotel shown in FIG. 4, the time from flame arrival to smoke layer descent is short. This figure is a calculation example in the case of a guest room area of 30 m 2 , but the smoke layer falls to the human activity area in 25 seconds. In such a case, it is necessary to detect the fire burning stage of the fire with a smoke detector and secure the time from the occurrence of an alarm at the sleeping facility to the start of the evacuation action. At the same time, in order to detect the smoke layer temperature of 49 ° C. when the stay limit state is reached within 25 seconds, the performance of the differential spot type detector of the standard ministerial ordinance is required.
[0035]
Thus, if the above conditions are set for each room constituting the building space based on these calculation examples, the ceiling surface temperature when the smoke layer drop and the radiation intensity reach dangerous levels can be estimated. Conversely, if the temperature of the ceiling surface is measured, the stay limit state can be detected. The radiation intensity can be converted into the smoke layer temperature assuming that the radiation intensity is from the smoke layer.
[0036]
Next, the present inventors examined the stay limit state for each form of the room to be monitored as follows.
[0037]
FIG. 5A shows an example of a general fire-resistant office building, where a room 1 and a corridor 2 which are living rooms (offices) are partitioned, and smoke is staircased by an ancillary room 3 having smoke exhausting equipment. 4 shows a case where it is configured not to flow into 4. In this case, a smoke / heat combined fire detector 5 is installed on the ceiling surface 1 a of the room 1.
[0038]
The fire source 6 ignites combustibles in the room 1 which is a living room, the fire detection is detected by the smoke detection part of the fire detector 5 in the smoldering stage, and the fire prevention monitoring panel (not shown) receives this fire occurrence information Z) instruct the start of evacuation.
[0039]
Fire smoke (shown by hatching) rises on the ceiling surface 1a, accumulates with time, and falls as shown by hatching in the figure. In this case, the initial fire extinguishing must be successful and the evacuation must be completed by the time smoke falls to the active area of the person M, that is, by the time limit for staying in the fire room. On the other hand, even in the case of large buildings, even if it is known that a fire has occurred, starting the evacuation all at once can cause dangerous confusion. Will give instructions to evacuate the entire building. In that case, the stay limit state of the fire room, that is, information that the initial fire extinguishment has failed is important judgment information for evacuating the entire building. Therefore, by detecting the temperature of fire smoke on the ceiling surface 1a of the room 1 with the fire detector 5 installed on the ceiling surface 1a of the room 1, the stay limit state of the room 1 is indirectly detected. It is.
[0040]
FIG. 5 (b) shows an example like a merchandise store in which a large amount of combustible material is stored in the space of a large room 1, and in such a room 1, the smoke falls to the height of the person M The state where the smoke layer temperature at the time when the fire is detected is equal to or higher than the heat resistance temperature of the fire detector 5 installed on the ceiling surface 1a of the room 1. Therefore, the stay limit state of the room 1 is indirectly detected by detecting the temperature of the fire smoke flowing out of the opening 1b of the fire chamber into the hall 2 with the fire detector 5 installed on the ceiling surface 2a of the hall 2. It is something to try.
[0041]
FIG. 5C shows an example in which two adjacent rooms 1A and 1B communicate with each other through an opening. In this case, for example, from the fired room 1A in the same way as the example in FIG. 5B. By detecting the temperature of the fire smoke flowing into the adjacent room 1B with the fire detector 5 installed on the ceiling surface 1a of the room 1B, the stay limit state of the room 1A is indirectly detected.
[0042]
FIG. 5 (d) is an example of a small room 1 such as a hotel guest room. In such a case, the smoke fall time is fast, so the smoke layer temperature when the stay limit state is reached is set. Even if it is going to detect, it may be difficult even if it has a highly sensitive constant temperature type heat sensor by the time constant of the temperature sensor which constitutes fire detector 5.
[0043]
Therefore, in this case, the temperature rise rate of the smoke layer until reaching the stay limit state is set, and a differential heat sensor that detects the temperature rise rate is used as the fire detector 5 and stays according to the detected temperature rise rate. It is intended to detect a limit condition.
[0044]
For example, in the case of a fire with a fire growth rate of 0.05 (kW / s 2 ) in a guest room area of 30 m 2 , the time to reach the stay limit state is 25 seconds, and the rise in the ceiling surface temperature at that time is estimated to be 49 degrees. A method of detecting that the air flow has exceeded a certain temperature among the heat detectors is called a constant temperature type, but even if one type of constant temperature type standard product is adopted, it cannot be operated within the limit time. Therefore, a differential heat detector that detects that the temperature rise rate of the airflow has exceeded a certain level is adopted. The two differential types of standard products have a characteristic of operating within 30 seconds in a temperature rising air flow of 30 ° C., so that the operation up to the stay limit state is possible. Thus, it is effective to detect the limit state of stay in a small room 1 such as a hotel guest room based on the rate of increase in airflow temperature on the ceiling surface 1a.
[0045]
Next, an embodiment of the present invention will be described based on a system using the method of the present invention.
[0046]
FIG. 1 shows a conceptual configuration of a stay limit state detection system using the method of the present invention.
[0047]
As described above, the system is analog to the ceiling surface 1a of the room 1 to be monitored or the section adjacent to the opening of the room to be monitored (for example, the ceiling surface 2a of the hallway 2) according to the form of each room. A fire sensor 5 comprising a heat sensor of the type or a combined analog sensor or a differential spot sensor capable of performing heat detection and smoke detection is provided as a means for detecting the airflow temperature. In the illustrated example, an example of the office room 1 shown in FIG. Of course, as shown in each example of FIGS. 5A to 5D, the type and location of the fire detector 5 for detecting the airflow temperature are determined in accordance with the form of the room 1.
[0048]
The fire detector 5 for detecting the airflow temperature is connected to the limit time detection unit 10 via the sensor line 11, and the detection information of the fire detector 5 is sent to the stay limit state detection unit 10. Yes.
[0049]
The stay limit state detection unit 10 stores the airflow temperature or the rate of temperature rise as the stay limit state detection level calculated according to the form of each room 1 in advance and detects the stay limit state of each room 1. When the airflow temperature or the rate of temperature increase indicated by the detection information from each fire detector 5 installed in the room reaches the detection level set corresponding to the room 1, the smoke in the room 1 becomes a dangerous level. It is determined that it has been reached, and notification is made by the notification means 12 comprising an image device or other notification device.
[0050]
The analog fire detector 5 used in the system of the present embodiment has a sensitivity adjustment function in order to discriminate between heat and smoke generated from fire used by humans and abnormal heat and smoke generated by fire. It is possible to set the sensitivity according to the sensor output in the daily environment, making it possible to achieve both early detection and false alarm reduction. Furthermore, by adopting an analog fire detector of combined heat and smoke type, it becomes possible to make judgment based on the airflow temperature and smoke density information on the ceiling surface, and the reliability of the fire signal can be improved. In addition, the fire detector 5 as a temperature detecting means for detecting the stay limit state not only monitors the occurrence of a fire, but also allows the subsequent progress to be monitored.
[0051]
【The invention's effect】
According to the first aspect of the present invention, the smoke layer on the ceiling surface of the room corresponding to the disaster prevention characteristics with the use of the room, the room area, and the ceiling height as parameters is set as the detection level of the stay limit state in the room to be monitored. Set the lower value of the smoke layer temperature when the smoke layer temperature falls to the height of the floor and the radiation temperature of the smoke layer when the radiation intensity of the smoke layer reaches a dangerous level, and it is arranged on the ceiling surface of the room When the detected temperature of the temperature detecting means having heat resistance reaches the above value, it is informed that the smoke in the room has reached a dangerous level, and the invention of claim 2 is provided in the room to be monitored. The smoke level on the ceiling surface of the adjacent section near the opening of the room according to the disaster prevention characteristics with the use of the room, the room area, and the ceiling height as parameters as the detection level of the stay limit state up to the height of the person Smoke layer temperature and smoke layer when descending Set the lower value of the radiation temperature of the smoke layer when the radiation intensity reaches a dangerous level, and the detection temperature of the temperature detection means with heat resistance arranged on the ceiling surface of the adjacent section will be the above value Since it is notified that the smoke in the room has reached a dangerous level when it arrives, the invention of claim 3 further provides the use level of the room and the room area as the detection level of the stay limit state in the room to be monitored. The smoke layer when the smoke layer on the ceiling surface of the room falls to the height of the person's back according to the disaster prevention characteristics with the ceiling height as a parameter when the smoke layer temperature and the radiation intensity of the smoke layer reach dangerous levels The lower rate of increase in the radiation temperature of the room is set, and when the rate of increase in the detected temperature of the temperature detecting means having heat resistance disposed on the ceiling surface of the room reaches the above value, Because it informs you that the smoke has reached a dangerous level, Since the fire the smoke of the visual object in the room to inform that it has reached a dangerous level, or initial fire fighting activities of the state, there is an effect that it is possible to figure out what possible evacuation state.
[Brief description of the drawings]
FIG. 1 is a conceptual configuration diagram of a system according to an embodiment using a method of the present invention.
FIG. 2 is a graph showing a calculation example of a temporal change in the smoke layer temperature of the fire chamber (office) for setting the detection level of the stay limit state of the method of the present invention.
FIG. 3 is a graph showing a calculation example of a temporal change in smoke layer temperature of a fire room (product sales store) for setting a detection level of a stay limit state according to the method of the present invention.
FIG. 4 is a graph showing a calculation example of a temporal change in smoke layer temperature of a fire room (hotel room) for setting a detection level of a stay limit state in the present invention.
FIGS. 5A and 5B are explanatory diagrams of a stay limit state for each form of the fire chamber in the method of the present invention, wherein FIG. 5A is an example of a room like an office room, FIG. 5B is an example of a merchandise store, and FIG. ) Is an example of an office room in a large space, and (d) is an example of a hotel guest room.
[Explanation of symbols]
1 Room 1a Ceiling surface 2 Corridor 2a Ceiling surface 4 Stair 5 Fire detector 10 Limit limit state detection unit 11 Sensor line 12 Notification means

Claims (3)

監視対象となる部屋における滞在限界状態の検知レベルとして、当該部屋の用途、居室面積、天井高さをパラメータとした防災特性に応じた部屋の天井面における煙層が人の背の高さまで降下する時の煙層温度及び煙層の輻射強度が危険なレベルに達する時の煙層の輻射温度の内の低い方の値を設定し、当該部屋の天井面に配設した耐熱性を有する温度検知手段の検知温度が上記値に至った時に当該部屋の火煙が危険なレベルに達したことを報知することを特徴とする滞在限界状態検出方法。 The smoke level on the ceiling surface of the room falls to the height of the person's back as the detection level of the stay limit state in the room to be monitored , according to the disaster prevention characteristics with the use of the room, the room area, and the ceiling height as parameters Set the lower value of the smoke layer radiation temperature when the smoke layer temperature and the smoke layer radiation intensity reach a dangerous level, and the temperature detection with heat resistance placed on the ceiling surface of the room A stay limit state detecting method characterized by notifying that the smoke in the room has reached a dangerous level when the detected temperature of the means reaches the above value . 監視対象となる部屋における滞在限界状態の検知レベルとして、当該部屋の用途、居室面積、天井高さをパラメータとした防災特性に応じた当該部屋の開口部近傍の隣接区画の天井面の煙層が人の背の高さまで降下する時の煙層温度及び煙層の輻射強度が危険なレベルに達する時の煙層の輻射温度の内の低い方の値を設定し、当該隣接区画の天井面に配設した耐熱性を有する温度検知手段の検知温度が上記値に至った時に当該部屋の火煙が危険なレベルに達したことを報知することを特徴とする滞在限界状態検出方法。As the detection level of the stay limit state in the room to be monitored, the smoke layer on the ceiling surface of the adjacent section near the opening of the room according to the disaster prevention characteristics with the use of the room, the living room area, and the ceiling height as parameters Set the lower value of the smoke layer temperature when descending to the height of a person and the radiation temperature of the smoke layer when the radiation intensity of the smoke layer reaches a dangerous level. A stay limit state detecting method characterized by notifying that the smoke in the room has reached a dangerous level when the temperature detected by the temperature detecting means having heat resistance reaches the above value. 監視対象となる部屋における滞在限界状態の検知レベルとして、当該部屋の用途、居室面積、天井高さをパラメータとした防災特性に応じた部屋の天井面における煙層が人の背の高さまで降下する時の煙層温度及び煙層の輻射強度が危険なレベルに達する時の煙層の輻射温度の内の低い方の上昇率の値を設定し、当該部屋の天井面に配設した耐熱性を有する温度検知手段の検知温度の上昇率が上記値に至った時に当該部屋の火煙が危険なレベルに達したことを報知することを特徴とする滞在限界状態検出方法。The smoke level on the ceiling surface of the room falls to the height of the person's back as the detection level of the stay limit state in the room to be monitored, according to the disaster prevention characteristics with the use, room area, and ceiling height as parameters. Set the lower rate of rise of the smoke layer radiation temperature and the smoke layer radiation temperature when the smoke layer radiation intensity reaches a dangerous level, and the heat resistance placed on the ceiling surface of the room A stay limit state detecting method characterized by notifying that the smoke in the room has reached a dangerous level when the rate of increase of the detected temperature of the temperature detecting means has the above value.
JP2000191813A 2000-06-26 2000-06-26 Stay limit state detection method Expired - Lifetime JP3924114B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000191813A JP3924114B2 (en) 2000-06-26 2000-06-26 Stay limit state detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000191813A JP3924114B2 (en) 2000-06-26 2000-06-26 Stay limit state detection method

Publications (2)

Publication Number Publication Date
JP2002008155A JP2002008155A (en) 2002-01-11
JP3924114B2 true JP3924114B2 (en) 2007-06-06

Family

ID=18691048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000191813A Expired - Lifetime JP3924114B2 (en) 2000-06-26 2000-06-26 Stay limit state detection method

Country Status (1)

Country Link
JP (1) JP3924114B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011525021A (en) * 2008-06-19 2011-09-08 マリミルス オーワイ Method, system and apparatus for signal transmission, guidance and alarm

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3851859B2 (en) * 2002-09-18 2006-11-29 清水建設株式会社 Fire phase management device and fire phase management method
JP2004246542A (en) * 2003-02-13 2004-09-02 Kinden Corp Residence critical state announcing method, fire property announcing method and fire information transferring system
JP5147484B2 (en) * 2008-03-27 2013-02-20 日本碍子株式会社 Mandrel for dry hydrostatic pressure molding
CN111038377B (en) * 2018-10-15 2021-02-05 广州汽车集团股份有限公司 Overheating treatment method, device, system, vehicle and storage medium
CN114255555B (en) * 2020-09-23 2024-09-06 深圳富桂精密工业有限公司 Fire escape guiding method, server and storage medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011525021A (en) * 2008-06-19 2011-09-08 マリミルス オーワイ Method, system and apparatus for signal transmission, guidance and alarm

Also Published As

Publication number Publication date
JP2002008155A (en) 2002-01-11

Similar Documents

Publication Publication Date Title
US10490055B2 (en) Supervision and control system for preventing poor air quality and fire as well as issuing an alarm of a dangerous condition
JP6351224B2 (en) On-site support system for fire
JP6517075B2 (en) Fire detection device, fire automatic fire extinguishing device, and fire automatic fire extinguishing system
CZ20001674A3 (en) Fire detector and fire signaling device
KR102168693B1 (en) Fire extinguish system for indoor
US11694532B2 (en) Fire alarm equipment
KR101794962B1 (en) Auto system for managing emergency exit open and shut
CN109812172B (en) Fire door control device and system
JP3924114B2 (en) Stay limit state detection method
KR101594806B1 (en) Smoke Exhaustion Equipment for Lifesaving of Dwelling Establishments
Singh et al. Raspberry pi based smart fire management system employing sensor based automatic water sprinkler
JP3851859B2 (en) Fire phase management device and fire phase management method
JP2514816B2 (en) Building with evacuation room
JPH06205851A (en) Disaster prevention monitoring device
KR102071139B1 (en) System for early fire suppression using network and method thereof
JP3917884B2 (en) Stay limit state notification method
JP2016195654A (en) Fire extinguisher
JP2004246542A (en) Residence critical state announcing method, fire property announcing method and fire information transferring system
CN108704237A (en) A kind of fire-fighting monitoring processing system for building interior smoking high risk zone
Johnson et al. Smoke detection of smoldering fires in a typical Melbourne dwelling
WO2011124224A1 (en) A system for turning off a power supply in a predetermined part of an electrical system
Björkman et al. Risk assessment of a timber frame building by using CRISP simulation
JP2580438B2 (en) Fire suppression and security methods for large spaces by air supply and exhaust control
CN116259148A (en) Automatic fire detection alarm system for factories
KR20230046509A (en) Control device for fire door

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061031

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070223

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3924114

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100302

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100302

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140302

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term